JP2004320486A - Optical wavelength division multiplexing network apparatus - Google Patents

Optical wavelength division multiplexing network apparatus Download PDF

Info

Publication number
JP2004320486A
JP2004320486A JP2003111928A JP2003111928A JP2004320486A JP 2004320486 A JP2004320486 A JP 2004320486A JP 2003111928 A JP2003111928 A JP 2003111928A JP 2003111928 A JP2003111928 A JP 2003111928A JP 2004320486 A JP2004320486 A JP 2004320486A
Authority
JP
Japan
Prior art keywords
optical
circuit
transmission
signal
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111928A
Other languages
Japanese (ja)
Inventor
Kazuto Noguchi
一人 野口
Akira Okada
顕 岡田
Takashi Sakamoto
尊 坂本
Shigeto Matsuoka
茂登 松岡
Setsu Moriwaki
摂 森脇
Hiromasa Tanobe
博正 田野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003111928A priority Critical patent/JP2004320486A/en
Publication of JP2004320486A publication Critical patent/JP2004320486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical wavelength division multiplexing network device in which the number of transmitting/receiving devices can be increased by eliminating the problem of coding errors due to the coherent crosstalk in an AWG multiplexing/demultiplexing circuit. <P>SOLUTION: N pieces of transmitting circuits 312 of a transmitting/receiving circuit 310 each includes a transmitter 312a for generating an electrical signal having a transmitting speed of 2.48832 Gbits/s, an error correcting coding circuit 312b for encoding this electrical signal into an electrical signal having 2.654208 Gbits/s by using a Reed-Solomon code, and an electro/optical converting circuit 312c for converting the encoded electrical signal into an optical signal having a predetermined wavelength (λ1-Nλ) by a method, such as a direct modulation, etc. N pieces of receiving circuits 311 each includes an electro/optical converting circuit 311a for converting the optical signal of each wavelength from demultiplexing circuit 313 into an electrical signal, an error correcting decoding circuit 312b for decoding the electrical signal having the transmitting speed of 2.654208 Gbits/s into an electrical signal having the transmitting speed of 2.48832 Gbits/s by using the Reed-Solomon code, and a receiver 311c receiving the electric signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の送受信装置間において波長分割多重された光信号を伝送するフルメッシュ型の光波長分割多重伝送ネットワーク装置に関する。
【0002】
【従来の技術】
波長が異なる複数の光信号を多重化させて1本の光ファイバで伝送する方法、即ち、波長分割多重(WDM,Wavelength Division Multiplexing)伝送方法は、伝送容量を大幅に増大できるだけでなく、多重化された各光信号に信号の行き先情報を割り当てられるアドレッシングが可能である。また、波長周回性を備えるアレイ導波路回折格子(AWG,Arrayed Waveguide Grating)型合分波回路を中心としこれと複数の送受信装置をスター状に光ファイバで接続して構成されたネットワークは、各光ファイバに波長分割多重された光信号(以下、WDM光信号と言う)を通すことによってフルメッシュ型の光波長分割多重伝送ネットワーク装置を構築できる。
【0003】
図1は、特開2000−201112号公報等に記載された光波長分割多重伝送ネットワーク装置の概略図である。図中の101〜107はWDM光信号(λ1〜λN)を送受信するN台の送受信装置(1〜N)、108はN個の入力ポート及び出力ポートを有するN×NのAWG型合分波回路、OF1,OF2は各送受信装置101〜107とAWG型合分波回路108とを接続する光ファイバである。
【0004】
図2は、図1に示した光波長分割多重伝送ネットワーク装置の構成図である。図中の210〜240はN台の送受信装置(1,2,i,N)、211〜241は各送受信装置210〜240にあって異なる波長(λ1〜λN)の光信号を受信可能なN個の受信回路、212〜242は各送受信装置210〜240にあって異なる波長(λ1〜λN)の光信号を送信可能なN個の送信回路、213〜243は各送受信装置210〜240にあって入力されたWDM光信号を波長毎に分波するための分波回路、214〜244は各送受信装置210〜240にあって各送信回路212〜242からの光信号を合波するための合波回路である。
【0005】
また、符号250はN×NのAWG型合分波回路、261,262は送受信装置210とAWG型合分波回路250とを接続する光ファイバ、271,272は送受信装置220とAWG型合分波回路250とを接続する光ファイバ、281,282は送受信装置230とAWG型合分波回路250とを接続する光ファイバ、291,292は送受信装置240とAWG型合分波回路250とを接続する光ファイバである。
【0006】
図3は、図2に示した光波長分割多重伝送ネットワーク装置にあって8台の送受信装置を8×8のAWG型合分波回路に接続した場合における合分波回路の入出力関係の分波特性を示す図である。
【0007】
8台の送受信装置(1)〜(8)の送信側がAWG型合分波回路の8個の入力ポート1〜8に順に光接続され、且つ、8台の送受信装置(1)〜(8)の受信側がAWG型合分波回路の8個の出力ポート1〜8に順に光接続されていて、8波長(λ1〜λ8)のWDM光信号が8台の送受信装置(1)〜(8)からAWG型合分波回路の入力ポート1〜8にそれぞれ入力されている場合には、AWG型合分波回路の波長周回性規則により、AWG型合分波回路の入力ポート1〜8にそれぞれ入力されたWDM光信号は出力ポート1〜8に対して図に示すように波長毎(λ1〜λ8)に分波され、AWG型合分波回路の各出力ポート1〜8からは8波長(λ1〜λ8)の光信号が合波されたWDM光信号が図に示すように出力されて8台の送受信装置(1)〜(8)の受信側に送り込まれる。
【0008】
つまり、最小限の波長数8で64通りのパスを独立に設定することができ、8台の送受信装置(1)〜(8)間で設定できる全てのパスで独立に光信号を送ることができる。また、個々のパスには特定の波長が割り当てられるため、送受信装置の送信回路側で所定の受信回路に対応する波長を選択すれば、選択波長の光信号を目的の送受信装置の受信回路に送れる波長アドレッシング機能が実現できる。
【0009】
【特許文献1】
特開2000−201112号公報
【0010】
【発明が解決しようとする課題】
しかしながら、先に述べた従来の光波長分割多重伝送ネットワーク装置では、全ての送受信装置で同一波長の光信号、例えば、図3にあっては波長λ1〜λ8の光信号を使用しているため、AWG型合分波回路における同一波長の光信号間のコヒーレントクロストークによる信号劣化が問題となる。
【0011】
図4は、このコヒーレントクロストークの影響を説明する図であり、装置構成は図2と同じであるためその説明を省略する。
【0012】
ここでは、N台全ての送受信装置210〜240からAWG型合分波回路250のN個の入力ポートにそれぞれ波長λiの光信号を含むWDM光信号が入力されている状態で、送受信装置230と送受信装置240とが波長λiの光信号によって通信している場合を考える。
【0013】
図3を用いて説明したように、AWG型合分波回路250のN個の入力ポートそれぞれに入力されたWDM光信号に含まれる波長λiの光信号はそれぞれ異なる出力ポートに分波される。しかし、AWG型合分波回路250の中では図4中に破線で示すコヒーレントクロストークXTが発生し、このコヒーレントクロストークXTが波長λiの光信号と一緒に出力ポートNから送受信装置240に到達する。送受信装置240の分波回路243では波長λiの光信号と前記のコヒーレントクロストークの波長とが同じであるため分波できず、波長λiの光信号と前記のコヒーレントクロストークが同一の受信回路241で受信されてしまう。
【0014】
このコヒーレントクロストークは、最近市販されているAWG型合分波回路にあっては1チャネル当たり−40dBと非常に小さいため、チャネル数が少ない場合には問題にならない。しかし、コヒーレントクロストークの総量はAWG型合分波回路のチャネル数に比例し、例えば、AWG型合分波回路のチャネル数が64の場合、他の63チャネルからのコヒーレントクロストークが積算されて所定の光信号への総クロストーク量は約18dBに増大するため、光信号とコヒーレントクロストークとの干渉により符号誤りが発生する。つまり、AWG型合分波回路に接続された送受信装置の数が多いほどコヒーレントクロストークが増大して符号誤りが生じ易くなるため、ネットワークの規模(収容チャネル数)が制限されてしまう。
【0015】
本発明は前記事情に鑑みて創作されたもので、その目的とするところは、AWG型合分波回路におけるコヒーレントクロストークによる符号誤りの問題を排除して送受信装置の増数を可能とした光波長分割多重伝送ネットワーク装置を提供することにある。
【0016】
【課題を解決するための手段】
前記目的を達成するため、本発明は、N個(Nは複数)の入力ポート及び出力ポートを有するN×Nのアレイ導波路回折格子型合分波回路に、波長分割多重の光信号を送受信するM台(Mは2以上N以下の整数)の送受信装置を光接続して構成されたフルメッシュ型の光波長分割多重伝送ネットワーク装置であって、前記アレイ導波路回折格子型合分波回路は周期的な入出力関係の分波特性を有し、前記送受信装置は、異なる波長の光信号を送信可能なM個の送信回路と、送信回路からの光信号を合波するための合波回路と、アレイ導波路回折格子型合分波回路からの波長分割多重の光信号を波長毎に分波するための分波回路と、分波回路からの波長毎の光信号を受信可能なM個の受信回路とを備え、前記M個の送信回路の少なくとも1つは符号化によって光信号にエラー訂正信号を付加する符号化手段を備え、前記M個の受信回路のうち符号化手段を備える送信回路の送信相手に当たる少なくとも1つはエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する復号化手段を備える、ことをその主たる特徴とする。
【0017】
この光波長分割多重伝送ネットワーク装置によれば、符号化によってエラー訂正信号を付加した光信号を送信する送信回路とエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する受信回路を備えたものを送受信装置として用いているので、アレイ導波路回折格子型合分波回路においてコヒーレントクロストークを原因として符号誤りが発生した場合でもこれを訂正して安定した通信が行えると共に、前記の符号誤りの問題を排除することで送受信装置の増数を可能とし大規模で多チャネルのフルメッシュ型の光波長分割多重伝送ネットワーク装置を構築することができる。
【0018】
本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。
【0019】
【発明の実施の形態】
図5は、本発明を適用した光波長分割多重伝送ネットワーク装置の構成図である。図中の310〜340はN台の送受信装置(1,2,i,N)、311〜341は各送受信装置310〜340にあって異なる波長(λ1〜λN)の光信号を受信可能なN個の受信回路、312〜342は各送受信装置310〜340にあって異なる波長(λ1〜λN)の光信号を送信可能なN個の送信回路、313〜343は各送受信装置310〜340にあって入力されたWDM光信号を波長毎に分波するための分波回路、314〜344は各送受信装置310〜340にあって各送信回路312〜342からの光信号を合波するための合波回路である。
【0020】
また、350はN×NのAWG型合分波回路、361,362は送受信装置310とAWG型合分波回路350とを接続する光ファイバ、371,372は送受信装置320とAWG型合分波回路350とを接続する光ファイバ、381,382は送受信装置330とAWG型合分波回路350とを接続する光ファイバ、391,392は送受信装置340とAWG型合分波回路350とを接続する光ファイバである。
【0021】
この光波長分割多重伝送ネットワーク装置が、図2に示した従来の光波長分割多重伝送ネットワーク装置と異なるところは、各送受信装置310〜340に設けられたN個の送信回路312〜342それぞれが光信号(λ1〜λN)にエラー訂正信号を付加する機能を有する点と、各送受信装置310〜340に設けられたN個の受信回路311〜341それぞれがエラー訂正信号付加の光信号(λ1〜λN)をエラー訂正情報に基づいて復号化する機能を有する点にある。以下これらの点を図6を引用して詳述する。
【0022】
図6は、図5に示した光波長分割多重伝送ネットワーク装置における送受信装置310の詳細図である。図中の311はN個の受信回路、312はN個の送信回路、313は分波回路、314は合波回路、361,362は光ファイバであり、分波回路313と合波回路314には1×NのAWG型合分波回路が用いられている。
【0023】
N個の送信回路312は、OC−48(伝送速度2.48832Gbit/s)の電気信号を発生する送信器312aと、この送信器312aからの電気信号をリードソロモン(255,241)符号を用いて2.654208Gbit/sの電気信号に符号化するエラー訂正符号化回路312bと、このエラー訂正符号化回路312bからの符号化された電気信号を直接変調等の手法により所定波長(λ1〜λN)の光信号に変換する半導体レーザダイオード等の電気/光変換回路312cとを備える。因みに、リードソロモン符号はブロック符号の一種で、複数ビット単位(例えばバイト単位)で誤り訂正を行うことが可能なエラー訂正符号である。
【0024】
N個の送信回路312からの光信号は合波回路314で合波され光ファイバ362を通じてAWG型合分波回路350に伝送される。また、AWG型合分波回路350から光ファイバ361を通じて分波回路313に入力されたWDM光信号は波長毎の光信号に分波されてN個の受信回路311に送り込まれる。
【0025】
N個の受信回路311は、分波回路313からの波長毎の光信号を電気信号に変換するフォトダイオード等の光/電気変換回路311aと、この光/電気変換回路311aからの符号化された電気信号(伝送速度2.654208Gbit/s)をリードソロモン(255,241)符号を用いてOC−48(伝送速度2.48832Gbit/s)の電気信号に復号化するエラー訂正復号化回路312bと、このエラー訂正復号化回路312bからの電気信号を受信する受信器311cとを備える。
【0026】
図示を省略したが、送受信装置310以外の送受信装置320,330,330も前記送受信装置310と同様の構成を備える。
【0027】
このように、前述の光波長分割多重伝送ネットワーク装置によれば、符号化によってエラー訂正信号を付加した光信号を送信する送信回路とエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する受信回路を備えたものを送受信装置として用いているので、AWG型合分波回路350においてコヒーレントクロストークを原因として符号誤りが発生した場合でもこれを訂正して安定した通信が行えると共に、前記の符号誤りの問題を排除することで送受信装置の増数を可能とし大規模で多チャネルのフルメッシュ型の光波長分割多重伝送ネットワーク装置を構築することができる。
【0028】
実験によると、前記のエラー訂正による受信感度の改善効果(ゲイン)は約5dBであり、これをチャネル数の増加効果として換算すると約3.2倍に相当する。つまり、従来の光波長分割多重伝送ネットワーク装置の場合の最大チャネル数は文献(K.Noguchi,OECC2002,10A1−2,pp.72−73)によると100程度であったことから、前述の光波長分割多重伝送ネットワーク装置にあってはチャネル数を300程度まで増加させることが十分に可能である。
【0029】
尚、前述の実施形態では、各送受信装置310〜340におけるN個の送信回路312〜342の全てに符号化によって光信号にエラー訂正信号を付加する符号化手段を設け、N個の受信回路311〜341の全てにエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する復号化手段を設けたものを示したが、N個の送信回路312〜342の少なくとも1つに符号化によって光信号にエラー訂正信号を付加する符号化手段を設け、N個の受信回路311〜341のうち符号化手段を備える送信回路の送信相手に当たる少なくとも1つにエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する復号化手段を設けるようにしても構わない。
【0030】
要するに、前述の光波長分割多重伝送ネットワーク装置にあっては前記の符号化によって転送速度が増加しても光のまま信号の行き先をルーティングできるので、送受信装置の所定の送信回路のみに前記の符号化手段を設けてこの送信回路の送信相手に当たる他の送受信装置の所定の受信回路のみに前記の復号化手段を設けるようにすれば、符号化された光信号による通信と符号化されていない光信号による通信とが混在したネットワークを構築することもできる。
【0031】
また、前述の実施形態では、リードソロモン(255,241)符号をエラー訂正符号として用いたものを示したが、他の符号、例えば、ハミング(Hamming)符号やBCH−1やBCH−2をエラー訂正符号として用いてもよい。
【0032】
さらに、前述の実施形態では、OC−48(伝送速度2.48832Gbit/s)の信号を符号前及び復号後の元信号として用いたものを示したが、他の信号、例えば、OC−192(伝送速度9.95328Gbit/s)の信号や40Gbit/sの信号を元信号として用いてもよい。
【0033】
【発明の効果】
以上詳述したように、本発明によれば、アレイ導波路回折格子型合分波回路におけるコヒーレントクロストークによる符号誤りの問題を排除して送受信装置の増数を可能とした光波長分割多重伝送ネットワーク装置を提供できる。
【図面の簡単な説明】
【図1】従来の光波長分割多重伝送ネットワーク装置の概略図
【図2】図1に示した光波長分割多重伝送ネットワーク装置の構成図
【図3】図2に示した光波長分割多重伝送ネットワーク装置にあって8台の送受信装置を8×8のAWG型合分波回路に接続した場合における合分波回路の入出力関係の分波特性を示す図
【図4】AWG型合分波回路におけるコヒーレントクロストークの影響を説明する図
【図5】本発明を適用した光波長分割多重伝送ネットワーク装置の構成図
【図6】図5に示した光波長分割多重伝送ネットワーク装置における送受信装置310の詳細図
【符号の説明】
310,320,330,340…送受信装置、311,321,331,341…受信回路、311a…光/電気変換回路、311b…エラー訂正復号化回路、311c…受信器、312,322,332,342…送信回路、312a…送信機、312b…エラー訂正符号化回路、312c…電気/光変換回路、313,323,333,343…分波回路、314,324,334,344…合波回路、350…AWG型合分波回路、361,362,371,372,381,382,391,392。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a full mesh type optical wavelength division multiplexing transmission network device for transmitting an optical signal wavelength division multiplexed between a plurality of transmission / reception devices.
[0002]
[Prior art]
A method of multiplexing a plurality of optical signals having different wavelengths and transmitting the multiplexed signals through a single optical fiber, that is, a WDM (Wavelength Division Multiplexing) transmission method, can not only greatly increase the transmission capacity but also multiplexing. Addressing for assigning destination information of a signal to each of the obtained optical signals is possible. In addition, a network composed mainly of an arrayed waveguide grating (AWG, Arrayed Waveguide Grating) type multiplexing / demultiplexing circuit having a wavelength revolving property and a plurality of transmitting / receiving devices connected in a star-shaped optical fiber is By passing an optical signal (hereinafter, referred to as a WDM optical signal) wavelength-division multiplexed through an optical fiber, a full mesh type optical wavelength division multiplexing transmission network device can be constructed.
[0003]
FIG. 1 is a schematic diagram of an optical wavelength division multiplexing transmission network device described in JP-A-2000-201112 and the like. In the figure, 101 to 107 denote N transmitting / receiving apparatuses (1 to N) for transmitting and receiving WDM optical signals (λ1 to λN), and 108 denotes an N × N AWG type multiplexing / demultiplexing apparatus having N input ports and output ports. The circuits, OF1 and OF2, are optical fibers that connect the transmitting / receiving apparatuses 101 to 107 and the AWG type multiplexing / demultiplexing circuit 108.
[0004]
FIG. 2 is a configuration diagram of the optical wavelength division multiplexing transmission network device shown in FIG. In the figure, 210 to 240 are N transmission / reception devices (1, 2, i, N), and 211 to 241 are N in each of the transmission / reception devices 210 to 240 capable of receiving optical signals of different wavelengths (λ1 to λN). N receiving circuits, 212 to 242, are located in each of the transmitting / receiving apparatuses 210 to 240 and N transmitting circuits capable of transmitting optical signals of different wavelengths (λ1 to λN), and 213 to 243 are located in each of the transmitting / receiving apparatuses 210 to 240. A demultiplexing circuit for demultiplexing the input WDM optical signal for each wavelength, and a demultiplexing circuit for demultiplexing the optical signal from each of the transmitting circuits 212 to 242 in each of the transmitting and receiving devices 210 to 240. It is a wave circuit.
[0005]
Reference numeral 250 denotes an N × N AWG-type multiplexer / demultiplexer, 261 and 262 denote optical fibers connecting the transmitting / receiving device 210 and the AWG-type multiplexer / demultiplexer 250, and 271 and 272 denote the transmitting / receiving device 220 and the AWG-type multiplexer / demultiplexer. The optical fiber connecting the wave circuit 250, the optical fibers 281 and 282 connect the transmitting / receiving device 230 and the AWG type multiplexing / demultiplexing circuit 250, and the 291 and 292 connecting the transmitting / receiving device 240 and the AWG type multiplexing / demultiplexing circuit 250 Optical fiber.
[0006]
FIG. 3 is a diagram showing the input / output relationship of the multiplexing / demultiplexing circuit in the optical wavelength division multiplexing transmission network device shown in FIG. 2 when eight transmission / reception devices are connected to an 8 × 8 AWG type multiplexing / demultiplexing circuit. It is a figure showing a wave characteristic.
[0007]
The transmitting sides of the eight transmitting / receiving apparatuses (1) to (8) are optically connected to eight input ports 1 to 8 of the AWG type multiplexing / demultiplexing circuit in order, and the eight transmitting / receiving apparatuses (1) to (8) are used. Are sequentially optically connected to the eight output ports 1 to 8 of the AWG type multiplexing / demultiplexing circuit, and eight transmission / reception devices (1) to (8) receive WDM optical signals of eight wavelengths (λ1 to λ8). Are input to the input ports 1 to 8 of the AWG-type multiplexing / demultiplexing circuit, respectively, according to the wavelength recirculation rule of the AWG-type multiplexing / demultiplexing circuit. The input WDM optical signal is split into wavelengths (λ1 to λ8) for the output ports 1 to 8 as shown in the figure, and eight wavelengths (from the output ports 1 to 8 of the AWG type multiplexing / demultiplexing circuit). λ1 to λ8) are output as shown in FIG. (1) is fed to the receiver to (8).
[0008]
That is, 64 paths can be independently set with the minimum number of wavelengths of 8, and optical signals can be sent independently on all the paths that can be set among the eight transceivers (1) to (8). it can. Also, since a specific wavelength is assigned to each path, if a wavelength corresponding to a predetermined receiving circuit is selected on the transmitting circuit side of the transmitting / receiving apparatus, an optical signal of the selected wavelength can be sent to the receiving circuit of the target transmitting / receiving apparatus. A wavelength addressing function can be realized.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-201112
[Problems to be solved by the invention]
However, in the conventional optical wavelength division multiplexing transmission network device described above, since all the transmitting and receiving devices use optical signals of the same wavelength, for example, optical signals of wavelengths λ1 to λ8 in FIG. Signal degradation due to coherent crosstalk between optical signals of the same wavelength in the AWG type multiplexing / demultiplexing circuit becomes a problem.
[0011]
FIG. 4 is a diagram for explaining the influence of the coherent crosstalk. Since the device configuration is the same as that of FIG. 2, the description thereof will be omitted.
[0012]
Here, in a state where WDM optical signals including the optical signal of the wavelength λi are respectively input to the N input ports of the AWG type multiplexing / demultiplexing circuit 250 from all the N transmitting / receiving apparatuses 210 to 240, It is assumed that the transmission / reception device 240 is communicating with an optical signal having a wavelength λi.
[0013]
As described with reference to FIG. 3, the optical signals of the wavelength λi included in the WDM optical signals input to the N input ports of the AWG type multiplexing / demultiplexing circuit 250 are demultiplexed to different output ports. However, a coherent crosstalk XT indicated by a broken line in FIG. 4 occurs in the AWG type multiplexing / demultiplexing circuit 250, and the coherent crosstalk XT reaches the transmitting / receiving device 240 from the output port N together with the optical signal of the wavelength λi. I do. The demultiplexing circuit 243 of the transmitting / receiving device 240 cannot perform demultiplexing because the optical signal of the wavelength λi and the wavelength of the coherent crosstalk are the same, and the receiving circuit 241 having the same optical signal of the wavelength λi and the same coherent crosstalk is used. Will be received.
[0014]
This coherent crosstalk is very small at -40 dB per channel in an AWG type multiplexing / demultiplexing circuit that has recently been marketed, and therefore does not pose a problem when the number of channels is small. However, the total amount of coherent crosstalk is proportional to the number of channels of the AWG type multiplexing / demultiplexing circuit. For example, when the number of channels of the AWG type multiplexing / demultiplexing circuit is 64, coherent crosstalk from the other 63 channels is integrated. Since the total amount of crosstalk to a predetermined optical signal increases to about 18 dB, a code error occurs due to interference between the optical signal and coherent crosstalk. That is, as the number of transmission / reception devices connected to the AWG-type multiplexing / demultiplexing circuit increases, coherent crosstalk increases and a code error easily occurs, so that the scale of the network (the number of accommodated channels) is limited.
[0015]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to eliminate the problem of code errors due to coherent crosstalk in an AWG type multiplexing / demultiplexing circuit and to increase the number of transmission / reception devices. It is an object of the present invention to provide a wavelength division multiplex transmission network device.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for transmitting / receiving a wavelength division multiplexed optical signal to / from an N × N arrayed waveguide grating type multiplexer / demultiplexer having N (N is a plurality) input ports and output ports. A full-mesh type optical wavelength division multiplexing transmission network device configured by optically connecting M (M is an integer of 2 or more and N or less) N transmission / reception devices, wherein the array waveguide diffraction grating type multiplexing / demultiplexing circuit is provided. Has a demultiplexing characteristic of a periodic input / output relationship. The transmitting / receiving apparatus includes: M transmitting circuits capable of transmitting optical signals of different wavelengths; and a multiplexer for multiplexing optical signals from the transmitting circuits. Wave circuit, a demultiplexing circuit for demultiplexing the wavelength division multiplexed optical signal from the arrayed waveguide diffraction grating type multiplexing / demultiplexing circuit for each wavelength, and an optical signal for each wavelength from the demultiplexing circuit can be received. M receiving circuits, wherein at least one of the M transmitting circuits is Encoding means for adding an error correction signal to the optical signal by encoding, and at least one of the M receiving circuits, which is a transmission partner of the transmission circuit having the encoding means, converts the optical signal with the error correction signal into an error signal. Its main feature is that it comprises a decoding means for decoding based on the correction information.
[0017]
According to this optical wavelength division multiplexing transmission network device, a transmission circuit for transmitting an optical signal to which an error correction signal is added by encoding and a reception circuit for decoding the optical signal with the error correction signal based on the error correction information are provided. Is used as a transmission / reception device, so that even if a code error occurs due to coherent crosstalk in an arrayed waveguide diffraction grating type multiplexing / demultiplexing circuit, the error can be corrected and stable communication can be performed. By eliminating the problem of errors, the number of transmission / reception devices can be increased, and a large-scale, multi-channel, full-mesh type optical wavelength division multiplexing transmission network device can be constructed.
[0018]
The above and other objects, constitutional features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 5 is a configuration diagram of an optical wavelength division multiplexing transmission network device to which the present invention is applied. In the figure, reference numerals 310 to 340 denote N transmission / reception devices (1, 2, i, N), and reference numerals 311 to 341 denote Ns which can receive optical signals of different wavelengths (λ1 to λN) in the transmission / reception devices 310 to 340. N receiving circuits, 312 to 342, are located in each of the transmitting / receiving devices 310 to 340, and N transmitting circuits capable of transmitting optical signals of different wavelengths (λ1 to λN), and 313 to 343 are located in each of the transmitting / receiving devices 310 to 340. A demultiplexing circuit 314 to 344 for demultiplexing the input WDM optical signal for each wavelength is provided in each of the transmission / reception devices 310 to 340 to combine the optical signals from the transmission circuits 312 to 342. It is a wave circuit.
[0020]
Further, 350 is an N × N AWG type multiplexer / demultiplexer, 361 and 362 are optical fibers connecting the transmission / reception device 310 and the AWG type multiplexer / demultiplexer 350, and 371 and 372 are transmission / reception device 320 and AWG type multiplexer / demultiplexer. An optical fiber for connecting the circuit 350, 381 and 382 are optical fibers for connecting the transmitting / receiving device 330 and the AWG type multiplexing / demultiplexing circuit 350, and 391 and 392 are for connecting the transmitting / receiving device 340 and the AWG type multiplexing / demultiplexing circuit 350. Optical fiber.
[0021]
This optical wavelength division multiplexing transmission network device is different from the conventional optical wavelength division multiplexing transmission network device shown in FIG. 2 in that each of N transmission circuits 312 to 342 provided in each of the transmission / reception devices 310 to 340 has an optical transmission line. The point that it has a function of adding an error correction signal to the signals (λ1 to λN), and the N receiving circuits 311 to 341 provided in each of the transmission / reception devices 310 to 340 each include an optical signal (λ1 to λN) to which an error correction signal is added. ) Based on the error correction information. Hereinafter, these points will be described in detail with reference to FIG.
[0022]
FIG. 6 is a detailed diagram of the transmission / reception device 310 in the optical wavelength division multiplexing transmission network device shown in FIG. In the figure, reference numeral 311 denotes N receiving circuits, 312 denotes N transmitting circuits, 313 denotes a demultiplexing circuit, 314 denotes a multiplexing circuit, 361 and 362 denote optical fibers, and the demultiplexing circuit 313 and the multiplexing circuit 314 Uses a 1 × N AWG type multiplexing / demultiplexing circuit.
[0023]
The N transmission circuits 312 use a transmitter 312a that generates an electric signal of OC-48 (transmission rate of 2.48832 Gbit / s) and a Reed-Solomon (255,241) code using the electric signal from the transmitter 312a. And an error correction encoding circuit 312b for encoding an electric signal of 2.654208 Gbit / s into a predetermined wavelength (λ1 to λN) by a technique such as direct modulation. And an electric / optical conversion circuit 312c such as a semiconductor laser diode for converting the optical signal into an optical signal. Incidentally, the Reed-Solomon code is a type of block code, and is an error correction code capable of performing error correction in units of a plurality of bits (for example, in units of bytes).
[0024]
The optical signals from the N transmission circuits 312 are multiplexed by the multiplexing circuit 314 and transmitted to the AWG type multiplexing / demultiplexing circuit 350 through the optical fiber 362. Also, the WDM optical signal input from the AWG type multiplexing / demultiplexing circuit 350 to the demultiplexing circuit 313 via the optical fiber 361 is demultiplexed into optical signals for each wavelength and sent to the N receiving circuits 311.
[0025]
The N receiving circuits 311 include an optical / electrical conversion circuit 311a such as a photodiode for converting an optical signal for each wavelength from the demultiplexing circuit 313 into an electric signal, and an encoded signal from the optical / electrical conversion circuit 311a. An error correction decoding circuit 312b for decoding an electric signal (transmission rate 2.654208 Gbit / s) into an OC-48 (transmission rate 2.48832 Gbit / s) electric signal using a Reed-Solomon (255,241) code; A receiver 311c for receiving the electric signal from the error correction decoding circuit 312b.
[0026]
Although not shown, the transmission / reception devices 320, 330, and 330 other than the transmission / reception device 310 have the same configuration as the transmission / reception device 310.
[0027]
As described above, according to the above-described optical wavelength division multiplexing transmission network device, the transmission circuit that transmits the optical signal to which the error correction signal is added by encoding and the optical signal to which the error correction signal is added are decoded based on the error correction information. Is used as a transmission / reception device, even when a code error occurs in the AWG type multiplexing / demultiplexing circuit 350 due to coherent crosstalk, stable communication can be performed by correcting the code error, and By eliminating the problem of the code error described above, the number of transmission / reception devices can be increased, and a large-scale, multi-channel, full-mesh type optical wavelength division multiplexing transmission network device can be constructed.
[0028]
According to experiments, the effect (gain) of improving the receiving sensitivity by the error correction is about 5 dB, which is equivalent to about 3.2 times when converted into an effect of increasing the number of channels. That is, according to the literature (K. Noguchi, OECC 2002, 10A1-2, pp. 72-73), the maximum number of channels in the case of the conventional optical wavelength division multiplexing transmission network device was about 100, In a division multiplex transmission network device, it is sufficiently possible to increase the number of channels to about 300.
[0029]
In the above-described embodiment, encoding means for adding an error correction signal to an optical signal by encoding is provided in all of the N transmission circuits 312 to 342 in each of the transmission / reception devices 310 to 340, and the N reception circuits 311 341 are provided with decoding means for decoding the optical signal with the error correction signal added thereto based on the error correction information. However, at least one of the N transmission circuits 312 to 342 is encoded by encoding. An encoder for adding an error correction signal to an optical signal is provided, and an optical signal with an error correction signal added to at least one of the N receiving circuits 311 to 341 corresponding to a transmission partner of the transmission circuit including the encoder is error-corrected. Decoding means for decoding based on information may be provided.
[0030]
In short, in the above-mentioned optical wavelength division multiplexing transmission network device, the destination of a signal can be routed as light even if the transfer speed is increased by the above-mentioned encoding, so that the above-mentioned code is transmitted only to a predetermined transmitting circuit of the transmitting / receiving device. If the decoding means is provided only in a predetermined receiving circuit of another transmission / reception apparatus which is a transmission partner of the transmission circuit, communication by an encoded optical signal and light not encoded are provided. It is also possible to construct a network in which communication using signals is mixed.
[0031]
Further, in the above-described embodiment, the Reed-Solomon (255, 241) code is used as the error correction code. However, other codes, for example, a Hamming code, BCH-1 and BCH-2 are used as error correction codes. It may be used as a correction code.
[0032]
Furthermore, in the above-described embodiment, the signal using the OC-48 (transmission rate of 2.48832 Gbit / s) signal is used as the original signal before and after the decoding, but another signal, for example, the OC-192 ( A signal having a transmission rate of 9.95328 Gbit / s) or a signal having a transmission rate of 40 Gbit / s may be used as the original signal.
[0033]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to eliminate the problem of code errors due to coherent crosstalk in an arrayed waveguide diffraction grating type multiplexing / demultiplexing circuit, and to increase the number of transmission / reception devices. Network equipment can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a conventional optical wavelength division multiplex transmission network device. FIG. 2 is a configuration diagram of the optical wavelength division multiplex transmission network device shown in FIG. 1. FIG. 3 is an optical wavelength division multiplex transmission network shown in FIG. FIG. 4 is a diagram showing the demultiplexing characteristics of the input / output relationship of the multiplexing / demultiplexing circuit when eight transmission / reception devices are connected to an 8 × 8 AWG type multiplexing / demultiplexing circuit. FIG. 5 is a diagram for explaining the influence of coherent crosstalk in a circuit. FIG. 5 is a configuration diagram of an optical wavelength division multiplexing transmission network device to which the present invention is applied. FIG. 6 is a transmission / reception device 310 in the optical wavelength division multiplexing transmission network device shown in FIG. Detailed view of [Description of reference numerals]
310, 320, 330, 340 transmission / reception device, 311, 321, 331, 341 reception circuit, 311a optical / electrical conversion circuit, 311b error correction decoding circuit, 311c receiver, 312, 322, 332, 342 ... transmitting circuit, 312a ... transmitter, 312b ... error correction coding circuit, 312c ... electric / optical conversion circuit, 313, 323, 333, 343 ... demultiplexing circuit, 314, 324, 334, 344 ... multiplexing circuit, 350 ... AWG-type multiplexing / demultiplexing circuits, 361,362,371,372,381,382,391,392.

Claims (3)

N個(Nは複数)の入力ポート及び出力ポートを有するN×Nのアレイ導波路回折格子型合分波回路に、波長分割多重の光信号を送受信するM台(Mは2以上N以下の整数)の送受信装置を光接続して構成されたフルメッシュ型の光波長分割多重伝送ネットワーク装置であって、
前記アレイ導波路回折格子型合分波回路は周期的な入出力関係の分波特性を有し、
前記送受信装置は、異なる波長の光信号を送信可能なM個の送信回路と、送信回路からの光信号を合波するための合波回路と、アレイ導波路回折格子型合分波回路からの波長分割多重の光信号を波長毎に分波するための分波回路と、分波回路からの波長毎の光信号を受信可能なM個の受信回路とを備え、
前記M個の送信回路の少なくとも1つは符号化によって光信号にエラー訂正信号を付加する符号化手段を備え、前記M個の受信回路のうち符号化手段を備える送信回路の送信相手に当たる少なくとも1つはエラー訂正信号付加の光信号をエラー訂正情報に基づいて復号化する復号化手段を備える、
ことを特徴とする光波長分割多重伝送ネットワーク装置。
M units (M is 2 or more and N or less) for transmitting / receiving wavelength division multiplexed optical signals to / from an N × N arrayed waveguide grating type multiplexing / demultiplexing circuit having N (N is a plurality) input ports and output ports Integer) optical wavelength division multiplexing transmission network device configured by optically connecting transmission / reception devices,
The array waveguide diffraction grating type multiplexing / demultiplexing circuit has a demultiplexing characteristic of a periodic input / output relationship,
The transmission / reception device includes M transmission circuits capable of transmitting optical signals of different wavelengths, a multiplexing circuit for multiplexing the optical signals from the transmission circuits, and an array waveguide diffraction grating type multiplexing / demultiplexing circuit. A demultiplexing circuit for demultiplexing the wavelength division multiplexed optical signal for each wavelength, and M receiving circuits capable of receiving an optical signal for each wavelength from the demultiplexing circuit;
At least one of the M transmission circuits includes an encoding unit that adds an error correction signal to the optical signal by encoding, and at least one of the M reception circuits corresponding to a transmission destination of the transmission circuit including the encoding unit is included. One comprises decoding means for decoding the optical signal of the error correction signal addition based on the error correction information,
An optical wavelength division multiplexing transmission network device, characterized in that:
符号化手段は、所定伝送速度を有する電気信号をエラー訂正符号によって符号化する符号化回路と、この符号化回路からの符号化された電気信号を所定波長の光信号に変換する電気/光変換回路とを含み、
復号化手段は、所定波長の光信号を電気信号に変換する光/電気変換回路と、この光/電気変換回路からの符号化された電気信号をエラー訂正符号によって復号化する復号化回路とを含む、
ことを特徴とする請求項1に記載の光波長分割多重伝送ネットワーク装置。
The coding means includes a coding circuit for coding an electric signal having a predetermined transmission rate by an error correction code, and an electric / optical conversion for converting the coded electric signal from the coding circuit into an optical signal of a predetermined wavelength. Circuit and
The decoding means includes: an optical / electrical conversion circuit for converting an optical signal of a predetermined wavelength into an electric signal; and a decoding circuit for decoding an encoded electric signal from the optical / electrical conversion circuit by an error correction code. Including,
The optical wavelength division multiplexing transmission network device according to claim 1, wherein:
符号化及び復号化に用いられるエラー訂正符号はリードソロモン符号である、
ことを特徴とする請求項1または2に記載の光波長分割多重伝送ネットワーク装置。
The error correction code used for encoding and decoding is a Reed-Solomon code,
3. The optical wavelength division multiplexing transmission network device according to claim 1, wherein:
JP2003111928A 2003-04-16 2003-04-16 Optical wavelength division multiplexing network apparatus Pending JP2004320486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111928A JP2004320486A (en) 2003-04-16 2003-04-16 Optical wavelength division multiplexing network apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111928A JP2004320486A (en) 2003-04-16 2003-04-16 Optical wavelength division multiplexing network apparatus

Publications (1)

Publication Number Publication Date
JP2004320486A true JP2004320486A (en) 2004-11-11

Family

ID=33472352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111928A Pending JP2004320486A (en) 2003-04-16 2003-04-16 Optical wavelength division multiplexing network apparatus

Country Status (1)

Country Link
JP (1) JP2004320486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231210A (en) * 2016-03-25 2017-10-03 华为技术有限公司 A kind of data center's MESH network and connection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231210A (en) * 2016-03-25 2017-10-03 华为技术有限公司 A kind of data center's MESH network and connection method
CN107231210B (en) * 2016-03-25 2019-03-08 华为技术有限公司 A kind of data center's MESH network and connection method

Similar Documents

Publication Publication Date Title
US6532320B1 (en) Equipments, transpondor and methods for optical fiber transmission
US7542679B2 (en) Optical transmission systems, devices, and method
JP3978168B2 (en) Passive optical network using loopback of multi-wavelength light generated from central office
US6426815B1 (en) WDM ring transmission system having two hubs
US9331811B2 (en) Optical communications networks, optical line terminations and related methods
WO2011130995A1 (en) Optical code division multiple access-passive optical network (ocdma-pon) system, optical distribution network device (odn) and optical line terminal (olt)
WO1998042095A1 (en) Bit-rate transparent wdm optical communication system with remodulators
US7570671B2 (en) Method and apparatus for deploying forward error correction in optical transmission networks and the deployment of photonic integrated circuit (PIC) chips with the same
KR20030070903A (en) Bidirectional wdm optical communication network with data bridging plural optical channels between bidirectional optical waveguides
US20120189301A1 (en) Apparatus and method for operating a wavelength division multiplexing access network
CA2316253C (en) Optical wavelength-division multiplex transmission network device using transceiver having 2-input/2-output optical path switch
US10750256B1 (en) Wavelength conversion for optical path protection
US6928247B2 (en) WDM ring transmission system
US20050259988A1 (en) Bi-directional optical access network
JP4408542B2 (en) Optical system
JP3696090B2 (en) Code-based optical network, method and apparatus
JP2004320486A (en) Optical wavelength division multiplexing network apparatus
US10985841B1 (en) Wavelength division multiplexing wavelength translator
JP3889721B2 (en) Optical wavelength division multiplexing network equipment
WO1999040700A1 (en) Wdm ring having an optical service channel
CA2475858A1 (en) Add/drop node for an optical communications network
KR100303316B1 (en) Optical transmitting system for embodying protection of optical signal between wdm apparatus and optical transmitting equipment
CN1855790B (en) Method and device for reducing and compensating transmission loss of passive optical network of WDM
KR100312414B1 (en) Multiplexer and demultiplexer having differential loss of signal, and optical transmission system using it
JP2005223418A (en) Wavelength router and optical wavelength multiplex transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605