JP2004321900A - Liquid treatment apparatus - Google Patents

Liquid treatment apparatus Download PDF

Info

Publication number
JP2004321900A
JP2004321900A JP2003118456A JP2003118456A JP2004321900A JP 2004321900 A JP2004321900 A JP 2004321900A JP 2003118456 A JP2003118456 A JP 2003118456A JP 2003118456 A JP2003118456 A JP 2003118456A JP 2004321900 A JP2004321900 A JP 2004321900A
Authority
JP
Japan
Prior art keywords
flotation
liquid
static mixer
unit
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118456A
Other languages
Japanese (ja)
Inventor
Tetsuo Nishida
哲夫 西田
Noboru Sakano
昇 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003118456A priority Critical patent/JP2004321900A/en
Publication of JP2004321900A publication Critical patent/JP2004321900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Floating Material (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sharply miniaturize a liquid treatment apparatus by realizing not only a cost reduction from an aspect of maintenance control but also the facilitation of operational control by floating separation not relying on a flocculant and enhancing the floating efficiency in a floating separation process. <P>SOLUTION: This liquid treatment apparatus has a floating separation part 1 for floating a suspended substance contained in a raw liquid to be treated on the basis of difference in specific gravity to acummulate and separate the same and a pretreatment part 2 for bonding fine air bubbles to the suspended substance in the raw liquid in the front stage of the floating separation part 1 to accelerate the separating operation in the floating separation part. The floating separation part is equipped with a rotator 22 for producing a circulating flow in an up and down direction within a treatment tank to accelerate the flotation of the suspended substance, and the pretreatment part 2 is equipped with a stationary type mixer 6 for stirring the raw liquid and a required amount of air to form fine air bubbles in the raw liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、処理対象となる原液に含まれる懸濁物質に気泡を付着させて浮上分離する液体処理装置に関するものである。
【0002】
【従来の技術】
懸濁物質を汚水から分離除去するため、水との比重差により懸濁物質を浮上させて水面付近に集積させる浮上分離法が知られている。この浮上分離法は、油類の分離に有効ではあるが、懸濁物質の性状によっては分離が困難であったり、除去効率が低いという難点があるため、凝集剤を添加して懸濁物質を粗大化して回収を容易にする凝集分離法が一般的である。
【0003】
また、懸濁物質に気泡を付着させて強制的に浮上させると浮上分離の効率が良くなり、このような強制浮上法として、汚水を加圧した後に常圧に戻すことで水中の溶解成分が気化して生成する微細気泡を利用する加圧浮上法が広く知られており、またラインミキサで気液混合物を攪拌して微細気泡を生成する構成も提案されている(特許文献1参照。)。
【0004】
【特許文献1】
特開2002−66539号公報
【0005】
【発明が解決しようとする課題】
ところが、前記の凝集分離法は、薬液に要するコストが嵩む上に、運転管理が面倒となる問題点を有している。また、加圧浮上法は、装置が大型化してコストが嵩む不都合があり、特にラインミキサを用いた構成では、運転管理の容易さを実現する上で有効であるものの、浮上分離槽での浮上効率が低く、装置の小型化を図ることに限界がある。
【0006】
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、凝集剤によらない浮上分離で維持管理面のコスト削減並びに運転管理の容易さを実現し、さらに浮上分離工程での浮上効率を高めて装置の大幅な小型化を図ることが可能なように構成された液体処理装置を提供することにある。
【0007】
【課題を解決するための手段】
このような目的を果たすために、本発明においては、請求項1に示すとおり、液体処理装置の構成を、処理対象となる原液に含まれる懸濁物質を比重差により浮上させて集積分離する浮上分離部と、この浮上分離部の前段で原液中の懸濁物質に微細気泡を付着させて浮上分離部での分離操作を促進する前処理部とを有し、前記浮上分離部は、処理槽内に上下方向の循環流を発生させて懸濁物質の浮上を促進する回転体を備え、前記前処理部は、原液と所要の気体とを攪拌して原液中に微細気泡を生成する静止型混合器を備えたものとした。
【0008】
これによると、原液に含まれる懸濁物質を簡易な構成で効率良く浮上分離することができる。例えば原液が、油分や浮遊固形物を含む汚水であれば、静止型混合器で汚水と空気とを攪拌すれば良く、これにより生成する微細気泡が油滴や固形物粒子に付着して油分や浮遊固形物の浮上を促進することができる。この場合、静止型混合器内で適切な攪拌処理が行われるように、所要の流速及び圧力を確保することが必要で、これにはポンプ圧送する構成とすれば良い。また、静止型混合器において原液と攪拌される気体は、一般的な水処理では空気を用いれば良いが、この他に、オゾンなどの反応性ガスを用いることも可能であり、また水以外の液体処理ではその化学的特性などに応じて適宜な気体を用いれば良い。
【0009】
前記液体処理装置においては、請求項2に示すとおり、前記前処理部は、原液が導入されてこれを所要の時間滞留させる処理槽を有し、前記静止型混合器の上流側で気泡生成用の気体を注入しながら前記静止型混合器と前記処理槽との間で原液を循環させるようにした構成をとることができる。これによると、原液中に微細気泡を大量に生成して懸濁物質の浮上を促進することができる。
【0010】
前記液体処理装置においては、請求項3に示すとおり、前記浮上分離部の後段に、その浮上分離部での処理済み液に次工程での有用ガスを混入する有用ガス接触部を有し、この有用ガス接触部は、前記浮上分離部での処理済み液が導入される処理槽と、処理済み液と有用ガスとを攪拌する静止型混合器とを有し、この静止型混合器の上流側で有用ガスを注入しながら前記静止型混合器と前記処理槽との間で処理済み液を循環させるようにした構成をとることができる。これによると、有用ガスの溶解成分及び微細気泡が処理済み液に付与され、多量の有用ガスを含む処理済み液を得ることができ、次工程での処理効率を高めることができる。例えば次工程で活性汚泥法などによる生物処理を行う場合には、好気生物処理に有用な溶存酸素濃度を高めるために空気などの酸素含有ガスを処理水に附加すれば良い。
【0011】
前記液体処理装置においては、請求項4に示すとおり、前記浮上分離部の回転体は、略円形状の断面をなし、その下端を前記処理槽の底壁から離間させて、垂直軸回りに回転可能に前記処理槽の概ね中心位置に設けられた構成をとることができる。これによると、回転体の回転により処理槽内に液体が垂直軸回りに旋回流動する一次流に付随してこれに直交する上下方向に循環する二次流を顕著に発生させることができ、この二次流により浮上分離が促進される。
【0012】
この場合、懸濁物質に微細気泡が付着することでみかけ比重が原液より大幅に低くなった浮上成分は、二次流の向きに応じて液面外周部あるいは液面中心部に集積し、掻き取り手段や越流により容易に回収することができる。また、原液より高比重の沈降成分は、二次流の向きに応じて底壁の中心部あるいは外周部に集積し、ポンプなどの回収手段により容易に回収することができる。
【0013】
なお、回転体は、下面が開放されて内部を処理対象液が流通する構成の他、下面が閉鎖された構成も可能である。また、回転体の形状は、軸方向に均一な断面をなすものの他、軸方向で断面形状が異なるものも可能であり、処理対象液の性状やこれに含まれる懸濁物質の特性などに応じて適切な流れが処理槽内に形成されるように適宜に決定すれば良い。
【0014】
前記液体処理装置においては、請求項5に示すとおり、前記静止型混合器は、円筒状のケーシングの内部の流路中に複数の抵抗体が配設され、該複数の抵抗体が、共に内周面側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられた構成をとることができる。これによると、所要の圧力及び流速で液体と気泡生成用の気体とを静止型混合器に導入することで、内部に強力な乱流が発生して気液混合物が激しく攪拌されるため、気泡が細かく破砕されて微細気泡が高密度で生成し、浮上分離部での懸濁物質の浮上効率を飛躍的に高めることができ、また有用ガス接触部での気液接触効率が大幅に高められる。
【0015】
前記静止型混合器においては特に、一対の抵抗体が概ねハ字形状をなすように筒状体の互いに対向する内周面から舌状に突出され、かつその一方の抵抗体が筒状体の中心線と交差するように他方より長尺に形成された抵抗体エレメントを有し、この抵抗体エレメントは、複数のものが周方向に順次所定角度ずつずらしながら軸線方向に列べて内部に挿設された構成とすると良い。
【0016】
これによると、抵抗体が舌状をなすことから、抵抗体に衝突した流れは抵抗体の周囲に多方向に分散され、抵抗体の背面側で巻き込みによる渦流(伴流)が生じ、この抵抗体による流通流体の衝突、分散並びに巻き込みが次々と繰り返されることで、強力な乱流が発生して流通流体が激しく撹拌される。さらに、抵抗体エレメントを流れ方向に沿って周方向に所定角度ずつずらしながら配置することで、筒状体の中心線と交差するように長尺に形成された抵抗体が全体として螺旋状に配置され、その作用によって流通流体に筒状体の中心線を中心とした旋回流が発生し、下流部で継続して撹拌が行われる。
【0017】
その上、抵抗体を流れに逆らわないように下流側に傾斜した状態で筒状体の内周面から突出させた単純な構成であるため、繊維状あるいは粒子状の固形物が引っかかったり堆積したりするところがなく、固形物を大量に含む原液でも目詰まりを起こすことなく安定して処理を行うことができる。
【0018】
【発明の実施の形態】
以下に添付の図面を参照して本発明の実施の形態について詳細に説明する。
【0019】
図1は、本発明が適用された水処理装置の概略構成を示す模式図である。この水処理装置は、食品工場排水のように油分及びタンパク質などの有機性の懸濁物質を多量に含む原水(原液)から懸濁物質を分離除去し、さらに次工程での生物処理に有用な溶存酸素濃度を高めるものであり、原水に含まれる懸濁物質を水との比重差により浮上させて集積分離する浮上分離部1と、この浮上分離部1の前段で原水中の懸濁物質に微細気泡を付着させて浮上分離部1での分離操作を促進する前処理部2と、浮上分離部1の後段でその浮上分離部1での処理水と空気(有用ガス)とを接触させて溶存酸素濃度を高める溶存酸素附加部(有用ガス接触部)3とを有している。
【0020】
前処理部2は、原水が導入されてこれを所要の時間滞留させる処理槽5と、原水と空気とを攪拌して原液中に微細気泡を生成する静止型混合器6と、処理槽5から水を引き抜いて静止型混合器6に送り込むポンプ7とを有し、静止型混合器6から送り出された水が処理槽5に戻され、処理槽5と静止型混合器6との間で水を循環させながら、静止型混合器6で所要の時間に渡って連続的に原水と空気とが撹拌される。これにより、原水中に多量の微細気泡が生成する。なおここでは、コンプレッサ8により加圧された空気が静止型混合器6の上流側で原水中に注入される。
【0021】
前処理部2の処理槽5には、阻流壁11により原水流入部12と静置部13とが画成されており、この阻流壁11は、消波のために水面上に突出され、阻流壁11の下部の連通部を経て原水流入部12から静置部13に原水が導入される。またこの処理槽5は、浮上分離部1の処理槽21と仕切壁15の下部で連通されおり、この連通部から原水が浮上分離部1に導入される。仕切壁15の手前側には阻流壁16が設けられており、ここから越流により静置部13の上澄水が回収されて浮上分離部1に送られる。なお、静置部13内には、適宜に阻流壁を複数設けるようにしても良い。
【0022】
浮上分離部1は、前処理部2を流通した原水が導入されてこれを所要の時間滞留させる処理槽21と、この処理槽21内に上下方向の循環流を発生させて懸濁物質の浮上を促進する回転ドラム(回転体)22とを有している。処理槽21の上部には、回転ドラム22の外側を周回して浮上成分Aを回収する浮上成分掻き取りレーキ24が設けられており、ここで回収された浮上成分は、浮上成分回収シュータ25を介して搬出用カート26に投入される。処理槽21の下部には、沈降成分Bを回収する沈降成分回収口27が設けられており、沈降成分がポンプ28により引き抜かれて搬出用カート26に送られる。
【0023】
回転ドラム22は、円筒状をなし、処理槽21の略中心位置に配置され、その下端を処理槽21の底壁から離間させると共に、上端を水面上に突出させた態様で垂直軸回りに回転可能に設けられており、モータ23により駆動される。なお、回転ドラム22は、上端を水面下に没入させた形態も可能である。
【0024】
溶存酸素附加部3は、浮上分離部1での処理水が導入されてこれを所要の時間滞留させる処理槽31と、処理水と空気とを攪拌する静止型混合器32と、処理槽31から処理水を引き抜いて静止型混合器32に送り込むポンプ33とを有し、静止型混合器32から送り出された処理水が処理槽31に戻され、処理槽31と静止型混合器32との間で処理水を循環させながら、静止型混合器32で所要の時間に渡って連続的に処理水と空気とが撹拌される。これにより、処理水中に微細気泡が多量に生成し、高い気液接触効率により高濃度の溶存酸素が処理水に附加される。なおここでは、コンプレッサ8により加圧された空気が静止型混合器32の上流側で処理水中に注入される。
【0025】
図2は、図1に示した浮上分離部を示す斜視図である。浮上分離部1では、回転ドラム22の回転に伴って水が垂直軸回りに旋回流動する一次流Cと、この一次流に付随した二次流Dとが発生する。二次流Dは、一次流Cに直交する上下方向に循環する流れであり、水面付近で外向きとなり、処理槽21の周壁21a付近で下向きとなり、処理槽21の底壁21b付近で内向きとなり、処理槽21の中心部寄りで上向きとなる。この二次流Dの作用により、浮上成分Aが液面外周部に集積する。また二次流Dの作用により、沈降成分Bが底壁21bの中心部に集積し、原水に含まれる砂などの高比重の懸濁物質も分離することができる。なお、回転ドラム22の適所に内外を連通する開口を設けると、回転ドラム22の内部を通る二次流Dを発生させることができる。
【0026】
図3は、図1に示した静止型混合器の要部を示す斜視図である。この静止型混合器は、円筒状のケーシング40内に多数の抵抗体エレメント41を挿設してなっている。この抵抗体エレメント41は、円形断面をなす筒状体42の互いに対向する内周面から第1・第2の一対の抵抗体43・44がそれぞれ中心部に向けて舌状に突出されたものであり、筒状体42が連続して流路を形成する。
【0027】
抵抗体43・44は、共に下流側に向けて傾斜した状態でハ字形状に配置されており、両抵抗体43・44間に所要の間隔が確保されるように軸線方向にずらして設けられている。図4及び図5に併せて示すように、上流側の第1の抵抗体43は筒状体42の中心線と交差しないように短尺に、下流側の第2の抵抗体44は筒状体42の中心線と交差するように長尺に形成されている。
【0028】
筒状体42の軸線方向の端部には、隣接するものに対して45度ずつずらして結合されるように凹凸が形成されている。また、軸線方向に沿った分割線により一対の抵抗体43・44がそれぞれ形成された2つの分割体42a・42bに分割可能になっている。これにより製造を容易にすると共に、表面に付着した障害物を簡単に除去することができる。
【0029】
このようにしてなる抵抗体エレメント41は、ケーシング40内に挿設するにあたり、図6中に想像線で示す直前の抵抗体エレメント41に対して周方向に45度ずらして配置される。以下、後続の抵抗体エレメント41もそれぞれ、直前のものに対して45度ずつ同一方向にずらして配置され、最初の抵抗体エレメント41に対してはそれぞれ、周方向に45度、90度、135度、180度といった角度位置となる。したがって、全体として見ると、ハ字形状に対をなす抵抗体43・44がそれぞれ、抵抗体エレメント41のずらし角度に応じたリード角をもって螺旋を描くように配置される。
【0030】
このため、流体が内部に導入されると、最初の抵抗体エレメント41の抵抗体43・44に相対する流れはこれらの抵抗体43・44に衝突して周囲に分散され、これらの抵抗体43・44に相対しない流れもショートパスすることなく下流側の抵抗体エレメント41の抵抗体43・44のいずれかに衝突して多方向に分散され、内部に強力な乱流が発生する。
【0031】
このようにして、静止型混合器6・32に導入された空気などの気体と水との気液混合物に激しい乱流が発生し、この乱流による撹拌作用で空気の微細気泡が高密度で生成し、この微細気泡が粗大化することなく持続する。このため、前処理部2及び浮上分離部1で懸濁物質に多量の微細気泡が付着し、浮上分離部1の浮上効率が大幅に高められる。また溶存酸素附加部3では水と酸素との接触効率が大幅に高められ、さらに下流配管内でも持続する微細気泡により水中への酸素の溶解が進行し、高濃度の溶存酸素が処理水に付与される。
【0032】
図7は、図1に示した浮上分離部の変形例を示す上面から見た模式図である。ここでは、浮上分離部51の処理槽52に回転ドラム53が設けられ、処理槽52内で回転ドラム53の回転に伴って水が垂直軸回りに旋回流動する一次流Cが発生する。処理槽52には、静止型混合器6を流通した原水が流入部55を介して導入され、この流入部55では処理槽52に対して接線方向、すなわち一次流Cに沿う向きに原水を導入するようになっている。
【0033】
図8は、図7に示した浮上分離部の流入側を示す模式図である。流入部55には、静止型混合器6を流通した原水を導入する導入部57が下部に設けられ、上下方向中間部分には横向きに配置された阻流壁58が設けられている。導入部57から導入された原水は、阻流壁58の下面側で転向して導入部57側に設けられた連通部を経て阻流壁58の上面側に導入された後、浮上分離部51の処理槽52に流入する。
【0034】
図9は、図7に示した浮上分離部の流出側を示す模式図である。浮上分離部51の処理槽52では、回転ドラム22の回転に伴って水が垂直軸回りに旋回流動する一次流に付随した二次流Dが発生し、この二次流Dの作用により浮上成分Aが液面外周部に集積する。この浮上成分Aは水と共に流出部60に導入される。流出部60には、水面付近に設けられた阻流壁61により浮上成分滞留部62が形成されており、ここに滞留する浮上成分Aは、図7に示した回収ピット65に導入されて回収される。他方、浮上成分Aと共に流出部60に流入した水は、阻流壁61の下側の連通部並びに阻流壁63の上側の連通部を経て、流出部60の下部に設けられた排出部64から回収される。
【0035】
またこの例では、図8・図9に示したように、回転ドラム53は、円錐台形状をなしており、断面が下方に向けて次第に小さくなる漸縮形態をなしている。これによると、図2に示した軸方向に均一な断面をなす寸胴な円筒状の回転ドラム22と比較して、強力な一次流Cを発生させることができ、この一次流に付随した二次流Dも強力なものとなり、浮上成分の浮上並びに沈降成分の沈降の効率を高めることができる。
【0036】
なお、回転ドラムは、この例とは逆に断面が下方に向けて次第に大きくなる漸拡形態も可能である。この場合、二次流Dの向きが逆になるため、浮上成分が液面中心部に集まり、沈降成分が底壁外周部に集積する。また、断面が下方に向けて次第に小さくなる漸縮部分と、断面が下方に向けて次第に大きくなる漸拡部分とを組み合わせた構成、さらに断面が軸方向に均一な寸胴部分に、漸縮及び漸拡の形態を組み合わせた構成も可能である。
【0037】
【発明の効果】
このように本発明によれば、前処理部で静止型混合器を用いて原液と所要の気体とを攪拌して原液中に微細気泡を多量に生成し、これを浮上分離部に導いて回転体により発生する上下方向の循環流により懸濁物質を浮上させるため、原液に含まれる懸濁物質を簡易な構成で効率良く浮上分離することができる。このため、凝集剤によらない浮上分離で維持管理面のコスト削減並びに運転管理の容易さを実現し、さらに浮上分離工程での浮上効率を高めて装置の大幅な小型化を図ることが可能となり、省スペースでかつ低コストな懸濁物質分離処理を実現する上で極めて顕著な効果が得られる。
【図面の簡単な説明】
【図1】本発明が適用された水処理装置の概略構成を示す模式図である。
【図2】図1に示した浮上分離部を示す斜視図である。
【図3】図1に示した静止型混合器の要部を示す斜視図である。
【図4】図2に示した抵抗体エレメントを示す断面図である。
【図5】図2に示した抵抗体エレメントを上流側から見た正面図である。
【図6】図2に示した抵抗体エレメント相互の配置状況を説明するための図5と同様な正面図である。
【図7】図1に示した浮上分離部の変形例を示す上面から見た模式図である。
【図8】図7に示した浮上分離部の流入側を示す模式図である。
【図9】図7に示した浮上分離部の流出側を示す模式図である。
【符号の説明】
1 浮上分離部
2 前処理部
3 溶存酸素附加部(有用ガス接触部)
5 処理槽
6 静止型混合器
21 処理槽
22 回転ドラム(回転体)
31 処理槽
32 静止型混合器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid processing apparatus that floats and separates air bubbles by attaching air bubbles to a suspended substance contained in a stock solution to be processed.
[0002]
[Prior art]
In order to separate and remove suspended substances from wastewater, a flotation method is known in which suspended substances are floated by a specific gravity difference with water and accumulated near a water surface. Although this flotation method is effective for separating oils, it is difficult to separate depending on the properties of the suspended substance and the removal efficiency is low.Therefore, the flocculant is added to remove the suspended substance. An agglutination separation method which is coarsened to facilitate recovery is generally used.
[0003]
In addition, the efficiency of flotation separation is improved if air bubbles are attached to the suspended substance to forcibly levitate, and as such a forced flotation method, the dissolved components in the water are recovered by pressurizing the sewage and returning it to normal pressure. A pressurized flotation method using fine bubbles generated by vaporization is widely known, and a configuration in which a gas-liquid mixture is stirred by a line mixer to generate fine bubbles has been proposed (see Patent Document 1). .
[0004]
[Patent Document 1]
JP-A-2002-66539
[Problems to be solved by the invention]
However, the above-mentioned coagulation separation method has a problem that the cost required for the chemical solution increases and the operation management is complicated. In addition, the pressurized flotation method has a disadvantage that the size of the apparatus is increased and the cost is increased.Especially, in a configuration using a line mixer, it is effective in realizing easy operation management, but the flotation in the flotation separation tank is effective. The efficiency is low, and there is a limit to miniaturizing the device.
[0006]
The present invention has been devised to solve such problems of the prior art, and its main object is to reduce the cost of maintenance and maintenance and to facilitate the operation and management by flotation without using a flocculant. It is another object of the present invention to provide a liquid processing apparatus configured to realize the above-described method, and to increase the floating efficiency in the floating separation process so that the apparatus can be significantly reduced in size.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, according to the present invention, as described in claim 1, the structure of the liquid processing apparatus is configured to float and suspend and separate suspended substances contained in a stock solution to be treated by specific gravity difference. A separation unit, and a pre-processing unit that promotes the separation operation in the flotation unit by adhering fine bubbles to the suspended substance in the undiluted solution before the flotation unit, and the flotation unit includes a processing tank. A rotating body for generating a circulating flow in the up and down direction to promote the floating of the suspended substance, and the pre-processing unit is a static type in which the undiluted solution and a required gas are stirred to generate fine bubbles in the undiluted solution. A mixer was provided.
[0008]
According to this, the suspended substance contained in the stock solution can be efficiently floated and separated with a simple configuration. For example, if the undiluted solution is sewage containing oil and suspended solids, the sewage and air may be agitated with a static mixer, and the resulting fine bubbles adhere to the oil droplets and solid particles, causing the oil and solids to fall. The floating of the suspended solid can be promoted. In this case, it is necessary to ensure a required flow rate and pressure so that an appropriate stirring process is performed in the static mixer. For this purpose, a pump may be used. Further, the gas to be stirred with the undiluted solution in the static mixer may be air in general water treatment, but it is also possible to use a reactive gas such as ozone, etc. In the liquid treatment, an appropriate gas may be used depending on its chemical characteristics and the like.
[0009]
In the liquid processing apparatus, as described in claim 2, the pretreatment unit has a treatment tank in which the undiluted solution is introduced and stays there for a required time, and a bubble is generated upstream of the static mixer. A configuration in which the undiluted solution is circulated between the stationary mixer and the processing tank while injecting the above gas can be adopted. According to this, a large amount of fine bubbles are generated in the stock solution, and the floating of the suspended substance can be promoted.
[0010]
In the liquid processing apparatus, as described in claim 3, a useful gas contact unit that mixes a useful gas in the next step into the liquid processed in the floating separation unit is provided at a subsequent stage of the floating separation unit. The useful gas contact section has a processing tank into which the processed liquid in the floating separation section is introduced, and a static mixer for stirring the processed liquid and the useful gas, and an upstream side of the static mixer. In this case, the processing liquid can be circulated between the stationary mixer and the processing tank while injecting a useful gas. According to this, the dissolved component of the useful gas and the fine bubbles are added to the processed liquid, a processed liquid containing a large amount of the useful gas can be obtained, and the processing efficiency in the next step can be increased. For example, when performing biological treatment by the activated sludge method in the next step, an oxygen-containing gas such as air may be added to the treated water in order to increase the dissolved oxygen concentration useful for aerobic biological treatment.
[0011]
In the liquid processing apparatus, as shown in claim 4, the rotating body of the floating separation unit has a substantially circular cross section, and its lower end is separated from the bottom wall of the processing tank, and is rotated about a vertical axis. It is possible to adopt a configuration provided at a substantially central position of the processing tank. According to this, the secondary flow circulating in the vertical direction perpendicular to the primary flow in which the liquid swirls around the vertical axis in the processing tank due to the rotation of the rotating body can be significantly generated. The flotation is promoted by the secondary flow.
[0012]
In this case, the floating component whose apparent specific gravity has become much lower than that of the undiluted solution due to the attachment of fine bubbles to the suspended substance accumulates on the outer peripheral surface of the liquid surface or the center of the liquid surface depending on the direction of the secondary flow, and is scraped. It can be easily collected by taking means or overflow. Further, the sedimentation component having a higher specific gravity than the undiluted solution accumulates in the central portion or the outer peripheral portion of the bottom wall according to the direction of the secondary flow, and can be easily collected by a collecting means such as a pump.
[0013]
The rotating body may have a configuration in which the lower surface is closed, in addition to a configuration in which the lower surface is opened and the liquid to be treated flows through the inside. In addition to the shape of the rotating body, a shape having a uniform cross-section in the axial direction, and a shape having a different cross-sectional shape in the axial direction are possible, depending on the properties of the liquid to be treated and the characteristics of the suspended substance contained therein. The flow may be appropriately determined so that an appropriate flow is formed in the processing tank.
[0014]
In the liquid processing apparatus, as set forth in claim 5, in the static mixer, a plurality of resistors are disposed in a flow path inside a cylindrical casing, and the plurality of resistors are both internal. A configuration in which it is protruded in a plate shape from the peripheral surface side toward the center, and is provided at a predetermined interval in the axial direction so as not to contact with each other in a state inclined to the downstream side, and sequentially shifted by a predetermined angle in the circumferential direction. Can be taken. According to this, by introducing a liquid and a gas for generating bubbles at a required pressure and flow rate into a static mixer, a strong turbulent flow is generated inside and the gas-liquid mixture is vigorously stirred, so that bubbles are generated. Are finely crushed and fine bubbles are generated at a high density, so that the floating efficiency of suspended solids in the flotation separation section can be dramatically increased, and the gas-liquid contact efficiency in the useful gas contact section can be greatly increased .
[0015]
In the static mixer, in particular, a pair of resistors are protruded in a tongue shape from the mutually facing inner peripheral surfaces of the cylindrical body so as to form a substantially C-shape, and one of the resistors is a cylindrical body. A resistor element formed to be longer than the other so as to intersect with the center line, and a plurality of the resistor elements are arranged in the axial direction while being sequentially shifted by a predetermined angle in the circumferential direction and inserted inside. It is good to have the structure provided.
[0016]
According to this, since the resistor has a tongue-like shape, the flow colliding with the resistor is dispersed in multiple directions around the resistor, and a vortex (wake) is generated on the back side of the resistor due to entrainment. The collision, dispersion and entrainment of the flowing fluid by the body are repeated one after another, whereby a strong turbulence is generated and the flowing fluid is vigorously stirred. Furthermore, by arranging the resistor elements while being shifted by a predetermined angle in the circumferential direction along the flow direction, the resistor formed in a long shape so as to intersect with the center line of the cylindrical body is helically arranged as a whole. As a result, a swirling flow is generated in the flowing fluid around the center line of the cylindrical body, and stirring is continuously performed in the downstream portion.
[0017]
In addition, since the resistor has a simple structure that protrudes from the inner peripheral surface of the tubular body in a state inclined to the downstream side so as not to oppose the flow, fibrous or particulate solid matter may be caught or deposited. The solution can be stably processed without clogging even with a stock solution containing a large amount of solid matter.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a schematic diagram showing a schematic configuration of a water treatment apparatus to which the present invention is applied. This water treatment apparatus separates and removes suspended substances from raw water (raw liquid) containing a large amount of organic suspended substances such as oil and protein, as in wastewater from a food factory, and is useful for biological treatment in the next step. It raises the concentration of dissolved oxygen, and floats and separates the suspended solids contained in the raw water by the difference in specific gravity from the water. A pretreatment section 2 for adhering fine air bubbles to promote a separation operation in the flotation / separation section 1, and a treatment water and air (useful gas) in the flotation / separation section 1 at a subsequent stage of the flotation / separation section 1. And a dissolved oxygen addition part (useful gas contact part) 3 for increasing the concentration of dissolved oxygen.
[0020]
The pre-processing unit 2 includes a processing tank 5 in which raw water is introduced and stays for a required time, a static mixer 6 for stirring raw water and air to generate fine bubbles in the raw liquid, and a processing tank 5. A pump 7 for extracting water and feeding the water to a static mixer 6; water sent from the static mixer 6 is returned to the processing tank 5; The raw water and the air are continuously stirred by the static mixer 6 for a required time while circulating water. Thereby, a large amount of fine bubbles are generated in the raw water. Here, the air pressurized by the compressor 8 is injected into the raw water upstream of the static mixer 6.
[0021]
In the treatment tank 5 of the pretreatment unit 2, a raw water inflow unit 12 and a stationary unit 13 are defined by a baffle wall 11, and the baffle wall 11 protrudes above the water surface for wave extinction. Raw water is introduced from the raw water inflow section 12 to the stationary section 13 through the communication section below the baffle wall 11. The processing tank 5 is communicated with the processing tank 21 of the floating separation unit 1 at a lower portion of the partition wall 15, and raw water is introduced into the floating separation unit 1 from the communication part. A baffle wall 16 is provided in front of the partition wall 15, from which the clear water of the stationary unit 13 is collected by overflow and sent to the floating separation unit 1. Note that a plurality of baffle walls may be appropriately provided in the stationary portion 13.
[0022]
The flotation / separation unit 1 has a processing tank 21 in which raw water flowing through the pre-processing unit 2 is introduced and stays for a required time, and a vertical circulating flow is generated in the processing tank 21 to float suspended substances. And a rotating drum (rotating body) 22 for promoting the rotation. A floating component scraping rake 24 that circulates around the outside of the rotating drum 22 and collects the floating component A is provided at the upper part of the processing tank 21. The collected floating component is collected by a floating component recovery shooter 25. It is put into the unloading cart 26 through the. A settling component recovery port 27 for collecting the settling component B is provided below the processing tank 21, and the settling component is pulled out by the pump 28 and sent to the carry-out cart 26.
[0023]
The rotating drum 22 has a cylindrical shape, is disposed at a substantially central position of the processing tank 21, and has a lower end separated from the bottom wall of the processing tank 21, and rotates about a vertical axis in a state in which an upper end protrudes above the water surface. It is provided so that it can be driven by a motor 23. The rotary drum 22 may have a form in which the upper end is immersed below the water surface.
[0024]
The dissolved oxygen adding section 3 includes a treatment tank 31 in which the treated water in the flotation / separation section 1 is introduced and stays for a required time, a static mixer 32 for stirring the treated water and air, and a treatment tank 31. A pump 33 that draws out the treated water and feeds the treated water into a static mixer 32; the treated water sent from the static mixer 32 is returned to the treatment tank 31; While circulating the treated water in the above, the treated water and the air are continuously stirred by the static mixer 32 for a required time. As a result, a large amount of fine bubbles are generated in the treated water, and a high concentration of dissolved oxygen is added to the treated water due to high gas-liquid contact efficiency. Here, the air pressurized by the compressor 8 is injected into the treated water upstream of the static mixer 32.
[0025]
FIG. 2 is a perspective view showing the floating separation unit shown in FIG. In the flotation unit 1, a primary flow C in which water swirls around a vertical axis with the rotation of the rotary drum 22, and a secondary flow D accompanying the primary flow are generated. The secondary flow D is a flow that circulates in the vertical direction perpendicular to the primary flow C, becomes outward near the water surface, downwards near the peripheral wall 21a of the processing tank 21, and inward near the bottom wall 21b of the processing tank 21. And it faces upward near the center of the processing tank 21. By the action of the secondary flow D, the floating component A accumulates on the outer periphery of the liquid surface. In addition, due to the action of the secondary flow D, the sedimentation component B accumulates at the center of the bottom wall 21b, and high-specific-gravity suspended matter such as sand contained in the raw water can also be separated. If an opening communicating between the inside and the outside is provided at an appropriate position of the rotating drum 22, a secondary flow D passing through the inside of the rotating drum 22 can be generated.
[0026]
FIG. 3 is a perspective view showing a main part of the static mixer shown in FIG. In this static mixer, a number of resistor elements 41 are inserted into a cylindrical casing 40. This resistor element 41 has a pair of first and second resistors 43 and 44 projecting from the inner peripheral surfaces of a cylindrical body 42 having a circular cross section facing each other in a tongue shape toward the center. The cylindrical body 42 continuously forms a flow path.
[0027]
The resistors 43 and 44 are arranged in a C-shape in a state of being inclined toward the downstream side, and are provided so as to be shifted in the axial direction so as to secure a required interval between the resistors 43 and 44. ing. As shown in FIGS. 4 and 5, the first resistor 43 on the upstream side is short so as not to intersect with the center line of the cylindrical body 42, and the second resistor 44 on the downstream side is cylindrical. It is formed long so as to intersect with the center line of 42.
[0028]
Irregularities are formed on the axial end of the cylindrical body 42 so as to be coupled to adjacent ones by being shifted by 45 degrees. In addition, a pair of resistors 43 and 44 can be divided into two divided bodies 42a and 42b each formed by a dividing line along the axial direction. This facilitates the manufacture and can easily remove obstacles attached to the surface.
[0029]
When the resistor element 41 thus configured is inserted into the casing 40, the resistor element 41 is arranged at 45 degrees in the circumferential direction with respect to the immediately preceding resistor element 41 indicated by an imaginary line in FIG. In the following, the subsequent resistor elements 41 are also shifted by 45 degrees with respect to the immediately preceding one in the same direction, and the first resistor element 41 is circumferentially shifted by 45 degrees, 90 degrees, and 135 degrees, respectively. And 180 degrees. Therefore, when viewed as a whole, the resistors 43 and 44 forming a pair in a C shape are each arranged so as to form a spiral with a lead angle corresponding to the shift angle of the resistor element 41.
[0030]
Therefore, when a fluid is introduced into the inside, the flow of the first resistor element 41 facing the resistors 43 and 44 collides with the resistors 43 and 44 and is dispersed around the resistors 43 and 44, and these resistors 43 and 44 are dispersed. The flow that is not opposed to 44 also collides with one of the resistors 43 and 44 of the downstream resistor element 41 without being short-passed, is dispersed in multiple directions, and generates strong turbulence inside.
[0031]
In this manner, a violent turbulence is generated in the gas-liquid mixture of the gas such as air and water introduced into the static mixers 6 and 32, and the turbulent stirring action causes fine air bubbles to be generated at a high density. The fine bubbles are generated and persist without coarsening. For this reason, a large amount of fine bubbles adhere to the suspended substance in the pretreatment section 2 and the floating separation section 1, and the floating efficiency of the floating separation section 1 is greatly increased. In addition, in the dissolved oxygen addition section 3, the contact efficiency between water and oxygen is greatly increased, and the dissolution of oxygen into water proceeds due to fine bubbles that continue in the downstream piping, so that a high concentration of dissolved oxygen is given to the treated water. Is done.
[0032]
FIG. 7 is a schematic diagram illustrating a modification of the floating separation unit illustrated in FIG. 1 as viewed from above. Here, a rotary drum 53 is provided in a processing tank 52 of the floating separation unit 51, and a primary flow C in which water swirls around a vertical axis is generated in the processing tank 52 as the rotating drum 53 rotates. Raw water flowing through the stationary mixer 6 is introduced into the processing tank 52 through an inflow portion 55, and the raw water is introduced into the processing tank 52 in a tangential direction to the processing tank 52, that is, in a direction along the primary flow C. It is supposed to.
[0033]
FIG. 8 is a schematic diagram illustrating an inflow side of the floating separation unit illustrated in FIG. 7. The inflow part 55 is provided with an introduction part 57 for introducing raw water flowing through the stationary mixer 6 at a lower part, and a baffle wall 58 arranged horizontally in the middle part in the vertical direction. The raw water introduced from the introduction portion 57 is turned on the lower surface side of the baffle wall 58 and is introduced into the upper surface side of the baffle wall 58 through the communication portion provided on the introduction portion 57 side. Flows into the processing tank 52.
[0034]
FIG. 9 is a schematic diagram illustrating an outflow side of the floating separation unit illustrated in FIG. 7. In the processing tank 52 of the flotation / separation unit 51, a secondary flow D accompanying the primary flow in which water swirls around the vertical axis is generated with the rotation of the rotary drum 22, and a floating component is generated by the action of the secondary flow D. A accumulates on the outer periphery of the liquid surface. The floating component A is introduced into the outlet 60 together with the water. In the outflow portion 60, a floating component staying portion 62 is formed by a baffle wall 61 provided near the water surface, and the floating component A staying there is introduced into the recovery pit 65 shown in FIG. Is done. On the other hand, the water that has flowed into the outflow portion 60 together with the floating component A passes through the communication portion below the baffle wall 61 and the communication portion above the baffle wall 63, and the discharge portion 64 provided below the outflow portion 60. Recovered from.
[0035]
In this example, as shown in FIGS. 8 and 9, the rotary drum 53 has a truncated conical shape, and has a gradually decreasing shape in which the cross section gradually decreases downward. According to this, a strong primary flow C can be generated as compared with the cylindrical cylindrical rotary drum 22 having a uniform cross section in the axial direction shown in FIG. 2, and the secondary flow accompanying this primary flow can be generated. The flow D also becomes strong, and the efficiency of floating of the floating component and settling of the settling component can be increased.
[0036]
The rotating drum can also have a gradually expanding configuration in which the cross section gradually increases downward, contrary to this example. In this case, since the direction of the secondary flow D is reversed, the floating component collects at the center of the liquid surface, and the settling component accumulates on the outer peripheral portion of the bottom wall. In addition, a combination of a gradually reducing portion having a gradually decreasing cross section and a gradually expanding portion having a gradually decreasing cross section, and further reducing and gradually reducing the body portion to have a uniform cross section in the axial direction. A configuration in which the expansion forms are combined is also possible.
[0037]
【The invention's effect】
As described above, according to the present invention, the stock solution and the required gas are stirred in the pretreatment unit using the static mixer to generate a large amount of fine bubbles in the stock solution, which is guided to the floating separation unit and rotated. Since the suspended substance is levitated by the vertical circulating flow generated by the body, the suspended substance contained in the stock solution can be efficiently levitated and separated by a simple configuration. For this reason, it is possible to realize cost reduction of maintenance and management and ease of operation management by flotation without using a flocculant, and it is also possible to increase the flotation efficiency in the flotation separation process and significantly reduce the size of the device. An extremely remarkable effect can be obtained in realizing a space-saving and low-cost suspended substance separation treatment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a water treatment apparatus to which the present invention is applied.
FIG. 2 is a perspective view showing a floating separation unit shown in FIG. 1;
FIG. 3 is a perspective view showing a main part of the static mixer shown in FIG.
FIG. 4 is a sectional view showing a resistor element shown in FIG. 2;
5 is a front view of the resistor element shown in FIG. 2 as viewed from the upstream side.
FIG. 6 is a front view similar to FIG. 5 for explaining the arrangement of the resistor elements shown in FIG. 2;
FIG. 7 is a schematic diagram illustrating a modification of the floating separation unit illustrated in FIG. 1 as viewed from above.
FIG. 8 is a schematic view showing an inflow side of the flotation separation unit shown in FIG. 7;
FIG. 9 is a schematic diagram showing an outflow side of the floating separation unit shown in FIG. 7;
[Explanation of symbols]
1 flotation separation section 2 pretreatment section 3 dissolved oxygen addition section (useful gas contact section)
5 processing tank 6 stationary mixer 21 processing tank 22 rotating drum (rotary body)
31 processing tank 32 static mixer

Claims (5)

処理対象となる原液に含まれる懸濁物質を比重差により浮上させて集積分離する浮上分離部と、この浮上分離部の前段で原液中の懸濁物質に微細気泡を付着させて浮上分離部での分離操作を促進する前処理部とを有し、前記浮上分離部は、処理槽内に上下方向の循環流を発生させて懸濁物質の浮上を促進する回転体を備え、前記前処理部は、原液と所要の気体とを攪拌して原液中に微細気泡を生成する静止型混合器を備えたことを特徴とする液体処理装置。A flotation / separation unit that floats and accumulates and separates suspended substances contained in the undiluted solution to be processed by the difference in specific gravity, and a flotation / separation unit that attaches microbubbles to the suspended substance in the undiluted solution before the flotation / separation unit. A pretreatment unit that promotes the separation operation, wherein the flotation / separation unit includes a rotating body that generates a vertical circulating flow in the treatment tank to promote the flotation of the suspended matter, Is a liquid processing apparatus provided with a static mixer that generates fine bubbles in the stock solution by stirring the stock solution and a required gas. 前記前処理部は、原液が導入されてこれを所要の時間滞留させる処理槽を有し、前記静止型混合器の上流側で気泡生成用の気体を注入しながら前記静止型混合器と前記処理槽との間で原液を循環させるようにしたことを特徴とする請求項1に記載の液体処理装置。The pre-processing unit has a processing tank in which a stock solution is introduced and stays for a required time, and the static mixer and the processing are performed while injecting gas for generating bubbles upstream of the static mixer. The liquid processing apparatus according to claim 1, wherein the undiluted solution is circulated between the tank and the tank. 前記浮上分離部の後段に、その浮上分離部での処理済み液に次工程での有用ガスを混入する有用ガス接触部を有し、この有用ガス接触部は、前記浮上分離部での処理済み液が導入される処理槽と、処理済み液と有用ガスとを攪拌する静止型混合器とを有し、この静止型混合器の上流側で有用ガスを注入しながら前記静止型混合器と前記処理槽との間で処理済み液を循環させるようにしたことを特徴とする請求項1若しくは請求項2に記載の液体処理装置。At the subsequent stage of the flotation unit, there is a useful gas contact unit that mixes a useful gas in the next step into the liquid processed in the flotation unit, and this useful gas contact unit is treated by the flotation unit. A processing tank into which the liquid is introduced, and a static mixer that stirs the processed liquid and the useful gas, and the static mixer and the static mixer while injecting a useful gas upstream of the static mixer. The liquid processing apparatus according to claim 1 or 2, wherein the processed liquid is circulated between the processing tank and the processing tank. 前記浮上分離部の回転体は、略円形状の断面をなし、その下端を前記処理槽の底壁から離間させて、垂直軸回りに回転可能に前記処理槽の概ね中心位置に設けられたことを特徴とする請求項1乃至請求項3のいずれかに記載の液体処理装置。The rotating body of the floating separation unit has a substantially circular cross section, and a lower end thereof is separated from a bottom wall of the processing tank, and is provided at a substantially central position of the processing tank so as to be rotatable around a vertical axis. The liquid processing apparatus according to any one of claims 1 to 3, wherein: 前記静止型混合器は、円筒状のケーシングの内部の流路中に複数の抵抗体が配設され、該複数の抵抗体が、共に内周面側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられたことを特徴とする請求項1乃至請求項4のいずれかに記載の液体処理装置。In the static mixer, a plurality of resistors are disposed in a flow path inside a cylindrical casing, and the plurality of resistors are both protruded in a plate shape from the inner peripheral surface side toward the center. 5. The device according to claim 1, wherein a predetermined interval is provided in the axial direction so as not to contact each other in a state of being inclined to the downstream side, and a predetermined angle is sequentially provided in the circumferential direction. 6. A liquid processing apparatus according to claim 1.
JP2003118456A 2003-04-23 2003-04-23 Liquid treatment apparatus Pending JP2004321900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118456A JP2004321900A (en) 2003-04-23 2003-04-23 Liquid treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118456A JP2004321900A (en) 2003-04-23 2003-04-23 Liquid treatment apparatus

Publications (1)

Publication Number Publication Date
JP2004321900A true JP2004321900A (en) 2004-11-18

Family

ID=33497992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118456A Pending JP2004321900A (en) 2003-04-23 2003-04-23 Liquid treatment apparatus

Country Status (1)

Country Link
JP (1) JP2004321900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323000A1 (en) * 2020-04-17 2021-10-21 Korea Atomic Energy Research Institute Float sorting device for selective separation of non-metallic minerals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323000A1 (en) * 2020-04-17 2021-10-21 Korea Atomic Energy Research Institute Float sorting device for selective separation of non-metallic minerals
US11958062B2 (en) * 2020-04-17 2024-04-16 Korea Atomic Energy Research Institute Float sorting device for selective separation of non-metallic minerals

Similar Documents

Publication Publication Date Title
JP4562737B2 (en) Treatment method and reactor by agglomeration
TWI300006B (en) Coagulating and separating apparatus
EP2563729B1 (en) Ballasted sequencing batch reactor system and method for treating wastewater
KR101820864B1 (en) dissolved air flotation type pretreatment device built-in fiber ball and water treatment methods using the same
JPH03130483A (en) Floatation device for removing ink
JP2011183271A (en) Magnetic separation apparatus and wastewater treatment apparatus
JP2011000583A (en) Method and apparatus for treating waste liquid
JP2011121033A (en) Magnetic separation apparatus and magnetic separation method, wastewater treatment apparatus, and wastewater treatment method
CN112811548B (en) Rotational flow flocculation device and sedimentation tank with same
JP4711074B2 (en) Aggregation reactor
KR20190121115A (en) Cyclone settling apparatus
CN107416934B (en) Vibrating air flotation tank
JP2002186962A (en) Pressurized whirl type floatation and separation wastewater treatment equipment
KR20190121114A (en) Powerless mixer and cyclone settling apparatus having the same
JP2004321900A (en) Liquid treatment apparatus
CN215327190U (en) Aerobic three-phase separation device and sewage treatment system
US6656251B1 (en) Process and a plant for purifying of a liquid
JP3166826U (en) Wastewater treatment equipment
JP2002058912A (en) Whirling flow type flocculating/separation equipment
JP2011083709A (en) Solid-liquid separation system
JP2006095494A (en) Flocculation/separation apparatus
KR101974056B1 (en) A Liquid-solid Seperator with a Screen
JP7083650B2 (en) Solid-liquid separator
WO2004052496A1 (en) Method and apparatus for mixing fluids, separating fluids, and separating solids from fluids
CN111003832A (en) Pretreatment equipment and method for oil stain and SS in polishing solution wastewater