JP2004322502A - Foamed resin core built-in frp and its manufacturing method - Google Patents

Foamed resin core built-in frp and its manufacturing method Download PDF

Info

Publication number
JP2004322502A
JP2004322502A JP2003121375A JP2003121375A JP2004322502A JP 2004322502 A JP2004322502 A JP 2004322502A JP 2003121375 A JP2003121375 A JP 2003121375A JP 2003121375 A JP2003121375 A JP 2003121375A JP 2004322502 A JP2004322502 A JP 2004322502A
Authority
JP
Japan
Prior art keywords
core
heat
film
frp
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121375A
Other languages
Japanese (ja)
Other versions
JP4300861B2 (en
Inventor
Takashi Mimura
尚 三村
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003121375A priority Critical patent/JP4300861B2/en
Publication of JP2004322502A publication Critical patent/JP2004322502A/en
Application granted granted Critical
Publication of JP4300861B2 publication Critical patent/JP4300861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the penetration of an injected resin into a core made of a foamed resin and to improve appearance and the creak sound caused by the bending of a molded object, in foamed resin core-built-in lightweight FRP. <P>SOLUTION: The foamed resin core built-in FRP is characterized in that the surface of the core made of the foamed resin is covered with a heat-shrinkable film and a fiber base material impregnated with a thermosetting resin is laminated on the core through the film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のボディ部品、バンパー、スポイラーなどに適用できる軽量であって、かつ耐たわみ性にも優れた発泡樹脂成形品コア内蔵FRPに関する。
【0002】
【従来の技術】
従来より、金属成型材料、特に自動車のボディ、バンパー、スポイラーなどの各種部品の軽量化が検討されてきているが、最近では特に軽量化とともに強靱性をも兼ね備えた樹脂成型品が開発されている。例えばポリスチレンなどからなる発泡樹脂成型品をコアとし、その外側にガラス繊維やカーボン繊維などの繊維基材を被覆したのち、樹脂を含浸、硬化させた繊維強化プラスチック(以下、FRPという。)製のバンパー(特許文献1)や、発泡ポリウレタンコアの表面に不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタンなどの熱硬化性樹脂系塗料あるいはアクリル樹脂などの熱可塑性樹脂の溶剤型塗料を塗布したのち、乾燥硬化させた薄い樹脂層を繊維基材とともに成型型内にセットし、FRP用樹脂液を注入硬化させた発泡ポリウレタンコア内蔵FRP製品の製造方法(特許文献2)などが提案されている。
【0003】
【特許文献1】
特開平2−215519号公報(請求項1、第1〜第4図)
【0004】
【特許文献2】
特開平5−147048号公報(請求項1、図1)
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1および2に提案されている発泡樹脂製成形品をコアとするFRPにおいては、以下のような問題点があった。
【0006】
すなわち、特許文献1においては、前述したとおり発泡樹脂成型品をコアとし、その外側に繊維基材を被覆した後、樹脂を含浸硬化させるものであるが、発泡樹脂製コアの表面からその内部に樹脂が浸透するため軽量化が損なわれたり、浸透斑によって製品の表面が変色して見えたり、極端な場合には凹凸が発生して著しく品位と光沢を低下させたりするため、極めて生産性の悪いものであった。
【0007】
一方、特許文献2においては、その欠点を改良、すなわち発泡ポリウレタンコアの表面に樹脂を塗布して繊維基材を通して注入される樹脂のポリウレタンコアへの浸透を防止するものである。確かに樹脂層形成材料を選択することで内部への浸透をある程度防止できるかも知れないが、塗膜によって形成された層は強度的に不十分であり、通常0.2〜2MPa程度の樹脂注入時の圧力などにより部分的に破壊され、注入樹脂がコアに浸透する可能性を伴うものである。また、注入された樹脂とポリウレタンコアを被覆する薄い樹脂層との接着が不十分な場合には、製品に重力を掛けてたわませた場合、きしみ音がするという問題があった。
【0008】
本発明は、上記従来技術の課題を解決し、樹脂含浸時のコア内部への浸透と浸透斑による変色を防止するとともに、FRP成型体のきしみ音の発生を抑制することにより、軽量化と耐たわみ性の両方に優れた発泡樹脂製コア内蔵FRPおよびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明の発泡樹脂製コア内蔵FRPは、発泡樹脂製コアの表面が熱収縮性フィルムで被覆され、該フィルムを介して、熱硬化性樹脂が含浸された繊維基材が積層されてなることを特徴とする。
【0010】
また、上記課題を解決するため、本発明の発泡樹脂製コア内蔵FRPの製造方法は、発泡樹脂製コアの表面を熱接着層を介して熱収縮性フィルムで被覆し、該被覆物を減圧下で加熱収縮させ、その後、該フィルム上を繊維基材で被覆後、成型機のキャビティ内にセットし、熱硬化性樹脂を注入硬化させることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について詳細に記述する。
【0012】
本発明のFRPで用いる発泡樹脂製コアとは、本発明のFRPのコアをなす発泡樹脂製成形品のことであり、その成型品は、ポリウレタン、ポリスチレン、ポリオレフィンなどからなる発泡体であって、一般的な製造方法によって製造され、独立あるいは連続気泡を有するものである。その発泡倍率は特に限定するものではないが軽量化を目的とするため、出来る限り発泡倍率高いものが好ましい。成型体の強度とのバランスを考慮すると5倍から20倍程度の発泡倍率とするのが好ましい。
【0013】
発泡成型の方法としては、特に限定するものではなく、従来公知の方法によって成型することができる。例えば炭酸ガス、フレオン、メチレンジクロライド、ペンタン、空気等の他、熱分解型の有機系発泡剤などを適用することができる。特にポリウレタンのようなポリオールとイソシアネートの反応により副成する炭酸ガスを封入することによって製造する方法が簡易で均一発泡出来る点で好ましい。このような成型方法としては一般的にはワンショット法やプリポリマー法が知られている。本発明に用いるコアは半硬質、硬質発泡体が好ましい。
【0014】
ところで、前述したように本発明のコア内蔵FRPでは、発泡樹脂製コア表面が熱収縮性フィルムで被覆されていることを特徴とする。
【0015】
このような熱収縮性フィルムとしては、例えばポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリスチレンフィルム、塩化ビニルフィルム、ナイロンフィルムなどから選ぶことができるが、ナイロンフィルムが柔軟性、強靱性、耐熱性の点で特に好ましい。
【0016】
以下、本発明の熱収縮性フィルムの好ましい代表例としてナイロンフィルムについて説明するが当然、これに限定されるものではない。
【0017】
ナイロンフィルムは特に限定しないがナイロン6、ナイロン12,ナイロン11,6−6ナイロン、6−10ナイロンなどの任意のものを使用することができ、これらの2元、3元以上の共重合体であっても良い。融点は熱硬化性樹脂含浸時の硬化温度に耐えることが必要であり、通常、150℃以上であるのが好ましい。
【0018】
熱収縮性ナイロンフィルムとしては、一軸延伸、2軸延伸(逐次あるいは同時二軸延伸を含む)のいずれのフィルムでも使用することができ、例えばその代表例としてはユニロンS300(出光ユニテック(株)製)、エンブレムNK(ユニチカ(株)製)、ボニールSW(興人(株)製)、スーパーニールSP−R・SH(三菱樹脂(株)製)などを挙げることができる。また、熱収縮性フィルムの収縮率は95℃熱水中で30分間浸漬したときに5〜40%、好ましくは10%〜30%、更に好ましくは15%〜25%であるの望ましい。5%未満の場合には、コアの形状によってはコアへのフィット性に劣る場合があり、40%を越える場合には収縮応力によってコアが変形する場合がある。熱収縮性フィルムの厚みは3μm以上75μm以下であるのが好ましい。3μm未満の場合には強度が不足し、被覆過程や後述する熱硬化性樹脂注入時の圧力によって破れる場合があり、75μmを越えるとコアにうまく追従せず、製品の表面状態が悪くなる場合がある。また、熱収縮性フィルムの表面は空気中、窒素中、炭酸ガス中などでコロナ処理されたものが注入する熱硬化性樹脂との接着の点で好ましい。処理は片面であっても両面であっても良いが熱硬化性樹脂と接触する側はコロナ処理面であることが接着性の点で好ましい。このような処理を施すことにより、熱収縮性フィルムと熱硬化性樹脂とのより高い接着性を発現することができ、FRPの上から重力をかけた時のきしみ音などを抑制することができる。熱収縮性フィルムと、熱硬化性樹脂含浸繊維基材との接着力は、180度剥離において100g/cm以上、好ましくは200g/cm以上であるのが望ましく、上記の処理を施すことでより強固な接着力を発現することができる。発泡樹脂製コアの表面を熱収縮性フィルムで被覆するに際し、その被覆の目的が発泡樹脂成形品への熱硬化樹脂の浸透防止であり、浸透を防止するような被覆が必要である。
【0019】
かかる被覆方法としては特に限定しないが、繊維基材および熱硬化性樹脂で被覆するまでの過程ではコア材に接着させておくのが好ましく、コア材にあらかじめ糊材をスプレー、塗布などの方法により表面処理し、熱収縮性フィルムを被覆する方法、熱収縮性フィルムの少なくとも片面に粘着剤、接着剤を積層した複合フィルムの粘接着面をコア側にして被覆する方法などを適用することができる。特に常温では非粘着性であって熱によって粘接着性を発現する接着層を設けると、コアをフィルムで簡易被覆する時にフィルム同士が粘着せず、熱をかけて収縮させコアにフィットさせる工程において接着するので好ましい形態である。このような接着剤としてはホットメルト型の接着剤が好ましく、例えばポリエステル系、アクリル系、ポリアミド系、ポリオレフィン系およびその共重合体、変性体、アイオノマーなどが使用できるが80〜140℃に融点もしくは軟化点を有するものが好適である。熱収縮性フィルムがナイロンフィルムの場合には共重合ポリアミドフィルム(例えば熱接着用フィルムタイプCF8000:東レ合成(株)製)とのラミネート、変性ポリオレフィン系接着ポリマーであるアドマーNFシリーズ、HBシリーズ、LFシリーズ、LBシリーズ、VFシリーズ(三井化学(株)製)などとのラミネートによりナイロンフィルムと積層したものが好ましく使用できる。接着層の厚みは特に限定しないがコア材にフィットさせ、かつコア材との接着性を保持する点から1μm以上50μm以下、好ましくは3μm以上30μm以下、更に好ましくは5μm以上20μm以下であるのが望ましい。また、熱硬化性樹脂注入時に熱収縮性フィルムの隙間から熱硬化性樹脂が浸透しないようにする必要があり、フィルム接合部分は接着剤や粘着テープなどで補修するなどの方法を適用するのが好ましい。
【0020】
粘着テープの基材は熱硬化性樹脂の硬化による発熱などを考慮すると170℃以上の融点を有するフィルムが好ましく、ポリエステル、ナイロンなどが好適である。粘着層はアクリル系、シリコーン系などの耐熱性を有するものが好ましい。簡易被覆は通常の巻き付けなどの方法でも良いが、簡易被覆したコアをプラスチックフィルム製の袋に入れて内部を真空にしてコアにフィットさせる方法が特に好ましい。熱収縮性フィルムで被覆されたコアは80℃〜130℃で加熱され、コアへ熱収縮性フィルムを接着させると同時に収縮によってコアの形状にフィットさせる。コアの形状が複雑な場合には凹部を治具で押さえた状態で熱処理を行うと形状に応じてフィットさせることができる。
【0021】
上記発泡樹脂成型品を熱収縮性フィルムで被覆したものは、その上から熱硬化性樹脂含浸繊維基材によって被覆される。これに使用する繊維基材としては、特に限定されず、ガラス繊維、炭素繊維、アラミド繊維、セラミック繊維、金属繊維などの耐熱高強度繊維が好ましく、特に炭素繊維からなる織物が強度と軽量性のバランスから好ましく使用できる。
【0022】
熱硬化性樹脂としては、特に限定しないが、エポキシ樹脂、メラミン樹脂、ウレア樹脂、不飽和ポリエステル樹脂、フェノール樹脂などの使用が可能である。特に成型性、硬化性、被覆フィルムとの接着性などからエポキシ樹脂が好ましい。エポキシ樹脂を熱硬化させるためには硬化剤の併用が好ましく、ジエチレントリアミン、トリエチレンテトラミンなどのアミン類、ポリアミド、無水フタル酸、ピロメリット酸無水物、ピロメリット酸無水物−無水マレイン酸混合物、ヘキサヒドロフタル酸無水物、ドデセニルコハク酸無水物、クロレンディン酸無水物、メチルナジン酸無水物などの酸無水物系が好ましく、特に耐熱性などを考慮すると酸無水物系が好ましい。
【0023】
繊維基材による被覆は1層でも良いし、目的、用途に応じて2層以上としても良い。層数の増加によってFRPの強度を向上することができる。
【0024】
次に、本発明の発泡樹脂製コア内蔵FRPの製造方法について説明する。
【0025】
まず、前述した発泡樹脂製成型品(コア)、熱収縮性フィルムおよび繊維基材を用い「発泡樹脂製コア/熱収縮性フィルム/繊維基材」の積層順からなる複合積層体を作成する。この積層体の具体的な作成方法は前述したとおりであるので省略するが、上記発泡樹脂製コアを熱収縮性フィルムで被覆する工程においては、コア表面を接着剤を介して熱収縮性フィルムで簡易被覆した該被覆物を減圧下で加熱収縮させる。具体的には、該被覆物をポリエチレン、ポリプロピレン、ポリエステル、ナイロンなどからなる袋状物の中に入れて袋内部を減圧し、コアの表面に熱収縮性フィルムをフィットさせる。減圧の程度は熱収縮性フィルムがコアにフィットする状態で判断すれば良いが通常、100〜3万Pa程度の減圧雰囲気下で80〜130℃の温度で加温すればよく、このようにするとフィルムの収縮によりコアとのフィット性、コアとの密着性が向上し、FRPでの外観、きしみ音などの改良効果が生じる。
【0026】
次に袋から取り出した被覆成型体のフィルム面上に繊維基材を被覆した複合成型体を作成する。
【0027】
複合成型体が得られたら熱硬化性樹脂の注入硬化を行うため、この複合成型体を所定の金型のキャビティ内にセットし、端部から前述の熱硬化性樹脂を注入する。注入圧力としては、樹脂が金型全体に均一にいきわたることが必要であり、樹脂の粘度や複合積層体の形状によって任意に設定することができるが、通常は0.2〜2MPa、好ましくは0.3〜1MPa、更に好ましくは0.3〜0.7MPaの範囲であるのが望ましい。この場合、金型の温度は予め加温しておくが、具体的温度としては使用する熱硬化性樹脂の種類に応じて設定するのが好ましく、例えばエポキシ樹脂の場合には80℃〜150℃であるのが好ましく、発泡樹脂成型品の耐熱寸法安定性から可能な限り低温であるのが望ましい。
【0028】
次に注入樹脂の熱硬化のため適当な時間加熱を行う。この加熱時間としては、熱硬化性樹脂の種類によって任意に設定できるが通常3分〜60分の範囲が望ましい。硬化完了後は金型から成型品を取り外して本発明の発泡樹脂製コア内蔵のFRPの完成品を得る。
【0029】
このようにして得られた発泡樹脂製コア内蔵FRPは外部を包埋する熱硬化性樹脂のコア内部への浸透を防止でき、かつ熱硬化性樹脂と熱収縮性フィルムとの接着に優れるため、発泡体本来の機能である軽量化およびFRPの耐久性の両機能に優れたものであり、例えば自動車のボディ部品、バンパー、スポイラーなどに適用できる軽量、耐たわみ性に優れたものとすることができる。
【0030】
【実施例】
本発明に関し、以下に実施例を用いて説明するが、必ずしもこれに限定されるものではない。まず、本発明のコア内蔵FRPの特性の測定方法と効果の評価方法は次の通りとした。
【0031】
【特性の測定方法および効果の評価方法】
(1)熱硬化樹脂含浸繊維基材とナイロンフィルムとの接着力
成型完了後のFRPを分解し、熱硬化樹脂含浸繊維とナイロンフィルム複合部分を取り出し、テンシロン型引っ張り試験機にて180度剥離時の応力を測定した。引っ張り速度は200mm/分とした。
【0032】
(2)発泡体コアへのフィルムのフィット性
発泡体成型品へのフィルム被覆状態での平坦部のシワの発生状況を目視で観察した。
【0033】
(3)FRP成型体の外観検査
成型完了後のFRPの外観を目視で観察し、色目の斑、表面の形状を評価した。
【0034】
(4)熱硬化樹脂の発泡成形体への熱硬化樹脂の浸透検査
成型完了後のFRPの断面を切り出し、発泡体表面の発泡部分への浸透状態を100倍の光学顕微鏡で観察した。
【0035】
(5)耐たわみ性
成型体をたわませた時のきしみ音の発生する変形量を評価した。変形量は成型体の中央部の無荷重時を0とし、徐々に荷重を掛けて変形させたときにきしみ音が発生した押さえ込み深さを測定した。
【0036】
「実施例1」
約10倍に発泡成形されたポリウレタン成型体コア(幅250mm×長さ700mm×厚み30mm)を用い、このコアの表面にスプレー糊55(住友スリーエム(株)製)を吹きつけ、常温で2分間乾燥させた。次いで片面にコロナ処理を施した厚み15μmの二軸延伸熱収縮性ナイロンフィルム(エンブレムNK:ユニチカ(株)製)を用い、非コロナ処理面をコアの表面に貼り付けた。端部はコアが露出しないように上記ナイロンフィルムで包み込み、ポリエステル製粘着テープを貼り付けた。これを厚み15μmのポリエチレン製袋に入れ、その端部から袋内部を4000Pa程度の減圧雰囲気になるように真空ポンプによって減圧した。この簡易被覆の状態で90℃熱水中に3分間浸漬した。その後、袋内を常圧に戻し、ポリエチレン袋からナイロンフィルムで被覆された成型体を取り出した。この成型体は端部でのシワが観察されたが平坦部ではナイロンフィルムがコアにフィットし、シワの発生のない綺麗な面を有していた。この成型体のナイロンフィルム上に炭素繊維からなる基布で包み込み、次いでこれを80℃に加熱した樹脂注入成型機の金型にセットした。端部からエポキシ樹脂と無水フタル酸の混合物を注入圧力0.5MPaで圧入し、その後120℃に昇温し、30分間硬化させた。その後、約40℃まで冷却し、成型機を開けて金型から成型品を取り出した。この成型品は外観が極めて美麗でコア部へのエポキシ樹脂の浸透がなく高い接着性(1kg/cm以上)を有していた。また、20mmのたわみ変形においてもきしみ音の発生が無かった。
【0037】
「比較例1」
次に、実施例1のナイロンフィルムを使用しない以外は同様にしてFRP製成型体を作成した。この成型体は外観の色目に斑が見られ、部分的に凹みが観察された。また、断面観察で発泡体内部にエポキシ樹脂の浸透が見られた。
【0038】
「比較例2」
実施例1のナイロンフィルムに変えてポリエステル樹脂(バイロン200:東洋紡(株)製)100重量部にポリイソシアネート(コロネートL:日本ポリウレタン(株)製)を25重量部添加したトルエン/酢酸エチル(70/30重量%)で25重量%に希釈した塗剤を調合し、発泡ウレタンコア表面に乾燥後の厚みが約15μmとなるように塗布した。乾燥は120℃で10分とした。これ以外は実施例1と同様にして成型体を作成した。
【0039】
この成型体は断面観察から発泡体へのエポキシ樹脂の浸透が見られ、外観の色目斑、表面の凹状欠点が観察された。
【0040】
「実施例2」
実施例1の熱収縮性ナイロンフィルムに変えて熱収縮性ポリエステルフィルムとしてスペースクリーンSC−B(東洋紡(株)製)の両面にコロナ処理を行ったフィルムを用いた以外は同様にして成型体を作成した。この成型体は実施例1と同様、熱収縮させた後のコアへのフィット性に優れ、成型体の外観、接着性、耐たわみ性とも優れたものであった。
【0041】
「実施例3」
実施例1のナイロンフィルムの片面にエクストルージョンラミネート法により、接着性ポリオレフィンとしてアドマーLF300(三井化学(株)製)を12μmの厚みで積層した。このフィルムの積層面がコア側になるように被覆し、その後、減圧処理用袋として12μm厚のルミラーP60(東レ(株)製)を用い実施例1の熱水処理に変えて熱風乾燥機中で120℃5分間処理を行った。その後は実施例1と同様にして成型体を作成した。
【0042】
この成型体はコアへのフィット性、成型体の外観、接着性に優れ、30mmの変形量でもきしみ音の全くないものであった。また発泡体コアとナイロンフィルムとの接着にも優れていた。
【0043】
「比較例3」
実施例2の熱収縮性ポリエステルフィルムに変えて150℃30分での熱収縮率が2%以下のポリエステルフィルム(厚み12μmのルミラーP60(東レ(株)製))を用いた以外は実施例2と同様にして成型体を作成した。この成型体はフィルム被覆過程でのフィット性が不十分で表面にシワの多いものとなった。
【0044】
成型体の外観は良好であったが10mmの変形量できしみ音が発生した。
【0045】
【発明の効果】
本発明は、発泡樹脂製コア内蔵のFRPにおいて、コア表面を熱収縮性フィルムで被覆させたので、注入樹脂が内部の発泡体コアに浸透せず、したがって変色も生じることがない。また、注入樹脂と熱収縮性フィルムとの接着性が高く、かつコアとフィルムとのフィット性に優れるため、軽量で外観に優れ、たわみによってきしみ音が発生しない優れた発泡樹脂製コア内蔵FRPを得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an FRP with a built-in core of a foamed resin molded product which is lightweight and can be applied to, for example, a body part of an automobile, a bumper, a spoiler, and the like, and has excellent flexibility.
[0002]
[Prior art]
Conventionally, weight reduction of metal molding materials, especially various parts such as automobile bodies, bumpers, spoilers, etc., has been studied, but recently, resin moldings having both weight reduction and toughness have been developed. . For example, a core made of a foamed resin molded product made of polystyrene or the like is coated with a fiber base material such as a glass fiber or a carbon fiber, and then impregnated with a resin and cured to make a fiber reinforced plastic (hereinafter, referred to as FRP). After applying a thermosetting resin-based paint such as an unsaturated polyester resin, an epoxy resin, or a polyurethane, or a thermoplastic resin such as an acrylic resin to a surface of a bumper (Patent Document 1) or a foamed polyurethane core, and then drying and curing. A method of manufacturing an FRP product with a built-in foamed polyurethane core in which a thin resin layer formed is set in a mold together with a fiber base material, and a resin liquid for FRP is injected and cured (Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2-215519 (Claim 1, FIGS. 1 to 4)
[0004]
[Patent Document 2]
JP-A-5-147048 (Claim 1, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the following problems have been encountered in the FRP having a core of a molded article made of a foamed resin proposed in Patent Documents 1 and 2 described above.
[0006]
That is, in Patent Literature 1, as described above, a foamed resin molded product is used as a core, and after covering the fiber base on the outside, the resin is impregnated and cured, but from the surface of the foamed resin core to the inside. Because the resin penetrates, the weight reduction is impaired, the surface of the product appears discolored due to permeation spots, and in extreme cases, unevenness is generated and the quality and gloss are significantly reduced, resulting in extremely high productivity. It was bad.
[0007]
On the other hand, in Patent Document 2, the disadvantage is improved, that is, a resin is applied to the surface of the foamed polyurethane core to prevent the resin injected through the fiber base material from penetrating into the polyurethane core. Certainly, the penetration into the interior may be prevented to some extent by selecting the resin layer forming material, but the layer formed by the coating film is insufficient in strength, and the resin injection of about 0.2 to 2 MPa is usually required. It is partially destroyed by pressure at the time and the like, and there is a possibility that the injected resin permeates the core. Further, when the injected resin and the thin resin layer covering the polyurethane core are not sufficiently bonded, when the product is subjected to gravity to bend, there is a problem that a squeak sound is generated.
[0008]
The present invention solves the above-mentioned problems of the prior art, prevents discoloration due to permeation into the core during resin impregnation and permeation spots, and suppresses the generation of squeak noise of the FRP molded body, thereby reducing the weight and improving the durability. It is an object of the present invention to provide a foamed resin core-incorporated FRP having both excellent flexibility and a method of manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the foamed resin core-incorporated FRP of the present invention is a fiber substrate in which the surface of a foamed resin core is covered with a heat-shrinkable film, and the thermosetting resin is impregnated through the film. Are laminated.
[0010]
Further, in order to solve the above problems, the method for producing a foamed resin core-embedded FRP of the present invention comprises covering the surface of a foamed resin core with a heat-shrinkable film via a heat bonding layer, and subjecting the coated material to a reduced pressure. The film is covered with a fiber substrate, and then set in a cavity of a molding machine, and a thermosetting resin is injected and cured.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0012]
The foamed resin core used in the FRP of the present invention is a molded article made of a foamed resin forming the core of the FRP of the present invention, and the molded article is a foam made of polyurethane, polystyrene, polyolefin, or the like, It is manufactured by a general manufacturing method and has closed or open cells. The expansion ratio is not particularly limited, but is preferably as high as possible for the purpose of weight reduction. In consideration of the balance with the strength of the molded body, the expansion ratio is preferably about 5 to 20 times.
[0013]
The method of foam molding is not particularly limited, and it can be molded by a conventionally known method. For example, in addition to carbon dioxide, freon, methylene dichloride, pentane, air, and the like, a thermal decomposition type organic foaming agent and the like can be applied. In particular, a method of manufacturing by encapsulating carbon dioxide gas by-produced by the reaction between a polyol such as polyurethane and an isocyanate is preferable in that simple and uniform foaming is possible. As such a molding method, a one-shot method and a prepolymer method are generally known. The core used in the present invention is preferably a semi-rigid or rigid foam.
[0014]
By the way, as described above, the FRP with a built-in core of the present invention is characterized in that the surface of the foamed resin core is covered with a heat-shrinkable film.
[0015]
As such a heat-shrinkable film, for example, a polyester film, a polypropylene film, a polyethylene film, a polystyrene film, a vinyl chloride film, a nylon film, and the like can be selected, and the nylon film is flexible, tough, and heat-resistant. Is particularly preferred.
[0016]
Hereinafter, a nylon film will be described as a preferable representative example of the heat-shrinkable film of the present invention, but it is needless to say that the present invention is not limited to this.
[0017]
The nylon film is not particularly limited, but any one of nylon 6, nylon 12, nylon 11, 6-6 nylon, 6-10 nylon, and the like can be used. There may be. The melting point needs to withstand the curing temperature during the impregnation of the thermosetting resin, and is usually preferably 150 ° C. or higher.
[0018]
As the heat-shrinkable nylon film, any film of uniaxial stretching and biaxial stretching (including sequential or simultaneous biaxial stretching) can be used. For example, a typical example is Unilon S300 (manufactured by Idemitsu Unitech Co., Ltd.). ), Emblem NK (produced by Unitika Ltd.), Boneal SW (produced by Kojin Co., Ltd.), Super Neal SP-R.SH (produced by Mitsubishi Plastics Corp.), and the like. The heat shrinkable film has a shrinkage ratio of 5 to 40%, preferably 10% to 30%, and more preferably 15% to 25% when immersed in 95 ° C. hot water for 30 minutes. If it is less than 5%, the fit to the core may be poor depending on the shape of the core, and if it exceeds 40%, the core may be deformed by shrinkage stress. The thickness of the heat-shrinkable film is preferably 3 μm or more and 75 μm or less. If it is less than 3 μm, the strength may be insufficient, and it may be broken by the coating process or the pressure at the time of injection of the thermosetting resin described later. If it exceeds 75 μm, it may not follow the core well and the surface condition of the product may be deteriorated. is there. The surface of the heat-shrinkable film is preferably subjected to a corona treatment in air, nitrogen, carbon dioxide, or the like, from the viewpoint of adhesion to a thermosetting resin to be injected. The treatment may be on one side or on both sides, but it is preferable that the side in contact with the thermosetting resin is a corona-treated surface from the viewpoint of adhesiveness. By performing such a treatment, higher adhesiveness between the heat-shrinkable film and the thermosetting resin can be exhibited, and squeak noise when gravity is applied from above the FRP can be suppressed. . The adhesive strength between the heat-shrinkable film and the thermosetting resin-impregnated fiber base material is desirably 100 g / cm or more, preferably 200 g / cm or more at 180-degree peeling. A high adhesive strength can be exhibited. When coating the surface of the foamed resin core with the heat-shrinkable film, the purpose of the coating is to prevent the penetration of the thermosetting resin into the foamed resin molded article, and a coating for preventing the penetration is required.
[0019]
Such a coating method is not particularly limited, but it is preferable that the core material is adhered to the core material in a process until the core material is coated with the fiber base material and the thermosetting resin. It is possible to apply a method of performing a surface treatment and coating the heat-shrinkable film, a method of coating the adhesive film on at least one surface of the heat-shrinkable film with the adhesive side of the composite film in which the adhesive is laminated on the core side, and the like. it can. In particular, if an adhesive layer which is non-adhesive at room temperature and expresses adhesiveness by heat is provided, when the core is simply coated with a film, the films do not stick to each other, but are heated and shrunk to fit the core. This is a preferred form because it adheres to the substrate. As such an adhesive, a hot-melt type adhesive is preferable, and for example, polyester-based, acrylic-based, polyamide-based, polyolefin-based and copolymers thereof, modified products, ionomers and the like can be used. Those having a softening point are preferred. When the heat-shrinkable film is a nylon film, it is laminated with a copolyamide film (for example, a film type for heat bonding CF8000: manufactured by Toray Gosei Co., Ltd.), and Admar NF series, HB series, and LF which are modified polyolefin-based adhesive polymers. What laminated | stacked with the nylon film by lamination | stacking with series, LB series, VF series (made by Mitsui Chemicals, Inc.) etc. can be used preferably. The thickness of the adhesive layer is not particularly limited, but is preferably 1 μm or more and 50 μm or less, preferably 3 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less from the viewpoint of fitting to the core material and maintaining the adhesiveness with the core material. desirable. In addition, it is necessary to prevent the thermosetting resin from penetrating through the gap of the heat-shrinkable film when the thermosetting resin is injected, and it is necessary to apply a method such as repairing the film bonding portion with an adhesive or an adhesive tape. preferable.
[0020]
Considering the heat generated by the curing of the thermosetting resin, the base material of the adhesive tape is preferably a film having a melting point of 170 ° C. or higher, and polyester, nylon, and the like are preferable. The pressure-sensitive adhesive layer is preferably a heat-resistant material such as an acrylic or silicone material. The simple coating may be performed by a usual method such as winding. However, a method in which the simply coated core is placed in a plastic film bag and the inside is evacuated to fit the core is particularly preferable. The core coated with the heat-shrinkable film is heated at 80 ° C. to 130 ° C. to adhere the heat-shrinkable film to the core and at the same time to fit the shape of the core by shrinkage. When the shape of the core is complicated, heat treatment is performed in a state where the concave portion is held by a jig, so that the shape can be fitted according to the shape.
[0021]
The foamed resin molded article covered with a heat shrinkable film is covered thereon with a thermosetting resin-impregnated fiber base material. The fiber base material used for this is not particularly limited, and heat-resistant high-strength fibers such as glass fiber, carbon fiber, aramid fiber, ceramic fiber, and metal fiber are preferable. It can be used preferably from the balance.
[0022]
The thermosetting resin is not particularly limited, but an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester resin, a phenol resin and the like can be used. Particularly, an epoxy resin is preferable from the viewpoint of moldability, curability, adhesion to a coating film, and the like. In order to thermally cure the epoxy resin, it is preferable to use a curing agent in combination. Acid anhydrides such as hydrophthalic anhydride, dodecenyl succinic anhydride, chlorendic anhydride and methyl nadic anhydride are preferred, and acid anhydrides are particularly preferred in view of heat resistance and the like.
[0023]
The coating with the fiber base material may be a single layer, or may be two or more layers depending on the purpose and application. The strength of the FRP can be improved by increasing the number of layers.
[0024]
Next, a method for manufacturing the FRP with a built-in foamed resin core of the present invention will be described.
[0025]
First, using the foamed resin molded product (core), the heat-shrinkable film, and the fiber base material, a composite laminate having a stacking order of “foamed resin core / heat-shrinkable film / fiber base material” is prepared. . Although a specific method of forming the laminate is as described above, the description is omitted. In the step of coating the foamed resin core with a heat-shrinkable film, the core surface is coated with a heat-shrinkable film via an adhesive. The simply coated coating is heat shrunk under reduced pressure. Specifically, the coating is placed in a bag made of polyethylene, polypropylene, polyester, nylon, or the like, the inside of the bag is depressurized, and a heat-shrinkable film is fitted to the surface of the core. The degree of the pressure reduction may be determined in a state where the heat-shrinkable film fits the core, but it is usually sufficient to heat the film at a temperature of 80 to 130 ° C. in a reduced pressure atmosphere of about 100 to 30,000 Pa. Due to the shrinkage of the film, the fit to the core and the adhesion to the core are improved, and the effect of improving the appearance and the squeaking sound in FRP is produced.
[0026]
Next, a composite molded article is prepared in which the fiber base is coated on the film surface of the coated molded article taken out of the bag.
[0027]
When the composite molded body is obtained, in order to perform injection curing of the thermosetting resin, the composite molded body is set in a cavity of a predetermined mold, and the above-described thermosetting resin is injected from an end. The injection pressure needs to be such that the resin uniformly spreads over the entire mold, and can be arbitrarily set depending on the viscosity of the resin and the shape of the composite laminate, but is usually 0.2 to 2 MPa, preferably 0 to 2 MPa. It is preferably in the range of 0.3 to 1 MPa, more preferably 0.3 to 0.7 MPa. In this case, the temperature of the mold is preliminarily heated, but the specific temperature is preferably set according to the type of the thermosetting resin to be used. For example, in the case of an epoxy resin, 80 ° C. to 150 ° C. It is preferable that the temperature be as low as possible in view of the heat-resistant dimensional stability of the foamed resin molded product.
[0028]
Next, heating is performed for an appropriate time for thermal curing of the injected resin. The heating time can be arbitrarily set depending on the type of the thermosetting resin, but is usually preferably in a range of 3 minutes to 60 minutes. After curing is completed, the molded product is removed from the mold to obtain a completed FRP product with a built-in foamed resin core of the present invention.
[0029]
The foamed resin core built-in FRP thus obtained can prevent the thermosetting resin embedded in the outside from penetrating into the core, and has excellent adhesion between the thermosetting resin and the heat-shrinkable film. It is excellent in both the weight reduction and the durability of the FRP, which are the original functions of the foam. For example, it should be lightweight and excellent in bending resistance applicable to automobile body parts, bumpers, spoilers, etc. it can.
[0030]
【Example】
The present invention will be described below with reference to examples, but is not necessarily limited thereto. First, the method for measuring the characteristics and the method for evaluating the effect of the core built-in FRP of the present invention were as follows.
[0031]
[Method of measuring characteristics and evaluating effect]
(1) Decompose FRP after completion of adhesive force molding between thermosetting resin-impregnated fiber base material and nylon film, take out thermosetting resin-impregnated fiber and nylon film composite part, and peel 180 degrees with Tensilon type tensile tester Was measured. The pulling speed was 200 mm / min.
[0032]
(2) Fitting of Film to Foam Core The occurrence of wrinkles on the flat portion in the state of film coating on the foam molded article was visually observed.
[0033]
(3) Inspection of appearance of FRP molded body The appearance of FRP after completion of molding was visually observed to evaluate spots of color and surface shape.
[0034]
(4) Inspection of Penetration of Thermosetting Resin into Foamed Molded Body The cross section of the FRP after completion of molding was cut out, and the state of penetration into the foamed portion on the surface of the foamed body was observed with a 100-fold optical microscope.
[0035]
(5) The amount of deformation at which squeak noise was generated when the molded article was flexed was evaluated. The amount of deformation was defined as 0 when no load was applied to the center of the molded body, and the pressing depth at which a squeak sound was generated when the molded body was gradually deformed by applying a load was measured.
[0036]
"Example 1"
Using a polyurethane molded core (width 250 mm × length 700 mm × thickness 30 mm) foamed about 10 times, spray glue 55 (manufactured by Sumitomo 3M Ltd.) is sprayed on the surface of the core, and the room temperature is maintained at room temperature for 2 minutes. Let dry. Next, a non-corona-treated surface was affixed to the surface of the core using a biaxially stretched heat-shrinkable nylon film (Emblem NK: manufactured by Unitika Ltd.) having a thickness of 15 μm and having one surface subjected to corona treatment. The end was wrapped with the above nylon film so that the core was not exposed, and an adhesive tape made of polyester was attached. This was put into a 15 μm-thick polyethylene bag, and the inside of the bag was depressurized by a vacuum pump so that the inside of the bag became a reduced pressure atmosphere of about 4000 Pa from the end. This simple coating was immersed in hot water at 90 ° C. for 3 minutes. Thereafter, the inside of the bag was returned to normal pressure, and the molded body covered with the nylon film was taken out of the polyethylene bag. Although wrinkles were observed at the ends of the molded product, the nylon film fit the core at the flat portions, and had a clean surface free of wrinkles. The molded product was wrapped with a carbon fiber base cloth on a nylon film, and then set in a mold of a resin injection molding machine heated to 80 ° C. A mixture of an epoxy resin and phthalic anhydride was injected at an injection pressure of 0.5 MPa from the end, and then heated to 120 ° C. and cured for 30 minutes. Then, it cooled to about 40 degreeC, opened the molding machine, and took out the molded product from the metal mold | die. This molded product had a very beautiful appearance, had no permeation of epoxy resin into the core portion, and had high adhesiveness (1 kg / cm or more). In addition, no squeak sound was generated even in the case of the bending deformation of 20 mm.
[0037]
"Comparative Example 1"
Next, a molded body made of FRP was prepared in the same manner except that the nylon film of Example 1 was not used. In this molded article, spots were observed in the color of the appearance, and dents were partially observed. In addition, permeation of the epoxy resin into the inside of the foam was observed by cross-sectional observation.
[0038]
"Comparative Example 2"
Instead of the nylon film of Example 1, toluene / ethyl acetate (70%) was obtained by adding 25 parts by weight of a polyisocyanate (Coronate L: manufactured by Nippon Polyurethane Co., Ltd.) to 100 parts by weight of a polyester resin (Vylon 200: manufactured by Toyobo Co., Ltd.). / 30% by weight), and applied to the surface of the urethane foam core so that the thickness after drying was about 15 μm. Drying was performed at 120 ° C. for 10 minutes. Except for this, a molded body was prepared in the same manner as in Example 1.
[0039]
From the cross-section observation of this molded product, the epoxy resin penetrated into the foam was observed, and the appearance of color spots and concave defects on the surface were observed.
[0040]
"Example 2"
A molded body was produced in the same manner as in Example 1 except that a heat-shrinkable polyester film was used instead of a heat-shrinkable polyester film, and a space-clean SC-B (manufactured by Toyobo Co., Ltd.) was used. Created. As in Example 1, this molded article was excellent in fit to the core after heat shrinkage, and also excellent in appearance, adhesiveness, and deflection resistance of the molded article.
[0041]
"Example 3"
Admer LF300 (manufactured by Mitsui Chemicals, Inc.) was laminated as an adhesive polyolefin to a thickness of 12 μm on one surface of the nylon film of Example 1 by an extrusion lamination method. The film was coated so that the laminated surface of the film was on the core side, and then a 12 μm-thick Lumirror P60 (manufactured by Toray Industries, Inc.) was used as a decompression treatment bag. At 120 ° C. for 5 minutes. Thereafter, a molded body was prepared in the same manner as in Example 1.
[0042]
This molded product was excellent in the fit to the core, the appearance of the molded product, and the adhesiveness, and had no squeaking noise even with a deformation amount of 30 mm. Also, the adhesion between the foam core and the nylon film was excellent.
[0043]
"Comparative Example 3"
Example 2 Example 2 was repeated except that the heat-shrinkable polyester film of Example 2 was replaced with a polyester film having a heat shrinkage of 2% or less at 150 ° C. for 30 minutes (Lumirror P60 having a thickness of 12 μm, manufactured by Toray Industries, Inc.). A molded body was prepared in the same manner as in the above. This molded product had insufficient fit during the film coating process and had many wrinkles on the surface.
[0044]
The appearance of the molded body was good, but a squeak sound was generated due to the deformation of 10 mm.
[0045]
【The invention's effect】
According to the present invention, in the FRP with a built-in foamed resin core, the core surface is covered with the heat-shrinkable film, so that the injected resin does not penetrate into the inner foamed core, so that discoloration does not occur. In addition, since the adhesiveness between the injected resin and the heat-shrinkable film is high and the fit between the core and the film is excellent, the FRP with a built-in foam resin core that is lightweight, has excellent appearance, and does not generate squeak noise due to bending is used. Obtainable.

Claims (6)

発泡樹脂製コアの表面が熱収縮性フィルムで被覆され、該フィルムを介して、熱硬化性樹脂が含浸された繊維基材が積層されてなることを特徴とする発泡樹脂製コア内蔵FRP。An FRP with a built-in foamed resin core, wherein a surface of a foamed resin core is covered with a heat-shrinkable film, and a fiber base material impregnated with a thermosetting resin is laminated via the film. 熱収縮性フィルムと、熱硬化性樹脂が含浸された繊維基材との180度剥離接着力が、100g/cm以上であることを特徴とする請求項1に記載の発泡樹脂製コア内蔵FRP。2. The foamed resin core-incorporated FRP according to claim 1, wherein the 180-degree peel adhesion between the heat-shrinkable film and the fiber base material impregnated with the thermosetting resin is 100 g / cm or more. 熱収縮性フィルムがナイロンフィルムであることを特徴とする請求項1または2に記載の発泡樹脂製コア内蔵FRP。The FRP with a built-in resin core according to claim 1 or 2, wherein the heat-shrinkable film is a nylon film. 熱収縮性フィルムの95℃熱水中1分の収縮率が5%以上50%以下であることを特徴とする請求項1〜3のいずれかに記載の発泡樹脂製コア内蔵FRP。The foamed resin core-incorporated FRP according to any one of claims 1 to 3, wherein the heat-shrinkable film has a shrinkage rate of 1% per minute in 95 ° C hot water of 5% or more and 50% or less. 熱収縮性フィルムの少なくとも片面に、加熱によって粘接着性を発現する接着層が積層されていることを特徴とする請求項1〜4のいずれかに記載の発泡樹脂製コア内蔵FRP。The foamed resin core-incorporated FRP according to any one of claims 1 to 4, wherein an adhesive layer exhibiting adhesiveness by heating is laminated on at least one surface of the heat-shrinkable film. 発泡樹脂製コアの表面を、熱接着層を介して熱収縮性フィルムで被覆し、該被覆物を減圧下で加熱収縮させ、その後、該フィルム上を繊維基材で被覆後、成型機のキャビティ内にセットし、熱硬化性樹脂を注入硬化させることを特徴とする発泡樹脂製コア内蔵FRPの製造方法。The surface of the foamed resin core is coated with a heat-shrinkable film via a heat-adhesive layer, and the coated material is heat-shrinked under reduced pressure. A thermosetting resin is injected and hardened, and the FRP with a built-in core made of foamed resin is manufactured.
JP2003121375A 2003-04-25 2003-04-25 Foamed resin core built-in FRP and method for manufacturing the same Expired - Fee Related JP4300861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121375A JP4300861B2 (en) 2003-04-25 2003-04-25 Foamed resin core built-in FRP and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121375A JP4300861B2 (en) 2003-04-25 2003-04-25 Foamed resin core built-in FRP and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004322502A true JP2004322502A (en) 2004-11-18
JP4300861B2 JP4300861B2 (en) 2009-07-22

Family

ID=33499966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121375A Expired - Fee Related JP4300861B2 (en) 2003-04-25 2003-04-25 Foamed resin core built-in FRP and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4300861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887916B2 (en) 2004-12-20 2011-02-15 Mitsubishi Rayon Co., Ltd. Process for producing sandwich structure and adhesive film used therefor
JP2016510270A (en) * 2013-01-29 2016-04-07 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Fiber composite materials-Hybrid structural members

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887916B2 (en) 2004-12-20 2011-02-15 Mitsubishi Rayon Co., Ltd. Process for producing sandwich structure and adhesive film used therefor
JP2016510270A (en) * 2013-01-29 2016-04-07 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Fiber composite materials-Hybrid structural members

Also Published As

Publication number Publication date
JP4300861B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
US10259201B2 (en) Assembly with temporary protective film
JP6005911B2 (en) Structure integrated by vacuum / pressure forming or vacuum forming, and manufacturing method thereof
EP2404729B1 (en) Composite articles comprising protective sheets and related methods
KR960000970B1 (en) Composite useful for paint transfer and the method of use and
US5512233A (en) Method of making a panel with a spray formed skin
US10369770B2 (en) Molded article covered with film
EP2463093B1 (en) Articles comprising protective sheets and related methods
CN112969575B (en) High strength low heat release composite
KR101033417B1 (en) Structural Reinforcement Article and Process for Preparation Thereof
US20030089192A1 (en) Steering wheel and manufacturing method therefor
JP4529371B2 (en) Foamed resin core built-in FRP and method for manufacturing the same
JP4300861B2 (en) Foamed resin core built-in FRP and method for manufacturing the same
US20030084748A1 (en) Steering wheel
CA2686593A1 (en) Method of attaching wheel overlays
US20100176650A1 (en) Method of attaching wheel overlays
JP2002160315A (en) Decorative sheet and decorative molded product using it
GB2428625A (en) A process for the production of a rigid sandwich structure with a foamed epoxy core between two surface layers
US7101610B2 (en) Paint substitute film and method of applying same
US20050217112A1 (en) Steering wheel
JP2005067021A (en) Frp molding and its production method
JP2002036437A (en) Outside plate decorating film, its manufacturing method and method for using the same as well as decorating outside plate, its manufacturing method
JP2016147505A (en) Structure integrated by vacuum/pressure molding and vacuum molding and manufacturing method therefor
JPH05154953A (en) Production of base material for interior material
JP2835755B2 (en) Manufacturing method of interior material base material
JPH05162191A (en) Production of frp blow molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees