JP2004319113A - Hollow fiber membrane type fuel cell - Google Patents

Hollow fiber membrane type fuel cell Download PDF

Info

Publication number
JP2004319113A
JP2004319113A JP2003107712A JP2003107712A JP2004319113A JP 2004319113 A JP2004319113 A JP 2004319113A JP 2003107712 A JP2003107712 A JP 2003107712A JP 2003107712 A JP2003107712 A JP 2003107712A JP 2004319113 A JP2004319113 A JP 2004319113A
Authority
JP
Japan
Prior art keywords
hollow fiber
electrode
fiber membrane
polymer electrolyte
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107712A
Other languages
Japanese (ja)
Inventor
Shiro Tanaka
詩郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003107712A priority Critical patent/JP2004319113A/en
Publication of JP2004319113A publication Critical patent/JP2004319113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure insulation among electrodes formed on both inside and outside surfaces of a hollow filamentous polymer electrolyte membrane. <P>SOLUTION: Electrode catalyst 3 used as an air electrode, and electrode catalyst 5 used as a hydrogen electrode are attached to the inside surface of a hollow fiber membrane 1 and the outside surface thereof, respectively. An electric conductor 9 connected to the electrode catalyst 3 and an electric conductor 7 connected to the electrode catalyst 5 are disposed at one end of the fiber membrane 1 and at the other end of the fiber membrane 1, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、中空糸状高分子電解質膜の内外両面のうち一方に燃料極を、他方に酸化剤極をそれぞれ設けた中空糸膜型燃料電池に関する。
【0002】
【従来の技術】
従来の中空糸膜型燃料電池は、例えば特許文献1に記載されているように、中空糸状高分子電解質膜の内外両面のうち一方に燃料極を、他方に酸化剤極をそれぞれ設け、これら各電極を、中空糸状高分子電解質膜の一方の端部に引き出している。
【0003】
【特許文献1】
特開平9−223507号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術では、両電極が互いに近接し、電極間の絶縁の確保が難しいものとなっている。
【0005】
そこで、この発明は、中空糸状高分子電解質膜の内外両面に設けた各電極相互の絶縁を確実なものとすることを目的としている。
【0006】
【課題を解決するための手段】
前記目的を達成するために、この発明は、中空糸状高分子電解質膜の内外両面のうち一方に燃料極を、他方に酸化剤極をそれぞれ設けた中空糸膜型燃料電池において、前記中空糸状高分子電解質膜の一方の端部に設けた導電体を、前記燃料極と酸化剤極とのいずれか一方の電極に接続し、前記中空糸状高分子電解質膜の他方の端部に設けた導電体を、前記燃料極と酸化剤極とのいずれか他方の電極に接続した構成としてある。
【0007】
【発明の効果】
この発明によれば、中空糸状高分子電解質膜の内外両面に設けた燃料極および酸化剤極にそれぞれ接続する各導電体が、中空糸状高分子電解質膜の互いに逆の端部に位置することになるので、各電極相互間の絶縁を確実なものとすることができる。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0009】
図1は、この発明の一実施形態による中空糸膜型燃料電池の側面断面図、図2は、同平面断面図である。
【0010】
中空糸状高分子電解質膜としての中空糸膜1は、パーフルオロスルホン酸系の高分子電解質膜であり、その内外両面に電極触媒3,5をそれぞれ塗布している。ここでは、内面の電極触媒3を酸化剤極としての空気極、外面の電極触媒5を燃料極としての水素極としているが、空気極を外面に、水素極を内面にそれぞれ設けてもよい。
【0011】
各電極触媒3,5は、中空糸膜1の図1中で上下両端手前まで塗布し、この上下両端には、導電体7,9をそれぞれ設ける。
【0012】
図1中で上部の導電体7は、外側の電極触媒5に電気的に接続するもので、電極触媒5に接続して中空糸膜1の外周面に位置する円筒部7aと、中空糸膜1の端面に位置する環状の円盤部7bとを有する。一方、図1中で下部の導電体9は、内側の電極触媒3に電気的に接続するもので、電極触媒3に接続して中空糸膜1の内周面に位置する円筒部9aと、中空糸膜1の端面に位置する環状の円盤部9bとを有する。
【0013】
このように、導電体7,9を中空糸膜1の互いに逆の端部に設けてあるので、両導電体7,9が接触してショートすることなく、集電することができ、各電極触媒3,5相互間の絶縁を確実なものとすることができる。また、この導電体7,9は、円盤部7b,9bによって中空糸膜1の端面を覆っているため、中空糸膜1の内外の各電極触媒3,5からの集電が容易になる。
【0014】
以下、図3〜図8は、図1,図2に示した一つの中空糸膜1を備える電池単体11を複数用い、これら複数の電池単体11相互を結合して組電池化する方法を順次示している。
【0015】
まず図3において、互いに隣り合う電池単体11相互を、導電体7,9の位置が、中空糸膜1の互いの逆の端部となるよう配置する。すなわち、図3中で右側の電池単体11は、図1に示した電池単体11と同様に、図中で上部に導電体7が、同下部に導電体9がそれぞれ位置するよう配置する。一方、図3中で左側の電体単体11は、図中で上部に導電体9が、同下部に導電体7がそれぞれ位置するよう配置する。
【0016】
各導電体7,9の円盤部7b,9b上には、各導電体7,9に電気的に接続するメッシュ状の導電体13,15を、中空糸膜1の中空内部を覆うようにそれぞれ設ける。また、互いに隣接する電池単体11相互間で、導電体7およびメッシュ状の導電体13と、導電体9およびメッシュ状の導電体15とを、導電体シート17によって接続する。これにより、中空糸膜1の内側の電極触媒3と、隣の中空糸膜1の外側の電極触媒5とを直列に連結することになる。
【0017】
メッシュ状の導電体13,15は、例えばステンレスメッシュなどでよい。このメッシュ状の導電体13,15は、電流を通すとともに空気も通すので、空気の流れを阻害することなく、中空糸膜1の内外から容易に集電が可能となる。また、導電体シート17は、金属箔などの薄型導電体がよい。薄型導電体とすることで、後述する複数の電池単体11を渦巻き状に形成する際の作業性が向上する。
【0018】
また、上記した導電体シート17は、中空糸膜1の端部側から見た平面図である図4および、側面断面図である図5に示すように、絶縁体シート21に固定されており、絶縁体シート21は、中空糸膜1の両端部にて電池単体11の配列方向に沿って延長して設けてある。
【0019】
そして、この導電体シート17に固定してある絶縁体シート21に、メッシュ状の導電体13,15を端部に備えた中空糸膜1を、導電体からなる中空糸固定治具19によって固定する。
【0020】
上記した中空糸固定治具19によって、中空糸膜1の内外からの電流が導電体シート17に導かれるとともに、中空糸膜1を固定し、それぞれの中空糸膜1相互が接触、ショートすることを防ぐ。絶縁体シート21は、導電体シート17を固定するため、また導電体シート17同士の接触を防ぐものである。
【0021】
前記した中空糸固定治具19によって、中空糸膜1およびメッシュ状の導電体13,15を、導電体シート17および絶縁体シート21に固定した後、これらを図5に示すように、メッシュ状の絶縁体23に固定する。メッシュ状の絶縁体23は、図5中で上下両端を、絶縁体シート21の側縁に固定するが、この固定には、例えば樹脂製の接着剤を使用する。
【0022】
メッシュ状の絶縁体23は、例えば耐熱性の樹脂製であり、中空糸膜1同士の接触を避けるとともに、メッシュ構造であるため水素ガスの流れを阻害することがない。
【0023】
図6は、図5のように複数の電池単体11にメッシュ状の絶縁体23を付加したものを、渦巻き状に巻き付けて中空糸膜モジュール25を形成したものである。この際、中空糸膜1を備えた単位電池11が、絶縁体シート21およびメッシュ状の絶縁体23に対して外側になるように巻き付けることで、渦巻き状とした各層相互間の単位電池11同士の接触を回避できる。
【0024】
また、上記した中空糸膜モジュール25を形成する際には、最外周部に単位電池11が露出しないように、絶縁体シート21およびメッシュ状の絶縁体23に単位電池11を設けない部位を設定し、この部位を少なくとも1周分巻き付けるようにする。
【0025】
図7は、上記図6のようにして巻き付けて構成した中空糸膜モジュール25を、円筒状のケース27の中に収容した状態を示す。ここで、ケース27は、その両端27aが絶縁体シート21に対して離間した位置にあり、このケース両端27aと絶縁体シート21との間の中空糸膜モジュール25の外周に、ポッディング(樹脂乗せ加工)による樹脂材29を設けてこれら相互を固定し、かつケース端部27aと絶縁体シート21との間を密閉する。
【0026】
上記した樹脂材29は、中空糸膜モジュール25を固定するとともに、中空糸膜モジュール25の外部を経て中空糸膜1の外部に流入する水素と、中空糸膜1の内部に流入する空気とのそれぞれの流路を分離する機能を有する。
【0027】
ここで、中空糸膜1における電極触媒3,5は、前記図1に示したように、中空糸膜1の両端部の手前にまでしか塗布していないが、このような構成とすることで、ポッディングによる樹脂材29の水素と酸素との気密性を保ち、また発電時の発熱から樹脂材29を守ることができる。
【0028】
また、上記したケース27の樹脂材29近傍には、円周方向に沿って複数のガス連通孔27b,27cをそれぞれ設けてある。
【0029】
そして、図8に示すように、この連通孔27cおよび樹脂材29を同時に覆うように円筒状の内側外管31を設けるとともに、連通孔27bおよび樹脂材29を同時に覆うように円筒状の内側外管33を設ける。さらに、一方の内側外管31には水素導入管35を、他方の内側外管33には水素排出管37をそれぞれ接続する。
【0030】
水素導入管35から導入した水素は、連通孔27cから中空糸膜モジュール25における中空糸膜1の外部に流入する。このとき、渦巻き状に形成してある中空糸膜モジュール25は、渦巻き状の各層間を、メッシュ状の絶縁体23で隔てているので、各層における単位電池11への水素の供給は確実になされる。中空糸膜1での発電に消費された水素は、連通孔27bからケース27の外部へ流出し、水素排出管37から排出される。
【0031】
内側外管31,33のそれぞれの軸方向外側には、中空糸膜モジュール25の端部における絶縁体シート21を覆う外側外管39,41を設けてある。この外側外管39,41と内側外管31,33との間は密閉してある。そして、一方の外側外管41の端面中央部には、空気導入管43を連通接続するとともに、他方の外側外管39の端面中央部には、空気排出管45を連通接続する。
【0032】
すなわち、空気導入管43から導入する空気は、外側外管41内に流入後、外側外管41内に露出している中空糸膜モジュール25における各単位電池11の端部の導電体メッシュ13,15を経て中空糸膜1内に流入する。中空糸膜1内を通過して発電に消費された後の空気は、外側外管39内に流出後、空気排出管45を経て外部へ排出される。
【0033】
以上のように、本実施形態の中空糸膜型燃料電池によれば、中空糸膜1内面の電極触媒3から中空糸膜1の端部へ導く導電体9と、中空糸膜1外面の電極触媒5から中空糸膜1の端部へ導く導電体7とが、中空糸膜1の互いの逆の端部に位置するよう設定したので、電極触媒3,5同士が接触してショートすることなく、集電することができ、各電極相互間の絶縁を確実なものとすることができる。
【0034】
また、この場合、燃料電池の高分子電解質膜として中空糸膜1を使用しているので、セパレータなどの部材が不要となり、小型で高性能な燃料電池を製作することができる。
【0035】
その他、本実施形態によれば、以下のような効果を有する。
【0036】
(1)一つの中空糸膜1を備える電池単体11を複数用い、これら複数の電池単体11相互を結合して組電池化する際に、互いに並列配置した状態の隣り合う電池単体11同士で、中空糸膜1内面の電極触媒3に接続した導電体9と、中空糸膜1外面の電極触媒5に接続した導電体7とが、中空糸膜1の同一方向の端部に位置するよう設定したので、複数の電池単体11相互を、容易に直列接続可能となって、高電圧を得ることができる。
【0037】
(2)中空糸膜1の端面にメッシュ状の導電体13,15を設けたので、中空糸膜1内に導入する空気の流れを阻害することなく、中空糸膜1で発生した電流を中空糸膜1の外部に取り出すことができる。
【0038】
(3)中空糸膜1内からの電流を隣の中空糸膜1の外部へ、また中空糸膜1の外部からの電流を隣の中空糸膜1の内部へ導く導電体シート17を設けたので、中空糸膜1相互間で、容易に電極を直列に連結することができる。
【0039】
(4)導電体シート17に中空糸膜1を固定する導電性の中空糸固定冶具19を設けたので、導電体シート17と中空糸膜1とを容易に固定することができるとともに、導電体シート17と中空糸膜1とが確実に接触し、接触不良による不通電を防ぐことができる。
【0040】
(5)渦巻き状の中空糸膜モジュール25を形成する際に、電池単体11同士の接触を避けるための絶縁体シート21およびメッシュ状の絶縁体23を設けたため、電池単体11同士の接触によるショートを防ぎ、さらにメッシュ構造の絶縁体23を使用しているので、水素ガスの流れを阻害することがない。
【図面の簡単な説明】
【図1】この発明の一実施形態による中空糸膜型燃料電池の側面断面図である。
【図2】図1の中空糸膜型燃料電池の平面断面図である。
【図3】図1,図2に示した電池単体を複数直列に接続した状態を示す側面断面図である。
【図4】図1,図2に示した複数の電池単体を、中空糸固定治具によって絶縁体シートに固定した状態を示す平面図である。
【図5】図4に示す絶縁体シートにメッシュ状の絶縁体を固定した状態を示す側面断面図である。
【図6】中空糸膜を備えた電池単体がメッシュ状の絶縁体に対して外側になるように巻き付けて構成した中空糸膜モジュールの斜視図である。
【図7】図6の中空糸膜モジュールを、円筒状のケース内に収容した状態を示す斜視図である。
【図8】図7の構成に対し、水素および空気の導入、排出を行うための部材を付加した斜視図である。
【符号の説明】
1 中空糸膜(中空糸膜高分子電解質膜)
3 電極触媒(酸化剤極)
5 電極触媒(燃料極)
7,9 導電体
13,15 メッシュ状の導電体
17 導電体シート
19 中空糸固定治具
21 絶縁体シート
23 メッシュ状の絶縁体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hollow fiber membrane fuel cell in which a fuel electrode is provided on one of inner and outer surfaces of a hollow fiber polymer electrolyte membrane and an oxidizer electrode is provided on the other.
[0002]
[Prior art]
As described in Patent Document 1, for example, a conventional hollow fiber membrane fuel cell is provided with a fuel electrode on one of inner and outer surfaces of a hollow fiber polymer electrolyte membrane and an oxidant electrode on the other, and The electrode is drawn out to one end of the hollow fiber-shaped polymer electrolyte membrane.
[0003]
[Patent Document 1]
JP-A-9-223507
[Problems to be solved by the invention]
However, in the above-described conventional technique, both electrodes are close to each other, and it is difficult to ensure insulation between the electrodes.
[0005]
Therefore, an object of the present invention is to ensure insulation between electrodes provided on both inner and outer surfaces of a hollow fiber-shaped polymer electrolyte membrane.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a hollow fiber membrane fuel cell in which a fuel electrode is provided on one of inner and outer surfaces of a hollow fiber polymer electrolyte membrane and an oxidizer electrode is provided on the other, respectively. A conductor provided at one end of the polymer electrolyte membrane is connected to one of the fuel electrode and the oxidizer electrode, and a conductor provided at the other end of the hollow fiber-shaped polymer electrolyte membrane. Is connected to either one of the fuel electrode and the oxidant electrode.
[0007]
【The invention's effect】
According to the present invention, the conductors respectively connected to the fuel electrode and the oxidizer electrode provided on the inner and outer surfaces of the hollow fiber-shaped polymer electrolyte membrane are located at opposite ends of the hollow fiber-shaped polymer electrolyte membrane. Therefore, insulation between the electrodes can be ensured.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is a side sectional view of a hollow fiber membrane fuel cell according to an embodiment of the present invention, and FIG. 2 is a plan sectional view thereof.
[0010]
The hollow fiber membrane 1 as a hollow fiber-shaped polymer electrolyte membrane is a perfluorosulfonic acid-based polymer electrolyte membrane, and electrode catalysts 3 and 5 are applied to both inner and outer surfaces thereof, respectively. Here, the inner electrode catalyst 3 is an air electrode serving as an oxidant electrode, and the outer electrode catalyst 5 is a hydrogen electrode serving as a fuel electrode. However, the air electrode may be provided on the outer surface and the hydrogen electrode may be provided on the inner surface.
[0011]
Each of the electrode catalysts 3 and 5 is applied to the upper and lower ends of the hollow fiber membrane 1 in FIG. 1, and conductors 7 and 9 are provided on the upper and lower ends.
[0012]
The upper conductor 7 in FIG. 1 is electrically connected to the outer electrode catalyst 5, and is connected to the electrode catalyst 5 and located on the outer peripheral surface of the hollow fiber membrane 1; And an annular disk portion 7b located on one end face. On the other hand, the lower conductor 9 in FIG. 1 is electrically connected to the inner electrode catalyst 3, and is connected to the electrode catalyst 3 and located on the inner peripheral surface of the hollow fiber membrane 1; And an annular disk portion 9b located on the end face of the hollow fiber membrane 1.
[0013]
Since the conductors 7 and 9 are provided at opposite ends of the hollow fiber membrane 1 as described above, current can be collected without the conductors 7 and 9 coming into contact with each other and causing a short circuit. The insulation between the catalysts 3 and 5 can be ensured. Further, since the conductors 7 and 9 cover the end faces of the hollow fiber membrane 1 with the disk portions 7b and 9b, current collection from the electrode catalysts 3 and 5 inside and outside the hollow fiber membrane 1 becomes easy.
[0014]
Hereinafter, FIGS. 3 to 8 sequentially illustrate a method of using a plurality of battery units 11 each including one hollow fiber membrane 1 illustrated in FIGS. 1 and 2 and combining the plurality of battery units 11 to form an assembled battery. Is shown.
[0015]
First, in FIG. 3, adjacent battery units 11 are arranged such that the positions of the conductors 7 and 9 are opposite ends of the hollow fiber membrane 1. That is, the battery unit 11 on the right side in FIG. 3 is arranged so that the conductor 7 is located at the upper part and the conductor 9 is located at the lower part in the figure, similarly to the battery unit 11 shown in FIG. On the other hand, the conductor body 11 on the left side in FIG. 3 is arranged so that the conductor 9 is located at the upper part in the figure and the conductor 7 is located at the lower part in the figure.
[0016]
On the disk portions 7b and 9b of the conductors 7 and 9, mesh-shaped conductors 13 and 15 electrically connected to the conductors 7 and 9 are respectively provided so as to cover the hollow interior of the hollow fiber membrane 1. Provide. In addition, the conductor 7 and the mesh-shaped conductor 13 and the conductor 9 and the mesh-shaped conductor 15 are connected by the conductor sheet 17 between the adjacent battery units 11. Thereby, the electrode catalyst 3 inside the hollow fiber membrane 1 and the electrode catalyst 5 outside the adjacent hollow fiber membrane 1 are connected in series.
[0017]
The mesh-shaped conductors 13 and 15 may be, for example, a stainless mesh. The mesh-shaped conductors 13 and 15 allow current to flow from the inside and outside of the hollow fiber membrane 1 without obstructing the flow of air because the conductors 13 and 15 pass current and air. The conductor sheet 17 is preferably a thin conductor such as a metal foil. By using a thin conductor, workability in forming a plurality of battery units 11 described later in a spiral shape is improved.
[0018]
The above-described conductor sheet 17 is fixed to the insulator sheet 21 as shown in FIG. 4 which is a plan view as viewed from the end of the hollow fiber membrane 1 and FIG. The insulator sheets 21 are provided at both ends of the hollow fiber membrane 1 so as to extend in the direction in which the battery cells 11 are arranged.
[0019]
Then, the hollow fiber membrane 1 having the mesh-shaped conductors 13 and 15 at the ends is fixed to the insulator sheet 21 fixed to the conductor sheet 17 by the hollow fiber fixing jig 19 made of the conductor. I do.
[0020]
A current from inside and outside of the hollow fiber membrane 1 is guided to the conductive sheet 17 by the hollow fiber fixing jig 19, and the hollow fiber membranes 1 are fixed, and the respective hollow fiber membranes 1 come into contact with each other and short-circuit. prevent. The insulator sheet 21 is for fixing the conductor sheet 17 and for preventing contact between the conductor sheets 17.
[0021]
After the hollow fiber membrane 1 and the mesh-shaped conductors 13 and 15 are fixed to the conductor sheet 17 and the insulator sheet 21 by the above-described hollow fiber fixing jig 19, these are meshed as shown in FIG. Is fixed to the insulator 23. The upper and lower ends of the mesh-shaped insulator 23 are fixed to the side edges of the insulator sheet 21 in FIG. 5, and for this fixation, for example, a resin adhesive is used.
[0022]
The mesh-shaped insulator 23 is made of, for example, a heat-resistant resin, avoids contact between the hollow fiber membranes 1 and does not hinder the flow of hydrogen gas because of the mesh structure.
[0023]
FIG. 6 shows a structure in which a hollow fiber membrane module 25 is formed by spirally winding a plurality of battery units 11 with a mesh-shaped insulator 23 added thereto as shown in FIG. At this time, the unit cells 11 having the hollow fiber membranes 1 are wound around the insulator sheet 21 and the mesh-shaped insulator 23 so as to be outside, so that the unit cells 11 between the spirally wound layers are formed. Contact can be avoided.
[0024]
When the hollow fiber membrane module 25 is formed, a portion where the unit battery 11 is not provided is set on the insulator sheet 21 and the mesh-shaped insulator 23 so that the unit battery 11 is not exposed at the outermost peripheral portion. Then, this portion is wound around at least one turn.
[0025]
FIG. 7 shows a state where the hollow fiber membrane module 25 wound and configured as shown in FIG. 6 is accommodated in a cylindrical case 27. Here, the case 27 is located at a position where both ends 27 a are separated from the insulator sheet 21, and the outer periphery of the hollow fiber membrane module 25 between the both ends 27 a of the case and the insulator sheet 21 is podging (resin). A resin material 29 is provided by mounting) to fix them, and the space between the case end 27a and the insulator sheet 21 is sealed.
[0026]
The above-described resin material 29 fixes the hollow fiber membrane module 25, and forms a mixture of hydrogen flowing into the outside of the hollow fiber membrane 1 through the outside of the hollow fiber membrane module 25 and air flowing into the inside of the hollow fiber membrane 1. It has the function of separating each flow path.
[0027]
Here, as shown in FIG. 1, the electrode catalysts 3 and 5 in the hollow fiber membrane 1 are applied only up to just before both ends of the hollow fiber membrane 1. In addition, the hermeticity of hydrogen and oxygen of the resin material 29 due to the podging can be maintained, and the resin material 29 can be protected from heat generation during power generation.
[0028]
In the vicinity of the resin material 29 of the case 27, a plurality of gas communication holes 27b and 27c are provided along the circumferential direction.
[0029]
As shown in FIG. 8, a cylindrical inner outer tube 31 is provided so as to cover the communication hole 27c and the resin material 29 at the same time, and a cylindrical inner outer tube 31 is formed so as to cover the communication hole 27b and the resin material 29 at the same time. A tube 33 is provided. Further, a hydrogen inlet pipe 35 is connected to one inner outer pipe 31, and a hydrogen discharge pipe 37 is connected to the other inner outer pipe 33.
[0030]
Hydrogen introduced from the hydrogen introduction pipe 35 flows into the outside of the hollow fiber membrane 1 in the hollow fiber membrane module 25 from the communication hole 27c. At this time, in the spirally formed hollow fiber membrane module 25, the spiral layers are separated from each other by the mesh-shaped insulator 23, so that hydrogen is reliably supplied to the unit battery 11 in each layer. You. Hydrogen consumed for power generation in the hollow fiber membrane 1 flows out of the case 27 through the communication hole 27b, and is discharged from the hydrogen discharge pipe 37.
[0031]
Outer outer tubes 39 and 41 that cover the insulator sheet 21 at the end of the hollow fiber membrane module 25 are provided outside the inner outer tubes 31 and 33 in the axial direction. The space between the outer outer tubes 39 and 41 and the inner outer tubes 31 and 33 is sealed. An air introduction pipe 43 is connected to the center of the end face of one outer outer pipe 41, and an air discharge pipe 45 is connected to the center of the end face of the other outer pipe 39.
[0032]
That is, the air introduced from the air introduction pipe 43 flows into the outer outer pipe 41, and then the conductor mesh 13 at the end of each unit cell 11 in the hollow fiber membrane module 25 exposed in the outer outer pipe 41. After that, it flows into the hollow fiber membrane 1. The air that has passed through the hollow fiber membrane 1 and has been consumed for power generation flows out into the outer outer tube 39 and is then discharged to the outside via the air discharge tube 45.
[0033]
As described above, according to the hollow fiber membrane fuel cell of the present embodiment, the conductor 9 leading from the electrode catalyst 3 on the inner surface of the hollow fiber membrane 1 to the end of the hollow fiber membrane 1 and the electrode on the outer surface of the hollow fiber membrane 1 Since the conductor 7 leading from the catalyst 5 to the end of the hollow fiber membrane 1 is set at the opposite ends of the hollow fiber membrane 1, the electrode catalysts 3 and 5 are short-circuited due to contact with each other. Therefore, current can be collected and insulation between the electrodes can be ensured.
[0034]
Further, in this case, since the hollow fiber membrane 1 is used as the polymer electrolyte membrane of the fuel cell, members such as a separator are not required, and a small and high-performance fuel cell can be manufactured.
[0035]
In addition, the present embodiment has the following effects.
[0036]
(1) When a plurality of battery units 11 each including one hollow fiber membrane 1 are used, and when the plurality of battery units 11 are combined with each other to form an assembled battery, adjacent battery units 11 arranged in parallel with each other, The conductor 9 connected to the electrode catalyst 3 on the inner surface of the hollow fiber membrane 1 and the conductor 7 connected to the electrode catalyst 5 on the outer surface of the hollow fiber membrane 1 are set so as to be located at the ends of the hollow fiber membrane 1 in the same direction. Therefore, the plurality of single batteries 11 can be easily connected in series, and a high voltage can be obtained.
[0037]
(2) Since the mesh-shaped conductors 13 and 15 are provided on the end face of the hollow fiber membrane 1, the current generated in the hollow fiber membrane 1 can be reduced without obstructing the flow of air introduced into the hollow fiber membrane 1. It can be taken out of the thread membrane 1.
[0038]
(3) A conductor sheet 17 is provided to guide current from inside the hollow fiber membrane 1 to the outside of the adjacent hollow fiber membrane 1 and guide current from outside the hollow fiber membrane 1 to the inside of the adjacent hollow fiber membrane 1. Therefore, electrodes can be easily connected in series between the hollow fiber membranes 1.
[0039]
(4) Since the conductive hollow fiber fixing jig 19 for fixing the hollow fiber membrane 1 to the conductive sheet 17 is provided, the conductive sheet 17 and the hollow fiber membrane 1 can be easily fixed and the conductive sheet 17 can be easily fixed. The sheet 17 and the hollow fiber membrane 1 are surely in contact with each other, and it is possible to prevent non-energization due to poor contact.
[0040]
(5) When the spiral hollow fiber membrane module 25 is formed, the insulator sheet 21 and the mesh-shaped insulator 23 for avoiding contact between the battery units 11 are provided, so that short-circuit due to contact between the battery units 11 is provided. And the use of the insulator 23 having a mesh structure does not hinder the flow of hydrogen gas.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a hollow fiber membrane fuel cell according to an embodiment of the present invention.
FIG. 2 is a plan sectional view of the hollow fiber membrane fuel cell of FIG.
FIG. 3 is a side cross-sectional view showing a state where a plurality of cells shown in FIGS. 1 and 2 are connected in series.
FIG. 4 is a plan view showing a state in which the plurality of cells shown in FIGS. 1 and 2 are fixed to an insulator sheet by a hollow fiber fixing jig.
FIG. 5 is a side sectional view showing a state where a mesh-shaped insulator is fixed to the insulator sheet shown in FIG. 4;
FIG. 6 is a perspective view of a hollow fiber membrane module in which a single battery provided with a hollow fiber membrane is wound around a mesh-shaped insulator so as to be outside.
FIG. 7 is a perspective view showing a state in which the hollow fiber membrane module of FIG. 6 is housed in a cylindrical case.
8 is a perspective view in which members for introducing and discharging hydrogen and air are added to the configuration of FIG. 7;
[Explanation of symbols]
1 hollow fiber membrane (hollow fiber membrane polymer electrolyte membrane)
3 Electrode catalyst (oxidizer electrode)
5 Electrode catalyst (fuel electrode)
7, 9 Conductor 13, 15 Mesh conductor 17 Conductor sheet 19 Hollow fiber fixing jig 21 Insulator sheet 23 Mesh insulator

Claims (7)

中空糸状高分子電解質膜の内外両面のうち一方に燃料極を、他方に酸化剤極をそれぞれ設けた中空糸膜型燃料電池において、前記中空糸状高分子電解質膜の一方の端部に設けた導電体を、前記燃料極と酸化剤極とのいずれか一方の電極に接続し、前記中空糸状高分子電解質膜の他方の端部に設けた導電体を、前記燃料極と酸化剤極とのいずれか他方の電極に接続したことを特徴とする中空糸膜型燃料電池。In a hollow fiber membrane fuel cell in which a fuel electrode is provided on one of the inner and outer surfaces of the hollow fiber polymer electrolyte membrane and an oxidizer electrode is provided on the other, a conductive electrode provided at one end of the hollow fiber polymer electrolyte membrane is provided. The body is connected to one of the electrode of the fuel electrode and the oxidant electrode, and the conductor provided at the other end of the hollow fiber-shaped polymer electrolyte membrane is connected to one of the fuel electrode and the oxidant electrode. Or a hollow fiber membrane fuel cell connected to the other electrode. 一つの中空糸状高分子電解質膜を備えた電池単体を、複数用いて組電池化する際に、互いに並列配置した状態の隣り合う電池単体同士で、中空糸状高分子電解質膜内面の電極に接続した前記導電体と、中空糸状高分子電解質膜外面の電極に接続した前記導電体とが、中空糸状高分子電解質膜の同一方向の端部に位置するよう設定したことを特徴とする請求項1記載の中空糸膜型燃料電池。When a single battery having one hollow fiber-shaped polymer electrolyte membrane was assembled into a battery using a plurality of batteries, adjacent batteries in a state of being arranged in parallel with each other were connected to electrodes on the inner surface of the hollow fiber-shaped polymer electrolyte membrane. 2. The method according to claim 1, wherein the conductor and the conductor connected to an electrode on the outer surface of the hollow fiber-shaped polymer electrolyte membrane are set to be located at an end in the same direction of the hollow fiber-shaped polymer electrolyte membrane. Hollow fiber membrane fuel cell. 前記中空糸状高分子電解質膜の端部に、前記導電体に電気的に接続するメッシュ状の導電体を、前記中空糸状高分子電解質膜の中空内部を覆うように設けたことを特徴とする請求項1または2記載の中空糸膜型燃料電池。A mesh-shaped conductor electrically connected to the conductor is provided at an end of the hollow fiber-shaped polymer electrolyte membrane so as to cover the hollow interior of the hollow fiber-shaped polymer electrolyte membrane. Item 3. The hollow fiber membrane fuel cell according to item 1 or 2. 前記互いに並列配置した隣り合う電体単体相互間で、前記内面の電極に接続した導電体と、前記外面の電極に接続した導電体とを、導電体シートで互いに接続したことを特徴とする請求項2記載の中空糸膜型燃料電池。The conductor connected to the electrode on the inner surface and the conductor connected to the electrode on the outer surface are connected to each other by a conductor sheet between the adjacent electric conductors arranged in parallel with each other. Item 3. A hollow fiber membrane fuel cell according to item 2. 複数の中空糸状高分子電解質膜それぞれと、前記導電体シートとを、導電性の中空糸固定冶具により固定したことを特徴とする請求項4記載の中空糸膜型燃料電池。The hollow fiber membrane fuel cell according to claim 4, wherein each of the plurality of hollow fiber polymer electrolyte membranes and the conductor sheet are fixed by a conductive hollow fiber fixing jig. 前記導電体シートの前記中空糸固定冶具を設けた側と反対側に、絶縁体シートを設け、この絶縁体シートが中空糸状高分子電解質膜に対して内周側となる状態で渦巻状に巻き付けて中空糸膜モジュールを構成したことを特徴とする請求項5記載の中空糸膜型燃料電池。An insulator sheet is provided on the conductor sheet on the side opposite to the side on which the hollow fiber fixing jig is provided, and the insulator sheet is spirally wound in a state in which the insulator sheet is on the inner peripheral side with respect to the hollow fiber polymer electrolyte membrane. The hollow fiber membrane fuel cell according to claim 5, wherein the hollow fiber membrane module is configured by a hollow fiber membrane module. 前記中空糸状高分子電解質膜の両端に設けた絶縁体シート相互間に、中空糸状高分子電解質膜を固定するメッシュ状の絶縁体を設けたことを特徴とする請求項6記載の中空糸膜型燃料電池。7. The hollow fiber membrane type according to claim 6, wherein a mesh-like insulator for fixing the hollow fiber polymer electrolyte membrane is provided between insulator sheets provided at both ends of the hollow fiber polymer electrolyte membrane. Fuel cell.
JP2003107712A 2003-04-11 2003-04-11 Hollow fiber membrane type fuel cell Pending JP2004319113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107712A JP2004319113A (en) 2003-04-11 2003-04-11 Hollow fiber membrane type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107712A JP2004319113A (en) 2003-04-11 2003-04-11 Hollow fiber membrane type fuel cell

Publications (1)

Publication Number Publication Date
JP2004319113A true JP2004319113A (en) 2004-11-11

Family

ID=33469470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107712A Pending JP2004319113A (en) 2003-04-11 2003-04-11 Hollow fiber membrane type fuel cell

Country Status (1)

Country Link
JP (1) JP2004319113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083036A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083036A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module

Similar Documents

Publication Publication Date Title
JP5271537B2 (en) Electrochemical cell with current transport structure under electrochemical reaction layer
JP5274026B2 (en) Square battery
US7592091B2 (en) Microreactor
JP5393723B2 (en) Secondary battery pack and connection tab used therefor
KR20130108387A (en) Integral battery tab
JP2003178792A (en) Secondary battery
US7641996B2 (en) Fuel cell
JP2005353484A (en) Membrane electrode composite for tube type fuel cell, and current collector for tube type fuel cell
WO2006083035A1 (en) Fuel cell module and fuel cell provided with the fuel cell module
JP2004319113A (en) Hollow fiber membrane type fuel cell
JP2006216407A (en) Cell module assembly and fuel cell
US20120015275A1 (en) Solid oxide fuel cell and fuel cell stack
WO2005052967A1 (en) Capacitor
KR20180017934A (en) Rechargeable battery
JP2011146668A (en) Electric double layer capacitor
CN101305492B (en) Tubular fuel cell with integrated electrically conducting spacer and fuel cell module
JP2006260875A (en) Connection structure and its method of assembling of battery cell
JP2967878B2 (en) Gas supply structure of solid oxide fuel cell
JP2009087708A (en) Fuel battery cell body and fuel battery including fuel battery cell body
JP2009016188A (en) Battery
JP4304458B2 (en) Polymer electrolyte fuel cell
KR20090105544A (en) Center pin and secondary battery using the same
JP2007134180A (en) Fuel cell
CN219203434U (en) Cylindrical battery and electronic equipment
JP2008004390A (en) Tube type fuel cell