JP2004319518A - Scanning electron microscope device - Google Patents

Scanning electron microscope device Download PDF

Info

Publication number
JP2004319518A
JP2004319518A JP2004214292A JP2004214292A JP2004319518A JP 2004319518 A JP2004319518 A JP 2004319518A JP 2004214292 A JP2004214292 A JP 2004214292A JP 2004214292 A JP2004214292 A JP 2004214292A JP 2004319518 A JP2004319518 A JP 2004319518A
Authority
JP
Japan
Prior art keywords
sample
scanning electron
optical microscope
electron microscope
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004214292A
Other languages
Japanese (ja)
Other versions
JP4004490B2 (en
Inventor
Jirou Toumatsu
治郎 等松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2004214292A priority Critical patent/JP4004490B2/en
Publication of JP2004319518A publication Critical patent/JP2004319518A/en
Application granted granted Critical
Publication of JP4004490B2 publication Critical patent/JP4004490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning electron microscope device enabled to effectively use an inner space of a sample chamber by eliminating an occupied space in the sample chamber, indicating a scanning center position by a laser beam, capable of easily specifying an observation point. <P>SOLUTION: A long-focal-distance optical microscope 19 having a light axis capable of crossing that of the scanning electron microscope 3 on a sample 5 is installed outside the sample chamber 4 fitted to the scanning electron microscope 3. A movement direction of images by the long-focal-distance optical microscope is made to conform with that by the scanning electron microscope, and a laser beam irradiation means 36 is provided for irradiating a laser beam toward the sample by coinciding it with the light axis of the scanning electron microscope halfway from the axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、走査型電子顕微鏡装置、特に観察に於ける視野選択を容易に行うことができる光学顕微鏡を備えた走査型電子顕微鏡装置に関するものである。   The present invention relates to a scanning electron microscope apparatus, and more particularly to a scanning electron microscope apparatus provided with an optical microscope capable of easily selecting a visual field in observation.

従来の光学顕微鏡を併設した走査型電子顕微鏡装置としては、例えば特許文献1に示されるものがある。該走査型電子顕微鏡装置を図11に於いて説明する。   2. Description of the Related Art As a scanning electron microscope apparatus provided with a conventional optical microscope, for example, there is one disclosed in Patent Document 1. The scanning electron microscope device will be described with reference to FIG.

電子線を発する電子銃1、該電子銃1より射出された電子線を試料面に対して走査する走査機構2を具備した鏡筒3aが気密な試料室4の上面に立設されて走査型電子顕微鏡3が構成され、該試料室4の内部には試料5が載置され、移動可能に設けられた試料台6、前記試料5に電子線を走査させることで発生する2次電子を捕捉する2次電子検出器7が収納されている。   An electron gun 1 that emits an electron beam, and a lens barrel 3a having a scanning mechanism 2 that scans the electron beam emitted from the electron gun 1 on the sample surface are erected on the upper surface of an airtight sample chamber 4 to be a scanning type. An electron microscope 3 is configured, a sample 5 is placed inside the sample chamber 4, a sample stage 6 movably provided, and secondary electrons generated by scanning the sample 5 with an electron beam are captured. The secondary electron detector 7 is accommodated.

更に前記試料室4の斜め上方には円筒アダプタ8が設けられ、該円筒アダプタ8にはベローズ10を介して光学顕微鏡9が光軸方向に移動可能に且気密に設けられている。該光学顕微鏡9は図示しない移動機構により光軸方向に移動され、又光学顕微鏡9の光軸は走査型電子顕微鏡の観察位置の中心に合致している。   Further, a cylindrical adapter 8 is provided diagonally above the sample chamber 4, and an optical microscope 9 is provided on the cylindrical adapter 8 via a bellows 10 so as to be movable in the optical axis direction and airtight. The optical microscope 9 is moved in the optical axis direction by a moving mechanism (not shown), and the optical axis of the optical microscope 9 matches the center of the observation position of the scanning electron microscope.

上記走査型電子顕微鏡により試料5の観察を行う場合について説明する。   The case where the sample 5 is observed by the above scanning electron microscope will be described.

図示しない移動機構により光学顕微鏡9を2点鎖線に示す様に移動させ、試料台6を移動させて、光学顕微鏡9により試料5の表面を観察し、走査型電子顕微鏡により観察すべき位置を特定する。観察すべき位置が特定できたら前記光学顕微鏡9を後退させ、該光学顕微鏡9が走査型電子顕微鏡の電子線走査を遮ったり、前記試料5より発生する2次電子が光学顕微鏡9に衝突しない様にする。その後、前記電子銃1から電子線を発生させ、走査機構2により走査し、前記2次電子検出器7により捕捉した2次電子を基に得られる画像を図示しないCRT上に表示し観察していた。   The optical microscope 9 is moved by a moving mechanism (not shown) as shown by a two-dot chain line, the sample stage 6 is moved, the surface of the sample 5 is observed by the optical microscope 9, and the position to be observed is specified by the scanning electron microscope. I do. When the position to be observed can be specified, the optical microscope 9 is retracted so that the optical microscope 9 does not block the electron beam scanning of the scanning electron microscope or the secondary electrons generated from the sample 5 do not collide with the optical microscope 9. To Thereafter, an electron beam is generated from the electron gun 1, scanned by the scanning mechanism 2, and an image obtained based on the secondary electrons captured by the secondary electron detector 7 is displayed and observed on a CRT (not shown). Was.

ところが上記した従来の走査型電子顕微鏡では短焦点の光学顕微鏡の為、試料に光学顕微鏡を近付ける必要があり、光学顕微鏡9が試料室4内に収納される構成であり、光学顕微鏡9の占有空間が試料5近傍迄及び、有効な試料室4の空間が狭められてしまい、試料5を設置する空間、試料5を移動させる距離、或は試料の傾斜が制限され、2次電子、反射電子を検出する検出器を同時に設けることができず、2次電子、反射電子を同時に捕捉し、それぞれの電子に基づく画像を作成し観察に利用するということができなかった。   However, in the above-mentioned conventional scanning electron microscope, since the optical microscope has a short focus, it is necessary to bring the optical microscope close to the sample, and the optical microscope 9 is housed in the sample chamber 4. However, the effective space of the sample chamber 4 is narrowed down to the vicinity of the sample 5, and the space in which the sample 5 is installed, the distance for moving the sample 5, or the inclination of the sample 5 is limited, and secondary electrons and reflected electrons are generated. A detector for detection cannot be provided at the same time, and secondary electrons and reflected electrons cannot be captured at the same time, and an image based on each electron cannot be created and used for observation.

更に、上記従来例では走査型電子顕微鏡3の走査中心位置(電子線が試料面に照射される位置)が特定できないので、観察部位を特定することができなかった。   Furthermore, in the above-mentioned conventional example, since the scanning center position of the scanning electron microscope 3 (the position where the electron beam is irradiated on the sample surface) cannot be specified, the observation site cannot be specified.

特開平4−308639号公報JP-A-4-3088639

本発明は斯かる実情に鑑み、光学顕微鏡の試料室内での占有空間をなくし、試料室の内部空間を有効に利用する様にすると共に、レーザ光線により走査型電子顕微鏡の走査中心位置を示し、観察部位の特定作業を容易にするものである。   In view of such circumstances, the present invention eliminates the space occupied in the sample chamber of the optical microscope, and effectively uses the internal space of the sample chamber, and indicates the scanning center position of the scanning electron microscope with a laser beam. This facilitates the operation of specifying the observation site.

本発明は、走査型電子顕微鏡に設けられた試料室の外に該走査型電子顕微鏡の光軸と試料上で交差可能な光軸を有する長焦点距離光学顕微鏡を設け、長焦点距離光学顕微鏡による画像の移動方向と走査型電子顕微鏡による画像の移動方向とが一致する様に構成し、走査型電子顕微鏡の光軸途中からレーザ光線を走査型電子顕微鏡の光軸に合致させ試料に向かって照射するレーザ光線照射手段を設けた走査型電子顕微鏡装置に係るものである。   The present invention provides a long focal length optical microscope having an optical axis capable of intersecting with the optical axis of the scanning electron microscope on a sample outside a sample chamber provided in the scanning electron microscope. The moving direction of the image coincides with the moving direction of the image by the scanning electron microscope, and a laser beam is aligned with the optical axis of the scanning electron microscope from the middle of the optical axis of the scanning electron microscope and irradiated toward the sample. The present invention relates to a scanning electron microscope apparatus provided with a laser beam irradiation means.

本発明によれば、光学顕微鏡を試料室の外に設け、試料室に光学顕微鏡が占める空間を除去したので、試料室内の有効空間が大幅に増大し、試料台、試料等を配置する場合の制約が緩和され、レーザ光線により走査型電子顕微鏡の走査中心位置が示されるので観察部位の特定作業が容易となる。   According to the present invention, the optical microscope is provided outside the sample chamber, and the space occupied by the optical microscope in the sample chamber is removed, so the effective space in the sample chamber is greatly increased, and the sample table, the sample, etc. The restriction is relaxed, and the laser beam indicates the scanning center position of the scanning electron microscope, so that the operation of specifying the observation site is facilitated.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は第1の実施の形態を示し、図中に於いて図11中で示したものと同様の構成要素には同符号を付してある。   FIG. 1 shows a first embodiment, in which the same components as those shown in FIG. 11 are denoted by the same reference numerals.

試料室4の上面に下端部が試料室4内に突出した鏡筒3aが立設され、該鏡筒3a内部には上方より電子銃1、第1コンデンサレンズ11、第2コンデンサレンズ12、走査コイル13、対物レンズ14が順次配設されている。又、前記鏡筒3aの下端下方には試料ステージ15がX,Y軸方向、回転、傾斜、上下方向の移動機構を介して任意の方向に傾動自在に設けられ、該試料ステージ15の上面に設けられる試料台16には試料5が載置され、該試料ステージ15は前記鏡筒3a下端の直下に位置する。   A column 3a whose lower end protrudes into the sample chamber 4 is provided upright on the upper surface of the sample chamber 4, and the electron gun 1, the first condenser lens 11, the second condenser lens 12, and the scanning are provided inside the lens barrel 3a from above. A coil 13 and an objective lens 14 are sequentially provided. A sample stage 15 is provided below the lower end of the lens barrel 3a so as to be freely tiltable in any direction via a moving mechanism in the X, Y axis directions, rotation, inclination, and vertical direction. The sample 5 is placed on the sample table 16 provided, and the sample stage 15 is located immediately below the lower end of the lens barrel 3a.

前記鏡筒3aの光軸上の所要位置、例えば前記第2コンデンサレンズ12と走査コイル13との間に可動ミラー35を設け、該可動ミラー35に向かってレーザ光線を発するレーザ光線発光手段36を設ける。可動ミラー35は楕円面状のミラーを有し、挿入・引出機構と中心合わせ機構を設けるか、或は電子線を通過させるのに充分な穴を設ける。電子線の照射前に可動ミラー35を挿入し、電子線の光軸と同軸になる様に中心合わせを行う。レーザ光線発光手段36から発せられたレーザ光線は前記可動ミラー35により電子銃1の光軸と同軸になる様に調整されて試料5に向かって反射される。而して、前記可動ミラー35、レーザ光線発光手段36のレーザ光線照射手段により、走査型電子顕微鏡の走査中心位置がレーザ光線により示される。電子線の照射時には、可動ミラー35は引出され、位置合わせされた試料5の走査中心位置に電子線が照射される。或は、可動ミラー35に電子線を通過させるのに充分な穴を設け、挿入・引出機構を設けずに走査型電子顕微鏡の走査中心位置がレーザ光線により示される。尚、可動ミラー35の楕円面状のミラーによって試料5上にレーザ光線が照射される。   A movable mirror 35 is provided at a required position on the optical axis of the lens barrel 3a, for example, between the second condenser lens 12 and the scanning coil 13, and a laser beam emitting means 36 for emitting a laser beam toward the movable mirror 35 is provided. Provide. The movable mirror 35 has an elliptical mirror, and is provided with an insertion / extraction mechanism and a centering mechanism, or provided with a hole sufficient for passing an electron beam. Before the irradiation of the electron beam, the movable mirror 35 is inserted and the center is adjusted so as to be coaxial with the optical axis of the electron beam. The laser beam emitted from the laser beam emitting means 36 is adjusted by the movable mirror 35 so as to be coaxial with the optical axis of the electron gun 1 and is reflected toward the sample 5. The laser beam irradiating means of the movable mirror 35 and the laser beam emitting means 36 indicates the scanning center position of the scanning electron microscope by the laser beam. At the time of irradiation with the electron beam, the movable mirror 35 is pulled out, and the electron beam is irradiated at the scanning center position of the aligned sample 5. Alternatively, the movable mirror 35 is provided with a hole sufficient to allow an electron beam to pass therethrough, and the scanning center position of the scanning electron microscope is indicated by a laser beam without providing an insertion / extraction mechanism. The sample 5 is irradiated with a laser beam by the elliptical mirror of the movable mirror 35.

前記試料室4の側壁には2次電子検出器7が気密貫通して設けられ、2次電子検出器7の2次電子検出部7aは前記試料5の側方に位置する。又、試料室4の他の側壁には反射電子検出器17が気密に貫通して設けられ、該反射電子検出器17の反射電子検出部17aは鏡筒3aより射出される電子線に干渉せず光学顕微鏡の視野を遮らない位置の前記試料5の上方迄延出している。   A secondary electron detector 7 is provided in a side wall of the sample chamber 4 in a gas-tight manner, and a secondary electron detector 7 a of the secondary electron detector 7 is located on a side of the sample 5. A reflected electron detector 17 is provided in the other side wall of the sample chamber 4 in an airtight manner, and the reflected electron detector 17a of the reflected electron detector 17 interferes with the electron beam emitted from the lens barrel 3a. And extends above the sample 5 at a position that does not block the visual field of the optical microscope.

前記試料室4の上角部には、電子線照射時に生ずるX線の漏洩を防止する鉛ガラスで気密に張設された光学顕微鏡取付け窓18が設けられ、該光学顕微鏡取付け窓18には光学顕微鏡19が立設されている。該光学顕微鏡19は焦点距離が長いもの、例えば100mm以上の焦点距離を有するものが用いられ、焦点位置は前記試料5の表面に合致する。又、光学顕微鏡19の視野は試料台16の全域をカバーできる広さを有し、肉眼での観察に近付ける為、15mmφ〜30mmφ程度の領域を最大視野としている。更に、光学顕微鏡19はズーム機構を具備している。 At the upper corner of the sample chamber 4, there is provided an optical microscope mounting window 18 airtightly stretched with lead glass for preventing leakage of X-rays generated during electron beam irradiation. A microscope 19 is provided upright. As the optical microscope 19, one having a long focal length, for example, one having a focal length of 100 mm or more is used, and the focal position coincides with the surface of the sample 5. Also, the visual field of the optical microscope 19 has a size that can cover the entire area of the sample holder 16, since the closer to observation with the naked eye, and a 15mm φ ~30mm φ about a region as the maximum field of view. Further, the optical microscope 19 has a zoom mechanism.

前記光学顕微鏡19の視野は同軸照明系により照明される様になっている。即ち、前記光学顕微鏡19内部にはハーフミラー20が設けられ、該ハーフミラー20に対向して同軸照明ユニット21が連設されている。該同軸照明ユニット21には白熱灯等の光源を有する冷光照明光源22からの照明光がファイバケーブル23を介して導かれ、前記ハーフミラー20により光学顕微鏡19の光軸と一致した方向に反射され、前記試料5を照明する。   The field of view of the optical microscope 19 is illuminated by a coaxial illumination system. That is, a half mirror 20 is provided inside the optical microscope 19, and a coaxial illumination unit 21 is continuously provided to face the half mirror 20. Illumination light from a cold light illumination light source 22 having a light source such as an incandescent lamp is guided to the coaxial illumination unit 21 via a fiber cable 23 and reflected by the half mirror 20 in a direction coinciding with the optical axis of the optical microscope 19. The sample 5 is illuminated.

又、前記光学顕微鏡19の接眼レンズ側にはカラーCCDカメラ24、テレビカメラ等の撮像手段が設けられ、光学顕微鏡19で得られた像は前記カラーCCDカメラ24で撮像され、更に信号化され、カラーモニタ25で画像化されると共に、画像処理装置26に入力される。該画像処理装置26は画像記憶回路(図示せず)を有し、前記光学顕微鏡19で得られる画像を記憶できる様になっている。従って、カラーモニタ25には記憶した過去の画像を適宜表示できる。   An image pickup means such as a color CCD camera 24 and a television camera is provided on the eyepiece side of the optical microscope 19, and an image obtained by the optical microscope 19 is picked up by the color CCD camera 24 and further signalized. The image is formed on the color monitor 25 and input to the image processing device 26. The image processing device 26 has an image storage circuit (not shown), and can store an image obtained by the optical microscope 19. Therefore, the stored past image can be appropriately displayed on the color monitor 25.

前記2次電子検出器7、反射電子検出器17はスイッチング回路27を介して信号増幅器28に接続され、前記2次電子検出器7、反射電子検出器17からの信号は前記信号増幅器28、前記画像処理装置26を介してカラーモニタ25に及びCRT29等の映像表示手段に入力される。該CRT29の走査回路30は前記走査コイル13も駆動し、前記走査コイル13の走査に同期してCRT29の走査を行う構成となっている。   The secondary electron detector 7 and the backscattered electron detector 17 are connected to a signal amplifier 28 via a switching circuit 27. The signals from the secondary electron detector 7 and the backscattered electron detector 17 are transmitted to the signal amplifier 28, The image data is input to the color monitor 25 and the image display means such as the CRT 29 via the image processing device 26. The scanning circuit 30 of the CRT 29 also drives the scanning coil 13 and scans the CRT 29 in synchronization with the scanning of the scanning coil 13.

ここで、光学顕微鏡19による試料5の位置設定作業で、走査型電子顕微鏡3の画像上での移動方向と、光学顕微鏡19で得られる画像の移動方向が一致することが作業をやり易くする上で重要である。   Here, in the work of setting the position of the sample 5 by the optical microscope 19, the fact that the moving direction on the image of the scanning electron microscope 3 and the moving direction of the image obtained by the optical microscope 19 coincide with each other facilitates the work. Is important.

走査型電子顕微鏡の画像上での移動方向と、光学顕微鏡による移動方向とを一致させる為に、下記の条件(1)及び(2)を満す様に構成される。   In order to make the moving direction on the image of the scanning electron microscope coincide with the moving direction of the optical microscope, the following conditions (1) and (2) are satisfied.

光学顕微鏡の条件(1)
図2により、光学顕微鏡像と走査型電子顕微鏡像との関係を説明する。
Optical microscope conditions (1)
The relationship between the optical microscope image and the scanning electron microscope image will be described with reference to FIG.

走査型電子顕微鏡の光軸(走査中心)O1 と光学顕微鏡の光軸O2 との交点をAとし、A点に試料表面を合わせた時の走査型電子顕微鏡の作動距離をD1 とする。光学顕微鏡の焦点距離D2 はA点に焦点が合うように設定されている。走査型電子顕微鏡像は試料を上方つまり電子銃側より見た画像となり、一方光学顕微鏡像は図2に於ける試料表面と光学顕微鏡の光軸O2 とがなす角をθとすると、斜め上方θ角度からの観察像となる。双方の画像を近付ける為には構造的に可能な限りθを大きくする必要がある。然し角度θは対物レンズの形状、作動距離D1 、光学顕微鏡の最大視野サイズで制限され、今回の実施の形態では30°の値を採用した。   Let A be the intersection of the optical axis (scanning center) O1 of the scanning electron microscope and the optical axis O2 of the optical microscope, and let D1 be the working distance of the scanning electron microscope when the sample surface is aligned with point A. The focal length D2 of the optical microscope is set so that point A is focused. The scanning electron microscope image is an image when the sample is viewed from above, that is, from the electron gun side. On the other hand, the optical microscope image is obliquely upward θ when the angle between the sample surface and the optical axis O2 of the optical microscope in FIG. It becomes an observation image from an angle. To approach both images, it is necessary to make θ as large as possible structurally. However, the angle .theta. Is limited by the shape of the objective lens, the working distance D1, and the maximum visual field size of the optical microscope. In this embodiment, a value of 30.degree. Was adopted.

光学顕微鏡の条件(2)
光学顕微鏡の取付位置は、図2の条件を施せばどこでもよいかというと、そうではなく、以下の制約を満たす為には、所定の取付位置が決定される。
Optical microscope conditions (2)
The mounting position of the optical microscope may be anywhere if the conditions shown in FIG. 2 are applied. Rather, a predetermined mounting position is determined to satisfy the following restrictions.

前述の通り、双方の観察方向が異なる為、光学顕微鏡像と走査型電子顕微鏡像との画像の完全な一致は不可能であるが、少なくとも、次の要件を満足することが望ましい。即ち、1)画像の天地、左右は一致させること、2)走査型電子顕微鏡試料装置の傾斜機能を用い、走査型電子顕微鏡での傾斜観察条件に於いても光学顕微鏡像が得られること、3)試料の移動方向と画像の移動方向との関係が光学顕微鏡像と走査型電子顕微鏡像とで一致していることである。   As described above, since the two observation directions are different from each other, it is impossible to completely match the images of the optical microscope image and the scanning electron microscope image, but it is desirable that at least the following requirements be satisfied. That is, 1) the top and bottom of the image, the left and right should be matched, 2) the optical microscope image can be obtained even under the tilt observation condition with the scanning electron microscope using the tilt function of the scanning electron microscope sample device, 3 ) The relationship between the moving direction of the sample and the moving direction of the image is the same between the optical microscope image and the scanning electron microscope image.

この状態を図3により説明する。図3は試料室を上方より見た図であり、図4は試料部の断面を示す。   This state will be described with reference to FIG. FIG. 3 is a view of the sample chamber as viewed from above, and FIG. 4 shows a cross section of the sample section.

図3の様に試料の移動方向をX+ ,X- ,Y+ ,Y- とした場合、走査型電子顕微鏡の画像は図5の様に設定される。この為、光学顕微鏡に於いては走査型電子顕微鏡像と同様の天地左右の関係を得るには、図3中、走査型電子顕微鏡走査中心(A)を通る試料Y移動軸上に、光学顕微鏡を設定する必要があることが解る。而してY移動軸上では、Y+ 側とY- 側のいずれかに光学顕微鏡装着が可能である。   When the moving direction of the sample is X +, X-, Y +, Y- as shown in FIG. 3, the image of the scanning electron microscope is set as shown in FIG. For this reason, in the optical microscope, in order to obtain the same vertical and horizontal relationship as the scanning electron microscope image, in FIG. 3, the optical microscope is placed on the sample Y moving axis passing through the scanning electron microscope scanning center (A). It turns out that it is necessary to set. Thus, on the Y movement axis, an optical microscope can be mounted on either the Y + side or the Y- side.

先ず、Y- 側に光学顕微鏡を装着した場合、光学顕微鏡画像は図6の様になり、又試料移動に対する画像の移動方向も走査型電子顕微鏡と一致する。但し、走査型電子顕微鏡の試料傾斜機能は、+傾斜の際にY+ 側が下がり、Y- 側が上昇する。この為、光学顕微鏡をY- 側に装着する場合、試料傾斜によって傾斜角が図2に於ける角θを越えると試料表面の光学顕微鏡像が得られない。従って、図3に於けるY- 側への装着は好ましくない。   First, when the optical microscope is mounted on the Y- side, the optical microscope image is as shown in FIG. 6, and the moving direction of the image with respect to the movement of the sample also matches the scanning electron microscope. However, in the sample tilting function of the scanning electron microscope, the Y + side is lowered and the Y− side is raised when the tilt is +. For this reason, when the optical microscope is mounted on the Y- side, an optical microscope image of the sample surface cannot be obtained if the tilt angle exceeds the angle θ in FIG. 2 due to the sample tilt. Therefore, mounting on the Y- side in FIG. 3 is not preferable.

次に、Y+ 側の位置に光学顕微鏡を装着する場合、光学顕微鏡像は図7に示す様に走査型電子顕微鏡像の天地左右がすべて逆転したものとなるが、前述の図3に於けるY- 側に装着の場合の様な試料傾斜による問題はなくなり、むしろ試料傾斜により図2に於ける角θの値を可変できるようになり、制約条件の2)を満足させることができる。   Next, when an optical microscope is mounted on the Y + side position, the optical microscope image is obtained by inverting the top, bottom, left and right of the scanning electron microscope image as shown in FIG. The problem caused by the sample inclination as in the case of mounting on the Y− side is eliminated, but rather the value of the angle θ in FIG. 2 can be varied by the sample inclination, and the constraint 2) can be satisfied.

次に前記制約条件1)及び3)を満足させるには、以下の2つの方法による。   Next, to satisfy the constraints 1) and 3), the following two methods are used.

(A)CCDカメラの回転により一致させる
CCDカメラを180°回転させて取付け、光学顕微鏡像の天地左右を走査型電子顕微鏡像に一致させることができる。
(B)走査型電子顕微鏡の走査軸を回転させる
走査型電子顕微鏡のもつ走査軸回転機能(スキャンローテーション)により、180°走査軸を回転させ、光学顕微鏡像と合わせる。
(A) Matching by Rotating CCD Camera The CCD camera can be mounted by rotating it by 180 ° so that the left and right sides of the optical microscope image can be matched with the scanning electron microscope image.
(B) Rotating the Scanning Axis of the Scanning Electron Microscope The scanning axis rotating function (scan rotation) of the scanning electron microscope rotates the 180 ° scanning axis to match the optical microscope image.

上記2方法のいずれでも、制約条件1)及び3)を満足させることができる。   Either of the above two methods can satisfy the constraints 1) and 3).

而して、本実施の形態では、図2で示す位置に光学顕微鏡を取付け、上記(A)(B)の方法で光学顕微鏡の画像の天地左右と、試料の移動方向を一致させた。   In the present embodiment, the optical microscope is mounted at the position shown in FIG. 2, and the top and bottom sides of the image of the optical microscope are matched with the moving direction of the sample by the methods (A) and (B).

以下、作動を説明する。   Hereinafter, the operation will be described.

先ず、光学顕微鏡19を低倍率として試料5の観察位置を特定する。次に、光学顕微鏡19をズームアップして、観察部位の細部を正確に走査型電子顕微鏡による観察位置である画面の中心に試料5の位置を設定する。光学顕微鏡19による試料5の観察位置設定に於いて、前記走査コイル13上部からのレーザ光線が走査型電子顕微鏡3の走査中心位置を照射しているので光学顕微鏡19による部位設定は極めて簡単で正確となる。   First, the observation position of the sample 5 is specified by setting the optical microscope 19 to a low magnification. Next, the optical microscope 19 is zoomed up to set the position of the sample 5 at the center of the screen, which is the observation position of the observation site by the scanning electron microscope, accurately. In setting the observation position of the sample 5 by the optical microscope 19, since the laser beam from above the scanning coil 13 irradiates the scanning center position of the scanning electron microscope 3, the setting of the site by the optical microscope 19 is extremely simple and accurate. It becomes.

尚、光学顕微鏡による像観察の為の照明光照射中は走査型電子顕微鏡(SEM)による像観察はできない。これは、走査型電子顕微鏡像の為の検出器に内蔵されている光電子増倍管(PMT)が光学顕微鏡用照明光を検出してしまい、画像表示不能となる為である。従って、光学顕微鏡像と走査型電子顕微鏡像を同時に表示、観察するには、いずれかの画像の一方を画像処理装置26を介しての記憶像とすることで可能となる。   During illumination light irradiation for image observation with an optical microscope, image observation with a scanning electron microscope (SEM) cannot be performed. This is because the photomultiplier tube (PMT) built in the detector for the scanning electron microscope image detects the illumination light for the optical microscope, and the image cannot be displayed. Therefore, simultaneous display and observation of the optical microscope image and the scanning electron microscope image can be achieved by using one of the images as a stored image via the image processing device 26.

次に、走査型電子顕微鏡による観察について説明する。   Next, observation with a scanning electron microscope will be described.

電子銃1より放出された電子線を、前記第1コンデンサレンズ11、第2コンデンサレンズ12で縮小して鋭い電子プロープと成し、該電子プロープを前記対物レンズ14により試料5の表面に収斂させ、照射すると同時に、前記走査コイル13により試料面上を走査する。この時試料表面より放出される2次電子又は反射電子を前記2次電子検出器7又は反射電子検出器17により捕捉して電気信号に変換し、更に増幅する。   The electron beam emitted from the electron gun 1 is reduced by the first condenser lens 11 and the second condenser lens 12 to form a sharp electron probe, and the electron probe is converged on the surface of the sample 5 by the objective lens 14. At the same time, irradiation is performed on the sample surface by the scanning coil 13. At this time, secondary electrons or reflected electrons emitted from the sample surface are captured by the secondary electron detector 7 or the reflected electron detector 17, converted into an electric signal, and further amplified.

前記2次電子検出器7、反射電子検出器17からの信号は前記スイッチング回路27により選択されて信号増幅器28に入力される。試料5の凹凸等の情報を得る場合には主に2次電子検出器7を前記信号増幅器28に接続し、試料の凹凸情報の他、組成、結晶性等の情報を得る場合は反射電子検出器17を前記信号増幅器28に接続する。   Signals from the secondary electron detector 7 and the backscattered electron detector 17 are selected by the switching circuit 27 and input to a signal amplifier 28. The secondary electron detector 7 is mainly connected to the signal amplifier 28 when information on the unevenness of the sample 5 is obtained, and the reflected electron detection is performed when information on the composition, crystallinity, etc. is obtained in addition to the unevenness information of the sample. The device 17 is connected to the signal amplifier 28.

前記信号増幅器28からの信号は前記CRT29に入力され、該CRT29は前記走査回路30により前記走査コイル13と同期駆動され画像を形成する。   A signal from the signal amplifier 28 is input to the CRT 29. The CRT 29 is driven by the scanning circuit 30 in synchronization with the scanning coil 13 to form an image.

而して、観察条件に応じて前記スイッチング回路27により、2次電子検出器7又は反射電子検出器17かの検出器の選択をし、光学顕微鏡19で特定した部位を走査型電子顕微鏡により走査し、走査結果を前記CRT29により観察することができる。   The switching circuit 27 selects the secondary electron detector 7 or the backscattered electron detector 17 according to the observation conditions, and scans the part specified by the optical microscope 19 with a scanning electron microscope. Then, the scanning result can be observed by the CRT 29.

図8により第2の実施の形態を説明する。   The second embodiment will be described with reference to FIG.

光学顕微鏡取付け窓18を垂直に設け、該光学顕微鏡取付け窓18に対して上下方向に摺動自在に3角スライドブロック31を設け、該3角スライドブロック31に光学顕微鏡19を設け、該光学顕微鏡19が前記3角スライドブロック31と共に上下方向に移動可能とする。尚、光学顕微鏡19を移動させた時、真空が破れることのない様充分大きなスライド面が形成されている。   The optical microscope mounting window 18 is provided vertically, a triangular slide block 31 is provided so as to be vertically slidable with respect to the optical microscope mounting window 18, and the optical microscope 19 is provided on the triangular slide block 31. 19 is movable in the vertical direction together with the triangular slide block 31. A sufficiently large slide surface is formed so that the vacuum is not broken when the optical microscope 19 is moved.

而して、光学顕微鏡19を上下方向、光学顕微鏡19の光軸と交差する方向に移動させることで、光学顕微鏡19の光軸と前記走査型電子顕微鏡の光軸との交点がAからA′に移動する。従って、試料の厚みが変化し走査型電子顕微鏡の作動距離D1 が変化しても容易に対応させることができる。尚、光学顕微鏡の移動方向は図8の様に光軸に対して斜めでも、或は直角方向であってもよい。   By moving the optical microscope 19 in the vertical direction and in a direction intersecting the optical axis of the optical microscope 19, the intersection of the optical axis of the optical microscope 19 and the optical axis of the scanning electron microscope is changed from A to A '. Go to Accordingly, even if the thickness of the sample changes and the working distance D1 of the scanning electron microscope changes, it can be easily coped with. The moving direction of the optical microscope may be oblique to the optical axis as shown in FIG. 8, or may be a direction perpendicular to the optical axis.

図9により第3の実施の形態を説明する。   A third embodiment will be described with reference to FIG.

交点Aを移動させる他の機構として、前記試料室4の角部に凸面座の光学顕微鏡取付け窓18を設け、該光学顕微鏡取付け窓18に該光学顕微鏡取付け窓18の凸面に摺動自在に契合する凹面スライド座32を設け、該凹面スライド座32に光学顕微鏡19を設け、該光学顕微鏡19を傾動させることで光学顕微鏡19の光軸と交差する方向に移動させ、前記交点Aを上下方向に移動させる様にしてもよい。   As another mechanism for moving the intersection A, an optical microscope mounting window 18 having a convex seat is provided at a corner of the sample chamber 4, and the optical microscope mounting window 18 is slidably engaged with the convex surface of the optical microscope mounting window 18. A concave slide seat 32 to be provided, an optical microscope 19 is provided on the concave slide seat 32, and the optical microscope 19 is tilted to move in a direction intersecting the optical axis of the optical microscope 19, and the intersection A is moved in the vertical direction. You may make it move.

更に交点Aを移動させる他の機構として、図10に示す様に光学顕微鏡取付け窓18を凹面に形成し、該光学顕微鏡取付け窓18に摺動自在に契合する凸面スライド座33を設けてもよい。   Further, as another mechanism for moving the intersection point A, as shown in FIG. 10, the optical microscope mounting window 18 may be formed in a concave surface, and a convex slide seat 33 which slidably engages the optical microscope mounting window 18 may be provided. .

本発明の一実施の形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of the present invention. 該実施の形態に於ける走査型電子顕微鏡と光学顕微鏡との位置関係を示す説明図である。FIG. 2 is an explanatory diagram showing a positional relationship between a scanning electron microscope and an optical microscope in the embodiment. 試料の移動方向と光学顕微鏡の画像の移動方向の説明図である。FIG. 3 is an explanatory diagram of a moving direction of a sample and a moving direction of an image of an optical microscope. 試料と試料台との関係を示す図である。It is a figure showing the relation between a sample and a sample stand. 走査型電子顕微鏡像に関する説明図である。It is explanatory drawing regarding a scanning electron microscope image. 光学顕微鏡像に関する説明図である。It is explanatory drawing regarding an optical microscope image. 光学顕微鏡像に関する説明図である。It is explanatory drawing regarding an optical microscope image. 本発明の他の実施の形態を示す説明図である。It is an explanatory view showing another embodiment of the present invention. 本発明の他の実施の形態を示す説明図である。It is an explanatory view showing another embodiment of the present invention. 本発明の他の実施の形態を示す説明図である。It is an explanatory view showing another embodiment of the present invention. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example.

符号の説明Explanation of reference numerals

1 電子銃
3 走査型電子顕微鏡
4 試料室
5 試料
7 2次電子検出器
16 試料台
17 反射電子検出器
19 光学顕微鏡
21 同軸照明ユニット
22 冷光照明光源
23 ファイバケーブル
24 カラーCCDカメラ
25 カラーモニタ
26 画像処理装置
27 スイッチング回路
29 CRT
31 3角スライドブロック
32 凹面スライド座
35 可動ミラー
36 レーザ光線発光手段
REFERENCE SIGNS LIST 1 electron gun 3 scanning electron microscope 4 sample chamber 5 sample 7 secondary electron detector 16 sample table 17 backscattered electron detector 19 optical microscope 21 coaxial illumination unit 22 cold light illumination light source 23 fiber cable 24 color CCD camera 25 color monitor 26 image Processing unit 27 Switching circuit 29 CRT
31 Triangular slide block 32 Concave slide seat 35 Movable mirror 36 Laser beam emitting means

Claims (1)

走査型電子顕微鏡に設けられた試料室の外に該走査型電子顕微鏡の光軸と試料上で交差可能な光軸を有する長焦点距離光学顕微鏡を設け、長焦点距離光学顕微鏡による画像の移動方向と走査型電子顕微鏡による画像の移動方向とが一致する様に構成し、走査型電子顕微鏡の光軸途中からレーザ光線を走査型電子顕微鏡の光軸に合致させ試料に向かって照射するレーザ光線照射手段を設けたことを特徴とする走査型電子顕微鏡装置。   A long focal length optical microscope having an optical axis that can cross the optical axis of the scanning electron microscope on the sample is provided outside a sample chamber provided in the scanning electron microscope, and a moving direction of an image by the long focal length optical microscope is provided. And the direction of movement of the image by the scanning electron microscope coincides, and the laser beam is irradiated from the middle of the optical axis of the scanning electron microscope to the optical axis of the scanning electron microscope and irradiated toward the sample. A scanning electron microscope apparatus comprising means.
JP2004214292A 2004-07-22 2004-07-22 Scanning electron microscope Expired - Lifetime JP4004490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214292A JP4004490B2 (en) 2004-07-22 2004-07-22 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214292A JP4004490B2 (en) 2004-07-22 2004-07-22 Scanning electron microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7097802A Division JPH08273578A (en) 1995-03-30 1995-03-30 Scanning electron microscope apparatus

Publications (2)

Publication Number Publication Date
JP2004319518A true JP2004319518A (en) 2004-11-11
JP4004490B2 JP4004490B2 (en) 2007-11-07

Family

ID=33475813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214292A Expired - Lifetime JP4004490B2 (en) 2004-07-22 2004-07-22 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP4004490B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979926A2 (en) * 2006-02-03 2008-10-15 Carl Zeiss NTS GmbH Focusing and positioning auxiliary device for a particle-optical scanning microscope
JP2012015029A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnifying observation apparatus
JP2012015028A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnifying observation apparatus
US8351115B2 (en) 2008-10-15 2013-01-08 Kabushiki Kaisha Topcon Complex type microscopic device
DE112010005353T5 (en) 2010-03-05 2013-01-24 Hitachi High-Technologies Corporation Method for superimposing and displaying an electron optical image and an optical image
WO2013035866A1 (en) * 2011-09-09 2013-03-14 独立行政法人科学技術振興機構 Electron-microscopic examination method for examining biosample while keeping said biosample unchanged, and composition for evaporation inhibition under vacuum, scanning electron microscope, and transmission electron microscope for use in said method
CN109745006A (en) * 2019-01-31 2019-05-14 北京超维景生物科技有限公司 Separate type adsorbent equipment, microscope detection device and laser scanning microscope
WO2024051009A1 (en) * 2022-09-06 2024-03-14 纳克微束(北京)有限公司 Three-dimensional imaging system based on multiple scanning

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525571A (en) * 2006-02-03 2009-07-09 カール・ツァイス・エヌティーエス・ゲーエムベーハー Focusing and positioning aid for particle optical scanning microscope
US7888643B2 (en) 2006-02-03 2011-02-15 Carl Zeiss Nts Gmbh Focusing and positioning device for a particle-optical raster microscope
EP1979926A2 (en) * 2006-02-03 2008-10-15 Carl Zeiss NTS GmbH Focusing and positioning auxiliary device for a particle-optical scanning microscope
US8351115B2 (en) 2008-10-15 2013-01-08 Kabushiki Kaisha Topcon Complex type microscopic device
DE112010005353T5 (en) 2010-03-05 2013-01-24 Hitachi High-Technologies Corporation Method for superimposing and displaying an electron optical image and an optical image
JP2012015029A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnifying observation apparatus
JP2012015028A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnifying observation apparatus
WO2013035866A1 (en) * 2011-09-09 2013-03-14 独立行政法人科学技術振興機構 Electron-microscopic examination method for examining biosample while keeping said biosample unchanged, and composition for evaporation inhibition under vacuum, scanning electron microscope, and transmission electron microscope for use in said method
JPWO2013035866A1 (en) * 2011-09-09 2015-03-23 独立行政法人科学技術振興機構 Observation method using an electron microscope for observing a biological sample as it is, a composition for suppressing evaporation under vacuum, a scanning electron microscope and a transmission electron microscope
US9557253B2 (en) 2011-09-09 2017-01-31 Japan Science And Technology Agency Electron microscopic observation method for observing biological sample in shape as it is, and composition for evaporation suppression under vacuum, scanning electron microscope, and transmission electron microscope used in the method
CN109745006A (en) * 2019-01-31 2019-05-14 北京超维景生物科技有限公司 Separate type adsorbent equipment, microscope detection device and laser scanning microscope
CN109745006B (en) * 2019-01-31 2024-03-15 北京超维景生物科技有限公司 Separation type adsorption device, microscope detection device and laser scanning microscope
WO2024051009A1 (en) * 2022-09-06 2024-03-14 纳克微束(北京)有限公司 Three-dimensional imaging system based on multiple scanning

Also Published As

Publication number Publication date
JP4004490B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
CN101241087B (en) Apparatus for observing a sample with a particle beam and an optical microscope
US7285776B2 (en) Scanning transmission electron microscope and electron energy loss spectroscopy
JP5205306B2 (en) Scanning electron microscope
US7888643B2 (en) Focusing and positioning device for a particle-optical raster microscope
JP6462188B2 (en) Charged particle beam equipment
EP1882967B1 (en) Scanning examination apparatus
JP4004490B2 (en) Scanning electron microscope
JPH08273578A (en) Scanning electron microscope apparatus
US6800853B2 (en) Electron microscope and method of photographing TEM images
US6031230A (en) Reflected electron detector and a scanning electron microscope device using it
JP4574758B2 (en) Microscope image observation device
US6573502B2 (en) Combined electron microscope
JP2007052972A (en) Charged particle beam device system
JP4456962B2 (en) SAMPLE DISPLAY DEVICE, SAMPLE DISPLAY DEVICE OPERATION METHOD, SAMPLE DISPLAY DEVICE OPERATION PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM OR RECORDED DEVICE
JP2002122552A (en) Defect inspection device and method
JP3573508B2 (en) Confocal scanning optical microscope
JP2005173561A (en) Color image acquisition method and confocal laser microscope
JP6255305B2 (en) Optical microscope
JP3270627B2 (en) Display method of sample height in electron beam microanalyzer
JPH0756788B2 (en) electronic microscope
JP2002279926A (en) Transmission type electron microscope
JP2011076960A (en) Device for recognition of thin-film sample position in electron microscope
JP2913807B2 (en) Electron beam irradiation analyzer
JP2003207469A (en) Electron probe microanalyzer
WO2019215861A1 (en) Imaging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term