JP2004322287A - Repolishing device for cutting tool - Google Patents

Repolishing device for cutting tool Download PDF

Info

Publication number
JP2004322287A
JP2004322287A JP2003123870A JP2003123870A JP2004322287A JP 2004322287 A JP2004322287 A JP 2004322287A JP 2003123870 A JP2003123870 A JP 2003123870A JP 2003123870 A JP2003123870 A JP 2003123870A JP 2004322287 A JP2004322287 A JP 2004322287A
Authority
JP
Japan
Prior art keywords
cutting tool
measuring
fixing
cutting
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123870A
Other languages
Japanese (ja)
Inventor
Atsunori Tanaka
敦則 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UTSUNOMIYA SEISAKUSHO CO Ltd
UTSUNOMIYA SEISAKUSHO KK
Original Assignee
UTSUNOMIYA SEISAKUSHO CO Ltd
UTSUNOMIYA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UTSUNOMIYA SEISAKUSHO CO Ltd, UTSUNOMIYA SEISAKUSHO KK filed Critical UTSUNOMIYA SEISAKUSHO CO Ltd
Priority to JP2003123870A priority Critical patent/JP2004322287A/en
Publication of JP2004322287A publication Critical patent/JP2004322287A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repolishing device for a cutting tool for extremely reducing running cost of a cutting work device, by easily and accurately repolishing by measuring an external shape regardless of a size of the cutting tool being a measuring object, and reusing even an abraded small cutting tool conventionally obliged to be disposed of. <P>SOLUTION: This repolishing device for the cutting tool has a fixing part 2 for fixing the cutting tool 1, a measuring part 3 for measuring a fixing position and the fixing direction of the cutting tool 1, by measuring the external shape of the cutting tool 1 fixed to this fixing part 2, and a polishing part numerically controlled by using fixing state information and external shape information on the cutting tool 1 provided from this fixing position and the fixing direction, and repolishing this cutting tool 1. This device measures the fixing position of this cutting tool 1, by measuring installation projection quantity to the fixing part 2 of the cutting tool 1; and measures the fixing direction to the fixing part 2 of the cutting tool 1, by measuring a position of a cutting edge 1a to the fixing part 2 of the cutting tool 1, by a noncontact measuring apparatus, by arranging the noncontact measuring apparatus in the measuring part 3, for measuring the external shape of the cutting tool 1 in a noncontact state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具用再研磨装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来の切削工具を再研磨する切削工具用再研磨装置は、切削工具を固定するチャック装置等から成る固定部と、この固定部に固定された前記切削工具の外形状を測定して切削工具の固定位置及び固定向きを測定するする測定部と、この固定位置及び固定向きから得られた切削工具の固定状態情報と外形状情報とを用いてNC制御されてこの切削工具を再研磨する研磨部とから成るものである。
【0003】
ところで、このような切削工具用再研磨装置により、ドリルやエンドミル等の切削工具を再研磨する場合、精度良く加工するために、前記固定部に切削工具を固定した状態で切れ刃の位置や切れ刃のねじれ角等を測定することで外形状を測定して切削工具の固定位置及び固定向きを測定する必要がある。
【0004】
一般的には、先端を細くした測定子を切れ刃に接触させることで、前記切れ刃の位置やねじれ角を検出する接触式測定器により、前記切削工具の切れ刃の位置や切れ刃のねじれ角を測定している。
【0005】
しかし、このような接触式の測定方法では、前記測定子の大きさにより精度が制限されてしまうことから、再研磨を行う切削工具の径が細くなるに従い、精度良く測定することが難しくなり、特に直径が1mm以下になると測定はほとんど不可能となってしまうという問題があったのが現状である。
【0006】
本発明は、上述のような現状に鑑み、被測定物である切削工具の大小を問わず、容易且つ正確にその外形状を測定し再研磨することができ、従来廃棄せざるを得なかった摩耗した小型の切削工具を再利用することができる極めて実用性に秀れた切削工具用再研磨装置を提供するものである。
【0007】
【課題を解決するため手段】
添付図面を参照して本発明の要旨を説明する。
【0008】
切削工具1を固定する固定部2と、この固定部2に固定された前記切削工具1の外形状を測定して切削工具1の固定位置及び固定向きを測定する測定部3と、この固定位置及び固定向きから得られた切削工具1の固定状態情報と外形状情報とを用いてNC制御され、この切削工具1を再研磨する研磨部とを備えた切削工具用再研磨装置であって、切削工具1の外形状を非接触で測定可能な非接触式測定器を前記測定部3に設けてこの非接触式測定器により、切削工具1の固定部2に対する取り付け突出量を測定することでこの切削工具1の固定位置を測定すると共に、切削工具1の固定部2に対する切れ刃1aの位置を測定することで切削工具1の固定部2に対する固定向きを測定するように構成したことを特徴とする切削工具用再研磨装置に係るものである。
【0009】
また、前記切削工具1の先端位置を測定することでこの切削工具1の固定位置を測定するように設定したことを特徴とする請求項1記載の切削工具用再研磨装置に係るものである。
【0010】
また、前記切削工具1の外径の最小値若しくは最大値を測定することで、固定部2に対する前記切削工具1の切れ刃1aの位置を測定し得るように設定したことを特徴とする請求項1,2のいずれか1項に記載の切削工具用再研磨装置に係るものである。
【0011】
また、測定部3を、前記切削工具1の固定部2に対する取り付け突出量の他、前記切削工具1の所定の一カ所における前記固定部2に対する切れ刃1aの位置を測定することで、切削工具1の固定位置及び固定向きを測定し得るように設定したことを特徴とする請求項1〜3のいずれか1項に記載の切削工具用再研磨装置に係るものである。
【0012】
また、前記測定部3に非接触式測定器として、光学式測定器を採用したことを特徴とする請求項1〜4のいずれか1項に記載の切削工具用再研磨装置に係るものである。
【0013】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図面に基づいてその作用効果を示して簡単に説明する。
【0014】
固定部2に固定された切削工具1の外形状を測定して切削工具1の固定位置及び固定向きを測定し、この固定位置及び固定向きから得られた切削工具1の固定状態情報と外形状情報とを用いて研磨部をNC制御することでこの切削工具1を再研磨する。
【0015】
この際、切削工具1の外形状は、非接触で測定を行える非接触式測定器、例えば光学式測定器を用いて測定するから、従来用いられていた測定子を接触させて測定を行う接触式測定器を用いて測定する場合と異なり、従来のように切削工具と接触する測定子が必要ないためこの測定子により測定精度が制限されてしまうことがなく、切削工具1の径が細くなっても、例えば直径が1mm以下の切削工具1であっても容易且つ正確に外形状を測定して切削工具1の固定位置及び固定向きを測定することができる。
【0016】
具体的には、切削工具1の固定部2に対する取り付け突出量を、例えば、この切削工具1の先端位置を測定することで測定してこの切削工具1の固定位置を測定すると共に、切削工具1の固定部2に対する切れ刃1aの位置を、例えば、前記切削工具1の外径の最小値若しくは最大値を測定することで測定して切削工具1の固定部2に対する固定向きを測定する。
【0017】
即ち、切削工具1の大小を問わずに容易且つ正確にその外形状を測定することができ、得られたデータに基づいて研磨部をNC制御することで前記切削工具1の再研磨を精度良く行うことができ、従来はその外形状の測定が困難で再研磨を行うことができなかった高価な極径小の切削工具1を、廃棄することなく再利用することができ、この切削工具1を利用するフライス盤等の切削加工装置のランニングコストを極めて低減することができる。
【0018】
従って、本発明は、被測定物である切削工具の大小を問わず、容易且つ正確にその外形状を測定し再研磨することができ、従来廃棄せざるを得なかった摩耗した小型の切削工具をも再利用して切削加工装置のランニングコストを極めて低減することができる極めて実用性に秀れた切削工具用再研磨装置となる。
【0019】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0020】
本実施例は、切削工具1を固定する固定部2と、この固定部2に固定された前記切削工具1の外形状を測定して切削工具1の固定位置及び固定向きを測定する測定部3と、この固定位置及び固定向きから得られた切削工具1の固定状態情報と外形状情報とを用いてNC制御され、この切削工具1を再研磨する研磨部とを備えた切削工具用再研磨装置であって、切削工具1の外形状を非接触で測定可能な非接触式測定器を前記測定部3に設けてこの非接触式測定器により、切削工具1の固定部2に対する取り付け突出量を測定することでこの切削工具1の固定位置を測定すると共に、切削工具1の固定部2に対する切れ刃1aの位置を測定することで切削工具1の固定部2に対する固定向きを測定するものである。
【0021】
本実施例においては具体的には、測定部3に設ける非接触式測定器として光学式測定器を採用している。この光学式測定器としては、図1に図示したように発光部3aとこの発光部3aから照射される光を検出する受光部3bとから成るものを採用している。この発光部3aと受光部3bとの間に前記固定部2に固定された切削工具1を位置せしめ、この受光部3bに、前記発光部3aから照射される光が切削工具1により遮光されることでこの切削工具1の断面形状が投影されるように構成している。
【0022】
尚、図中符号3cは前記発光部3a及び受光部3bを載置する載置台である。
【0023】
この測定部3は、切削工具1の固定部2に対する取り付け突出量を、前記切削工具1の先端位置を測定することで測定するように設定している。
【0024】
この切削工具1の先端位置は、前記光学式測定器を用いて測定する場合、前記切削工具1を前記光が照射される領域に前後させることで、この切削工具1があるか否かを判定することで測定している。言い換えれば、切削工具1の先端部において、発光部3aから照射される光の遮光が起こる境界部分を観測することで測定している。尚、このように切削工具1の先端位置でなく、他の部分を測定することで前記取り付け突出量を測定できるように設定してもよい。
【0025】
また、測定部3は、切削工具1の固定部2に対する切れ刃1aの位置を、前記切削工具1の外径の最小値若しくは最大値を測定することで測定するように設定している。
【0026】
この切削工具1の外径は、前記光学式測定器を用いて測定する場合、図2に図示したように、前記切削工具1を回転させながら前記発光部3aから光を照射することで、切削工具1に遮光されて受光部3bに投影された断面形状の幅から測定することができる。
【0027】
この際、例えば二枚の切れ刃1aを有する切削工具1の外径を測定する場合、図3に図示したように、断面形状の幅が最大となる場合には、前記切削工具1の切れ刃1aはこの切削工具1の中心に対して90度の角度に位置することが分かるし、図4に図示したように、断面形状の幅が最小となる場合には、前記切削工具1の切れ刃1aの切削工具1の中心に対する角度αは、測定値2Wと工具径2rを用いてα=sin−1(W/r)で求めることができる。また、これらの測定方法は、切削工具1の形状により適宜選択することになるが、断面形状の幅の最大値を測定するよりも最小値を測定する方が正確な値を測定できるため、切れ刃1aの位置は断面形状の幅の最小値を測定することで測定するのが望ましい。
【0028】
また、この測定部3は、切削工具1の固定部2に対する取り付け突出量の他、前記切削工具1の所定の一カ所における前記固定部2に対する切れ刃1aの位置を測定することで、切削工具1の固定位置及び固定向きを測定し得るように設定している。具体的には、前記取り付け突出量と所定の一カ所における切れ刃1aの位置を測定したら、これらの測定値と切削工具1の外形状情報とを重ねることでどのような外形状の切削工具1が、どのような状態で固定部2に固定されているかが分かることになる。
【0029】
一方、前記切削工具1の外形状が不明確な場合であっても、この切削工具1の所定の二カ所で前記切れ刃1aの位置を特定することで外形状を測定することができる。具体的には、この二カ所の切れ刃1aの位置を用いて切れ刃1aのねじれ角を特定し、この切れ刃1aの位置とねじれ角から前記切削工具1の外形状を測定できる。また、この切削工具1の外形状情報が既知の場合には、このように所定の二カ所の切れ刃1aの位置を測定することで一層正確な固定状態情報を得ることができる。
【0030】
また、光学式測定器の検出拡大率を変更することにより、極小径は勿論、大型の切削工具1に対しても同じ方法で測定することができる。
【0031】
上述のようにして測定した固定位置及び固定向きから得られた固定状態情報と外形状情報とにより得られた修正外形状情報を用いてNC制御用のプログラムを作成し、このプログラムに基づいて制御される研磨部により切削工具1を再研磨する。
【0032】
固定部2としては前記切削工具1の端部を把持してこの切削工具1を係止固定し得る把持爪を有するチャック装置を採用している。
【0033】
また、測定部3は、前述のように設定した光学式測定器を採用している。具体的には、LEDを有する発光部3aと、このLEDからの光を検出し得る光検出素子を有する受光部3bとから成るものを採用している。また、この発光部3aとしてレーザー発振器を有するものを採用しても良い。尚、本実施例においては、前記非接触式測定器として光学式測定器を採用したが、他の非接触式測定器を用いてもよい。
【0034】
本実施例は上述のように構成したから、固定部2に固定された切削工具1の外形状を測定して切削工具1の固定位置及び固定向きを測定し、この固定位置及び固定向きから得られた切削工具1の固定状態情報と外形状情報とを用いて研磨部をNC制御することでこの切削工具1を再研磨する際、切削工具1の外形状は、非接触で測定を行える光学式測定器を用いて測定するから、従来用いられていた測定子を接触させて測定を行う接触式測定器を用いて測定する場合と異なり、従来のように切削工具と接触する測定子が必要ないためこの測定子により測定精度が制限されてしまうことがなく、切削工具1の径が細くなっても、例えば直径が1mm以下の切削工具1であっても容易且つ正確に外形状を測定して切削工具1の固定位置及び固定向きを測定することができる。
【0035】
即ち、切削工具1の大小を問わずに容易且つ正確にその外形状を測定することができ、得られたデータに基づいて研磨部をNC制御することで前記切削工具1の再研磨を精度良く行うことができ、従来はその外形状の測定が困難で再研磨を行うことができなかった高価な極径小の切削工具1を、廃棄することなく再利用することができ、この切削工具1を利用するフライス盤等の切削加工装置のランニングコストを極めて低減することができる。
【0036】
従って、本実施例は、被測定物である切削工具の大小を問わず、容易且つ正確にその外形状を測定し再研磨することができ、従来廃棄せざるを得なかった摩耗した小型の切削工具をも再利用して切削加工装置のランニングコストを極めて低減することができる極めて実用性に秀れた切削工具用再研磨装置となる。
【0037】
【発明の効果】
本発明は上述のように構成したから、被測定物である切削工具の大小を問わず、容易且つ正確にその外形状を測定し再研磨することができ、従来廃棄せざるを得なかった摩耗した小型の切削工具をも再利用して切削加工装置のランニングコストを極めて低減することができる極めて実用性に秀れた切削工具用再研磨装置となる。
【0038】
請求項2〜5に記載の発明においては、本発明を一層容易に実現できるより実用性に秀れたものとなる。
【図面の簡単な説明】
【図1】本実施例の概略説明図である。
【図2】本実施例の切削工具の説明側面図である。
【図3】本実施例の切削工具の説明断面図である。
【図4】本実施例の切削工具の説明断面図である。
【符号の説明】
1 切削工具
1a 切れ刃
2 固定部
3 測定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a regrinding device for a cutting tool.
[0002]
Problems to be solved by the prior art and the invention
A conventional cutting tool re-grinding device for re-grinding a cutting tool includes a fixed portion including a chuck device for fixing the cutting tool and the like, and measuring the outer shape of the cutting tool fixed to the fixed portion to measure the shape of the cutting tool. A measuring unit that measures the fixed position and the fixed direction, and a polishing unit that re-polishes the cutting tool under NC control using the fixed state information and the outer shape information of the cutting tool obtained from the fixed position and the fixed direction. It consists of:
[0003]
By the way, when re-polishing a cutting tool such as a drill or an end mill by such a re-grinding device for a cutting tool, in order to perform processing with high accuracy, the position and the position of the It is necessary to measure the fixed position and fixed direction of the cutting tool by measuring the outer shape by measuring the torsion angle and the like of the blade.
[0004]
Generally, by contacting a measuring element with a thin tip to a cutting edge, a contact-type measuring device that detects the position and the torsion angle of the cutting edge, the position of the cutting edge of the cutting tool and the twist of the cutting edge are obtained. The corner is being measured.
[0005]
However, in such a contact-type measuring method, since the accuracy is limited by the size of the probe, as the diameter of the cutting tool to be re-polished becomes smaller, it becomes difficult to perform accurate measurement, In particular, at present, there is a problem that measurement becomes almost impossible when the diameter is 1 mm or less.
[0006]
In view of the above-mentioned current situation, the present invention can easily and accurately measure and re-polish its outer shape regardless of the size of a cutting tool to be measured, and has conventionally been discarded. An object of the present invention is to provide an extremely practical cutting tool regrinding apparatus that can reuse worn small cutting tools.
[0007]
[Means for solving the problem]
The gist of the present invention will be described with reference to the accompanying drawings.
[0008]
A fixing part 2 for fixing the cutting tool 1, a measuring part 3 for measuring an outer shape of the cutting tool 1 fixed to the fixing part 2 to measure a fixing position and a fixing direction of the cutting tool 1, and a fixing position And a polishing unit for performing NC control using the fixed state information and the outer shape information of the cutting tool 1 obtained from the fixed orientation and a polishing unit for re-polishing the cutting tool 1. A non-contact type measuring device capable of measuring the outer shape of the cutting tool 1 in a non-contact manner is provided in the measuring section 3, and the non-contact type measuring device measures the amount of protrusion of the cutting tool 1 attached to the fixed portion 2. The fixing direction of the cutting tool 1 with respect to the fixing portion 2 is measured by measuring the fixing position of the cutting tool 1 and measuring the position of the cutting edge 1a with respect to the fixing portion 2 of the cutting tool 1. Re-grinding equipment for cutting tools Which relate.
[0009]
The cutting tool re-polishing device according to claim 1, wherein the fixed position of the cutting tool 1 is measured by measuring the tip position of the cutting tool 1.
[0010]
Further, the position of the cutting edge 1a of the cutting tool 1 with respect to a fixed portion 2 is set by measuring a minimum value or a maximum value of the outer diameter of the cutting tool 1. The present invention relates to a cutting tool re-polishing device according to any one of the first and second aspects.
[0011]
In addition, the measuring unit 3 measures the position of the cutting edge 1 a with respect to the fixed part 2 at a predetermined one position of the cutting tool 1, in addition to the amount of protrusion of the cutting tool 1 attached to the fixed part 2. The re-grinding device for a cutting tool according to any one of claims 1 to 3, wherein the fixing position and the fixing direction are set so as to be measured.
[0012]
5. The re-polishing device for a cutting tool according to claim 1, wherein an optical measuring device is employed as the non-contact measuring device in the measuring section 3. 6. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention (how to implement the invention) will be briefly described with reference to the drawings, showing the operational effects thereof.
[0014]
The external shape of the cutting tool 1 fixed to the fixing part 2 is measured to measure the fixing position and the fixing direction of the cutting tool 1. The fixing state information and the external shape of the cutting tool 1 obtained from the fixing position and the fixing direction are obtained. The cutting tool 1 is polished again by performing NC control on the polishing unit using the information.
[0015]
At this time, since the outer shape of the cutting tool 1 is measured by using a non-contact measuring device capable of performing non-contact measurement, for example, an optical measuring device, a contact that is conventionally used to contact a measuring element to perform measurement is used. Unlike the case of using a measuring instrument, a measuring element that comes into contact with the cutting tool is not required unlike the conventional method, so that the measuring accuracy is not limited by the measuring element, and the diameter of the cutting tool 1 is reduced. However, even if the cutting tool 1 has a diameter of, for example, 1 mm or less, it is possible to easily and accurately measure the outer shape and measure the fixing position and the fixing direction of the cutting tool 1.
[0016]
Specifically, the amount of protrusion of the cutting tool 1 attached to the fixed portion 2 is measured, for example, by measuring the tip position of the cutting tool 1 to measure the fixed position of the cutting tool 1 and the cutting tool 1 The position of the cutting edge 1a with respect to the fixed portion 2 is measured by measuring, for example, the minimum value or the maximum value of the outer diameter of the cutting tool 1, and the fixing direction of the cutting tool 1 with respect to the fixed portion 2 is measured.
[0017]
That is, the outer shape of the cutting tool 1 can be easily and accurately measured regardless of the size of the cutting tool 1, and the re-grinding of the cutting tool 1 can be accurately performed by NC-controlling the polishing unit based on the obtained data. The expensive ultra-small diameter cutting tool 1 which was conventionally difficult to measure its outer shape and could not be re-polished can be reused without discarding. The running cost of a cutting device such as a milling machine utilizing the above can be extremely reduced.
[0018]
Therefore, the present invention can easily and accurately measure the outer shape of a cutting tool, which is an object to be measured, regardless of its size, and re-polish the worn cutting tool. The re-grinding device for a cutting tool which is extremely practical and can greatly reduce the running cost of the cutting device by reusing the same.
[0019]
【Example】
A specific embodiment of the present invention will be described with reference to the drawings.
[0020]
In the present embodiment, a fixing unit 2 for fixing a cutting tool 1 and a measuring unit 3 for measuring an outer shape of the cutting tool 1 fixed to the fixing unit 2 to measure a fixing position and a fixing direction of the cutting tool 1. NC tool using the fixed state information and outer shape information of the cutting tool 1 obtained from the fixed position and the fixed direction, and a polishing unit for re-polishing the cutting tool 1. A non-contact type measuring device which is capable of measuring the outer shape of the cutting tool 1 in a non-contact manner in the measuring section 3 and which is attached to the fixing section 2 by the non-contact type measuring instrument. Is measured to measure the fixing position of the cutting tool 1 and the position of the cutting edge 1a with respect to the fixing portion 2 of the cutting tool 1 to measure the fixing direction of the cutting tool 1 with respect to the fixing portion 2. is there.
[0021]
In this embodiment, specifically, an optical measuring device is employed as a non-contact measuring device provided in the measuring section 3. As shown in FIG. 1, the optical measuring device includes a light emitting unit 3a and a light receiving unit 3b for detecting light emitted from the light emitting unit 3a. The cutting tool 1 fixed to the fixed part 2 is positioned between the light emitting part 3a and the light receiving part 3b, and the light emitted from the light emitting part 3a is blocked by the cutting tool 1 on the light receiving part 3b. Thus, the sectional shape of the cutting tool 1 is configured to be projected.
[0022]
Note that reference numeral 3c in the figure denotes a mounting table on which the light emitting unit 3a and the light receiving unit 3b are mounted.
[0023]
The measuring section 3 is set so as to measure the amount of protrusion of the cutting tool 1 attached to the fixed section 2 by measuring the tip position of the cutting tool 1.
[0024]
When the tip position of the cutting tool 1 is measured by using the optical measuring device, it is determined whether or not the cutting tool 1 is present by moving the cutting tool 1 back and forth to an area irradiated with the light. It is measured by doing. In other words, the measurement is performed by observing a boundary portion where the light emitted from the light emitting unit 3a is blocked at the tip of the cutting tool 1. In addition, it may be set so that the mounting protrusion amount can be measured by measuring other parts than the tip position of the cutting tool 1 as described above.
[0025]
The measuring section 3 is set so as to measure the position of the cutting edge 1a with respect to the fixed section 2 of the cutting tool 1 by measuring the minimum value or the maximum value of the outer diameter of the cutting tool 1.
[0026]
When the outer diameter of the cutting tool 1 is measured using the optical measuring device, as shown in FIG. 2, cutting is performed by irradiating light from the light emitting unit 3a while rotating the cutting tool 1. It can be measured from the width of the cross-sectional shape projected on the light receiving portion 3b after being shielded from light by the tool 1.
[0027]
At this time, for example, when measuring the outer diameter of the cutting tool 1 having two cutting edges 1a, as shown in FIG. 1a is located at an angle of 90 degrees with respect to the center of the cutting tool 1, and as shown in FIG. 4, when the width of the sectional shape is minimized, the cutting edge of the cutting tool 1 The angle α of the cutting tool 1a with respect to the center of the cutting tool 1 can be obtained by α = sin −1 (W / r) using the measured value 2W and the tool diameter 2r. In addition, these measuring methods are appropriately selected depending on the shape of the cutting tool 1. However, measuring the minimum value of the cross-sectional shape is more accurate than measuring the maximum value of the cross-sectional shape. It is desirable to measure the position of the blade 1a by measuring the minimum value of the width of the cross-sectional shape.
[0028]
The measuring unit 3 measures the position of the cutting edge 1 a with respect to the fixed portion 2 at a predetermined location of the cutting tool 1, in addition to the amount of protrusion of the cutting tool 1 attached to the fixed portion 2. 1 is set so that the fixed position and the fixed direction can be measured. Specifically, after measuring the mounting protrusion amount and the position of the cutting edge 1a at a predetermined location, these measured values and the external shape information of the cutting tool 1 are superimposed to determine what external shape of the cutting tool 1 Can be understood in what state is fixed to the fixing portion 2.
[0029]
On the other hand, even when the outer shape of the cutting tool 1 is unclear, the outer shape can be measured by specifying the position of the cutting edge 1a at two predetermined positions of the cutting tool 1. Specifically, the torsion angle of the cutting edge 1a is specified using the positions of the two cutting edges 1a, and the outer shape of the cutting tool 1 can be measured from the position and the torsion angle of the cutting edge 1a. When the outer shape information of the cutting tool 1 is known, more accurate fixing state information can be obtained by measuring the positions of the two predetermined cutting edges 1a in this way.
[0030]
Further, by changing the detection magnification of the optical measuring instrument, it is possible to measure not only a very small diameter but also a large cutting tool 1 by the same method.
[0031]
A program for NC control is created by using the fixed outer shape information obtained from the fixed state information and the outer shape information obtained from the fixed position and the fixed orientation measured as described above, and control is performed based on this program. The cutting tool 1 is polished again by the polished section.
[0032]
As the fixing portion 2, a chuck device having gripping claws capable of gripping an end of the cutting tool 1 and locking and fixing the cutting tool 1 is employed.
[0033]
The measuring unit 3 employs an optical measuring device set as described above. Specifically, a light emitting unit 3a having an LED and a light receiving unit 3b having a photodetector capable of detecting light from the LED is employed. Further, a light emitting unit having a laser oscillator may be employed as the light emitting unit 3a. In this embodiment, an optical measuring device is used as the non-contact measuring device, but another non-contact measuring device may be used.
[0034]
Since the present embodiment is configured as described above, the outer shape of the cutting tool 1 fixed to the fixing portion 2 is measured to measure the fixing position and the fixing direction of the cutting tool 1, and the cutting position is obtained from the fixing position and the fixing direction. When the cutting tool 1 is polished again by performing NC control on the polishing section using the fixed state information and the outer shape information of the cutting tool 1, the outer shape of the cutting tool 1 can be measured without contact. Since the measurement is performed using a contact type measuring device, unlike the case of using a contact type measuring device that performs measurement by contacting a conventional measuring unit, a measuring unit that comes into contact with a cutting tool is required as in the past. Since the measurement accuracy is not limited by this probe, the outer shape can be easily and accurately measured even if the diameter of the cutting tool 1 is reduced, for example, even if the diameter of the cutting tool 1 is 1 mm or less. Fixed position and fixed direction of cutting tool 1 It can be measured.
[0035]
That is, the outer shape of the cutting tool 1 can be easily and accurately measured regardless of the size of the cutting tool 1, and the re-polishing of the cutting tool 1 is performed with high precision by performing NC control of the polishing section based on the obtained data. An expensive ultra-small diameter cutting tool 1 which was conventionally difficult to measure its outer shape and could not be re-polished can be reused without being discarded. The running cost of a cutting device such as a milling machine utilizing the above can be extremely reduced.
[0036]
Therefore, in this embodiment, regardless of the size of the cutting tool to be measured, the outer shape thereof can be easily and accurately measured and polished again. A re-grinding device for a cutting tool which is extremely practical and can greatly reduce the running cost of the cutting device by reusing the tool.
[0037]
【The invention's effect】
Since the present invention is configured as described above, it is possible to easily and accurately measure and re-polish its outer shape regardless of the size of the cutting tool to be measured, and wear which has conventionally been forced to be discarded A re-grinding device for a cutting tool which is extremely practical and can greatly reduce the running cost of the cutting device by reusing the small cutting tool thus obtained.
[0038]
According to the second to fifth aspects of the present invention, the present invention can be more easily realized and is more practical.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of the present embodiment.
FIG. 2 is an explanatory side view of the cutting tool according to the embodiment.
FIG. 3 is an explanatory sectional view of the cutting tool according to the embodiment.
FIG. 4 is an explanatory sectional view of the cutting tool according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cutting tool 1a Cutting edge 2 Fixed part 3 Measurement part

Claims (5)

切削工具を固定する固定部と、この固定部に固定された前記切削工具の外形状を測定して切削工具の固定位置及び固定向きを測定する測定部と、この固定位置及び固定向きから得られた切削工具の固定状態情報と外形状情報とを用いてNC制御され、この切削工具を再研磨する研磨部とを備えた切削工具用再研磨装置であって、切削工具の外形状を非接触で測定可能な非接触式測定器を前記測定部に設けてこの非接触式測定器により、切削工具の固定部に対する取り付け突出量を測定することでこの切削工具の固定位置を測定すると共に、切削工具の固定部に対する切れ刃の位置を測定することで切削工具の固定部に対する固定向きを測定するように構成したことを特徴とする切削工具用再研磨装置。A fixing part for fixing the cutting tool, a measuring part for measuring the outer shape of the cutting tool fixed to the fixing part to measure the fixing position and the fixing direction of the cutting tool, and a measuring part obtained from the fixing position and the fixing direction. A polisher for cutting tools, comprising: a polishing unit for performing NC control using the fixed state information and the outer shape information of the cutting tool and re-polishing the cutting tool, wherein the outer shape of the cutting tool is in non-contact. A non-contact measuring instrument that can be measured in the measuring section is provided in the measuring section, and the fixing position of the cutting tool is measured by measuring a mounting protrusion amount of the cutting tool with respect to a fixing section by the non-contact measuring instrument. A regrinding device for a cutting tool, wherein a position of a cutting edge with respect to a fixed portion of the tool is measured to measure a fixing direction of the cutting tool with respect to the fixed portion. 前記切削工具の先端位置を測定することでこの切削工具の固定位置を測定するように設定したことを特徴とする請求項1記載の切削工具用再研磨装置。The re-grinding device for a cutting tool according to claim 1, wherein a setting position of the fixed position of the cutting tool is measured by measuring a tip position of the cutting tool. 前記切削工具の外径の最小値若しくは最大値を測定することで、固定部に対する前記切削工具の切れ刃の位置を測定し得るように設定したことを特徴とする請求項1,2のいずれか1項に記載の切削工具用再研磨装置。The cutting tool according to any one of claims 1 and 2, wherein a position of a cutting edge of the cutting tool with respect to a fixed portion can be measured by measuring a minimum value or a maximum value of an outer diameter of the cutting tool. Item 2. A re-polishing device for a cutting tool according to item 1. 測定部を、前記切削工具の固定部に対する取り付け突出量の他、前記切削工具の所定の一カ所における前記固定部に対する切れ刃の位置を測定することで、切削工具の固定位置及び固定向きを測定し得るように設定したことを特徴とする請求項1〜3のいずれか1項に記載の切削工具用再研磨装置。The measuring section measures the fixing position and the fixing direction of the cutting tool by measuring the position of the cutting edge with respect to the fixing section at a predetermined location of the cutting tool, in addition to the amount of protrusion of the cutting tool attached to the fixing section. The re-grinding device for a cutting tool according to any one of claims 1 to 3, wherein the re-grinding device is set so as to be able to perform the grinding. 前記測定部に非接触式測定器として、光学式測定器を採用したことを特徴とする請求項1〜4のいずれか1項に記載の切削工具用再研磨装置。The polisher for a cutting tool according to any one of claims 1 to 4, wherein an optical measuring device is employed as the non-contact measuring device in the measuring section.
JP2003123870A 2003-04-28 2003-04-28 Repolishing device for cutting tool Pending JP2004322287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123870A JP2004322287A (en) 2003-04-28 2003-04-28 Repolishing device for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123870A JP2004322287A (en) 2003-04-28 2003-04-28 Repolishing device for cutting tool

Publications (1)

Publication Number Publication Date
JP2004322287A true JP2004322287A (en) 2004-11-18

Family

ID=33501633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123870A Pending JP2004322287A (en) 2003-04-28 2003-04-28 Repolishing device for cutting tool

Country Status (1)

Country Link
JP (1) JP2004322287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018063A (en) * 2011-07-08 2013-01-31 Gre Win Automation Co Ltd Polishing device for full automatic micro drill and polishing method therefor
JP2018516178A (en) * 2015-04-20 2018-06-21 ワルター マシーネンバオ ゲーエムベーハー Method and apparatus for machining a tool by removing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018063A (en) * 2011-07-08 2013-01-31 Gre Win Automation Co Ltd Polishing device for full automatic micro drill and polishing method therefor
JP2018516178A (en) * 2015-04-20 2018-06-21 ワルター マシーネンバオ ゲーエムベーハー Method and apparatus for machining a tool by removing material
US10401827B2 (en) 2015-04-20 2019-09-03 Walter Maschinenbau Gmbh Method and device for machining a tool by removing material

Similar Documents

Publication Publication Date Title
JP4238130B2 (en) Apparatus and method for measuring tool degradation
CN107532886B (en) Tool shape measuring device
CN106853610B (en) Polishing pad and its monitoring method and monitoring system
KR20170123247A (en) Method for manufacturing device and grinding apparatus
CN111629863B9 (en) Turning tool and turning method
EP1238733A4 (en) Lens processing device, lens processing method, and lens measuring method
KR20110101075A (en) Grinding machine having the function of measuring distance
JP2009061565A (en) Machining method
JP2008272861A (en) Tool position measuring method, tool position measuring system and machining method
JP2020093383A (en) Method for measuring condition of tool device and machining tool
JP5490498B2 (en) Cutting apparatus and cutting method
JP2018185319A (en) Tool shape measuring device
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2004322287A (en) Repolishing device for cutting tool
JP2004098213A (en) Tool position measuring method, nc machining method and nc machine tool
JP2003039282A (en) Free-form surface working device and free-form surface working method
CN107824814B (en) Cutting tool and machining method
JP2010274405A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP3698254B2 (en) Dicing machine
JPH05192922A (en) Thin groove processing machine
JP2004050347A (en) Grinding method and surface grinder using this method or grinding center
US20060192939A1 (en) Optical sharpness meter
JPH0740172A (en) Tool on which cutting-edge is formed and useage thereof
JP2020185626A (en) Measurement system for measuring abrasive grain distribution of grinding wheel surface and grinder provided with the same
JP2003001550A (en) Tool position detecting device and tool position detecting method used for machine tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070402