JP2004320620A - Adaptive antenna transmitting apparatus and adaptive antenna transmitting method - Google Patents

Adaptive antenna transmitting apparatus and adaptive antenna transmitting method Download PDF

Info

Publication number
JP2004320620A
JP2004320620A JP2003114319A JP2003114319A JP2004320620A JP 2004320620 A JP2004320620 A JP 2004320620A JP 2003114319 A JP2003114319 A JP 2003114319A JP 2003114319 A JP2003114319 A JP 2003114319A JP 2004320620 A JP2004320620 A JP 2004320620A
Authority
JP
Japan
Prior art keywords
adaptive antenna
directivity
phase
signals
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114319A
Other languages
Japanese (ja)
Other versions
JP2004320620A5 (en
JP3905055B2 (en
Inventor
Taiji Takatori
泰司 鷹取
Keizo Cho
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003114319A priority Critical patent/JP3905055B2/en
Publication of JP2004320620A publication Critical patent/JP2004320620A/en
Publication of JP2004320620A5 publication Critical patent/JP2004320620A5/ja
Application granted granted Critical
Publication of JP3905055B2 publication Critical patent/JP3905055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure a predetermined communication quality even when there is an error in propagation environment estimation. <P>SOLUTION: While taking into account a range of the estimation error, directions of K main beams are changed to mutually include angle differences. At such a time, an output signal of an encoder 101 is transmitted from antenna elements 1051-105M while variously adjusting the angle differences through directional forming devices 1021-102K, phase inclination adding parts 1031-103K and synthesizers 1041-104M in accordance with extents of phase inclinations to be added. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は指向性を電波環境に応じて最適化する適応アンテナ(adaptive antenna)装置に利用する。本発明は伝搬環境推定および指向性制御および干渉除去技術に関する。特に、伝搬環境の推定誤差を補償する技術に関する。
【0002】
【従来の技術】
適応アンテナは、希望する信号と相関の高い到来波を合成し、相関の低い到来波を抑圧するように指向性制御を行うアンテナであり、所望波の到来方向に合わせて主ビームを形成することができる。以下の説明では、基地局と端末局との間の通信を想定し、基地局から端末局へ向かう方向の通信を下り通信と呼び、端末局から基地局へ向かう方向の通信を上り通信と呼ぶ。
【0003】
従来の適応アンテナ装置のビーム制御方法を示す。図9に下り通信の伝搬環境の推定を行わない従来の適応アンテナ装置を示す(例えば、非特許文献1参照)。従来の適応アンテナ装置は複数のアンテナ素子4011〜401Nと、各アンテナ素子に接続された複素重みを課す重み付け手段4021〜402Nと、各重み付け手段4021〜402Nの重みを制御する重み制御装置402と、基準信号発生装置404と、受信時には各アンテナ素子4011〜401Nに接続された複素重み付けをされた信号を合成し、送信時には重み付け手段4021〜402Nに入力信号を分岐するための合成および分岐装置405から構成される。
【0004】
一般に適応アンテナ装置の複数のアンテナ素子4011〜401Nで受信された信号をx1〜xNとし、重み付け手段4021〜402Nに設定される重みの値をw1〜wNとし、希望信号成分をdと表すと、希望する信号との誤差の2乗が最小になるように指向性を形成する重みの値は、
【0005】
【数1】

Figure 2004320620
で与えられる。ただし、
【0006】
【数2】
Figure 2004320620
【0007】
【数3】
Figure 2004320620
【0008】
【数4】
Figure 2004320620
である。上り通信時の伝搬環境と下り通信時の伝搬環境がまったく同一とみなせる場合には、アンテナ間の相関行列Rxxおよび希望ユーザに対するステアリングベクトルrxdに変化が生じないため、上り通信時の重みの値を下り通信にもそのまま適用すれば、通信路の2乗誤差を最小とする指向性を形成することができる。したがって、上り通信と下り通信の伝搬環境がほぼ等しい場合には、単に複数のアンテナ素子で構成するアレーアンテナで構成すればよい。
【0009】
ところが上り通信と下り通信での周波数が異なるFDDシステムや、環境変動の大きい環境では、(式4)で定義したアンテナ間の相関行列Rxxを推定することができず、適応アンテナ装置が動作しないという問題がある。
【0010】
下り通信において受信局で伝搬環境を推定し、伝搬環境の推定結果を送信局にフィードバックし、下り回線用の指向性形成を行う方法が提案されている(例えば、非特許文献2参照)。以下にその動作を示す。下り通信では情報信号の間にプロービング信号を周期的に挿入して信号を伝送する。プロービング信号は送信局の各アンテナと受信局との間の伝搬環境の推定に用いる。プロービング信号を伝送する区間では、各アンテナから異なったプロービング信号系列を送信する。ここで、各アンテナから送信するプロービング信号は、全受信局が既知の信号系列とする。受信局では受信信号に対して、各アンテナから送信する各プロービング信号との相関演算を行い、各アンテナのプロービング信号毎に複素相関値を求める。この複素相関値を上り通信において送信局にフィードバックし、適応アンテナの指向性形成に反映させる。この方法では、各アンテナのプロービング信号との相関値を受信局において求めることによって、送信局の各アンテナと受信局の間の伝搬環境を推定することができる。
【0011】
この方法を利用する場合には各アンテナから異なった信号が送信されるため、ビーム形成を行うことができない。したがって、同一チャネルを利用する周辺セルに対して干渉を与えてしまうという問題がある。また、アンテナ素子数が増大すると、プロービング信号の信号系列長が長くなるため、スループットが低下するという問題が生じる。
【0012】
上り通信時に到来波の到来方向を推定し、推定結果から伝搬環境を推定し、指向性を形成する方法が提案されている(例えば、非特許文献3参照)。周波数が上下通信で異なるFDDシステムにおいても到来波の到来方向は上下通信で変化しないことを利用し、到来方向情報のみから指向性形成を行っている。
【0013】
ただし、この方法は、ESPRITアルゴリズムなどの高精度分解能アルゴリズムを用いて正確に伝搬環境が推定されることを前提としている。しかし、実環境においては多数のマルチパス波が存在し、到来方向を正確に推定することは困難である。この方法は到来方向情報のみに基づいた指向性制御であるため、到来方向推定に誤差が生じると、伝送品質が著しく劣化するという問題がある。
【0014】
【非特許文献1】
R.A.Monzingo and T.W.Miller,Introduction to Adaptive Arrays,John Wiley & Sons,Inc.1980
【非特許文献2】
Derlek Gerlacha,Arlogyaswami Paulraj,”Base Station Antenna Arraya with Mobile to Base Feedback,”Conference Record of The Twenty−Seventh Asilomar Conference on,1993)。
【非特許文献3】
B.Lindmark,M.Ahlberg,M.Nilsson,and C.Beckman,”Performance analysis of applying up−link estimagtes in the down−link beamforming using a dual polarized array,”Vehicular Technology Conference Proceedings,2000.VTC2000−Spring Tokyo.2000IEEE 51st,Page(s):690−694 vol.2,2000
【非特許文献4】
Vahid Tarokh,et.al”Space−Time Codes for High Data Rate Wireless Communication:Performance Criterion and Code Construction”,IEEE Trans.Information Theory,Vol.44,No.2,MARCH,1998.
【非特許文献5】
菊間著「アレーアンテナによる適応信号処理」科学技術出版、1998年発行
【0015】
【発明が解決しようとする課題】
適応アンテナ装置のディジタル無線伝送での下り通信における指向性制御では、送信局と受信局との間の伝搬環境を推定する必要がある。ところが、伝搬環境を推定するために、各アンテナからプロービング信号を送信すると、伝搬環境推定時に指向性形成ができないため、伝送品質が劣化してしまうという問題があった。
【0016】
また、従来の伝搬環境推定方法では送信局と受信局との間の伝搬環境を推定するためには、予め定められた信号系列を送信する必要があるため、スループットが低下するという問題があった。また、到来方向を上り通信での受信信号から推定し、下り回線の伝搬環境を推定する方法では、到来方向推定誤差が生じると伝送品質が著しく劣化するという問題があった。
【0017】
本発明は、このような背景に行われたものであって、伝搬環境推定に誤差がある場合でも所定の通信品質を確保することができる適応アンテナ送信装置および適応アンテナ送信方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明の第一の観点は、M個のアンテナ素子と、端末局への送信信号を入力信号とし、この入力信号を符号化したK系統の出力信号を生成する符号化手段と、この符号化手段のK系統の出力信号をそれぞれ1系統ずつ入力信号とし、所望する方向に指向性が得られるように重み付けを施した前記アンテナ素子数と同数のM個の信号をそれぞれ出力するK個の指向性形成手段と、このK個の指向性形成手段のm(1≦m≦M)番目の信号をそれぞれ合成しm番目の前記アンテナ素子にそれぞれ入力するM個の合成手段とを備えた適応アンテナ送信装置である。
【0019】
ここで、本発明の特徴とするところは、前記K個の指向性形成手段により形成されるK個の主ビームの方向を相互に角度差を持つように変化させる手段を備えたところにある。
【0020】
例えば、伝搬環境推定を行った結果に誤差がある場合には、端末局が実際に、最も良好に基地局からの信号を受信できる方向とは異なる方向に、基地局の主ビームが向けられる場合があるが、推定誤差の範囲を考慮してK個の主ビームの方向を少しずつずらしておくことにより、端末局は、所定の通信品質を確保した通信を行うことができる。このように、本発明では、推定誤差の範囲を考慮してK個の主ビームの方向を相互に角度差を持つように変化させることを特徴とする。
【0021】
このとき、前記変化させる手段は、前記指向性形成手段から出力されるM個の信号に対してそれぞれ位相傾きを与える位相傾き付加手段を備えることにより実現することができる。すなわち、付加する位相傾きの度合いに応じて、K個の主ビームの相互の角度差を様々に調整することができる。例えば、位相傾きの度合いを大きく調整すると前記角度差は大きくなり、また、位相傾きの度合いを小さく調整すると前記角度差は小さくなる。位相傾きを“0”にすると前記角度差も“0”になり、従来の適応アンテナ装置と同じになる。
【0022】
さらに、端末局からの到来波の方向を推定する到来方向推定手段を備え、前記指向性形成手段は、指向性の方向をこの到来方向推定手段により推定された到来波の方向に基づき設定する手段を備えることができる。このような手段は、従来から存在する手段であるが、本発明の装置に用いることによって、推定誤差を考慮しつつ、端末局が移動するシステムにおいても指向性を追従させることができる。
【0023】
また、端末局からの受信信号に基づき伝搬環境推定誤差を検出する推定誤差検出手段を備え、この推定誤差検出手段により検出された誤差に応じて前記位相傾き付加手段で付加される位相傾きの度合いを設定する手段を備えることが望ましい。これによれば、伝搬環境の推定誤差をリアルタイムに検出し、これに応じてK個の主ビームの方向を相互に角度差を持つように動的に変化させることができるため、実環境に則した最適な指向性制御を行うことができる。
【0024】
また、このときには、前記位相傾きの度合いを設定する手段は、前記伝搬環境推定誤差と前記位相傾きの度合いとの対応関係を記したチャートを備えることができる。これによれば、検出された推定誤差から速やかに適切な位相傾きの度合いを選択することができるので、制御の高速化および簡単化を図ることができる。
【0025】
なお、このような、伝搬環境の推定誤差をリアルタイムに検出し、これに応じて位相傾きの度合いを動的に設定する手段を有していない場合でも、本発明の適応アンテナ送信装置では、位相傾きの度合いの設定変更が速やかに可能であり、例えば、一定期間の統計的なデータ収集に基づき、適切な位相傾き度合いを設定できることを特徴とし、単に、指向性を鈍らせて推定誤差に対応するという発想とは一線を画すものであると解釈されたい。
【0026】
本発明の第二の観点は、端末局への送信信号を入力信号とし、この入力信号を符号化したK系統の出力信号を生成し、この符号化されたK系統の出力信号をそれぞれ1系統ずつ入力信号とし、所望する方向に指向性が得られるように重み付けを施したアンテナ素子数と同数のM個の信号をそれぞれ出力し、このK系統のM個の出力信号のm(1≦m≦M)番目の信号をそれぞれ合成しm番目の前記アンテナ素子にそれぞれ入力することにより所望する方向に指向性を有するK個の主ビームを形成する適応アンテナ送信方法であって、本発明の特徴とするところは、前記K個の主ビームの方向を相互に角度差を持つように変化させるところにある。
【0027】
前記K個の主ビームの方向を相互に角度差を持つように変化させる際には、前記K系統のM個の出力信号に対してそれぞれ位相傾きを与えることが望ましい。また、端末局からの到来波の方向を推定し、指向性の方向をこの推定された到来波の方向に基づき設定することができる。さらに、端末局からの受信信号に基づき伝搬環境推定誤差を検出し、この検出された誤差に応じて付加する位相傾きの度合いを設定することが望ましい。なお、前記位相傾きの度合いを設定する際には、前記伝搬環境推定誤差と前記位相傾きの度合いとの対応関係を記したチャートを参照して設定することが望ましい。
【0028】
【発明の実施の形態】
(第一実施形態)
以下、図面を参照して本発明の実施形態について説明する。図1は、第一実施形態の装置構成を示す図であり、上り回線で推定した到来方向に対して、異なる位相傾きを付加することによって、指向性のピークをずらした複数の指向性を形成し、このように形成した複数の指向性パターンに対して符号化を行う形態を示している。
【0029】
図1において符号101は符号化器、符号1021〜102Kは指向性形成装置、符号1031〜103Kは位相傾き付加手段、符号1041〜104Mは合成器、符号1051〜105Mはアンテナ素子である。
【0030】
端末局への送信信号は符号化器101に入力される。信号の生成方法としては、例えばSTCを用いることができる(例えば、非特許文献4参照)。図1は、入力信号が符号化されてK系統のディジタル信号に変換される例である。指向性形成装置1021〜102Kは、K系統のディジタル信号を1系統ずつ入力する。
【0031】
ビームは、指向性形成装置1021〜102Kおよび位相傾き付加部1031〜103Kによって形成される。まず、指向性形成装置1021〜102Kでは、入力信号をM個の信号に分岐し、m(1〜Mの整数)番目の分岐信号に対して、以下の重みWA,mを乗算し出力する。
【0032】
【数5】
Figure 2004320620
ここでxmはアンテナ1051からアンテナ105mまでの距離、θは設定した端末局方向、λは波長を表す。また全ての指向性形成装置では同じ重み付けが行われる。さらに、指向性形成装置1021〜102Kからの出力信号は位相傾き付加部1031〜103Kによって、例えばm番目の信号に対して、k番目の位相傾き付加部では、以下の重みWB,mを乗算し、アンテナ素子105mへの入力信号とする。
【0033】
【数6】
Figure 2004320620
ここで、Δφkは位相傾きを示す。この入力信号は合成器104mによって合成され、アンテナ素子105mに入力される。これにより、アンテナ素子1051〜105Mは、相互に角度差を持つK個の主ビームを有する指向性を形成する。
【0034】
このように送信された信号を受信した端末局では、受信したデータを周波数変換、アナログ−ディジタル信号変換し、受信信号を一旦、データ保存装置に記録する。データ保存装置に記録されたデータを元に、例えば、最尤推定や2乗誤差最小アルゴリズムによって復号を行う。
【0035】
このように構成することによって、設定した端末局方向に誤差があった場合でも、形成した複数の指向性のうちのいくつかはビーム方向が端末局方向を向くため、送信ダイバーシチ効果によって端末局での受信レベルの低下を防ぐことができる。この本発明の効果を図2および図3を参照して説明する。図2は本発明の装置によって形成されたビームパターンであり、図3は従来の装置によって形成されたビームパターンである。
【0036】
図3の従来の装置によって形成されたビームパターンでは、実際の端末局の方向(実線)と推定された端末局の方向(破線)とがズレている場合には、端末局と基地局との間の通信における通信品質は所定の品質を満たすことができない場合がある。これに対し、図2の本発明の装置によって形成されたビームパターンでは、実際の端末局の方向(実線)と推定された端末局の方向(破線)とがズレている場合でも、形成した複数の指向性のうちのいくつかはビーム方向が端末局方向を向くため、端末局と基地局との間の通信における通信品質は所定の品質を満たすことができる。
【0037】
第一実施形態では、位相傾き付加部1031〜103Kによって付加される位相傾きの度合いは固定である。この位相傾きの度合いは、例えば、これまでの伝搬環境推定誤差を統計的に分析して最適な値を設定する。
【0038】
図4に本発明の到来方向設定値誤差(横軸)に対する出力SNRの10%値(縦軸)の特性を示す。ここでは主ビームの開度は一様分布とし、基地局での主ビーム開度は5度、端末局での主ビーム開度は360度(即ち、無指向性)とした。基地局でのアンテナ素子数Mは8素子、ビーム数Kは2、端末局方向は0度方向、到来波数は100波とし、各到来波の到来方向、到来位相をランダムに変化させて評価した。従来方法は推定した到来方向に対してメインビームを向ける制御とした。図4に示すように、約10度の誤差がある場合に、約3dBの出力SNR特性改善効果が得られることがわかる。
【0039】
(第二実施形態)
図5は、第二実施形態の装置構成を示す図であり、端末局からの上り信号に対して、到来方向を推定し、推定結果を利用して複数の指向性を形成する形態を示している。図5において符号201は到来方向推定装置である。
【0040】
到来方向推定装置201では、Capon法などの低分解能の到来方向推定やMUSIC法、ESRIT法(例えば、非特許文献5参照)といったアルゴリズムを用いることができる。このようにしてθを設定することによって、端末局が移動するシステムにおいても、指向性を追従させることができる。
【0041】
(第三実施形態)
図6は、第三実施形態の装置構成を示す図であり、伝搬環境推定誤差検出によって、目的とする端末局との到来方向の推定精度を検出し、その推定精度にあわせて位相傾きの度合いΔφkを決定する形態を示している。この図において符号301は伝搬環境推定誤差検出装置である。
【0042】
伝搬環境推定誤差は、利用できる推定アルゴリズムや、伝搬環境、ハードウェアの温度変化などから推定することができる。例えば、基地局にアクセスするユーザ数が少ない場合には、信号処理の負担の大きいMUSIC法やESPRIT法といった高分解能アルゴリズムを適用し、ユーザ数が増えてきた場合に信号処理の負担の小さいCapon法を用いるというような構成を用いた場合では、利用可能なアルゴリズムから推定誤差を予測することが可能である。
【0043】
また、ミキサや増幅器などのアナログデバイスが温度特性を持つ場合には、温度をモニタしておくことによって伝搬環境推定誤差を推定することができる。また、伝搬環境に角度広がりが生じると、各アンテナ毎に受信電力差が生じる。角度広がりのある環境では、伝搬環境推定誤差が見込まれるため、受信電力差から伝搬環境推定誤差を推定することも可能である。
【0044】
また、さらに、一般に到来方向推定は2つのアンテナを用いれば可能となるので、任意の2ブランチ間の位相差からの到来方向推定を、異なるアンテナの組に対して行い、推定結果のバラツキから到来方向推定誤差を推定することも可能である。ここで、予め予測される推定誤差に対して設定するΔφkのチャートを用意しておくことで、式6でのΔφkの値を決定することができる。
【0045】
第三実施形態におけるビーム開度設定手順を図7および図8を参照して説明する。図7は第三実施形態における主ビーム開度設定手順を示すフローチャートである。図8は第三実施形態における推定誤差と位相傾き度合いとの対応を記したチャートを示す図である。伝搬環境推定誤差検出装置301では、端末局からの受信信号を取得し(ステップ1)、これにより伝搬環境推定誤差を検出する(ステップ2)。推定誤差が検出されたら、図8に示すチャートを参照し(ステップ3)、検出された推定誤差に対応する最適な位相傾き度合いを調べる。これにより、最適な位相傾き度合いを知り設定することができる(ステップ4)。
【0046】
【発明の効果】
以上説明したように、本発明によれば、伝搬環境推定に誤差がある場合でも所定の通信品質を確保することができる。
【図面の簡単な説明】
【図1】第一実施形態の装置構成を示す図。
【図2】本発明の装置における主ビームパターンを示す図。
【図3】従来の装置における主ビームパターンを示す図。
【図4】本発明の効果を説明するための図。
【図5】第二実施形態の装置構成を示す図。
【図6】第三実施形態の装置構成を示す図。
【図7】第三実施形態の主ビーム開度設定手順を示すフローチャート。
【図8】第三実施形態のチャートを示す図。
【図9】従来の装置構成を示す図。
【符号の説明】
101 符号化器
1021〜102K 指向性形成装置
1031〜103K 位相傾き付加部
1041〜104K 合成器
1051〜105K、4011〜401N アンテナ素子
201 到来方向推定装置
301 伝搬環境推定誤差検出装置
4021〜402N 重み付け装置
403 重み制御装置
404 基準信号発生装置
405 合成および分岐装置[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is applied to an adaptive antenna device that optimizes directivity according to a radio wave environment. The present invention relates to propagation environment estimation and directivity control and interference cancellation techniques. In particular, the present invention relates to a technique for compensating for a propagation environment estimation error.
[0002]
[Prior art]
An adaptive antenna is an antenna that synthesizes an incoming wave with a high correlation with a desired signal and performs directivity control so as to suppress the incoming wave with a low correlation, and forms a main beam in accordance with the arrival direction of the desired wave. Can be. In the following description, communication between the base station and the terminal station is assumed, communication in the direction from the base station to the terminal station is called downlink communication, and communication in the direction from the terminal station to the base station is called uplink communication. .
[0003]
4 shows a beam control method of a conventional adaptive antenna device. FIG. 9 shows a conventional adaptive antenna apparatus that does not estimate the propagation environment of downlink communication (for example, see Non-Patent Document 1). The conventional adaptive antenna apparatus includes a plurality of antenna elements 4011 to 401N, weighting means 4021 to 402N for imposing a complex weight connected to each antenna element, and a weight control device 402 for controlling the weight of each weighting means 4021 to 402N. The reference signal generator 404 combines the complex-weighted signals connected to the antenna elements 4011 to 401N at the time of reception, and the combining and branching device 405 for branching the input signal to the weighting means 4021 to 402N at the time of transmission. Be composed.
[0004]
In general, signals received by a plurality of antenna elements 4011 to 401N of an adaptive antenna device are x1 to xN, weight values set in weighting means 4021 to 402N are w1 to wN, and a desired signal component is represented by d. The value of the weight forming the directivity so that the square of the error from the desired signal is minimized is
[0005]
(Equation 1)
Figure 2004320620
Given by However,
[0006]
(Equation 2)
Figure 2004320620
[0007]
[Equation 3]
Figure 2004320620
[0008]
(Equation 4)
Figure 2004320620
It is. When the propagation environment at the time of uplink communication and the propagation environment at the time of downlink communication can be considered to be exactly the same, there is no change in the correlation matrix Rxx between antennas and the steering vector rxd for the desired user. If applied directly to downlink communication, directivity that minimizes the square error of the communication path can be formed. Therefore, when the propagation environments of the uplink communication and the downlink communication are almost equal, it is sufficient to simply configure the array antenna with a plurality of antenna elements.
[0009]
However, in an FDD system having different frequencies in uplink communication and downlink communication, or in an environment with large environmental fluctuations, the correlation matrix Rxx between antennas defined by (Equation 4) cannot be estimated, and the adaptive antenna apparatus does not operate. There's a problem.
[0010]
There has been proposed a method of estimating a propagation environment in a receiving station in a downlink communication, feeding back the estimation result of the propagation environment to a transmitting station, and forming directivity for a downlink (for example, see Non-Patent Document 2). The operation will be described below. In downlink communication, a probing signal is periodically inserted between information signals to transmit a signal. The probing signal is used for estimating the propagation environment between each antenna of the transmitting station and the receiving station. In a section for transmitting a probing signal, a different probing signal sequence is transmitted from each antenna. Here, the probing signal transmitted from each antenna is a signal sequence known to all receiving stations. The receiving station performs a correlation operation on the received signal with each probing signal transmitted from each antenna, and obtains a complex correlation value for each probing signal of each antenna. This complex correlation value is fed back to the transmitting station in uplink communication, and is reflected in forming the directivity of the adaptive antenna. In this method, the propagation environment between each antenna of the transmitting station and the receiving station can be estimated by obtaining the correlation value of each antenna with the probing signal at the receiving station.
[0011]
When this method is used, different signals are transmitted from each antenna, so that beam forming cannot be performed. Therefore, there is a problem that interference is caused to neighboring cells using the same channel. In addition, when the number of antenna elements increases, the signal sequence length of the probing signal increases, which causes a problem that the throughput decreases.
[0012]
There has been proposed a method of estimating the arrival direction of an incoming wave during uplink communication, estimating the propagation environment from the estimation result, and forming directivity (for example, see Non-Patent Document 3). Even in an FDD system in which the frequency differs between up and down communication, the directivity is formed only from the arrival direction information, utilizing the fact that the arrival direction of the incoming wave does not change in up and down communication.
[0013]
However, this method is based on the premise that the propagation environment is accurately estimated using a high-precision resolution algorithm such as the ESPRIT algorithm. However, in a real environment, there are many multipath waves, and it is difficult to accurately estimate the direction of arrival. Since this method is directivity control based on only the direction of arrival information, if an error occurs in the estimation of the direction of arrival, there is a problem that transmission quality is significantly degraded.
[0014]
[Non-patent document 1]
R. A. Monzingo and T.M. W. Miller, Introduction to Adaptive Arrays, John Wiley & Sons, Inc. 1980
[Non-patent document 2]
Derek Gerlach, Argyaswami Paulaj, "Base Station Antenna Ararraya with Mobile to Base Feedback," Conference Record of the Second Life First Life Insurance Company.
[Non-Patent Document 3]
B. Lindmark, M .; Ahlberg, M .; Nilsson, and C.W. Beckman, "Performance analysis of applying up-link estimatings in the down-link beamforming useing a dual-coordinated rayarray," Thailand. VTC2000-Spring Tokyo. 2000 IEEE 51st, Page (s): 690-694 vol. 2,2000
[Non-patent document 4]
Vahid Tarokh, et. al "Space-Time Codes for High Data Data Wireless Communication: Performance Criterion and Code Construction", IEEE Trans. Information Theory, Vol. 44, no. 2, MARCH, 1998.
[Non-Patent Document 5]
Kikuma, "Adaptive Signal Processing by Array Antenna," Science and Technology Publishing, 1998.
[Problems to be solved by the invention]
In directivity control in downlink communication in digital wireless transmission of an adaptive antenna apparatus, it is necessary to estimate a propagation environment between a transmitting station and a receiving station. However, when a probing signal is transmitted from each antenna to estimate the propagation environment, directivity cannot be formed at the time of estimating the propagation environment, and there is a problem that transmission quality is degraded.
[0016]
In addition, in the conventional propagation environment estimation method, in order to estimate the propagation environment between the transmitting station and the receiving station, it is necessary to transmit a predetermined signal sequence, so that there is a problem that the throughput is reduced. . Further, in the method of estimating the direction of arrival from a received signal in uplink communication and estimating the propagation environment of the downlink, there is a problem that the transmission quality is significantly degraded when an error in the direction of arrival estimation occurs.
[0017]
The present invention has been made in such a background, and it is an object of the present invention to provide an adaptive antenna transmitting apparatus and an adaptive antenna transmitting method capable of securing a predetermined communication quality even when there is an error in propagation environment estimation. Aim.
[0018]
[Means for Solving the Problems]
According to a first aspect of the present invention, there are provided M antenna elements, encoding means for generating a K-system output signal obtained by encoding a transmission signal to a terminal station as an input signal, and encoding the input signal; K output signals of K means are output as one input signal for each K system, and M signals are output as many as the number of antenna elements weighted so as to obtain directivity in a desired direction. An adaptive antenna comprising: directional forming means; and M combining means for combining the m (1 ≦ m ≦ M) th signals of the K directivity forming means and inputting them to the mth antenna element, respectively. It is a transmitting device.
[0019]
Here, the feature of the present invention resides in that there is provided a means for changing the directions of the K main beams formed by the K directivity forming means so as to have an angular difference therebetween.
[0020]
For example, if there is an error in the result of the propagation environment estimation, the main beam of the base station is directed in a direction different from the direction in which the terminal station can actually receive the signal from the base station best. However, by slightly shifting the directions of the K main beams in consideration of the range of the estimation error, the terminal station can perform communication with a predetermined communication quality. As described above, the present invention is characterized in that the directions of the K main beams are changed so as to have a mutual angular difference in consideration of the range of the estimation error.
[0021]
At this time, the changing means can be realized by including a phase tilt adding means for giving a phase tilt to each of the M signals output from the directivity forming means. That is, the mutual angle difference between the K main beams can be variously adjusted according to the degree of the added phase tilt. For example, when the degree of the phase inclination is adjusted to be large, the angle difference becomes large, and when the degree of the phase inclination is adjusted to be small, the angle difference becomes small. When the phase tilt is set to “0”, the angle difference also becomes “0”, which is the same as that of the conventional adaptive antenna device.
[0022]
Further, the apparatus further comprises arrival direction estimating means for estimating the direction of an incoming wave from the terminal station, wherein the directivity forming means sets the direction of directivity based on the direction of the incoming wave estimated by the arrival direction estimating means. Can be provided. Such means are conventionally existing means, but by using the apparatus of the present invention, it is possible to follow the directivity even in a system in which a terminal station moves while taking into account estimation errors.
[0023]
The apparatus further includes estimation error detection means for detecting a propagation environment estimation error based on a signal received from the terminal station, and the degree of the phase inclination added by the phase inclination addition means according to the error detected by the estimation error detection means. It is desirable to have means for setting According to this, the estimation error of the propagation environment can be detected in real time, and the directions of the K main beams can be dynamically changed so as to have an angular difference therebetween in accordance with the detection error. Optimum directivity control can be performed.
[0024]
Further, at this time, the means for setting the degree of the phase tilt may include a chart describing the correspondence between the propagation environment estimation error and the degree of the phase tilt. According to this, an appropriate degree of phase inclination can be promptly selected from the detected estimation error, so that control can be speeded up and simplified.
[0025]
Note that, even when such an estimation error of the propagation environment is detected in real time, and there is no means for dynamically setting the degree of the phase tilt in accordance with the error, the adaptive antenna transmitting apparatus of the present invention has It is possible to quickly change the setting of the degree of inclination.For example, based on statistical data collection for a certain period, it is possible to set an appropriate degree of phase inclination. The idea of doing is to be interpreted as something that makes a difference.
[0026]
According to a second aspect of the present invention, a transmission signal to a terminal station is used as an input signal, a K-system output signal is generated by encoding the input signal, and the coded K-system output signal is output to one system. M signals are output as input signals, and M signals are output in the same number as the number of antenna elements weighted so as to obtain directivity in a desired direction, and m (1 ≦ m) of M output signals of the K system An adaptive antenna transmission method for forming K main beams having directivity in a desired direction by combining the ≤M) th signals and inputting the signals to the mth antenna element, respectively. Is that the directions of the K main beams are changed so as to have an angle difference with each other.
[0027]
When the directions of the K main beams are changed so as to have an angle difference from each other, it is preferable to give a phase inclination to each of the M output signals of the K system. In addition, the direction of the incoming wave from the terminal station can be estimated, and the direction of directivity can be set based on the estimated direction of the incoming wave. Further, it is desirable to detect a propagation environment estimation error based on a signal received from the terminal station, and to set a degree of a phase inclination to be added according to the detected error. When setting the degree of the phase inclination, it is desirable to set the degree with reference to a chart describing the correspondence between the propagation environment estimation error and the degree of the phase inclination.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a device configuration of the first embodiment, in which a plurality of directivities having shifted directivity peaks are formed by adding different phase gradients to the arrival direction estimated on the uplink. Then, an embodiment is shown in which encoding is performed on a plurality of directional patterns formed as described above.
[0029]
In FIG. 1, reference numeral 101 denotes an encoder, reference numerals 1021 to 102K denote directivity forming devices, reference numerals 1031 to 103K denote phase inclination adding means, reference numerals 1041 to 104M denote a synthesizer, and reference numerals 1051 to 105M denote antenna elements.
[0030]
A signal transmitted to the terminal station is input to the encoder 101. As a signal generation method, for example, STC can be used (for example, see Non-Patent Document 4). FIG. 1 shows an example in which an input signal is encoded and converted into a K-system digital signal. The directivity forming devices 1021 to 102K input K systems of digital signals one by one.
[0031]
The beam is formed by the directivity forming devices 1021 to 102K and the phase tilt adding units 1031 to 103K. First, in the directivity forming devices 1021 to 102K, an input signal is branched into M signals, and the m-th (1 to M integer) branch signal is multiplied by the following weights WA, m and output.
[0032]
(Equation 5)
Figure 2004320620
Here, xm represents the distance from the antenna 1051 to the antenna 105m, θ represents the set terminal station direction, and λ represents the wavelength. The same weighting is performed in all the directivity forming devices. Further, the output signals from the directivity forming devices 1021 to 102K are multiplied by, for example, the m-th signal by the following weights WB, m in the k-th phase tilt adding unit by the phase tilt adding units 1031 to 103K. , An input signal to the antenna element 105m.
[0033]
(Equation 6)
Figure 2004320620
Here, Δφk indicates a phase gradient. This input signal is synthesized by the synthesizer 104m and input to the antenna element 105m. As a result, the antenna elements 1051 to 105M form directivity having K main beams having an angle difference from each other.
[0034]
The terminal station receiving the signal transmitted in this way converts the frequency of the received data and converts the analog-to-digital signal, and temporarily records the received signal in the data storage device. Based on the data recorded in the data storage device, decoding is performed by, for example, maximum likelihood estimation or a minimum square error algorithm.
[0035]
With this configuration, even if there is an error in the set terminal station direction, some of the plurality of directivities formed have beam directions pointing to the terminal station direction. Can be prevented from being lowered. The effect of the present invention will be described with reference to FIGS. FIG. 2 shows a beam pattern formed by the apparatus of the present invention, and FIG. 3 shows a beam pattern formed by the conventional apparatus.
[0036]
In the beam pattern formed by the conventional apparatus shown in FIG. 3, when the actual direction of the terminal station (solid line) is deviated from the estimated direction of the terminal station (dashed line), the distance between the terminal station and the base station is changed. There is a case where the communication quality in the communication between them cannot satisfy the predetermined quality. On the other hand, in the beam pattern formed by the apparatus of the present invention shown in FIG. 2, even if the direction of the actual terminal station (solid line) and the direction of the estimated terminal station (dashed line) are shifted, the plurality of formed In some of the directivities, the beam direction is directed to the terminal station, so that the communication quality in the communication between the terminal station and the base station can satisfy a predetermined quality.
[0037]
In the first embodiment, the degree of the phase tilt added by the phase tilt adding units 1031 to 103K is fixed. For the degree of the phase tilt, for example, an optimum value is set by statistically analyzing the propagation environment estimation error up to now.
[0038]
FIG. 4 shows the characteristics of the 10% value (vertical axis) of the output SNR with respect to the arrival direction set value error (horizontal axis) according to the present invention. Here, the opening degree of the main beam is uniform, the main beam opening degree at the base station is 5 degrees, and the main beam opening degree at the terminal station is 360 degrees (that is, non-directional). The number of antenna elements M at the base station was 8, the number of beams K was 2, the direction of the terminal station was 0 degree, the number of arriving waves was 100, and the arriving direction and arriving phase of each arriving wave were randomly changed. . In the conventional method, the main beam is directed to the estimated direction of arrival. As shown in FIG. 4, it can be seen that when there is an error of about 10 degrees, an output SNR characteristic improvement effect of about 3 dB can be obtained.
[0039]
(Second embodiment)
FIG. 5 is a diagram illustrating a device configuration of the second embodiment, in which an arrival direction is estimated for an uplink signal from a terminal station, and a plurality of directivities are formed using the estimation result. I have. In FIG. 5, reference numeral 201 denotes an arrival direction estimation device.
[0040]
The direction-of-arrival estimation device 201 can use a low-resolution direction-of-arrival estimation method such as the Capon method, or an algorithm such as the MUSIC method or the ESRIT method (for example, see Non-Patent Document 5). By setting θ in this way, directivity can be followed even in a system in which a terminal station moves.
[0041]
(Third embodiment)
FIG. 6 is a diagram showing a device configuration of the third embodiment, in which the propagation environment estimation error detection detects the estimation accuracy of the direction of arrival with the target terminal station, and the degree of the phase tilt is adjusted in accordance with the estimation accuracy. 4 shows a mode for determining Δφk. In this figure, reference numeral 301 denotes a propagation environment estimation error detection device.
[0042]
The propagation environment estimation error can be estimated from available estimation algorithms, propagation environment, hardware temperature changes, and the like. For example, when the number of users accessing the base station is small, a high-resolution algorithm such as the MUSIC method or the ESPRIT method with a large load on signal processing is applied, and when the number of users increases, the Capon method with a small load on signal processing is applied. Is used, it is possible to predict an estimation error from an available algorithm.
[0043]
When an analog device such as a mixer or an amplifier has a temperature characteristic, a propagation environment estimation error can be estimated by monitoring the temperature. Further, when an angular spread occurs in the propagation environment, a reception power difference occurs for each antenna. In an environment with an angular spread, a propagation environment estimation error is expected, so it is possible to estimate the propagation environment estimation error from the received power difference.
[0044]
Furthermore, since the direction of arrival estimation is generally possible using two antennas, the direction of arrival estimation from the phase difference between any two branches is performed for different sets of antennas, and the arrival direction estimation is performed based on the variation in estimation results. It is also possible to estimate the direction estimation error. Here, by preparing a chart of Δφk to be set with respect to the estimated estimation error in advance, the value of Δφk in Expression 6 can be determined.
[0045]
A beam opening setting procedure in the third embodiment will be described with reference to FIGS. FIG. 7 is a flowchart showing a main beam opening setting procedure in the third embodiment. FIG. 8 is a chart showing a correspondence between the estimation error and the degree of phase inclination in the third embodiment. The propagation environment estimation error detection device 301 acquires a received signal from the terminal station (step 1), and thereby detects a propagation environment estimation error (step 2). When the estimation error is detected, the optimum degree of phase inclination corresponding to the detected estimation error is checked with reference to the chart shown in FIG. 8 (step 3). This makes it possible to know and set the optimum degree of phase inclination (step 4).
[0046]
【The invention's effect】
As described above, according to the present invention, predetermined communication quality can be ensured even when there is an error in propagation environment estimation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a device configuration of a first embodiment.
FIG. 2 is a diagram showing a main beam pattern in the apparatus of the present invention.
FIG. 3 is a diagram showing a main beam pattern in a conventional device.
FIG. 4 is a diagram for explaining an effect of the present invention.
FIG. 5 is a diagram illustrating a device configuration according to a second embodiment.
FIG. 6 is a diagram showing a device configuration of a third embodiment.
FIG. 7 is a flowchart showing a main beam opening setting procedure according to the third embodiment.
FIG. 8 is a diagram showing a chart of the third embodiment.
FIG. 9 is a diagram showing a conventional device configuration.
[Explanation of symbols]
Reference Signs List 101 encoder 1021 to 102K directivity forming device 1031 to 103K phase gradient adding section 1041 to 104K combiner 1051 to 105K, 4011 to 401N antenna element 201 arrival direction estimation device 301 propagation environment estimation error detection device 4021 to 402N weighting device 403 Weight control device 404 Reference signal generation device 405 Combining and branching device

Claims (10)

M個のアンテナ素子と、
端末局への送信信号を入力信号とし、この入力信号を符号化したK系統の出力信号を生成する符号化手段と、
この符号化手段のK系統の出力信号をそれぞれ1系統ずつ入力信号とし、所望する方向に指向性が得られるように重み付けを施した前記アンテナ素子数と同数のM個の信号をそれぞれ出力するK個の指向性形成手段と、
このK個の指向性形成手段のm(1≦m≦M)番目の信号をそれぞれ合成しm番目の前記アンテナ素子にそれぞれ入力するM個の合成手段と
を備えた適応アンテナ送信装置において、
前記K個の指向性形成手段により形成されるK個の主ビームの方向を相互に角度差を持つように変化させる手段を備えた
ことを特徴とする適応アンテナ送信装置。
M antenna elements,
Encoding means for taking a transmission signal to the terminal station as an input signal and generating an output signal of K system by encoding the input signal;
The K output signals of the K system of this encoding means are each used as an input signal, and M signals are output in the same number as the number of the antenna elements weighted so as to obtain directivity in a desired direction. Directivity forming means,
An adaptive antenna transmitting apparatus comprising: M combining means for combining m (1 ≦ m ≦ M) signals of the K directivity forming means and inputting the combined signals to the mth antenna element,
An adaptive antenna transmitting apparatus, comprising: means for changing the directions of K main beams formed by the K directivity forming means so as to have an angle difference therebetween.
前記変化させる手段は、前記指向性形成手段から出力されるM個の信号に対してそれぞれ位相傾きを与える位相傾き付加手段を備えた請求項1記載の適応アンテナ送信装置。2. The adaptive antenna transmitting apparatus according to claim 1, wherein the changing unit includes a phase tilt adding unit that applies a phase tilt to each of the M signals output from the directivity forming unit. 端末局からの到来波の方向を推定する到来方向推定手段を備え、
前記指向性形成手段は、指向性の方向をこの到来方向推定手段により推定された到来波の方向に基づき設定する手段を備えた
請求項1または2記載の適応アンテナ送信装置。
Comprising a direction of arrival estimating means for estimating the direction of the incoming wave from the terminal station,
3. The adaptive antenna transmitting apparatus according to claim 1, wherein said directivity forming means includes means for setting a direction of directivity based on a direction of an incoming wave estimated by said direction of arrival estimating means.
端末局からの受信信号に基づき伝搬環境推定誤差を検出する推定誤差検出手段を備え、
この推定誤差検出手段により検出された誤差に応じて前記位相傾き付加手段で付加される位相傾きの度合いを設定する手段を備えた
請求項1ないし3のいずれかに記載の適応アンテナ送信装置。
Estimation error detection means for detecting a propagation environment estimation error based on the received signal from the terminal station,
4. The adaptive antenna transmitting apparatus according to claim 1, further comprising a unit configured to set a degree of the phase inclination added by the phase inclination adding unit in accordance with the error detected by the estimation error detecting unit.
前記位相傾きの度合いを設定する手段は、前記伝搬環境推定誤差と前記位相傾きの度合いとの対応関係を記したチャートを備えた請求項4記載の適応アンテナ送信装置。5. The adaptive antenna transmitting apparatus according to claim 4, wherein the means for setting the degree of the phase tilt includes a chart describing a correspondence relationship between the propagation environment estimation error and the degree of the phase tilt. 端末局への送信信号を入力信号とし、この入力信号を符号化したK系統の出力信号を生成し、
この符号化されたK系統の出力信号をそれぞれ1系統ずつ入力信号とし、所望する方向に指向性が得られるように重み付けを施したアンテナ素子数と同数のM個の信号をそれぞれ出力し、
このK系統のM個の出力信号のm(1≦m≦M)番目の信号をそれぞれ合成しm番目の前記アンテナ素子にそれぞれ入力することにより所望する方向に指向性を有するK個の主ビームを形成する
適応アンテナ送信方法において、
前記K個の主ビームの方向を相互に角度差を持つように変化させる
ことを特徴とする適応アンテナ送信方法。
A transmission signal to the terminal station is used as an input signal, and an output signal of K system is generated by encoding the input signal.
Each of the coded output signals of the K systems is used as an input signal, and M signals are output in the same number as the number of antenna elements weighted so as to obtain directivity in a desired direction.
The K main beams having directivity in a desired direction by combining the m (1 ≦ m ≦ M) th signals of the M output signals of the K system and inputting them to the mth antenna element, respectively. An adaptive antenna transmission method for forming
An adaptive antenna transmission method, wherein the directions of the K main beams are changed so as to have an angle difference from each other.
前記K個の主ビームの方向を相互に角度差を持つように変化させる際には、前記K系統のM個の出力信号に対してそれぞれ位相傾きを与える請求項6記載の適応アンテナ送信方法。7. The adaptive antenna transmission method according to claim 6, wherein when the directions of the K main beams are changed so as to have an angle difference from each other, a phase gradient is given to each of the M output signals of the K systems. 端末局からの到来波の方向を推定し、
指向性の方向をこの推定された到来波の方向に基づき設定する
請求項6または7記載の適応アンテナ送信方法。
Estimate the direction of the incoming wave from the terminal station,
8. The adaptive antenna transmission method according to claim 6, wherein the direction of the directivity is set based on the estimated direction of the incoming wave.
端末局からの受信信号に基づき伝搬環境推定誤差を検出し、
この検出された誤差に応じて付加する位相傾きの度合いを設定する
請求項6ないし8のいずれかに記載の適応アンテナ送信方法。
Detecting the propagation environment estimation error based on the received signal from the terminal station,
9. The adaptive antenna transmission method according to claim 6, wherein a degree of a phase inclination to be added is set according to the detected error.
前記位相傾きの度合いを設定する際には、前記伝搬環境推定誤差と前記位相傾きの度合いとの対応関係を記したチャートを参照して設定する請求項9記載の適応アンテナ送信方法。10. The adaptive antenna transmission method according to claim 9, wherein when setting the degree of the phase inclination, the setting is performed with reference to a chart describing a correspondence relationship between the propagation environment estimation error and the degree of the phase inclination.
JP2003114319A 2003-04-18 2003-04-18 Adaptive antenna transmission apparatus and adaptive antenna transmission method Expired - Fee Related JP3905055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114319A JP3905055B2 (en) 2003-04-18 2003-04-18 Adaptive antenna transmission apparatus and adaptive antenna transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114319A JP3905055B2 (en) 2003-04-18 2003-04-18 Adaptive antenna transmission apparatus and adaptive antenna transmission method

Publications (3)

Publication Number Publication Date
JP2004320620A true JP2004320620A (en) 2004-11-11
JP2004320620A5 JP2004320620A5 (en) 2005-10-27
JP3905055B2 JP3905055B2 (en) 2007-04-18

Family

ID=33473955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114319A Expired - Fee Related JP3905055B2 (en) 2003-04-18 2003-04-18 Adaptive antenna transmission apparatus and adaptive antenna transmission method

Country Status (1)

Country Link
JP (1) JP3905055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532550A (en) * 2012-10-01 2015-11-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improvement of AAS transmitter distortion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026790A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd Wireless communication unit and wireless communication method
JP2003060557A (en) * 2001-08-10 2003-02-28 Fujitsu Ltd Base station having array antenna system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026790A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd Wireless communication unit and wireless communication method
JP2003060557A (en) * 2001-08-10 2003-02-28 Fujitsu Ltd Base station having array antenna system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532550A (en) * 2012-10-01 2015-11-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improvement of AAS transmitter distortion

Also Published As

Publication number Publication date
JP3905055B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US10734722B2 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
RU2163052C2 (en) Device and method for signal transmission and reception using adaptive antenna
US7079868B2 (en) Smart antenna arrays
US6839574B2 (en) Method and apparatus for estimating downlink beamforming weights in a communications system
JP2007529955A (en) Adaptive beamforming system using hierarchical weight banks for antenna arrays in wireless communication systems
US7515892B2 (en) Base station antenna system and method for estimating mobile station direction in wireless communication system
JP4183971B2 (en) Signal receiving method and apparatus
JP4320441B2 (en) Array antenna calibration method and calibration apparatus
KR20070118269A (en) Wireless communication apparatus, and feedback information generating method
CN107852209A (en) Train multi-beam transmission method, apparatus and system
Basit et al. Range-angle-dependent beampattern synthesis with null depth control for joint radar communication
Yang et al. Improved coprime linear array configuration for moving platform in DOA estimation
Hamza et al. Optimum sparse array beamforming for general rank signal models
JP3899062B2 (en) ANTENNA DEVICE AND ITS CONTROL METHOD
JP2004328761A (en) Apparatus and method for correcting reception signal in mobile communication system
US7304608B2 (en) Wireless network apparatus and adaptive digital beamforming method thereof
US6218988B1 (en) Array antenna transmitter with a high transmission gain proportional to the number of antenna elements
JP2007274250A (en) Spatial angular distribution estimating method and receiver
JP2004260319A (en) Array antennas assembly, portable terminal using the same, and mutual coupling compensation method
JP3866118B2 (en) Space division multiple access apparatus, adaptive array antenna base station, terminal and control method thereof
JP2007274271A (en) Radio transmitter and radio transmission method
JP3905055B2 (en) Adaptive antenna transmission apparatus and adaptive antenna transmission method
JP4578725B2 (en) Communication apparatus and transmitting array antenna calibration method thereof
TWI624159B (en) Method and system for acquiring channel knowledge in beamforming system
JP2004061468A (en) Method for estimating arrival direction of multiplex wave using spatial characteristic and receiving beam formation device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R151 Written notification of patent or utility model registration

Ref document number: 3905055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees