JP2004320568A - Spectroscopic image photographing equipment - Google Patents

Spectroscopic image photographing equipment Download PDF

Info

Publication number
JP2004320568A
JP2004320568A JP2003113495A JP2003113495A JP2004320568A JP 2004320568 A JP2004320568 A JP 2004320568A JP 2003113495 A JP2003113495 A JP 2003113495A JP 2003113495 A JP2003113495 A JP 2003113495A JP 2004320568 A JP2004320568 A JP 2004320568A
Authority
JP
Japan
Prior art keywords
image
spectral image
spectral
incident light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113495A
Other languages
Japanese (ja)
Other versions
JP4010360B2 (en
Inventor
Ryuji Hyodo
竜二 兵頭
Kazuki Fujimoto
和貴 藤本
Yoshinaga Taguchi
喜祥 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2003113495A priority Critical patent/JP4010360B2/en
Publication of JP2004320568A publication Critical patent/JP2004320568A/en
Application granted granted Critical
Publication of JP4010360B2 publication Critical patent/JP4010360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To faithfully reproduce the original color of an object even under various kinds of environment. <P>SOLUTION: This spectroscopic image photographing equipment is provided with a first optical system 2 which acquires a spectroscopic image of only a visible region consisting of three primary colors of the object, a second optical system 3 which acquires a spectroscopic image of only a near-infrared region of the object, a third optical system 4 which acquires intensity of incident light from a direction different from that of the object at the time of acquisition of the spectroscopic image and an image conversion means 6 which divides pixel values of each spectroscopic image acquired by the first and second optical systems 2, 3 by a pixel value corresponding to wavelength to be acquired by the third optical system and converts them into a relative spectral reflectance image. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、様々な環境下でも被写体の本来の色を忠実に再現できる撮影装置に関する。
【0002】
【従来の技術】
従来の撮影装置は、被写体からの撮影光(可視光)をカラーフィルタを備えた光学系で赤・緑・青の3原色の光成分に分光し、CCD等のイメージセンサで3原色の被写体像を撮影して3原色の撮影信号を取得し、同3原色撮影信号に必要に応じて補正処理を施して画像に変換している。また、近赤外領域に感度を有するイメージセンサを利用して近赤外領域の画像を得ることも可能である。
【0003】
ところで、撮影時の入射光は環境や状況に応じて様々に変化する。前記のような撮影装置では被写体の色情報が3色(又は近赤外も含む)に依存するから、同じ被写体を異なる環境下で撮影すると入射光の強弱や分光特性の変化に応じて色情報が変化し、被写体の本来の色を忠実に再現できなかった。
【0004】
そこで、前記のような問題点を解決するために、分光された各分光画像を撮影光とは別の光源の分光特性でもって分光反射率をそれぞれ測定することで、撮影光に依存しない正確な色情報を有する画像を取得できるようにする技術が開示されている(例えば特許文献1,2,3参照)
【0005】
しかしながら、これらの技術は装置本体に光源を内蔵したものや、既知の光源の分光特性分布を記憶したデータベースを予め備えているものであるから、撮影装置が大型複雑化する問題があった。また、特許文献1の装置は撮影時に透過波長可変フィルタで複数種の波長を選択操作するから、取得すべき複数の波長領域分撮影操作を繰り返す必要があって操作が煩雑で時間を要し、しかも制止画像に限定されてしまう問題もあった。
【0006】
【特許文献1】
特開平10−111240号公報
【特許文献2】
特開2001−119556号公報
【特許文献3】
特開2002−345760号公報
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来のこれらの問題点を解消し、様々な環境下でも被写体の本来の色を忠実に再現でき、しかも一回の操作で複数の波長領域の分光画像を同時に取得できる小型低コストで簡便な分光画像撮影装置を提供することにある。
【0008】
【課題を解決するための手段】
かかる課題を解決した本発明の構成は、
1) 被写体の特定波長領域の分光画像を取得する分光画像取得手段を設け、分光画像取得時における被写体を照射する光源の入射光強さと分光特性を取得する入射光強さ取得手段を設け、分光画像取得手段で取得した特定波長領域の分光画像を入射光強さ取得手段で取得した前記分光画像に対応する特定波長領域の入射光強さで除して相対分光反射率画像に変換する画像変換手段を設けた分光画像撮影装置
2) 分光画像取得手段が取得する特定波長領域が可視領域である前記1)記載の分光画像撮影装置
3) 分光画像取得手段が取得する特定波長領域が近赤外領域である前記1)記載の分光画像撮影装置
4) 分光画像取得手段が取得する特定波長領域が可視領域と近赤外領域である前記1)記載の分光画像撮影装置
5) 入射光強さ取得手段が、入射光を光拡散板で拡散してピン孔を透過させ、同透過した光を所定のフィルタで特定波長領域の光に分光するようにしたものである前記1)〜4)いずれか記載の分光画像撮影装置
6) 分光画像取得手段のレンズを水平に配置して前方の被写体を撮影できるようにし、入射光強さ取得手段のピン孔を前記分光画像取得手段のレンズと異なる向きに配置して被写体とは異なる別方向から入射光を受光できるようにした前記1)〜5)いずれか記載の分光画像撮影装置
にある。
【0009】
【作用】
本発明によれば、被写体からの撮影光の他、被写体とは異なる他方向からの入射光を別途取り入れ、その入射光の分光特性(可視光部分の3原色及び近赤外部分)の画素値を用いて相対反射率を求めて画像に変換することで、異なる撮影環境下による撮影光の強弱に依存されない本来の色情報を有する画像が取得される。
【0010】
【発明の実施の形態】
本発明の分光画像取得手段は、可視領域のみの3原色からなる分光画像を取得するもの、又は近赤外領域のみの分光画像を取得するもの、あるいは可視領域のみの3原色からなる分光画像と近赤外領域のみの分光画像の双方を取得するものが可能である。異なる波長領域の分光画像を取得するものは、複数の光学系を並設して一回の撮影操作で同時に取得できるようにするのが望ましい。
【0011】
入射光強さ取得手段としては、入射光を光拡散板で拡散してピン孔を通過させ、同透過した光を所定のフィルタ(単体又は組み合わせ)で特定波長領域の光に分光するようにしたものが、入射光の方向に影響されずに均一に光を取り入れることができる。また、分光画像取得手段のレンズを水平に配置して前方の被写体を撮影できるようにし、入射光強さ取得手段のピン孔を前記分光画像取得手段のレンズとは異なる向き(例えば太陽光を受光できるような垂直の向き)に配置して被写体とは異なる別方向から入射光を受光できるようにしたものが、撮影光に依存しない他方向からの入射光を確実に取り入れることができる。
【0012】
【実施例】
以下、本発明の実施例を図面に基づいて具体的に説明する。図1は実施例の分光画像撮影装置の斜視図、図2は実施例の各光学系の構成を示す概念図、図3は実施例の処理の流れを示すフロー、図4は実施例のカラーフィルタのレイアウト図、図5は実施例のイメージセンサの分光感度特性を示すグラフ、図6は実施例の分光画像撮影装置を用いた撮影を示す概念図である。
【0013】
図中、1は分光画像撮影装置、2は第1光学系、2aは近赤外線遮断フィルタ、2bはレンズ、2cはカラーフィルタ、2dはイメージセンサ、2eは可視画像取得処理部、3は第2光学系、3aは可視光線遮断フィルタ、3bはレンズ、3cはカラーフィルタ、3dはイメージセンサ、3eは近赤外画像取得処理部、4は第3光学系、4aはディフューザ、4bはピンホール、4cは複合フィルタ、4dはカラーフィルタ、4eはイメージセンサ、4fは太陽光の分光特性取得処理部、5はシャッタボタン、6は画像変換処理部、7はモニター、8は記録装置、Aは被写体、Sは太陽である。
【0014】
本実施例の分光画像撮影装置1は、図1に示すように装置前面に前方の被写体を撮影する第1光学系2と第2光学系3を水平に左右配置し、装置上面に上方の太陽光を受光する第3光学系4を垂直に配置している。5はシャッタボタンである。
【0015】
図2に示すように、第1光学系2は近赤外線を遮断し可視光線を透過する近赤外線遮断フィルタ2aとレンズ2bと図4に示すレイアウトを有するカラーフィルタ2cと図5に示す感度特性を有するCCD(Charge CoupledDevice)からなるイメージセンサ2dとで構成されている。第2光学系3は、可視光線を遮断し近赤外線を透過する可視光線遮断フィルタ3aとレンズ3bと図4に示すレイアウトを有するカラーフィルタ3cと図5に示す感度特性を有するCCDからなるイメージセンサ3dとで構成されている。
【0016】
第3光学系4は、入射光を拡散させるディフューザ4a(光拡散板)とピンホール4bと前記近赤外線遮断フィルタ2a及び可視光線遮断フィルタ3aとを組み合わせて構成した複合フィルタ4cとカラーフィルタ4dとCCDからなるイメージセンサ4eとで構成し、各光学系2,3,4に可視画像取得処理部2eと近赤外画像取得処理部3dと太陽光の分光特性取得処理部4fとをそれぞれ設け、同各処理部2e,3e,4fで取得した各画素値でもって分光画像から相対分光反射率画像に変換する画像変換処理部6を設けている。
【0017】
本実施例では、図6に太陽Sの光線下で被写体A(樹木)を撮影する例を示している。シャッタボタン5を操作すると、太陽光で反射された被写体Aの撮影光は第1及び第2光学系2,3の近赤外線遮断フィルタ2aと可視光線遮断フィルタ3aによりそれぞれ独立した可視光線と近赤外線が各レンズ2b,3bで集光され、集光された第1光学系2の撮影光はカラーフィルタ2cで赤(R)・緑(G)・青(B)の3原色に出力されてイメージセンサ2d上に結像するとともに、第2光学系3の集光された撮影光はカラーフィルタ3cの影響を含み、イメージセンサ3d上に結像する。
【0018】
並行して第3光学系4では、上方から入射した太陽光がディフューザ4aで均一に拡散され、その拡散光がピンホール4bを通過して複合フィルタ4c及びカラーフィルタ4dで3原色の可視光線及び近赤外線にそれぞれ分光されてイメージセンサ4eに取り込まれる。
【0019】
各光学系のイメージセンサ2d,3d,4eで取り込まれた信号は可視画像取得処理部2eと近赤外画像取得処理部3eと分光特性取得処理部4fとにそれぞれ取得処理されて画像変換処理部6へ送られる。
【0020】
画像変換処理部6では、送られた各画素値について次式で計算を行い、3原色及び近赤外の各相対反射率がそれぞれ求められる。
【0021】
【数1】

Figure 2004320568
【0022】
ここで、I1R,I1G,I1B,I,I3R,I3G,I3B,I3NIRは、
1R:第1光学系の赤色画素値
1G:第1光学系の緑色画素値
1B:第1光学系の青色画素値
:第2光学系の画素値
3R:第3光学系の可視光部分の赤色画素の代表値
3G:第3光学系の可視光部分の緑色画素の代表値
3B:第3光学系の可視光部分の青色画素の代表値
3NIR:第3光学系の近赤外部分の画素の代表値
を示している。また、kVIS,kNIRは各光学系の特性やイメージセンサの感度特性から決定される装置定数で、定数kによりkNIR=kkVISのように置き換えることも可能である。
【0023】
このようにして得られた各相対反射率ref,ref,ref,refNIRでもって被写体像が形成され、記録装置8へ記録したりモニター7に表示されることとなる。
【0024】
本実施例はこのように構成したから、被写体からの撮影光の他、被写体とは異なる他方向からの入射光を別途取り入れ、その入射光の分光特性(可視光部分の3原色及び近赤外部分)の画素値を用いて相対反射率を求めて画像に変換したことで、異なる撮影環境下による撮影光の強弱や分光特性に依存されない本来の色情報を有する画像を取得できた。
【0025】
しかも、装置内部に光源や分光特性分布を記憶したデータベースを設ける必要がないなら、装置を小型化,軽量化,低コスト化を同時に図ることができた。さらに、複数の波長領域の分光画像を取得するためにそれぞれ専用の光学系を並設したから、一回の操作で同時に分光画像を取得できて被写体又は撮影位置が動いても何ら問題なく撮影が簡便且つ短時間に行え、制止画像に限定されない様々な用途に応用可能な使い易い撮影装置となった。
【0026】
【発明の効果】
以上説明したように、本発明によれば様々な環境下でも被写体の本来の色を忠実に再現し、しかも一回の操作で複数の波長領域の分光画像を同時に取得し得る小型低コストで簡便な分光画像撮影装置を提供できる。
【図面の簡単な説明】
【図1】実施例の分光画像撮影装置の斜視図である。
【図2】実施例の分光画像撮影装置の概念図である。
【図3】実施例の処理の流れを示すフローである。
【図4】実施例のカラーフィルタのレイアウト図である。
【図5】実施例の入射光の分光特性を示すグラフである。
【図6】実施例の分光画像撮影装置を用いた撮影を示す概念図である。
【符号の説明】
1 分光画像撮影装置
2 第1光学系
2a 近赤外線遮断フィルタ
2b レンズ
2c カラーフィルタ
2d イメージセンサ
2e 可視画像取得処理部
3 第2光学系
3a 可視光線遮断フィルタ
3b レンズ
3c カラーフィルタ
3d イメージセンサ
3e 近赤外画像取得処理部
4 第3光学系
4a ディフューザ
4b ピンホール
4c 複合フィルタ
4d カラーフィルタ
4e イメージセンサ
4f 分光特性取得処理部
5 シャッタボタン
6 画像変換処理部
7 モニター
8 記録装置
A 被写体
S 太陽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photographing apparatus capable of faithfully reproducing an original color of a subject even in various environments.
[0002]
[Prior art]
2. Description of the Related Art A conventional photographing apparatus separates photographing light (visible light) from a subject into light components of three primary colors of red, green, and blue by an optical system having a color filter, and an image sensor of three primary colors by an image sensor such as a CCD. Are taken to obtain a photographing signal of three primary colors, and the photographing signals of the three primary colors are subjected to a correction process as necessary to be converted into an image. It is also possible to obtain an image in the near infrared region using an image sensor having sensitivity in the near infrared region.
[0003]
By the way, incident light at the time of photographing changes variously according to the environment and the situation. In such a photographing apparatus, the color information of a subject depends on three colors (or near infrared rays). Therefore, when the same subject is photographed in different environments, the color information is changed according to the intensity of incident light or a change in spectral characteristics. And the original color of the subject could not be faithfully reproduced.
[0004]
Therefore, in order to solve the above-described problems, by measuring each spectral reflectance with the spectral characteristics of a light source different from the photographing light, each spectral image that has been separated is accurately measured independently of the photographing light. A technique that enables an image having color information to be obtained has been disclosed (for example, see Patent Documents 1, 2, and 3).
[0005]
However, since these techniques include a light source built in the apparatus main body or a database in which a spectral characteristic distribution of a known light source is stored in advance, there is a problem that an image capturing apparatus becomes large and complicated. Further, since the apparatus of Patent Document 1 selects a plurality of wavelengths with a transmission wavelength variable filter at the time of photographing, it is necessary to repeat a photographing operation for a plurality of wavelength regions to be acquired, and the operation is complicated and time-consuming. In addition, there is a problem that the image is limited to the restricted image.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-111240 [Patent Document 2]
JP 2001-119556 A [Patent Document 3]
JP 2002-345760 A
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve these conventional problems, to be able to faithfully reproduce the original color of the subject even in various environments, and to perform spectral operations in a plurality of wavelength regions with a single operation. It is an object of the present invention to provide a small, low-cost, and simple spectral image photographing apparatus that can be obtained simultaneously.
[0008]
[Means for Solving the Problems]
The configuration of the present invention that has solved such a problem includes:
1) A spectral image acquiring unit for acquiring a spectral image of a specific wavelength region of a subject is provided, and an incident light intensity acquiring unit for acquiring incident light intensity and a spectral characteristic of a light source irradiating the subject at the time of acquiring the spectral image is provided. Image conversion in which the spectral image of the specific wavelength region acquired by the image acquiring unit is divided by the incident light intensity of the specific wavelength region corresponding to the spectral image acquired by the incident light intensity acquiring unit to convert the spectral image into a relative spectral reflectance image. 2) The spectral image capturing apparatus according to the above 1), wherein the specific wavelength region acquired by the spectral image acquiring unit is a visible region. 3) The specific wavelength region acquired by the spectral image acquiring unit is near-infrared. The spectroscopic image photographing apparatus according to 1), wherein the specific wavelength region acquired by the spectral image acquiring means is a visible region and a near-infrared region. 5) Acquisition of incident light intensity hand Wherein the incident light is diffused by a light diffusion plate and transmitted through a pin hole, and the transmitted light is separated into light of a specific wavelength region by a predetermined filter. Spectral image photographing device 6) The lens of the spectral image acquiring means is arranged horizontally so that a subject ahead can be photographed, and the pin hole of the incident light intensity acquiring means is arranged in a different direction from the lens of the spectral image acquiring means. The spectral image photographing apparatus according to any one of 1) to 5) above, wherein incident light can be received from another direction different from the subject.
[0009]
[Action]
According to the present invention, in addition to the photographing light from the subject, the incident light from another direction different from the subject is separately introduced, and the pixel values of the spectral characteristics (the three primary colors of the visible light portion and the near infrared portion) of the incident light are taken. By obtaining the relative reflectivity using, and converting the image into an image, an image having original color information that is not dependent on the intensity of photographing light under different photographing environments is obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The spectral image obtaining means of the present invention obtains a spectral image composed of only three primary colors in the visible region, a spectral image composed of only the near-infrared region, or a spectral image composed of only three primary colors in the visible region. A system that acquires both spectral images only in the near-infrared region is possible. For obtaining spectral images in different wavelength regions, it is desirable that a plurality of optical systems be arranged in parallel so that they can be obtained simultaneously by a single photographing operation.
[0011]
As the incident light intensity acquiring means, the incident light is diffused by a light diffusion plate and passed through a pin hole, and the transmitted light is separated into light of a specific wavelength region by a predetermined filter (single or combined). The object can take in light uniformly without being affected by the direction of the incident light. Further, the lens of the spectral image acquiring means is horizontally arranged so that a subject in front can be photographed, and the pin hole of the incident light intensity acquiring means is oriented in a different direction from the lens of the spectral image acquiring means (for example, when sunlight is received). (A vertical direction as possible) so that incident light can be received from another direction different from the subject, but it is possible to reliably take in incident light from another direction independent of photographing light.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a perspective view of a spectral image photographing apparatus of an embodiment, FIG. 2 is a conceptual diagram showing a configuration of each optical system of the embodiment, FIG. 3 is a flowchart showing a processing flow of the embodiment, and FIG. FIG. 5 is a graph showing a spectral sensitivity characteristic of the image sensor of the embodiment, and FIG. 6 is a conceptual diagram showing photographing using the spectral image photographing apparatus of the embodiment.
[0013]
In the figure, 1 is a spectral image photographing device, 2 is a first optical system, 2a is a near-infrared cutoff filter, 2b is a lens, 2c is a color filter, 2d is an image sensor, 2e is a visible image acquisition processing unit, and 3 is a second The optical system, 3a is a visible light blocking filter, 3b is a lens, 3c is a color filter, 3d is an image sensor, 3e is a near infrared image acquisition processing unit, 4 is a third optical system, 4a is a diffuser, 4b is a pinhole, Reference numeral 4c is a composite filter, 4d is a color filter, 4e is an image sensor, 4f is a sunlight spectral characteristic acquisition processing unit, 5 is a shutter button, 6 is an image conversion processing unit, 7 is a monitor, 8 is a recording device, and A is a subject. , S is the sun.
[0014]
As shown in FIG. 1, a spectral image photographing apparatus 1 of this embodiment has a first optical system 2 and a second optical system 3 for horizontally photographing a front object on the front of the apparatus, and an upper sun light on an upper surface of the apparatus. The third optical system 4 for receiving light is vertically arranged. 5 is a shutter button.
[0015]
As shown in FIG. 2, the first optical system 2 has a near-infrared cutoff filter 2a that blocks near infrared rays and transmits visible light, a lens 2b, a color filter 2c having the layout shown in FIG. 4, and a sensitivity characteristic shown in FIG. And an image sensor 2d composed of a CCD (Charge Coupled Device). The second optical system 3 is an image sensor including a visible light blocking filter 3a that blocks visible light and transmits near infrared rays, a lens 3b, a color filter 3c having a layout shown in FIG. 4, and a CCD having sensitivity characteristics shown in FIG. 3d.
[0016]
The third optical system 4 is composed of a diffuser 4a (light diffusion plate) for diffusing incident light, a pinhole 4b, a composite filter 4c and a color filter 4d configured by combining the near-infrared cutoff filter 2a and the visible light cutoff filter 3a. The optical systems 2, 3, and 4 are provided with a visible image acquisition processing unit 2e, a near-infrared image acquisition processing unit 3d, and a sunlight spectral characteristic acquisition processing unit 4f, respectively. An image conversion processing unit 6 for converting a spectral image into a relative spectral reflectance image using each pixel value acquired by each of the processing units 2e, 3e, and 4f is provided.
[0017]
In this embodiment, FIG. 6 shows an example in which the subject A (tree) is photographed under the rays of the sun S. When the shutter button 5 is operated, the photographing light of the subject A reflected by the sunlight is separated into visible light and near infrared light which are independent by the near-infrared cutoff filter 2a and the visible light cutoff filter 3a of the first and second optical systems 2 and 3, respectively. Are condensed by the lenses 2b and 3b, and the condensed photographing light of the first optical system 2 is output to three primary colors of red (R), green (G), and blue (B) by the color filter 2c, and the image is formed. While forming an image on the sensor 2d, the condensed photographing light of the second optical system 3 includes an influence of the color filter 3c and forms an image on the image sensor 3d.
[0018]
In parallel, in the third optical system 4, sunlight incident from above is diffused uniformly by the diffuser 4a, and the diffused light passes through the pinhole 4b, and the visible light of three primary colors and the composite filter 4c and the color filter 4d. The light is separated into near-infrared rays and taken into the image sensor 4e.
[0019]
The signals captured by the image sensors 2d, 3d, and 4e of each optical system are acquired by the visible image acquisition processing unit 2e, the near-infrared image acquisition processing unit 3e, and the spectral characteristic acquisition processing unit 4f, respectively, and are processed by the image conversion processing unit. Sent to 6.
[0020]
The image conversion processing unit 6 calculates each of the transmitted pixel values by the following formula, and obtains the relative reflectances of the three primary colors and the near infrared light.
[0021]
(Equation 1)
Figure 2004320568
[0022]
Here, I 1R , I 1G , I 1B , I 2 , I 3R , I 3G , I 3B , and I 3NIR are:
I 1R : Red pixel value of the first optical system I 1G : Green pixel value of the first optical system I 1B : Blue pixel value of the first optical system I 2 : Pixel value of the second optical system I 3R : Third optical system The representative value I 3G of the red pixel in the visible light portion of the third optical system: the representative value I 3B of the green pixel in the visible light portion of the third optical system: the representative value I 3NIR of the blue pixel in the visible light portion of the third optical system: 3 NIR The representative values of the pixels in the near infrared portion of the system are shown. K VIS and k NIR are device constants determined from the characteristics of each optical system and the sensitivity characteristics of the image sensor, and can be replaced with k NIR = kk VIS using the constant k.
[0023]
A subject image is formed by the relative reflectances ref R , ref G , ref B , and ref NIR obtained in this manner, and is recorded on the recording device 8 or displayed on the monitor 7.
[0024]
Since the present embodiment is configured as described above, in addition to the photographing light from the subject, the incident light from another direction different from the subject is separately introduced, and the spectral characteristics of the incident light (the three primary colors of the visible light portion and the near infrared By obtaining the relative reflectance using the pixel value of (part) and converting the image into an image, it was possible to obtain an image having original color information independent of the intensity of photographing light and spectral characteristics under different photographing environments.
[0025]
In addition, if there is no need to provide a database in which the light source and the spectral characteristic distribution are stored inside the apparatus, the apparatus can be reduced in size, weight, and cost at the same time. Furthermore, since dedicated optical systems are provided side by side to acquire spectral images in a plurality of wavelength regions, spectral images can be acquired simultaneously with a single operation, and shooting can be performed without any problem even if the subject or shooting position moves. This is an easy-to-use photographing device that can be performed easily and in a short time, and can be applied to various uses that are not limited to restricted images.
[0026]
【The invention's effect】
As described above, according to the present invention, even in various environments, the original color of the subject can be faithfully reproduced, and a single operation can simultaneously obtain spectral images in a plurality of wavelength regions, and is small, low-cost, and simple. It is possible to provide a spectroscopic image photographing apparatus.
[Brief description of the drawings]
FIG. 1 is a perspective view of a spectral imaging apparatus according to an embodiment.
FIG. 2 is a conceptual diagram of a spectral imaging apparatus according to an embodiment.
FIG. 3 is a flowchart showing a flow of processing according to the embodiment.
FIG. 4 is a layout diagram of a color filter of an embodiment.
FIG. 5 is a graph showing spectral characteristics of incident light according to an example.
FIG. 6 is a conceptual diagram illustrating photographing using the spectral image photographing apparatus of the embodiment.
[Explanation of symbols]
Reference Signs List 1 spectral image photographing device 2 first optical system 2a near-infrared cutoff filter 2b lens 2c color filter 2d image sensor 2e visible image acquisition processing unit 3 second optical system 3a visible light cutoff filter 3b lens 3c color filter 3d image sensor 3e near red Outside image acquisition processing unit 4 Third optical system 4a Diffuser 4b Pinhole 4c Composite filter 4d Color filter 4e Image sensor 4f Spectral characteristic acquisition processing unit 5 Shutter button 6 Image conversion processing unit 7 Monitor 8 Recording device A Subject S Sun

Claims (6)

被写体の特定波長領域の分光画像を取得する分光画像取得手段を設け、分光画像取得時における被写体を照射する光源の入射光強さと分光特性を取得する入射光強さ取得手段を設け、分光画像取得手段で取得した特定波長領域の分光画像を入射光強さ取得手段で取得した前記分光画像に対応する特定波長領域の入射光強さで除して相対分光反射率画像に変換する画像変換手段を設けた分光画像撮影装置。A spectral image acquisition unit that acquires a spectral image of a specific wavelength region of the subject; and an incident light intensity acquisition unit that acquires an incident light intensity and a spectral characteristic of a light source that irradiates the subject when acquiring the spectral image. Image conversion means for dividing the spectral image of the specific wavelength region obtained by the means by the incident light intensity of the specific wavelength region corresponding to the spectral image obtained by the incident light intensity obtaining means to convert the spectral image into a relative spectral reflectance image. The provided spectral image photographing device. 分光画像取得手段が取得する特定波長領域が可視領域である請求項1記載の分光画像撮影装置。The spectral image photographing apparatus according to claim 1, wherein the specific wavelength region acquired by the spectral image acquiring unit is a visible region. 分光画像取得手段が取得する特定波長領域が近赤外領域である請求項1記載の分光画像撮影装置。The spectral image photographing apparatus according to claim 1, wherein the specific wavelength region acquired by the spectral image acquiring unit is a near-infrared region. 分光画像取得手段が取得する特定波長領域が可視領域と近赤外領域である請求項1記載の分光画像撮影装置。2. The spectral image capturing apparatus according to claim 1, wherein the specific wavelength regions acquired by the spectral image acquiring unit are a visible region and a near-infrared region. 入射光強さ取得手段が、入射光を光拡散板で拡散してピン孔を透過させ、同透過した光を所定のフィルタで特定波長領域の光に分光するようにしたものである請求項1〜4いずれか記載の分光画像撮影装置。2. The incident light intensity acquiring means, wherein the incident light is diffused by a light diffusing plate and transmitted through a pin hole, and the transmitted light is separated into light of a specific wavelength region by a predetermined filter. 5. The spectral image photographing apparatus according to any one of items 4 to 4. 分光画像取得手段のレンズを水平に配置して前方の被写体を撮影できるようにし、入射光強さ取得手段のピン孔を前記分光画像取得手段のレンズと異なる向きに配置して被写体とは異なる別方向から入射光を受光できるようにした請求項1〜5いずれか記載の分光画像撮影装置。The lens of the spectral image acquiring means is arranged horizontally so that a subject in front can be photographed. The spectral imaging apparatus according to any one of claims 1 to 5, wherein incident light can be received from a direction.
JP2003113495A 2003-04-17 2003-04-17 Spectral imaging device Expired - Fee Related JP4010360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113495A JP4010360B2 (en) 2003-04-17 2003-04-17 Spectral imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113495A JP4010360B2 (en) 2003-04-17 2003-04-17 Spectral imaging device

Publications (2)

Publication Number Publication Date
JP2004320568A true JP2004320568A (en) 2004-11-11
JP4010360B2 JP4010360B2 (en) 2007-11-21

Family

ID=33473383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113495A Expired - Fee Related JP4010360B2 (en) 2003-04-17 2003-04-17 Spectral imaging device

Country Status (1)

Country Link
JP (1) JP4010360B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151707A (en) * 2010-01-25 2011-08-04 Ihi Corp Imaging device
WO2019026600A1 (en) * 2017-07-31 2019-02-07 ソニーセミコンダクタソリューションズ株式会社 Camera module and image capture device
WO2022163327A1 (en) * 2021-01-29 2022-08-04 ソニーセミコンダクタソリューションズ株式会社 Information processing device, imaging system, information processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151707A (en) * 2010-01-25 2011-08-04 Ihi Corp Imaging device
WO2019026600A1 (en) * 2017-07-31 2019-02-07 ソニーセミコンダクタソリューションズ株式会社 Camera module and image capture device
WO2022163327A1 (en) * 2021-01-29 2022-08-04 ソニーセミコンダクタソリューションズ株式会社 Information processing device, imaging system, information processing method, and program

Also Published As

Publication number Publication date
JP4010360B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
EP3414896B1 (en) Combined hdr/ldr video streaming
JP6939000B2 (en) Imaging device and imaging method
JP4040825B2 (en) Image capturing apparatus and distance measuring method
JP5545016B2 (en) Imaging device
US8259203B2 (en) Method and apparatus for achieving panchromatic response from a color-mosaic imager
US20070177004A1 (en) Image creating method and imaging device
JP2011239259A (en) Image processing device, image processing method, and program
CA2812860A1 (en) Digital multi-spectral camera system having at least two independent digital cameras
JP2002135639A (en) Method and apparatus for color scannerless imaging system
EP3414890B1 (en) Devices and methods for high dynamic range video
JP2000102042A (en) Spectral sensitivity characteristic measurement method for image pickup device and image pickup data constitution method
CN108370422A (en) Visible and near-infrared image system and method are acquired using single matrix sensor
WO2018116972A1 (en) Image processing method, image processing device, and recording medium
KR20180012362A (en) System and method for measuring of luminance and chromaticity
JP2007006061A (en) Color filter and image pickup apparatus having the same
JP3925681B2 (en) Multiband image output method and apparatus
JP4516590B2 (en) Image capturing apparatus and distance measuring method
JP2012060411A (en) Multiband one-dimensional line sensor camera
CN110574368B (en) Solid-state imaging device, imaging system, and object recognition system
JP5108013B2 (en) Color imaging device, imaging device using the same, and filter
TW202205847A (en) Imaging element, and electronic instrument
JP4150506B2 (en) Image capturing apparatus and distance measuring method
JP4010360B2 (en) Spectral imaging device
JP4533261B2 (en) Imaging device
JP4344257B2 (en) Imaging apparatus and color separation optical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees