JP2004317482A - Method of analyzing three-dimensional plastic deformation - Google Patents

Method of analyzing three-dimensional plastic deformation Download PDF

Info

Publication number
JP2004317482A
JP2004317482A JP2004014501A JP2004014501A JP2004317482A JP 2004317482 A JP2004317482 A JP 2004317482A JP 2004014501 A JP2004014501 A JP 2004014501A JP 2004014501 A JP2004014501 A JP 2004014501A JP 2004317482 A JP2004317482 A JP 2004317482A
Authority
JP
Japan
Prior art keywords
strain
crystal
deformation
plastic
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014501A
Other languages
Japanese (ja)
Other versions
JP4387810B2 (en
Inventor
Naoya Tada
直哉 多田
Takeji Abe
武治 阿部
Akitsugu Kondo
了嗣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004014501A priority Critical patent/JP4387810B2/en
Publication of JP2004317482A publication Critical patent/JP2004317482A/en
Application granted granted Critical
Publication of JP4387810B2 publication Critical patent/JP4387810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional plastic deformation analyzing method including a three-dimensional plastic strain analyzing method for evaluating highly precisely a plastic deformation of a crystal grain. <P>SOLUTION: This three-dimensional plastic deformation analyzing method is effective for evaluating the deformation of a micro material having the reduced number of crystal grains, and effective for evaluating strength of an electronic device and a micro machine, since the plastic deformation is accurately evaluated based on both "a plastic strain" and "plastic rotation" by acquiring images before and after the deformation on a sample surface of the measured crystal grain, by finding a sliding line angle and a crystal direction on the surface of the measured crystal grain, by calculating six components of three three-dimensional vertical strain components ε<SB>x</SB>, ε<SB>y</SB>, ε<SB>z</SB>and three shearing strain components γ<SB>xy</SB>, γ<SB>yz</SB>, γ<SB>zx</SB>, by a prescribed calculation expression, based on longitudinal and lateral dimensions and an area of a grain boundary, the sliding line angle and the crystal direction, by finding a rotational amount (angle change) of a crystal based on a difference between the crystal directions before and after the deformation, and by calculating three plastic rotation components ω<SB>x</SB>, ω<SB>y</SB>, ω<SB>z</SB>by a prescribed calculation expression. The plastic deformation strain is integrally evaluated three-dimensionally even in the micro material having the reduced number of crystal grains to analyze accurately the plastic deformation as the material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料表面に存在する結晶粒の二次元観察データから三次元の塑性ひずみを評価する三次元塑性ひずみ解析方法を含む三次元塑性変形解析方法に関する。塑性変形は塑性ひずみと塑性回転とから構成されるものと考えられる。   The present invention relates to a three-dimensional plastic deformation analysis method including a three-dimensional plastic strain analysis method for evaluating three-dimensional plastic strain from two-dimensional observation data of crystal grains present on a sample surface. Plastic deformation is considered to be composed of plastic strain and plastic rotation.

一般に、工業材料として広く用いられている多結晶金属材料の変形挙動はきわめて複雑である。それはその塑性変形が、主として個々の結晶粒に生じる不均一変形の組合せで構成されているからである。この結晶粒の不均一変形に関しては、これまで解析的あるいは実験的研究がなされており、個々の結晶粒は方位に依存して異なった変形挙動を示し、それらが結晶粒界を介して互いに結合し合いながら多結晶全体の変形を構成するため、不均一となることが明らかにされている。したがって、多結晶体の塑性変形挙動を論ずる際には、個々の結晶粒の変形を正確に評価する方法が必要となる。特に、小型化された電子デバイスやマイクロマシンの構成材料は多数の微小寸法材料(細線や薄膜)より構成されており、これらの微小寸法材料では、材料中に含まれる結晶粒数が少ないため、各結晶粒の変形評価から材料全体の正確な変形の評価が可能となる。   Generally, the deformation behavior of a polycrystalline metal material widely used as an industrial material is extremely complicated. This is because its plastic deformation is mainly constituted by a combination of non-uniform deformations occurring in individual crystal grains. Analytical or experimental studies have been conducted on the non-uniform deformation of grains, and individual grains exhibit different deformation behavior depending on the orientation, and they are bonded to each other via grain boundaries. It has been found that the deformation of the whole polycrystal is caused by the deformation, so that the deformation becomes non-uniform. Therefore, when discussing the plastic deformation behavior of a polycrystal, a method for accurately evaluating the deformation of individual crystal grains is required. In particular, the constituent materials of miniaturized electronic devices and micromachines are composed of a large number of micro-dimensional materials (fine wires and thin films). In these micro-dimensional materials, the number of crystal grains contained in the material is small, It is possible to accurately evaluate the deformation of the entire material from the evaluation of the deformation of the crystal grains.

従来から、結晶粒の塑性変形は表面の組織観察によって行われ、結晶粒のひずみ評価に応用できる最近の技術としては、後方散乱電子線回折(EBSD)法と画像処理がある。前者のEBSD法は、走査型電子顕微鏡(SEM)内に試験片を設置し、試料表面から得られる電子線の回折像(菊池線)から、その結晶方位を求める手段であり、一般の金属材料であれば方位を簡便に測定できる。近年のコンピュータの処理能力の向上に伴い、多結晶金属材料においても、数mm程度の対象領域中に存在する100個程度の結晶粒であれば、それらの方位を実用的な時間内で評価することができるようになっている。一方、後者の画像処理も、最近の画像情報処理技術の進歩により、計算機内に取り込んだデジタル画像を種々のフィルターを用いて加工し、物体の寸法・形状の高速認識、それらの統計処理などが可能となっている。   Conventionally, plastic deformation of crystal grains has been performed by observing the structure of the surface, and recent techniques applicable to the evaluation of strain of crystal grains include a backscattered electron beam diffraction (EBS) method and image processing. In the former EBSD method, a test piece is set in a scanning electron microscope (SEM), and the crystal orientation is determined from a diffraction image (Kikuchi line) of an electron beam obtained from the sample surface. If so, the azimuth can be easily measured. With the improvement of computer processing capability in recent years, even in polycrystalline metal materials, if about 100 crystal grains are present in a target area of about several mm, their orientation is evaluated within a practical time. You can do it. On the other hand, in the latter image processing, with the recent advances in image information processing technology, digital images captured in a computer are processed using various filters, and high-speed recognition of the size and shape of objects, statistical processing of them, etc. It is possible.

前述のような評価方法を用いて、本件発明者等による結晶粒の変形に関する報告(下記非特許文献1および非特許文献2参照)や結晶粒の二次元面での塑性変形観察評価(下記特許文献1および特許文献2)等がなされている。   Using the above-described evaluation method, the present inventors report on deformation of crystal grains (see Non-Patent Documents 1 and 2 below) and observe and evaluate plastic deformation of crystal grains in a two-dimensional plane (see the following patent documents). Reference 1 and Patent Reference 2) have been made.

清水他 日本機械学会論文集「多結晶鉄の圧縮塑性変形に伴う自由表面あれと結晶粒の変形」(60,578.P201−208.1994)Shimizu et al. Transactions of the Japan Society of Mechanical Engineers, "Free Surface Roughness and Grain Deformation Associated with Compressive Plastic Deformation of Polycrystalline Iron" (60,578.P201-208.1994) 清水他 日本機械学会論文集「種々の塑性ひずみ経路におけるアルミニウム板の自由表面あれ形状の三次元評価」(67,663.P1760−1767.2001)Shimizu et al. Transactions of the Japan Society of Mechanical Engineers, "3D Evaluation of Roughness of Free Surface of Aluminum Plate in Various Plastic Strain Paths" (67, 663, P1760-1767.2001) 特開平7−294436号公報(段落10)JP-A-7-294436 (paragraph 10) 特開平9−325125号公報(段落11)JP-A-9-325125 (paragraph 11)

しかしながら、これらの試料表面の組織観察による結晶粒の塑性変形観察はいずれも二次元面での評価の域を出ず、三次元での変形解析には至っていない。特に微小寸法材料においては、試料全体の変形が、結晶粒の影響を大きく受けることもあり、結晶粒の変形解析を三次元レベルの高い精度で実施する必要がある。   However, any of these observations of plastic deformation of crystal grains by observation of the microstructure of the sample surface does not reach the evaluation range in a two-dimensional plane, and has not led to a three-dimensional deformation analysis. In particular, in the case of a micro-dimensional material, the deformation of the entire sample may be greatly affected by the crystal grains, and it is necessary to perform the deformation analysis of the crystal grains with a high degree of three-dimensional accuracy.

そこで、本件発明者らは、前記従来の結晶粒の塑性変形観察の課題を解決して、より高い精度での結晶粒の塑性変形評価を可能にする三次元塑性ひずみ解析方法を含む三次元塑性変形解析方法を提供することを目的とする。   Accordingly, the present inventors have solved the above-mentioned problem of the conventional observation of plastic deformation of crystal grains, and have proposed a three-dimensional plastic strain analysis method including a three-dimensional plastic strain analysis method that enables the evaluation of plastic deformation of crystal grains with higher accuracy. An object of the present invention is to provide a deformation analysis method.

このため本発明は、試料表面に存在する結晶粒の二次元観察データから三次元の塑性ひずみを評価する三次元塑性ひずみ解析方法において、被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるとともに、被測定結晶粒の表面におけるすべり線角度および結晶方位を求め、前記粒界の縦横寸法、面積、すべり線角度および結晶方位から所定の計算式により、三次元の垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ3成分(γxy,γyz,γzx)の6成分を算出することにより、結晶体内における三次元の塑性ひずみを評価することを特徴とする。また本発明は、前記縦横寸法および面積を、光学顕微鏡による画像により取得することを特徴とする。また本発明は、前記すべり線角度を、走査型電子顕微鏡により取得することを特徴とする。また本発明は、前記結晶方位を、後方散乱電子線回折(EBSD)法により求めて、結晶すべり面を特定することを特徴とする。また本発明は、前記被測定結晶粒の表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるに際し、面内で45°回転した画像を変形前後で取得し、垂直ひずみ成分(εx ,εy )を所定の計算式により求めるとともに、剪断ひずみγxyを他の所定の計算式により求めることを特徴とする。また本発明は、前記三次元塑性ひずみ解析方法における後方散乱電子線回折(EBSD)法により求められる結晶方位の変形前後の差から結晶の回転量(角度変化)を求め、所定の計算式により塑性回転3成分(ωx ,ωy ,ωz )を算出することにより、三次元塑性ひずみにおける前記6成分に三次元塑性回転の3成分の評価を加えて、結晶体内における三次元の塑性変形を評価することを特徴とする。また本発明は、前記各結晶の回転量から三次元的な塑性回転を求めることを特徴とする。また本発明は、前記各結晶の塑性ひずみおよび塑性回転を同時に求め、それらを互いに比較することを特徴とする。また本発明は、前記各結晶の塑性ひずみおよび塑性回転から、変形後における結晶表面の角度を評価することを特徴とするもので、これらを課題解決のための手段とするものである。 For this reason, the present invention provides a three-dimensional plastic strain analysis method for evaluating three-dimensional plastic strain from two-dimensional observation data of crystal grains present on a sample surface, and acquires images of a measured crystal grain before and after deformation on the sample surface. Then, the grain boundaries of the crystal grain to be measured are specified, the vertical and horizontal dimensions and area thereof are obtained by the number of pixels by image processing, the slip line angle and the crystal orientation on the surface of the crystal grain to be measured are obtained, and the vertical and horizontal dimensions of the grain boundary are obtained. The three components of three-dimensional vertical strain (ε x , ε y , ε z ) and three components of shear strain (γ xy , γ yz , γ zx ) are calculated from the area, the slip line angle and the crystal orientation by a predetermined calculation formula. It is characterized in that three-dimensional plastic strain in the crystal is evaluated by calculating the components. Further, the present invention is characterized in that the vertical and horizontal dimensions and area are obtained by an image using an optical microscope. Further, the invention is characterized in that the slip line angle is obtained by a scanning electron microscope. Further, the present invention is characterized in that the crystal orientation is determined by a backscattered electron diffraction (EBSD) method to specify a crystal slip plane. Further, the present invention acquires an image before and after deformation on the surface of the crystal grain to be measured, specifies a grain boundary of the crystal grain to be measured, and determines the vertical and horizontal dimensions and area of the crystal grain by the number of pixels by image processing. An image rotated by 45 ° is obtained before and after the deformation, and the vertical strain components (ε x , ε y ) are obtained by a predetermined calculation formula, and the shear strain γxy is obtained by another predetermined calculation formula. The present invention also provides a method for determining the amount of rotation (angle change) of a crystal from the difference between the crystal orientation before and after deformation determined by the backscattered electron diffraction (EBSD) method in the three-dimensional plastic strain analysis method, and calculating the plasticity by a predetermined calculation formula. By calculating the three rotation components (ω x , ω y , ω z ), the three components of the three-dimensional plastic deformation are evaluated by adding the three components of the three-dimensional plastic rotation to the six components in the three-dimensional plastic strain. It is characterized by being evaluated. Further, the invention is characterized in that a three-dimensional plastic rotation is obtained from the rotation amount of each crystal. Further, the present invention is characterized in that the plastic strain and the plastic rotation of each of the crystals are simultaneously determined and compared with each other. Further, the present invention is characterized in that the angle of the crystal surface after deformation is evaluated from the plastic strain and plastic rotation of each crystal, and these are used as means for solving the problem.

本発明によれば、試料表面に存在する結晶粒の二次元観察データから三次元の塑性ひずみを評価する三次元塑性ひずみ解析方法において、被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるとともに、被測定結晶粒の表面におけるすべり線角度および結晶方位を求め、前記粒界の縦横寸法、面積、すべり線角度および結晶方位から所定の計算式により、三次元の垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ3成分(γxy,γyz,γzx)の6成分を算出することにより、結晶体内における三次元の塑性ひずみを評価するので、結晶粒数が少ない微小材料であっても塑性変形ひずみを三次元にて総合的に評価できて、材料としてのより正確な塑性変形の解析が可能となった。 According to the present invention, in a three-dimensional plastic strain analysis method for evaluating three-dimensional plastic strain from two-dimensional observation data of crystal grains present on the sample surface, obtain images of the measured crystal grains before and after deformation on the sample surface. Then, the grain boundaries of the crystal grain to be measured are specified, the vertical and horizontal dimensions and area thereof are obtained by the number of pixels by image processing, the slip line angle and the crystal orientation on the surface of the crystal grain to be measured are obtained, and the vertical and horizontal dimensions of the grain boundary are obtained. The three components of three-dimensional vertical strain (ε x , ε y , ε z ) and three components of shear strain (γ xy , γ yz , γ zx ) are calculated from the area, the slip line angle and the crystal orientation by a predetermined calculation formula. By calculating the components, the three-dimensional plastic strain in the crystal is evaluated.Thus, even for a small material with a small number of crystal grains, the plastic deformation strain can be comprehensively evaluated in three dimensions, and the Analysis of accurate plastic deformation has become possible.

また、前記縦横寸法および面積を、光学顕微鏡による画像により取得することにより、比較的広く使用されている既存の顕微鏡を用いて、容易に被測定結晶粒の粒界を特定することができる。さらに、前記すべり線角度を、走査型電子顕微鏡により取得することにより、結晶粒のひずみを三次元的に評価するための結晶粒内のすべり線の荷重軸に対する角度を簡便に取得できる。さらにまた、前記結晶方位を、後方散乱電子線回折(EBSD)法により求めて、結晶すべり面を特定することにより、画像処理との併用によって、多結晶金属材料中に存在する各結晶粒のひずみを三次元的に求めることを可能にした。   In addition, by acquiring the vertical and horizontal dimensions and area by using an image with an optical microscope, it is possible to easily specify the grain boundaries of the crystal grains to be measured using an existing microscope that is relatively widely used. Further, by acquiring the slip line angle with a scanning electron microscope, it is possible to easily acquire the angle of the slip line in the crystal grain with respect to the load axis for three-dimensionally evaluating the strain of the crystal grain. Furthermore, the crystal orientation is determined by the backscattered electron diffraction (EBSD) method, and the crystal slip plane is specified. By using this together with the image processing, the strain of each crystal grain present in the polycrystalline metal material is determined. It is possible to obtain the three-dimensionally.

また、前記被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるに際し、面内で45°回転した画像を変形前後で取得し、垂直ひずみ成分(εx ,εy )を所定の計算式により求めるとともに、γxyを他の所定の計算式により求めることにより、精度をより向上させて、三次元表示に必要なひずみ6成分を求めることができる。 Images of the crystal grains to be measured before and after deformation on the sample surface are obtained, the grain boundaries of the crystal grains to be measured are specified, and their vertical and horizontal dimensions and area are obtained by image processing using the number of pixels. ° The rotated image is acquired before and after the deformation, and the vertical strain components (ε x , ε y ) are obtained by a predetermined calculation formula, and γ xy is obtained by another predetermined calculation formula, thereby further improving the accuracy. , Six strain components necessary for three-dimensional display can be obtained.

さらに、前記三次元塑性ひずみ解析方法における後方散乱電子線回折(EBSD)法により求められる結晶方位の変形前後の差から結晶の回転量(角度変化)を求め、所定の計算式により塑性回転3成分(ωx ,ωy ,ωz )を算出することにより、三次元塑性ひずみにおける前記6成分に三次元塑性回転の3成分の評価を加えて、結晶体内における三次元の塑性変形を評価することにより、結晶粒の塑性変形を構成するところの、形状変化である「ひずみ」と塑性変形に伴って生じる結晶粒の「剛体回転(塑性回転)」の両方から検討することができるようになり、塑性変形をより正確に評価できることとなった。 Further, the amount of rotation (angle change) of the crystal is determined from the difference between the crystal orientation before and after the deformation obtained by the backscattered electron diffraction (EBSD) method in the three-dimensional plastic strain analysis method. (Ω x , ω y , ω z ) to evaluate the three-dimensional plastic deformation in the crystal by adding the three components of the three-dimensional plastic rotation to the six components of the three-dimensional plastic strain. Thus, it is possible to examine both the "strain", which is a shape change, which constitutes the plastic deformation of the crystal grains, and the "rigid rotation (plastic rotation)" of the crystal grains caused by the plastic deformation. Plastic deformation can be evaluated more accurately.

さらにまた、前記各結晶の回転量から三次元的な塑性回転を求めることにより、特に、結晶粒の少ない微小材料の場合は、前記方法による各結晶粒の塑性変形の評価を材料全体の変形評価に用いることができる。また本発明は、前記各結晶の塑性ひずみおよび塑性回転を同時に求め、それらを互いに比較することにより、塑性変形後の結晶粒の傾斜を求めることができる。さらに、前記各結晶の塑性ひずみおよび塑性回転から、変形後における結晶表面の角度を評価することにより、変形後の材料表面における結晶粒の起伏を容易に予測することが可能となった。   Furthermore, by obtaining a three-dimensional plastic rotation from the rotation amount of each crystal, especially in the case of a small material having a small number of crystal grains, the evaluation of the plastic deformation of each crystal grain by the above-described method is used to evaluate the deformation of the entire material. Can be used. Further, according to the present invention, the plastic strain and the plastic rotation of each of the crystals are simultaneously obtained, and by comparing them, the inclination of the crystal grain after the plastic deformation can be obtained. Furthermore, by evaluating the angle of the crystal surface after deformation from the plastic strain and plastic rotation of each crystal, it is possible to easily predict the undulation of crystal grains on the material surface after deformation.

<三次元塑性ひずみ解析方法>
以下、本発明の三次元塑性ひずみ解析および塑性回転解析から構成される三次元塑性変形解析方法の実施の形態を図面に基づいて説明する。塑性変形が塑性ひずみと塑性回転から成り立つと考えられるところから、先ず、三次元塑性ひずみ解析方法について述べる。図1に示すように、試料表面に存在する結晶粒の二次元観察データから三次元の塑性ひずみを評価する三次元塑性ひずみ解析方法において、被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるとともに、被測定結晶粒の表面におけるすべり線角度および結晶方位を求め、前記粒界の縦横寸法、面積、すべり線角度および結晶方位から所定の計算式により、三次元の垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ3成分(γxy,γyz,γzx)の6成分を算出することにより、結晶体内における三次元の塑性ひずみを評価することを特徴とする。
<Three-dimensional plastic strain analysis method>
Hereinafter, an embodiment of a three-dimensional plastic deformation analysis method including a three-dimensional plastic strain analysis and a plastic rotation analysis of the present invention will be described with reference to the drawings. First, a three-dimensional plastic strain analysis method will be described, since plastic deformation is considered to consist of plastic strain and plastic rotation. As shown in FIG. 1, in a three-dimensional plastic strain analysis method for evaluating three-dimensional plastic strain from two-dimensional observation data of crystal grains present on a sample surface, images of a measured crystal grain before and after deformation on the sample surface are acquired. Then, the grain boundary of the crystal grain to be measured is specified, the vertical and horizontal dimensions and area thereof are obtained by the number of pixels by image processing, the slip line angle and the crystal orientation on the surface of the crystal grain to be measured are obtained, and the vertical and horizontal dimensions of the grain boundary are obtained. From the dimensions, the area, the slip line angle and the crystal orientation, the three-dimensional vertical strain three components (ε x , ε y , ε z ) and the shear strain three components (γ xy , γ yz , γ zx ) are calculated by a predetermined formula. It is characterized in that three-dimensional plastic strain in a crystal is evaluated by calculating six components.

以下、本発明の原理の説明および実験結果による優位性について詳述する。始めに、本発明では、前述した後方散乱電子線回折法と画像処理の2つの技術を効果的に組み合わせることにより、通常は二次元的評価に留まっていた多結晶銅の引張りに伴い変化する各結晶粒の塑性ひずみを三次元的に評価する方法を提案し、実験的に検証するものである。 <実験・観察方法>
引張り試験は図2に示す多結晶銅の平板試験片を用いて実施した。供試材は工業用純銅圧延板(純度99.5%、板厚1.00mm)であり、圧延方向を試験片の長手方向とした。本発明では引張り試験の前に、まず、#2000のエミリー紙および粒径1μmのダイヤモンドペーストを用いた機械研摩にて、試験片表面を鏡面状態に仕上げた。次に、真空焼鈍(焼鈍温度600°C、保持時間1h、炉冷)を施し、さらに、電解研磨により試験片表面の酸化膜を除去した後、化学腐食を行い、結晶粒界が識別できるようにした。
Hereinafter, the principle of the present invention and advantages based on experimental results will be described in detail. First, in the present invention, by effectively combining the two techniques of the backscattered electron beam diffraction method and the image processing described above, each of the elements that change with the tension of the polycrystalline copper, which usually stays in two-dimensional evaluation, is changed. A method for three-dimensionally evaluating the plastic strain of crystal grains is proposed and experimentally verified. <Experiment and observation method>
The tensile test was carried out using a flat test piece of polycrystalline copper shown in FIG. The test material was an industrial pure copper rolled plate (purity 99.5%, plate thickness 1.00 mm), and the rolling direction was the longitudinal direction of the test piece. In the present invention, before the tensile test, first, the surface of the test piece was mirror-finished by mechanical polishing using # 2000 Emily paper and diamond paste having a particle size of 1 μm. Next, vacuum annealing (annealing temperature: 600 ° C., holding time: 1 h, furnace cooling) is performed, and further, after removing an oxide film on the surface of the test piece by electrolytic polishing, chemical corrosion is performed so that crystal grain boundaries can be identified. I made it.

本発明では、図2に示す試験片平行部の中央に500μm×500μmの正方形領域を設定し、その領域内に存在する結晶粒について変形および結晶方位の測定を実施した。引張り試験は日立製200Kg試料引張試験装置を用いて行い、試験片の巨視的ひずみεが0.03、0.07、0.10の各段階で引張り試験を中断し、除荷後に各種の観察を実施した。なお、試験片の巨視的負荷ひずみは、試験片中央部に微小硬さ試験機(アカシ製微小硬さ試験機MVK−H0)を用いて、予め、圧痕を打ち、その間隔変化から評価した。圧痕は試験片の長手方向に500μm間隔で6点、それに垂直な方向に500μm間隔で4点打ち、引張り方向のひずみ評価には前者の6点の計測結果を用いた。   In the present invention, a square area of 500 μm × 500 μm was set at the center of the parallel part of the test piece shown in FIG. 2, and the deformation and the crystal orientation of the crystal grains existing in the area were measured. The tensile test was performed using a 200 kg sample tensile tester manufactured by Hitachi. The tensile test was interrupted at each stage where the macroscopic strain ε of the test piece was 0.03, 0.07 and 0.10, and various observations were made after unloading. Was carried out. In addition, the macroscopic load strain of the test piece was evaluated in advance by indenting an indentation in the center of the test piece using a microhardness tester (MVK-H0 manufactured by Akashi) and changing the interval. Indentations were made at six points in the longitudinal direction of the test piece at intervals of 500 μm, and four points at 500 μm intervals in the direction perpendicular to the longitudinal direction.

<結晶粒の観察と結晶方位の測定>
本発明では、試験片表面に存在する結晶粒の観察に2種類の顕微鏡を用いた。まず、各結晶粒の二次元的ひずみの評価には光学顕微鏡を用いた。試験片表面の光学顕微鏡による観察像をコンピュータ内に取り込み、その画像を二値化処理した。その後、Hilditchの細線化処理を施し、粒界線の幅を1画素とし、その最終画像から各結晶粒の形状等を評価した。画像からひずみを評価する方法は後述する。次に、結晶粒内のすべり線の荷重軸に対する角度(すべり線角度)は、走査型電子顕微鏡を用いて撮影した画像から測定した。すべり線角度は、その結晶粒のひずみを三次元的に評価する際に必要である。詳細は同じく後述する。一方、結晶方位解析は、日立製S−3500N型走査型電子顕微鏡内に設置したOxford社製Link Opalシステムを用いてEBSD法により行なった。測定方法の詳細は、既に別報で報告した通りである。前述の光学顕微鏡画像から得られた結晶粒界がEBSDの結果と一致していることは確認済みである。
<Observation of crystal grains and measurement of crystal orientation>
In the present invention, two types of microscopes were used for observing the crystal grains present on the surface of the test piece. First, an optical microscope was used to evaluate the two-dimensional strain of each crystal grain. An image of the specimen surface observed by an optical microscope was taken into a computer, and the image was binarized. Thereafter, a Hilditch thinning process was performed to make the width of the grain boundary line one pixel, and the shape and the like of each crystal grain were evaluated from the final image. A method for evaluating distortion from an image will be described later. Next, the angle of the slip line in the crystal grain with respect to the load axis (slip line angle) was measured from an image taken using a scanning electron microscope. The slip line angle is necessary when three-dimensionally evaluating the strain of the crystal grain. Details will be described later. On the other hand, the crystal orientation analysis was performed by the EBSD method using a Link Opal system manufactured by Oxford Corporation installed in an S-3500N scanning electron microscope manufactured by Hitachi. Details of the measurement method have already been reported in a separate report. It has been confirmed that the crystal grain boundaries obtained from the above-mentioned optical microscope images are consistent with the EBSD results.

<結晶粒の塑性ひずみの評価方法>
材料表面内の垂直、剪断ひずみと奥行き方向の垂直ひずみについて説明する。一般に、材料内のひずみを微小ひずみと仮定すると、任意の個所のひずみは、εx 、εy 、εz 、γxy、γyz、γzxの6成分で規定される。本発明では、そのうち材料表面内の垂直ひずみとせん断ひずみであるεx 、εy 、γxy、および、表面に対して垂直方向(奥行き方向)の垂直ひずみであるεz を結晶粒の画像処理結果から決定した。残りの奥行き方向のせん断ひずみであるγyzとγzxは、結晶粒の塑性変形に関する制約条件を考慮することにより別途、決定した。測定範囲内の代表的な結晶粒変形後の走査電子顕微鏡画像を図3に示す。ただし、図中では、結晶粒界をわかりやすくするため細線で表示している。図からわかるように、各結晶粒内ではすべり線が、ほぼ結晶粒全体に一様に現れており、すべり線の方向は、ほぼ同じである。これは結晶粒の変形が単一のすべり系のすべり変形により生じていることを示している。
<Evaluation method of plastic strain of crystal grains>
The vertical and shear strains in the material surface and the vertical strain in the depth direction will be described. Generally, assuming that the strain in the material is a minute strain, the strain at an arbitrary location is defined by six components of ε x , ε y , ε z , γ xy , γ yz , and γ zx . In the present invention, the vertical strain and shear strain ε x , ε y , γ xy within the material surface and ε z , the vertical strain in the direction perpendicular to the surface (depth direction), are subjected to image processing of crystal grains. Determined from the results. The remaining shear strains in the depth direction, γ yz and γ zx, were separately determined by taking into account the constraints on the plastic deformation of the crystal grains. FIG. 3 shows a scanning electron microscope image after a typical crystal grain deformation within the measurement range. However, in the drawing, the crystal grain boundaries are shown by thin lines for easy understanding. As can be seen from the figure, a slip line appears in each crystal grain almost uniformly throughout the crystal grain, and the direction of the slip line is almost the same. This indicates that the deformation of the crystal grains is caused by the slip deformation of a single slip system.

本発明では、各結晶粒の塑性変形に関して以下の仮定のもとになされる。
(1)各結晶粒の塑性変形は、結晶粒内において、一様に生じる。
(2)各結晶粒の塑性変形は非圧縮性で、変形の前後において体積変化が生じない。
(3)各結晶粒で生じているすべり変形のすべり面は同一の方位であり、多重すべりは生じない。
本発明では、まず、上記(1)と(2)の仮定に基づいて以下のようにひずみεx 、εy 、γxyを求める。図4に示すように、荷重軸方向(x軸)、表面内で、それに垂直な方向(y軸)、および両者に垂直なz軸から構成されるxyz座標系と、そのxyz座標系(以後、x−y座標系と呼ぶ)に対して、z軸まわりに45°回転したx’y’z座標系(以後、x’−y’座標系と呼ぶ)を考える。x−y座標系の各軸方向のひずみであるεx とεy 、x’−y’座標系の各軸方向のひずみであるεx とεy を次式により求める。
In the present invention, the following assumptions are made regarding the plastic deformation of each crystal grain.
(1) Plastic deformation of each crystal grain occurs uniformly within the crystal grain.
(2) The plastic deformation of each crystal grain is incompressible, and the volume does not change before and after the deformation.
(3) The slip surface of the slip deformation generated in each crystal grain has the same orientation, and no multiple slip occurs.
In the present invention, first, based on the assumptions (1) and (2), strains ε x , ε y , and γ xy are obtained as follows. As shown in FIG. 4, an xyz coordinate system including a load axis direction (x axis), a direction perpendicular to the load axis direction (y axis), and a z axis perpendicular to both directions, and an xyz coordinate system (hereinafter referred to as xyz coordinate system) , Xy coordinate system), an x'y'z coordinate system (hereinafter referred to as an x'-y 'coordinate system) rotated by 45 ° around the z-axis is considered. It is the strain of each axial x-y coordinate system epsilon x and ε y, x'-y 'strain in which epsilon x and epsilon y direction of each axis of the coordinate system determined by the following equation.

Figure 2004317482
Figure 2004317482
Figure 2004317482
Figure 2004317482
式(1)〜(4)の各項は以下で与えられる画像に関する情報量である。
Nx ̄=Nt/ly:x軸方向の平均画素数
Ny ̄=Nt/lx:y軸方向の平均画素数
Nx’ ̄=Nt/ly’:x’軸方向の平均画素数
Ny’ ̄=Nt/lx’:y’軸方向の平均画素数
ここで、Nt :結晶粒内の総画素数
lx :x軸方向の最大長さ
ly :y軸方向の最大長さ
lx’:x’軸方向の最大長さ
ly’:y’軸方向の最大長さ
ただし、添字に0が付いている項は、各量の変形前の量であり、例えば、Nx ̄(ただし、Nx ̄はNxの算術平均を表しており、バーNxのことで、数式以外の文章では便宜的にNx ̄で表している。以下の同様の表記についても同じ)の場合は、Nt0 ̄/lyoとなる。また、lx、ly、lx’、ly’は、画素の大きさを基準長さとする無次元化長さとする。lxが3画素分の長さであればlx=3となる。
Figure 2004317482
Figure 2004317482
Figure 2004317482
Figure 2004317482
Each term of the expressions (1) to (4) is the information amount regarding the image given below.
Nx ̄ = Nt / ly: average number of pixels in the x-axis direction
Ny ̄ = Nt / lx: average number of pixels in the y-axis direction
Nx′ ̄ = Nt / ly ′: average number of pixels in the x′-axis direction
Ny′ ̄ = Nt / lx ′: average number of pixels in the y′-axis direction
Here, Nt: total number of pixels in a crystal grain
lx: Maximum length in x-axis direction
ly: maximum length in the y-axis direction
lx ': Maximum length in x' axis direction
ly ′: the maximum length in the y′-axis direction. However, the term with 0 added to the subscript is the quantity of each quantity before deformation. For example, Nx ̄ (where Nx ̄ is the arithmetic mean of Nx In the case of a sentence other than a mathematical expression, it is expressed as Nx ̄ for convenience, and the same applies to the following notation.), Nt0 ̄ / lyo. In addition, lx, ly, lx ′, and ly ′ are dimensionless lengths having the pixel size as a reference length. If lx is three pixels long, lx = 3.

次に、図1を用いて本発明の三次元塑性ひずみ解析方法の手順についてのフローを説明する。(1)試料は初期状態と変形(引張り試験等)後とを比較する。試料の観察表面は結晶粒界が識別できる状態とする。(2)表面を光学顕微鏡または電子顕微鏡により観察して画像を取得し、測定対象の結晶粒を定め、粒界抽出、二値化の画像処理を行う。変形前後の同じ結晶粒について同じ面内で45°回転させた画像に対しても同じ処理を行う。(3)変形後の対象結晶粒について、走査型電子顕微鏡、後方散乱電子線回折により、結晶粒表面におけるすべり線角度および結晶方位を求める。前記(1)(2)より、垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ成分(γxy)を算出する。前記(3)(4)より、剪断ひずみ成分(γyz,γzx)を算出する。 Next, the flow of the procedure of the three-dimensional plastic strain analysis method of the present invention will be described with reference to FIG. (1) The sample is compared between the initial state and the state after deformation (such as a tensile test). The observation surface of the sample is in a state where the crystal grain boundaries can be identified. (2) Obtain an image by observing the surface with an optical microscope or an electron microscope, determine crystal grains to be measured, perform grain boundary extraction and binarization image processing. The same processing is performed on images obtained by rotating the same crystal grains before and after deformation by 45 ° in the same plane. (3) With respect to the deformed target crystal grain, a slip line angle and a crystal orientation on the crystal grain surface are determined by a scanning electron microscope and backscattered electron diffraction. From the above (1) and (2), three components of vertical strain (ε x , ε y , ε z ) and a shear strain component (γ xy ) are calculated. From (3) and (4), the shear strain components (γ yz , γ zx ) are calculated.

測定対象の結晶粒の画像を光学顕微鏡で取得し、粒界を特定し、変形前後の寸法、結晶粒界内に入るピクセル数を画像処理で求める。結晶粒に入るピクセル数、x軸とy軸方向の長さについて、変形前をNt0、lx0、l y0 、変形後をNt 、lx、lyとすると、εx ,εy は前記式(1)(2)となる。この考え方では第一ステップとして、結晶粒の表面内の変形を捉える。このとき、表面上の面積は変わらず(ピクセル数;Nt0が不変)縦と横の長さが変わる。第二ステップでは結晶粒の塑性変形前後での体積は変わらないとして、表面上の面積変化(Nt、lx、ly)を捉える。面積変化分だけ、奥行き寸法が変化したと見る。相似形変形と体積保存を前提としているので、各々の項に1/2を乗じる。 An image of a crystal grain to be measured is acquired by an optical microscope, a grain boundary is specified, and dimensions before and after deformation and the number of pixels entering the crystal grain boundary are obtained by image processing. Assuming that the number of pixels entering the crystal grain and the lengths in the x-axis and y-axis directions are Nt0, lx0, and ly0 before deformation and Nt, lx, and ly after deformation, ε x and ε y are obtained by the above equations (1). (2). In this concept, as a first step, deformation in the surface of a crystal grain is captured. At this time, the area on the surface does not change (the number of pixels; Nt0 does not change), and the vertical and horizontal lengths change. In the second step, the area change (Nt, lx, ly) on the surface is grasped assuming that the volume of the crystal grain before and after plastic deformation does not change. It is considered that the depth dimension has changed by the area change. Since similarity deformation and volume conservation are assumed, each term is multiplied by 2.

次いで、塑性変形における体積保存則に基づき垂直ひずみ成分εz を求める。そして、結晶粒内すべり面の同定を行う。走査型電子顕微鏡にて、結晶粒表面のすべり面を同定する。後方散乱電子線回折(EBSD)法により、結晶方位を測定し、これらから、活動すべり面を同定する。すべり線角度θ、ξ(後述)を求める。次いで、剪断ひずみ成分γxy、γyz、γzxを求める。γxyのより正確な算出を行う。結晶粒方位のひずみ評価を45°回転したデータを取得する。計算式は同じで(εx ,εy )を求め、次いでγxyを求める。 Next, the vertical strain component ε z is determined based on the law of volume conservation in plastic deformation. Then, the slip plane in the crystal grain is identified. The slip surface of the crystal grain surface is identified by a scanning electron microscope. The crystal orientation is measured by the backscattered electron diffraction (EBSD) method, and the active slip surface is identified from these. The slip line angles θ and ξ (described later) are obtained. Next, the shear strain components γ xy , γ yz , and γ zx are determined. Perform more accurate calculation of γ xy . Data obtained by rotating the strain evaluation of the crystal grain orientation by 45 ° is acquired. The calculation formula is the same, and (ε x , ε y ) is obtained, and then γ xy is obtained.

図5に示す結晶粒変形に関する模式図を用いて式(1)〜(4)を説明する。図5(a)が変形前の結晶粒、図5(b)が変形後の結晶粒である。本発明では、図に示すようにすべり変形をx−y平面内の変形である図5(a)から図5(b)とz軸方向の垂直変形である図5(b)から図5(c)の2段階に分けて考える。ここでは、試験片表面に対して、垂直方向の剪断ひずみであるγyzとγzxは考慮しないが、それら以外の成分に関しては、全てこの2段階に分離することができる。図5(a)から図5(b)で示される変形は、試験片表面に対して垂直な方向のひずみεz がないと仮定した変形で、試験片表面上における結晶粒の形状変化のみで構成される。いま、図5(a)から図5(b)の変形においてεz =0と仮定していることから、試験片表面上における結晶粒の面積(図中のハッチングを施した部分)は変形中不変である。したがって、縦横比(x軸方向とy軸方向の長さの比)の変化をとると、それはx軸(あるいはy軸)方向の長さの変化率の2倍になる。したがって、この縦横比の変化の1/2が各軸方向の垂直ひずみとなり、これが、式(1)から(4)の第1 項に相当する。ここで、図5(a)と変形後の最終的な結晶粒形状である図5(c)の間で同量を求めても、ここでは、縦横比(x軸方向とy軸方向の長さの比)の変化を計算しているため、図5(a)から図5(b)の場合と同じ結果となる。 Equations (1) to (4) will be described with reference to the schematic diagram relating to crystal grain deformation shown in FIG. FIG. 5A shows crystal grains before deformation, and FIG. 5B shows crystal grains after deformation. In the present invention, as shown in the figure, the slip deformation is a deformation in the xy plane from FIG. 5A to FIG. 5B and a vertical deformation in the z-axis direction from FIG. 5B to FIG. It is considered in two stages c). Here, γ yz and γ zx, which are shear strains in the vertical direction with respect to the test piece surface, are not considered, but all other components can be separated into these two stages. The deformation shown in FIGS. 5 (a) to 5 (b) is a deformation assuming that there is no strain ε z in a direction perpendicular to the surface of the test piece. Be composed. Now, since it is assumed that ε z = 0 in the deformation from FIG. 5A to FIG. 5B, the area of the crystal grains on the surface of the test piece (the hatched portion in the drawing) is under deformation. It is immutable. Therefore, when the aspect ratio (the ratio of the length in the x-axis direction to the length in the y-axis direction) is changed, the change is twice the rate of change in the length in the x-axis (or y-axis) direction. Therefore, 1/2 of the change in the aspect ratio is the vertical strain in each axial direction, and this corresponds to the first term of the equations (1) to (4). Here, even if the same amount is obtained between FIG. 5 (a) and FIG. 5 (c), which is the final crystal grain shape after deformation, here, the aspect ratio (the length in the x-axis direction and the y-axis direction) is obtained. 5 (a) to FIG. 5 (b), since the change of the ratio of the height is calculated.

次に、図5(b)から図5(c)で表される変形について考える。この変形では、試験片表面における結晶粒の形状は不変であるが、その大きさが変化する。いま、前述(段落0014)の変形に関する仮定(2)より各結晶粒において体積保存則が成立しているため、表面における結晶粒の面積変化率である(Nt−Nto)/Ntoが、その結晶粒の奥行き方向の垂直ひずみであるεzに一致する。さらに、図5(b)から図5(c)への変形において結晶粒の形状が不変であることを仮定しているため、(Nt −Nt0)/Nt0に1/2を乗じたものが、この変形段階におけるxとyの各軸方向に関する垂直ひずみとなる。このように面積の変化率から、それに垂直な方向のひずみを求める方法は、従来から結晶粒の奥行き方向の垂直ひずみを求める場合に提案されている。   Next, the deformations shown in FIGS. 5B to 5C will be considered. In this deformation, the shape of the crystal grains on the surface of the test piece does not change, but the size changes. Now, according to the assumption (2) regarding the deformation described in the paragraph (paragraph 0014), since the volume conservation law is established in each crystal grain, the area change rate of the crystal grain on the surface (Nt−Nto) / Nto is calculated by the crystal. This corresponds to εz which is a vertical strain in the depth direction of the grains. Furthermore, since it is assumed that the shape of the crystal grains is not changed in the transformation from FIG. 5B to FIG. 5C, (Nt−Nt0) / Nt0 is multiplied by 、. This is the vertical strain in each of the x and y axis directions at this deformation stage. As described above, a method of obtaining the strain in the direction perpendicular to the area change rate from the rate of change of the area has been conventionally proposed when obtaining the vertical strain in the depth direction of the crystal grain.

試験片表面内の剪断ひずみγxyはx軸方向のひずみεx 、y軸方向のひずみεy 、およびx’−y' 座標系におけるx’軸方向のひずみεx'を用いて次式より求められる。

Figure 2004317482
以上、ひずみεx 、εy 、εz 、γxyを求める手法について説明してきたが、その妥当性については、数値的に作成した種々の形状の結晶粒に関して確認している。本手法の特徴の一つとして、ひずみの計算に変位の測定結果を用いていないことが挙げられる。通常は、ひずみを評価する領域内、あるいは、その近傍に基準点を設け、そこから各点の変位を測り、その変位の変化に基いてひずみを計算するが、本発明では、ひずみの算出にそのような基準点の設定が不要であるため、画像処理を用いてひずみを計算する場合には便利である。 Shear strain gamma xy is the strain in the x-axis direction epsilon x of the test piece in the surface, by the following equation using the strain epsilon x 'axial' x in the coordinate system 'y-axis direction of the strain epsilon y, and x'-y Desired.
Figure 2004317482
The method of obtaining the strains ε x , ε y , ε z , and γ xy has been described above, and the validity has been confirmed for crystal grains of various shapes created numerically. One of the features of this method is that it does not use displacement measurement results for strain calculation. Normally, a reference point is provided in or near the area where strain is evaluated, the displacement of each point is measured therefrom, and the strain is calculated based on the change in the displacement. Since it is not necessary to set such a reference point, it is convenient when calculating distortion using image processing.

<奥行き方向のせん断ひずみの評価方法>
材料表面における、結晶粒の外形変化のみでは結晶粒の試験片内部方向のせん断ひずみであるγyz、γzxを計算することはできない。そこで、本発明ではSEMにより観察されるすべり線の荷重軸に対する角度θとEBSD法により求めた結晶方位の結果を用いて、各結晶粒のすべり面を特定する。その後、その特定したすべり面に対する力学的変形拘束を考慮し、γyzとγzxを計算する。その具体的な方法を以下に示す。
<Evaluation method of shear strain in depth direction>
It is not possible to calculate γ yz and γ zx , which are the shear strains of the crystal grains in the direction of the inside of the test piece only by changing the outer shape of the crystal grains on the material surface. Therefore, in the present invention, the slip plane of each crystal grain is specified using the angle θ of the slip line with respect to the load axis observed by the SEM and the result of the crystal orientation obtained by the EBSD method. Thereafter, γ yz and γ zx are calculated in consideration of the mechanical deformation constraint on the specified slip surface. The specific method is shown below.

<活動すべり面の決定>
一般に面心立方格子(fcc)金属では、{111}面が活動すべり面となることが知られている。したがって、EBSD法により、ある結晶粒の方位が測定されると、その結晶粒の(111)、(−111)、(−1 −11)、および(1 −11)(ただし−は負の値を示す)の4つのすべり面の方位が明らかとなり、各すべり面と表面の交線が荷重軸となす角度、すなわちすべり線角度も同時に求めることができる。荷重軸とすべり面、すべり線の幾何学的関係を模式的に図6に示す。本発明では、測定領域中に存在する全結晶粒について、それぞれ4つのすべり面候補を考え、各すべりと試験片表面との交線であるすべり線の角度θを計算する。4つのすべり面候補の中でSEMより観察されたすべり線と最も近い角度を有するものを活動すべり面と推定した。実際のすべり線角度θとEBSD法から推定したすべり線角度の差は小さく、最大でも5°程度であった。以上のプロセスにより活動すべり面の三次元的方位が明らかとなり、図6中に示す活動すべり面の奥行き方向の角度であるξが求められる。ξについての詳細は後述する。
<Determination of the slip surface>
It is generally known that {111} plane is an active slip plane in face-centered cubic lattice (fcc) metal. Therefore, when the orientation of a certain crystal grain is measured by the EBSD method, (111), (−111), (−1−11), and (1−11) of the crystal grain (where − is a negative value) The orientation of the four slip planes is clarified, and the angle between the line of intersection of each slip plane and the surface with the load axis, that is, the slip line angle can be determined at the same time. FIG. 6 schematically shows the geometric relationship between the load axis, the slip surface, and the slip line. In the present invention, four slip surface candidates are considered for all the crystal grains present in the measurement region, and the slip line angle θ, which is the intersection of each slip and the test piece surface, is calculated. Among the four slip surface candidates, those having the closest angle to the slip line observed by SEM were estimated as active slip surfaces. The difference between the actual slip line angle θ and the slip line angle estimated from the EBSD method was small, and was at most about 5 °. The three-dimensional azimuth of the active slip surface is clarified by the above process, and ξ, which is the angle in the depth direction of the active slip surface shown in FIG. 6, is obtained. Details of ξ will be described later.

<各結晶粒の塑性変形における拘束>
いま、図7に示すように、ある結晶粒の塑性変形が同一方向の多数のすべり面のすべりにより構成されている場合を考える。図中において、nは活動すべり面の単位法線ベクトルであり、mはすべり線方向の単位ベクトルである。また、m’はy=0とすべり面の交線に関する単位方向ベクトルである。したがって、m、m’は、いずれもnに垂直な単位方向ベクトルとなる。結晶粒の塑性変形が完全にすべり面同士のすべり変形によって構成されていると仮定したため、結晶粒はすべり面に平行な剪断変形のみが生じ、nおよびm、m’方向の垂直ひずみであるεn とεm 、εm'はいずれも0となる。したがって、次式が成立する。

Figure 2004317482
Figure 2004317482
Figure 2004317482
<Restriction in plastic deformation of each crystal grain>
Now, as shown in FIG. 7, a case is considered where plastic deformation of a certain crystal grain is constituted by slips of a large number of slip surfaces in the same direction. In the figure, n is a unit normal vector of the active slip plane, and m is a unit vector in the slip line direction. M ′ is a unit direction vector related to the intersection of y = 0 and the slip surface. Therefore, m and m 'are both unit direction vectors perpendicular to n. Since it is assumed that the plastic deformation of the crystal grains is completely constituted by the slip deformation between the slip surfaces, the crystal grains undergo only shear deformation parallel to the slip surfaces, and ε which is the vertical strain in the n, m, and m ′ directions n , ε m , and ε m ' are all 0. Therefore, the following equation is established.
Figure 2004317482
Figure 2004317482
Figure 2004317482

したがって、結晶粒のせん断ひずみγxy、γyz、γzxはすべり線角度θ、ξ、およびx,y,z各軸方向の垂直ひずみεx ,εy ,εz を用いて次式のように求められる。

Figure 2004317482
Figure 2004317482
Figure 2004317482
試験片表面内のせん断ひずみγxyは式(5)からも求められるので、両式から求めたγxyを比較することで仮定した変形が実際の塑性変形において生じているか否かを確認することができる。また、εx 、εy 、εz 、γxy、γyzおよびγzxの結晶粒の塑性ひずみの6成分が既知であれば、ひずみテンソル[ εij ]の固有値、固有ベクトルから主ひずみと主ひずみ方向も三次元的に求められる。 Therefore, the shear strains γ xy , γ yz , and γ zx of the crystal grains are expressed by the following equations using the slip line angles θ, ξ and the vertical strains ε x , ε y , ε z in the x, y, and z directions. Required.
Figure 2004317482
Figure 2004317482
Figure 2004317482
Since the shear strain γxy in the surface of the test piece is also obtained from the equation (5), it is possible to confirm whether or not the assumed deformation occurs in the actual plastic deformation by comparing γxy obtained from both equations. . If the six components of the plastic strain of the crystal grains of ε x , ε y , ε z , γ xy , γ yz and γ zx are known, the principal strain and the principal strain are obtained from the eigenvalues and eigenvectors of the strain tensor [ε ij ]. The direction is also obtained three-dimensionally.

<実験結果および考察>
<仮定した結晶粒の変形様式の確認>
前述のように、本発明では、各結晶粒の塑性変形が同一方向の多数のすべり面のすべりにより構成されていると仮定し、その仮定より導かれる変形に関する拘束条件式を用いて奥行き方向の剪断ひずみγyz,γzxを求めた。ここで、試験片表面内のせん断ひずみγxyは式(5)および式(9)の双方から求められるため、両者が一致すれば、実際の結晶粒が、仮定した変形様式で変形していることを裏付けることになる。両者を比較した結果を図8に示す。図中の横軸は式(5)より求めた剪断断ひずみをγxyBMP として、また、縦軸は式(9)より求めた剪断ひずみγxyを示している。なお、結果を22.5°≦θ≦67.5°の範囲と、θ<22.5°、67.5°<θの範囲により分けているのは、式(9)からわかるように、γxyは1/tanθとtanθの項を含むため、θが0°および90°近傍でγxyの誤差が大きくなる。
<Experimental results and discussion>
<Confirmation of assumed deformation mode of crystal grains>
As described above, in the present invention, it is assumed that the plastic deformation of each crystal grain is constituted by the slip of a large number of slip surfaces in the same direction, and the constraint in the depth direction is obtained by using the constraint condition expression regarding the deformation derived from the assumption. Shear strains γ yz and γ zx were determined. Here, since the shear strain γ xy on the surface of the test piece is obtained from both the equations (5) and (9), if the two agree, the actual crystal grains are deformed in the assumed deformation mode. This will support that. FIG. 8 shows the result of comparison between the two. In the figure, the horizontal axis represents the shear strain obtained from equation (5) as γ xy BMP, and the vertical axis represents the shear strain γ xy obtained from equation (9). Note that the results are divided according to the range of 22.5 ° ≦ θ ≦ 67.5 ° and the ranges of θ <22.5 ° and 67.5 ° <θ, as can be seen from Expression (9). Since γ xy includes terms of 1 / tan θ and tan θ, the error of γ xy increases when θ is near 0 ° and 90 °.

したがって、θが両角度付近のものに関しては、先に説明したx’−y’座標系を基準に評価した角度θ’を用いてγxyを計算した。次節以降に出てくるγyzに関しても同様の方法で精度を高めている。図からわかるように、式(5)および式(9)の両式から計算したγxyの値はよく一致しており、仮定した変形様式が、ほぼ、すべての結晶粒について実現されていると言える。なお、プロットした結果の中で比較的相関の低い(相対誤差5°以上)ものを●印で示しているが、これらは、小さい結晶粒である場合が多かった。これは、小さい結晶粒ほど変形が一様ではなく、本解析で仮定した単一すべり系による変形が厳密には成立していないからであると考えられる。 Therefore, when the angle θ is close to both angles, γ xy was calculated using the angle θ ′ evaluated based on the xy coordinate system described above. The accuracy is improved in the same way for γ yz that will appear in the following sections . As can be seen from the figure, the values of γ xy calculated from both equations (5) and (9) are in good agreement, indicating that the assumed deformation mode is realized for almost all crystal grains. I can say. Note that, among the plotted results, those having relatively low correlation (relative error of 5 ° or more) are indicated by ●, but these were often small crystal grains. This is presumably because the smaller the crystal grains, the more the deformation is not uniform, and the deformation by the single slip system assumed in this analysis is not strictly established.

したがって、次節以降では、γxyに関して相関性が高かった○印で示されたデータのみを採用した。なお、図8は、一例としてε=0.07の場合のみを示したが、他の負荷ひずみにおいても相関性の低いデータは、ほぼ小さな結晶粒のものであった。観察領域内に存在する150個の結晶粒で、各負荷ひずみを与えた後、すべり線が明瞭に観察された結晶粒はε=0.03で123個、ε=0.07で123個、ε=0.10で121個であった。このγxyとγx'y'に関する抽出により、最終的に残ったε=0.03で103個、ε=0.07で97個、ε=0.10で91個の結晶粒に関してひずみの評価が可能であった。 Therefore, in the following sections, only the data indicated by a circle having a high correlation with respect to γ xy was adopted. FIG. 8 shows only an example in which ε = 0.07 as an example. However, data having a low correlation with other load strains are almost small crystal grains. Of the 150 crystal grains present in the observation region, after applying each load strain, the number of crystal grains in which a slip line was clearly observed was 123 at ε = 0.03, 123 at ε = 0.07, It was 121 when ε = 0.10. By the extraction of γ xy and γ x′y ′ , finally, the remaining strain of 103 crystal grains at ε = 0.03, 97 at ε = 0.07, and 91 at ε = 0.10. Evaluation was possible.

<結晶粒の各塑性ひずみ成分の分布>
結晶粒の塑性ひずみの6成分の変化を図9に示す。図中の各ひずみにおける縦方向のバーは、ひずみが評価可能であった結晶粒に関するひずみの最大値と最小値、すなわち、ひずみの変動範囲を示している。また、ε=0.10までひずみが評価可能であった結晶粒のうちで、代表的な結晶粒10個については、同一結晶粒におけるひずみ成分の変化がわかるように折れ線で結んで示した。図から読み取れるように荷重軸方向(x軸方向)のひずみεx は、ひずみの増加に伴い各結晶粒の値は増減を示しながらも、平均値は線形増加を示している。また、奥行き方向の垂直ひずみεz も、各結晶粒の値は増減を示しながらも、平均値は線形減少を示している。一方、試験片表面内における荷重軸垂直方向ひずみεy の平均値は、ほぼ0である。したがって、荷重軸方向に引伸ばされた結晶粒は主として奥行き方向に縮むことにより一定の体積を保っていると言える。次に図9(d)、(e)、(f)に示す剪断ひずみ成分γxy、γyz、γzxの変化を見ると、各剪断ひずみの値は、負荷ひずみの増加に伴い増加するものと減少するものが入り混ざっており、中には増減を繰り返すものも存在する。しかしながら、その平均値はほぼ0で一定となっている。
<Distribution of each plastic strain component of crystal grains>
FIG. 9 shows changes in six components of plastic strain of crystal grains. The bars in the vertical direction for each strain in the drawing indicate the maximum value and the minimum value of the strain for the crystal grain for which the strain could be evaluated, that is, the range of the strain variation. Also, among the crystal grains whose strain could be evaluated up to ε = 0.10, ten typical crystal grains are shown by broken lines so that the change of the strain component in the same crystal grain can be understood. As can be seen from the figure, the average value of the strain ε x in the load axis direction (x-axis direction) shows a linear increase while the value of each crystal grain increases and decreases as the strain increases. In the vertical strain ε z in the depth direction, the average value shows a linear decrease while the value of each crystal grain increases and decreases. On the other hand, the average value of the strain ε y in the direction perpendicular to the load axis in the surface of the test piece is almost zero. Therefore, it can be said that the crystal grains elongated in the direction of the load axis maintain a certain volume mainly by shrinking in the depth direction. Next, looking at the changes in the shear strain components γ xy , γ yz , and γ zx shown in FIGS. 9D, 9E , and 9F , the values of the respective shear strains increase with an increase in the load strain. And some that decrease are mixed in, and some that repeatedly increase and decrease exist. However, the average value is almost zero and constant.

<結晶粒の主ひずみと主ひずみ方向の分布>
各結晶粒の最大主ひずみの変化を図10に示す。ただし、図9と同様に縦方向のバーはひずみの最大値と最小値を示し、また代表的な結晶粒10個については折れ線で結んで示している。図9(a)に示した荷重軸方向の垂直ひずみであるεx と同様、最大主ひずみに関しても巨視的負荷ひずみの増加に伴い、ほぼ線形的に増加している。図11に主ひずみ方向の三次元分布を示す。ここで、図中の○印はxyz座標系上の単位ベクトルの先端の位置を示しており、図中(a)(b)(c)の右半分はx−y平面への投影点、左半分はy−z平面への投影点を示している。x−y平面、y−z平面のいずれの平面上においても、巨視的負荷ひずみの増加に伴い主ひずみ方向は荷重軸方向に向く傾向にあることがわかる。
<Principal strain of crystal grain and distribution of principal strain direction>
FIG. 10 shows the change in the maximum principal strain of each crystal grain. However, as in FIG. 9, the bars in the vertical direction indicate the maximum value and the minimum value of the strain, and ten typical crystal grains are connected by broken lines. Similarly to the vertical strain ε x in the load axis direction shown in FIG. 9A, the maximum principal strain increases almost linearly with an increase in the macroscopic load strain. FIG. 11 shows a three-dimensional distribution in the principal strain direction. Here, the circles in the figure indicate the positions of the tips of the unit vectors on the xyz coordinate system, and the right halves of (a), (b), and (c) in the figures are the projection points on the xy plane, and the left half. The half shows the projection point on the yz plane. It can be seen that on any of the xy plane and the yz plane, the principal strain direction tends to be in the direction of the load axis as the macroscopic load strain increases.

主ひずみ方向の変化をさらに詳細に示したのが図12と図13である。試験片表面(x−y平面)および試験片奥行き方向(z−x平面)において主ひずみ方向成分が荷重軸となす角度θxy、θzxの分布を示す。いずれの結果も、巨視的負荷ひずみの増加に伴い主ひずみ方向が荷重軸方向に向くことを示しているが、試験片表面内と試験片奥行き方向とでは、主ひずみ方向が荷重軸方向に向く傾向に差があり、表面に垂直な面上において、主ひずみ方向が早く荷重軸方向に寄る傾向がうかがえる。これは、自由表面に存在する結晶粒では、一方が材料表面であるため、試験片表面内の変形における隣接結晶粒間の拘束と奥行き方向の変形拘束に差があるためと考えられる。   FIGS. 12 and 13 show the change in the principal strain direction in more detail. The distribution of angles θxy and θzx that the principal strain direction component makes with the load axis in the surface of the test piece (xy plane) and the depth direction of the test piece (zx plane) is shown. Both results show that the principal strain direction is directed to the load axis direction with the increase in macroscopic load strain, but the principal strain direction is directed to the load axis direction in the specimen surface and in the specimen depth direction. There is a difference in the tendency, and it can be seen that the principal strain direction tends to quickly shift toward the load axis direction on a plane perpendicular to the surface. This is probably because one of the crystal grains existing on the free surface is the material surface, and there is a difference between the constraint between adjacent crystal grains and the deformation constraint in the depth direction in the deformation on the test piece surface.

<結言>
本発明では、後方散乱電子線回折(EBSD)法および画像処理を併用して多結晶金属材料中に存在する各結晶粒のひずみを三次元的に求める手法を提案するとともに、提案した手法を多結晶銅の引張りに対して適用した。得られた結果は以下のように要約できる。 (1)各結晶粒の塑性ひずみ6 成分εx 、εy 、εz 、γxy、γyz、γzx(xが荷重軸方向、x−y平面が試験片表面、zが試験片表面の法線方向)のうち、εx 、εy 、εz 、γxyの4成分は結晶粒の画像情報から、他の2成分γyz、γzxは、それに結晶粒の方位情報と単一すべり系による塑性変形の拘束条件を考慮することにより得られる。
<Conclusion>
The present invention proposes a method for three-dimensionally obtaining the strain of each crystal grain present in a polycrystalline metal material by using a backscattered electron diffraction (EBSD) method and image processing together, and also proposes a number of the proposed methods. Applied for tensile of crystalline copper. The results obtained can be summarized as follows. (1) Six components of plastic strain of each crystal grain ε x , ε y , ε z , γ xy , γ yz , γ zx (x is the load axis direction, xy plane is the test piece surface, z is the test piece surface In the normal direction), the four components of ε x , ε y , ε z , and γ xy are based on the image information of the crystal grains, and the other two components γ yz and γ zx are single-slid with the orientation information of the crystal grains It is obtained by considering the constraints of plastic deformation by the system.

(2)εx 、εy 、εz 、γxyは各結晶粒のx、y各軸方向の長さ比の変化と、x、y各軸をz軸まわりに45°回転して得られる方向であるx’、y’軸に関する長さの比の変化に加え、各結晶粒の全画素数の変化から求められた。
(3)γyz、γzxは各結晶粒の塑性変形が同一方向の多数のすべり面のすべりにより生じていると仮定し、そのすべり面の荷重軸に対する角度と(2)で求めたひずみにより求めた。なお、本発明で用いた銅の活動すべり面は(4つある{lll}面のうち1つ)は、走査型電子顕微鏡によるすべり線の観察およびEBSD法により決定した。
(2) ε x , ε y , ε z , and γ xy are obtained by changing the length ratio of each crystal grain in the x and y directions and rotating the x and y axes by 45 ° about the z axis. In addition to the change in the ratio of lengths with respect to the x 'and y' axes, which are directions, the change was obtained from the change in the total number of pixels of each crystal grain.
(3) γ yz and γ zx are obtained by assuming that the plastic deformation of each crystal grain is caused by the slip of a large number of slip surfaces in the same direction, and the angle of the slip surface with respect to the load axis and the strain obtained in (2). I asked. The active slip plane of copper used in the present invention (one of the four {ll} planes) was determined by observation of slip lines with a scanning electron microscope and EBSD method.

(4)上述の手法を用いて多結晶銅の引張りにおける各結晶粒のひずみを三次元的に評価した結果、各結晶粒のひずみは大きくばらついているものの、平均的には、予想される巨視的ひずみの増加あるいは減少傾向と一致した。また試験片の巨視的ひずみの増加に伴い、最大主ひずみ方向は引張り荷重軸方向に集まる傾向が見られ、その傾向はx−y平面(試験片表面)内よりもz−x平面(試験片表面に垂直な面)内の方が強かった。これは、試験片表面に存在する結晶粒は一方が自由表面であるため、試験片表面内とそれに垂直な面内において隣接結晶粒の変形拘束状態に差があるためと考えられる。   (4) As a result of three-dimensionally evaluating the strain of each crystal grain in tension of polycrystalline copper using the above-described method, the strain of each crystal grain varies greatly, but on average, the expected macroscopic strain is obtained. This is consistent with the tendency of the mechanical strain to increase or decrease. Also, with the increase of the macroscopic strain of the test piece, the direction of the maximum principal strain tends to gather in the direction of the tensile load axis, and the tendency is more in the zx plane (test piece surface) than in the xy plane (test piece surface). (The plane perpendicular to the surface) was stronger. This is presumably because one of the crystal grains existing on the surface of the test piece is a free surface, and there is a difference in the state of deformation constraint between adjacent crystal grains in the surface of the test piece and in a plane perpendicular thereto.

<三次元塑性回転解析方法>
本発明では、さらに塑性変形を正確に記述する際に必要な結晶粒の剛体回転成分(塑性回転)を評価し、各結晶粒における塑性回転と塑性ひずみの関係について検討した。また、評価方法および結果の妥当性に関しては、表面形状測定顕微鏡を用いて、別途、測定した各結晶粒の表面傾斜角度が塑性ひずみと塑性回転から予測される結果とよい対応を示すか否かにより検討した。
<3D plastic rotation analysis method>
In the present invention, the rigid rotation component (plastic rotation) of crystal grains necessary for accurately describing plastic deformation was evaluated, and the relationship between plastic rotation and plastic strain in each crystal grain was examined. In addition, regarding the validity of the evaluation method and results, using a surface shape measurement microscope, separately, whether the measured surface inclination angle of each crystal grain shows a good correspondence with the result predicted from plastic strain and plastic rotation or not It was examined by.

<実験方法>
供試材は工業用純銅圧延板(純度99.5%、板厚1.0mm)であり,図2に示すように圧延方向を長手方向とする平板試験片を作製した。これを機械研磨して試験片表面を鏡面状態に仕上げた援、真空焼鈍(焼鈍温度873K、保持時間1h、炉冷)および電解研磨を行い、機械加工の際に生じた残留応力や試験片表面の酸化膜、微細な研磨傷を除去した。さらに,結晶粒界を判別できるように化学腐食を行った。引張り試験は日立製200Kg試料引張り試験装置を用いて行い、試験片の巨視的ひずみεが0.03、0.07の二段階で引張り試験を中断し、除荷後に各種の測定を実施した。測定は試験片平行部の中央部500μm×500μmの正方形領域について行った。なお、本報告では紙面の都合上、巨視的ひずみが0.03の場合の結果のみを示すが、巨視的ひずみが0.07においても塑性ひずみや塑性回転の分布において、ほぼ同様の結果が得られた。試験片の巨視的ひずみは、変形前にアカシ製微小硬さ試験機MVK−H0を用いて長手方向に500μm間隔で6点の圧痕を打ち、圧痕間距離の変化から評価した。
<Experimental method>
The test material was an industrial pure copper rolled plate (purity: 99.5%, plate thickness: 1.0 mm). As shown in FIG. This was mechanically polished, and the surface of the test piece was mirror-finished, vacuum annealing (annealing temperature: 873 K, holding time: 1 h, furnace cooling) and electrolytic polishing were performed. Oxide film and fine polishing scratches were removed. Furthermore, chemical corrosion was performed so that the grain boundaries could be distinguished. The tensile test was performed using a 200 kg sample tensile tester manufactured by Hitachi, and the tensile test was interrupted at two stages of macroscopic strain ε of the test piece of 0.03 and 0.07, and various measurements were performed after unloading. The measurement was performed on a square area of 500 μm × 500 μm at the center of the parallel part of the test piece. In this report, only the results when the macroscopic strain is 0.03 are shown due to space limitations. However, even when the macroscopic strain is 0.07, almost the same results are obtained in the distribution of the plastic strain and the plastic rotation. Was done. The macroscopic strain of the test piece was evaluated from the change in the distance between the indentations before the deformation, by using a micro hardness tester MVK-H0 manufactured by Akaashi to strike six indentations at 500 μm intervals in the longitudinal direction.

本発明で用いるひずみと回転の評価では、各結晶粒の変形前後における結晶方位と結晶粒の画像が必要である。まず、結晶方位の測定は日立製S−3500N型走査型電子顕微鏡内に設置したOxford製Link Opalシステムを用いてEBSD法により行った。なお、EBSD法による結晶方位の測定は電子線の自動走査により5μm間隔で約10000点行っており、回析線図から評価する結晶方位の解析精度は許容誤差0.1[deg]である。次に、結晶粒の画像取得はKEYENCE製表面形状測定顕微鏡VF−7500を用いて行った。その際の画像取込み倍率は2500倍、画像解像度は28.364pixel/cmとした。後述のように、測定領域内には合計191個の結晶粒が存在したが、本発明では、結晶粒のひずみが精度良く測定できる結晶粒の画素数がl0000以上のものを評価の対象とした。   In the evaluation of strain and rotation used in the present invention, images of crystal orientation and crystal grains before and after deformation of each crystal grain are required. First, the crystal orientation was measured by the EBSD method using an Oxford Link Opal system installed in a Hitachi S-3500N scanning electron microscope. The measurement of the crystal orientation by the EBSD method is performed at about 10,000 points at intervals of 5 μm by automatic scanning of an electron beam, and the analysis accuracy of the crystal orientation evaluated from the diffraction diagram has an allowable error of 0.1 [deg]. Next, the image acquisition of the crystal grain was performed using the surface shape measurement microscope VF-7500 made by KEYENCE. At that time, the image capturing magnification was 2500 times, and the image resolution was 28.364 pixels / cm. As will be described later, a total of 191 crystal grains were present in the measurement area. However, in the present invention, a crystal grain whose distortion number can be measured with high accuracy has a pixel number of 10000 or more as an evaluation target. .

さらに本発明では、求めた各結晶粒の塑性ひずみと塑性回転が妥当であることを確認するために、ひずみと回転から予想される結晶粒表面の傾斜角度と、別途測定した傾斜角度を比較した。試験片表面の傾斜角度の測定には、結晶粒の画像取得に用いたものと同じ表面形状測定顕微鏡を用い、図2に示す試験片座標のx軸およびy軸方向に、それぞれ10μm間隔で表面形状測定を行った。次に、同一結晶粒内におけるz軸方向の相対的変位から最小二乗法により結晶粒表面の近似平面の式を求め、この近似平面に関してx軸およびy軸方向の傾斜角度θx およびθy をボめた。 Furthermore, in the present invention, in order to confirm that the obtained plastic strain and plastic rotation of each crystal grain are appropriate, the tilt angle of the crystal grain surface expected from the strain and rotation was compared with the tilt angle measured separately. . For measuring the inclination angle of the surface of the test piece, the same surface shape measuring microscope as that used for acquiring the image of the crystal grains was used, and the surface was measured at intervals of 10 μm in the x-axis and y-axis directions of the test piece coordinates shown in FIG. Shape measurement was performed. Next, from the relative displacement in the z-axis direction within the same crystal grain, the expression of the approximate plane of the crystal grain surface is obtained by the least square method, and the inclination angles θ x and θ y in the x-axis and y-axis directions with respect to this approximate plane are determined. I got it.

<結晶粒の塑性変形>
<塑性ひずみと塑性回転>
結晶粒の塑性変形に関するモデルを図15に示す。図中に示すx’y’z’およびx”y”z”座標系は変形前後における結晶座標系であり、xyz座標系は巨視的な試験片座標系である。いま、結晶粒の塑性変形量が微小な場合について考えると、塑性変形は一般に、変位勾配テンソル∇j i で表され、それはさらにひずみテンソルεijと回転テンソルωijに分離てきる。
j i =εij+ωij
ここで、εijは変位勾配テンソルの対称テンソル成分であり、ωijは反対称テンソル成分である。したがって、εijは独立な6成分で、ωijは独立な3成分で表現される。ここで、εijおよびωijの各成分を一般の工学的表記で表すと、それぞれ(εx ,εy ,εz ,γxy/2,γyz/2,γzx/2)および(ωx ,ωy ,ωz )となり、各結晶粒について、これらの9成分が全て求められると、塑性変形が三次元的に完全に記述されることになる。本発明では、前者の6成分を「塑性ひずみ]、後者の3成分を「塑性回転」と呼ぶことにする。
<Plastic deformation of crystal grains>
<Plastic strain and plastic rotation>
FIG. 15 shows a model relating to plastic deformation of crystal grains. The x'y'z 'and x "y" z "coordinate systems shown in the figure are crystal coordinate systems before and after deformation, and the xyz coordinate system is a macroscopic test piece coordinate system. Considering the case where the amount is very small, plastic deformation is generally represented by the displacement gradient tensor ∇ j u i, which as possible Te separated into further strain tensor epsilon ij and the rotation tensor omega ij.
∇ j u i = ε ij + ω ij
Here, ε ij is a symmetric tensor component of the displacement gradient tensor, and ω ij is an anti-symmetric tensor component. Therefore, ε ij is represented by six independent components, and ω ij is represented by three independent components. Here, when each component of ε ij and ω ij is represented by a general engineering notation, (ε x , ε y , ε z , γ xy / 2, γ yz / 2, γ zx / 2) and (ω x , ω y , ω z ), and if all these nine components are obtained for each crystal grain, the plastic deformation is completely described three-dimensionally. In the present invention, the former six components are referred to as “plastic strain”, and the latter three components are referred to as “plastic rotation”.

一般に連続体力学における微小変形は、林料の外形変化(ひずみ具合)を表す「ひずみ」と外形が変わらずに林料の剛体的回転を表す「回転]で表すことができる。これを例えば銅等のfcc金属材料の塑性変形に当てはめると、既に図15に示したように、塑性変形は結晶粒内のすべり面同士の剪断変形で構成される「塑性ひずみ」とすべり面間のすべりが生じずに結晶粒が全体的に回転する「塑性回転」で構成されることになる。前者については、試験片表面の観察およびEBSD法により活動すべり面を三次元的に同定する新たなひずみ評価方法を提案し、それにより評価が可能である。一方、後者の塑性回転については、EBSD法により結晶方位の測定結果からほぼ直接的に評価できるにも拘らず、各結晶粒の塑性回転を未だ詳紬に検討しておらず、また、塑性ひずみの各成分と塑性回転の各成分との相関についても議論していない。本発明では、観察領域内に存在する多数の結晶粒について塑性ひずみと塑性回転の両方を評価し、それらの関係について考蔡する。   In general, microdeformation in continuum mechanics can be represented by “strain”, which indicates a change in the outer shape (degree of distortion) of the forest material, and “rotation”, which indicates the rigid rotation of the forest material without changing the outer shape, for example, copper. When applied to the plastic deformation of fcc metal materials such as the above, as shown in FIG. 15, the plastic deformation is caused by "plastic strain" constituted by shear deformation between slip surfaces in crystal grains and slip between slip surfaces. In other words, the crystal grains are entirely rotated without causing “plastic rotation”. Regarding the former, a new strain evaluation method for three-dimensionally identifying the active slip surface by observation of the test piece surface and the EBSD method is proposed, and the evaluation can be performed by that. On the other hand, although the latter can be evaluated almost directly from the crystal orientation measurement results by the EBSD method, the plastic rotation of each crystal grain has not yet been studied in detail, and the plastic strain The correlation between each component of の and each component of plastic rotation is not discussed. In the present invention, both plastic strain and plastic rotation are evaluated for a large number of crystal grains present in the observation region, and the relationship between them is considered.

<塑性ひずみの評価方法>
結晶粒の三次元的塑性ひずみ(εx ,εy ,εz ,γxy,γyz,γzx)については、結晶粒の塑性変形に関し、前記段落0019の仮定に基づいて計算される。つまり、
(1)各結晶粒の塑性変形は非圧縮性であり、変形前後において体積変化が生しない。 (2)各結晶粒の塑性変形はすべり変形により生じ、結晶粒内において一様に生じる。 (3〕各結晶粒で生じるすべり変形のすべり面は同一の方位であり、複数のすべり面における多重すべりは生じない。
以上の仮定が成立すると、垂直ひずみ成分は前記式(1)(2)および下記式より計算できる。
εz =(Nt −Nt0)/Nt0
ここで、NX  ̄およびNy  ̄は、それぞれ結晶粒のx軸およびy軸方向の平均画素数で、Nt は総画素数である。ただし、添字に0が付いている項は変形前の量である。これらの量は、すべて試験片表面の観察結果を画像処理することにより得られる。
<Evaluation method for plastic strain>
The three-dimensional plastic strain (ε x , ε y , ε z , γ xy , γ yz , γ zx ) of the crystal grain is calculated based on the assumption in paragraph 0019 above regarding the plastic deformation of the crystal grain. That is,
(1) The plastic deformation of each crystal grain is incompressible, and no volume change occurs before and after the deformation. (2) The plastic deformation of each crystal grain is caused by slip deformation and occurs uniformly within the crystal grain. (3) The slip surface of the slip deformation generated in each crystal grain has the same orientation, and multiple slips on a plurality of slip surfaces do not occur.
When the above assumption is satisfied, the vertical distortion component can be calculated from the above equations (1) and (2) and the following equation.
ε z = (N t −N t0 ) / N t0
Here, N x  ̄ and N yで are the average number of pixels of the crystal grains in the x-axis and y-axis directions, respectively, and N t is the total number of pixels. However, the term with 0 added to the subscript is the quantity before deformation. These amounts can all be obtained by image processing of the observation results of the test piece surface.

一方、試験片表面内の剪断ひずみγxyは、上述の垂直ひずみεx ,εy に加えて、xyz座標系のz軸を反時計回り45°回転させた座標系において垂直ひずみε45を求め、この3方向の垂直ひずみから下記式を用いて計算できる。
γxy=−εx −εy +ε45
さらに、試験片内部方向の剪断ひずみであるγyz,γzxはEBSD法および試験片表面におけるすべり線の観察結果により活動すべり面を三次元的に同定し、前記式(10)および(11)を用いて計算できる。
なお、式中のθおよびζは活動すべり面の角度である。
On the other hand, in addition to the above-described vertical strains ε x and ε y , the shear strain γ xy in the surface of the test piece is obtained by calculating the vertical strain ε 45 in a coordinate system obtained by rotating the z-axis of the xyz coordinate system by 45 ° counterclockwise. The vertical strain in the three directions can be calculated using the following equation.
γ xy = −ε x −ε y + ε 45
Further, the shear strains in the inward direction of the test piece, γ yz and γ zx , identify the active slip surface three-dimensionally by the EBSD method and the observation result of the slip line on the test piece surface, and the equations (10) and (11) Can be calculated using
Note that θ and ζ in the equations are the angles of the active slip surface.

<塑性回転の評価方法>
図15に示すx’y’z’およびx”y”z”座標系は変形前後における結晶座標系であり、それぞれEBSD法による結晶方位の測定結果から直接的に求めることができる。ここで、変形前の結晶座標系であるx’y’z’座標系を基準座標系として、その基本ベクトルex',ey'およびez'の変形前後における回転角度から塑性回転ωx ,ωy およびωz を評価する。結晶座標系x’y’z’およびx”y”z”と各結晶粒の塑性回転の関係を図16に示す。まず、図16(a)を参考に、z”軸方向の単位ベクトルez"の角度について考える。図中のγはez"がz”軸となす角度であり、γ1 はez"のz’x’平面への正射影がz’軸となす角度、γ2 はez"のy’z’平面への正射影がz’軸となす角度である。いま、微小な塑性変形を仮定しているため、γ,γ1 およびγ2 は微小量となり、変位の勾配∂ux'/∂z',∂u y'/∂z'および∂u z'/∂z'は、それぞれ次式(12)で表される。

Figure 2004317482
<Evaluation method of plastic rotation>
The x'y'z 'and x "y" z "coordinate systems shown in Fig. 15 are crystal coordinate systems before and after deformation, and can be directly obtained from the results of crystal orientation measurement by the EBSD method. undeformed x'y'z a crystal coordinate system 'coordinate system as a reference coordinate system, the basic vector e x', plastic rotation from the rotation angle before and after deformation of e y 'and e z' ω x, ω y and evaluating the omega z. FIG. 16 crystal coordinate system x'y'z 'and x "y" z "and the relationship of plastic rotation of each crystal grain. First, referring to FIG. 16 (a), the considered angles of z "of the axial unit vector e z". In the figure, γ is the angle formed by ez with the z ″ axis, γ 1 is the angle formed by the orthogonal projection of ez onto the z′x ′ plane, and γ 2 is the y formed by ez . This is the angle that the orthographic projection on the 'z' plane makes with the z 'axis. Now, since a small plastic deformation is assumed, γ, γ 1 and γ 2 are very small, and the gradients of displacement ∂ux / ∂z ′, ∂uy / ∂z ′ and ∂uz ′. / ∂z ′ is represented by the following equation (12).
Figure 2004317482

同様にして、図16(b)に示す基本べクトルεx'および図16(c)に示す単位ベクトルεy'の変位勾配は次式(13)(14)で表される。

Figure 2004317482
Figure 2004317482
Similarly, displacement gradients of the basic vector ε x ′ shown in FIG. 16B and the unit vector ε y ′ shown in FIG. 16C are expressed by the following equations (13) and (14).
Figure 2004317482
Figure 2004317482

以上に定義した角度γ1 ,γ2 ,α1 、α2 、β1 、β2 を用いると、x’y’z’座標系における塑性回転(εx',εy',εz')は次式(15)で求められる。

Figure 2004317482
さらに、本発明では、全ての結晶粒に関する塑性回転を同じ試験片座標系で評価するために、上式で求めた各結晶粒の結晶座標系を基準とする塑性回転(εx',εy',εz')を、座標変換マトリックスを用いて試験片座標系xyzに関する塑性回転(εx ,εy ,εz )に変換した。 Using the angles γ 1 , γ 2 , α 1 , α 2 , β 1 , and β 2 defined above, the plastic rotation in the x′y′z ′ coordinate system (ε x ′ , ε y ′ , ε z ′ ) Is obtained by the following equation (15).
Figure 2004317482
Further, in the present invention, in order to evaluate the plastic rotation of all the crystal grains in the same specimen coordinate system, the plastic rotation (ε x ′ , ε y) based on the crystal coordinate system of each crystal grain obtained by the above equation is used. ', epsilon z' a), was converted plastic rotated about the test piece coordinate system xyz using the coordinate transformation matrix (ε x, ε y, the epsilon z).

次に、図14を用いて三次元塑性ひずみ解析と三次元塑性回転解析とから構成される本発明の三次元塑性変形解析方法の手順についてのフローを説明する。(1)試料は初期状態と変形(引張り試験等)後とを比較する。試料の観察表面は結晶粒界が識別できる状態とする。(2)表面を光学顕微鏡または電子顕微鏡により観察して画像を取得し、測定対象の結晶粒を定め、粒界抽出、二値化の画像処理を行う。変形前後の同じ結晶粒について同じ面内で45°回転させた画像に対しても同じ処理を行う。(3)変形後の対象結晶粒について、走査型電子顕微鏡、後方散乱電子線回折により、結晶粒表面におけるすべり線角度および結晶方位を求める。前記(1)(2)より、垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ成分(γxy)を算出する。前記(3)(4)より、剪断ひずみ成分(γyz,γzx)を算出し、結晶方位の角度変化の算出により、回転3成分(ωx ,ωy ,ωz )を算出する。 Next, the flow of the procedure of the three-dimensional plastic deformation analysis method of the present invention, which is composed of three-dimensional plastic strain analysis and three-dimensional plastic rotation analysis, will be described with reference to FIG. (1) The sample is compared between the initial state and the state after deformation (such as a tensile test). The observation surface of the sample is in a state where the crystal grain boundaries can be identified. (2) Obtain an image by observing the surface with an optical microscope or an electron microscope, determine crystal grains to be measured, perform grain boundary extraction and binarization image processing. The same processing is performed on images obtained by rotating the same crystal grains before and after deformation by 45 ° in the same plane. (3) With respect to the deformed target crystal grain, a slip line angle and a crystal orientation on the crystal grain surface are determined by a scanning electron microscope and backscattered electron diffraction. From the above (1) and (2), three components of vertical strain (ε x , ε y , ε z ) and a shear strain component (γ xy ) are calculated. From (3) and (4), the shear strain components (γ yz , γ zx ) are calculated, and the rotation three components (ω x , ω y , ω z ) are calculated by calculating the change in crystal orientation angle.

<実験結果と考察>
<結晶粒界と双晶境界の分布>
図17(a)に測定範囲である500μm×500μmの正方形領域全域の変形前における光学顕微鏡画像を示す。ただし、図中では、今回の測定対象となる結晶粒の結晶粒界と双晶境界をわかりやすく細線で補足している。図からわかるように、結晶粒の形状は比較的単純であるが、双晶境界に囲まれた部分は直線的な細長い形状となっている。図17(b)に引張りにより巨視的ひずみε=0.03の塑性変形を与えた後の代表的な結晶粒の光学顕微鏡画像を示す。結晶粒aとcではすべり線が一様、かつ結晶粒のほぼ全面に現れている。一方、結晶粒bでは、変形後においてもすべり線が明瞭に観察できない。結晶粒bとcの境界は次節で述べる結晶方位分布図において双晶境界と判断できるが、両結晶粒内におけるすべり線の方向は互いに異なっている。本発明では、以上の観察結果に基づき、双晶境界も通常の結晶粒界と同様に取り扱い、いずれかの境界に取り囲まれた部分を一つの結晶粒としてひずみ等の評価を行った。
<Experimental results and discussion>
<Distribution of grain boundaries and twin boundaries>
FIG. 17A shows an optical microscope image before deformation of the entire 500 μm × 500 μm square area which is the measurement range. However, in the figure, the crystal grain boundaries and twin boundaries of the crystal grains to be measured this time are complemented by thin lines for easy understanding. As can be seen from the figure, the shape of the crystal grains is relatively simple, but the portion surrounded by the twin boundaries has a linear and elongated shape. FIG. 17 (b) shows an optical microscope image of typical crystal grains after a plastic deformation of macroscopic strain ε = 0.03 is given by tension. In the crystal grains a and c, the slip lines are uniform and appear almost over the entire surface of the crystal grains. On the other hand, in the crystal grain b, a slip line cannot be clearly observed even after deformation. The boundary between crystal grains b and c can be determined as a twin boundary in the crystal orientation distribution diagram described in the next section, but the directions of slip lines in both crystal grains are different from each other. In the present invention, based on the above observation results, the twin boundaries were treated in the same manner as ordinary crystal grain boundaries, and the portion surrounded by any one of the boundaries was evaluated as strain, etc., as one crystal grain.

<結晶方位分布図>
変形前(初期状態)および巨視的ひずみε=0.03の引張り塑性変形を与えた後における試験片表面法線方向と荷重軸方向の結晶方位分布図を図18に示す。結晶方位分布図の濃淡は同図中に示す逆極点図の濃淡に対応している。図からわかるように、変形の前後それぞれにおいて同一結晶粒内では方位がほぼ一定であり、異なる方位の境界部分が図17で得られた結晶粒界に一致している。また、それほど大きくはないが結晶粒の方位変化も見られる。
<Crystal orientation map>
FIG. 18 shows a crystal orientation distribution diagram in the normal direction of the specimen surface and in the load axis direction before the deformation (initial state) and after the tensile plastic deformation of macroscopic strain ε = 0.03. The shades of the crystal orientation distribution map correspond to the shades of the inverse pole figure shown in the figure. As can be seen from the figure, the orientation is substantially constant within the same crystal grain before and after the deformation, and the boundary portion having a different orientation coincides with the crystal grain boundary obtained in FIG. Although not so large, a change in the orientation of the crystal grains is also observed.

<結晶粒の塑性ひずみと塑性回転の関係>
巨視的ひずみε=0.03の引張り塑性変形を与えた後における結晶粒の三次元的塑性ひずみと塑性回転の関係を図19および図20に示す。ただし、図19は垂直ひずみ成分と回転の関係であり、図20は剪断ひずみ成分と回転の関孫である。ここで、両図中のデータはすべり線が明瞭に観察でき、かつ、同定した活動すべり面の奥行き方向角度がζがπ/8≦|ζ|≦3π/8の範囲にあるものである。ここで、角度ζの値に制限を設けた理由は、角度ζが0もしくはπ/2近傍の値を取る場合は、前記式(10)および(11)から明らかなように、ζのわずかな誤差がγyz,γzxの評価値に大きな差として現れるためである。図17(a)に示した観察領域内に存在し、その面素数がl0000以上の結晶粒は125個であったが、そのうちですべり線とすべり面角度に関する上述の基準を満たしたものは、105個であり、図19以降では、これらについての結果のみを示している。
<Relationship between plastic strain of crystal grains and plastic rotation>
FIGS. 19 and 20 show the relationship between the three-dimensional plastic strain of the crystal grains and the plastic rotation after applying the tensile plastic deformation of macroscopic strain ε = 0.03. 19 shows the relationship between the vertical strain component and rotation, and FIG. 20 shows the relationship between the shear strain component and rotation. Here, in the data in both figures, the slip line can be clearly observed, and the depth angle of the identified active slip surface is in the range of π / 8 ≦ | ζ | ≦ 3π / 8. Here, the reason why the value of the angle ζ is limited is that when the angle ζ takes a value of 0 or a value near π / 2, as is clear from the equations (10) and (11), a slight This is because the error appears as a large difference between the evaluation values of γ yz and γ zx . There are 125 crystal grains having a surface prime number of l0000 or more in the observation area shown in FIG. 17 (a), and those satisfying the above-mentioned criteria regarding the slip line and the slip plane angle are: There are 105, and only the results for these are shown in FIG.

図19からわかるように.個々の結晶粒に関して、垂直ひずみと塑性回転の各成分は大きくばらついているが、両者の問には明確な相関は見られない。また、垂直ひずみεx ,εy ,εz の平均値を求めると、それぞれ、0.026,−0.008,−0.018となった。領域中の全結晶粒を対象としていないため、若干の相違があるものの、εx の平均値は巨視的な引張り塑性ひずみである0.03に近い値を示している。塑性回転成分ωx ,ωy ,ωz の平均値は、それぞれ、0.008,0.001,0.006で、いずれもほぼ0となっていた。図20に示す剪断ひずみと塑性回転の各成分に関しても図19と同様に明確な相関が見られない。本図から、従来の簡単な単結晶塑性変形モデルから予測される剪断変形により生じる物体の外形角度の変化が剛体回転により補われるようなγとωの相互補完的な関係が実際の多結晶の塑性変形では必ずしも成立していないことがわかる。また、結晶粒の剪断ひずみγxy,γyzおよびγzxの平均値をそれぞれ求めると、それぞれ、0.001,一0.001,0.003で、いずれもほぼ0であり、試験片全体の巨視的な変形状態とほぼ一致した結果が得られる。 As can be seen from FIG. For each crystal grain, the components of vertical strain and plastic rotation vary greatly, but there is no clear correlation between the two. The average values of the vertical strains ε x , ε y , ε z were 0.026, −0.008, and −0.018, respectively. Because it does not cover all crystal grains in the region, although there are some differences, the average value of epsilon x indicates a value close to 0.03 which is the strain macroscopic tensile plastic. The average values of the plastic rotation components ω x , ω y , ω z were 0.008, 0.001, and 0.006, respectively, which were almost zero. As in FIG. 19, no clear correlation is seen between the components of the shear strain and the plastic rotation shown in FIG. From this figure, the mutually complementary relationship between γ and ω is such that the change in the outer shape angle of the object caused by the shear deformation predicted from the conventional simple single-crystal plastic deformation model is compensated by the rigid body rotation. It can be seen that this is not always the case with plastic deformation. Further, when the average values of the shear strains γ xy , γ yz and γ zx of the crystal grains were respectively obtained, they were 0.001, 0.001 and 0.003, respectively, which were almost 0, and were almost 0. The result almost coincides with the macroscopic deformation state.

<結晶粒の表面傾斜角度>
図21に模式的に示すように微小変形下では、対象領域内のひずみ6成分と回転3成分が定まれば、その領域内の変位勾配を求めることができる。本発明で検討の対象とした試験片表面に存在する結晶粒では、各結晶粒表面のx軸およびy軸方向の表面傾斜角度であるθx およびθy を前節で評価したひずみおよび回転の成分を用いてγzx/2−ωy およびγyz/2+ωx として求めることができる。本発明では、この塑性ひずみおよび塑性回転から求めた両表面傾斜角度と、別途、表面形状測定顕微境を用いて測定したθx およびθy を比較した。表面傾斜角度θx とγzx/2−ωy の関係を図22に、表面傾斜角度θy とγyz/2+ωx の関係を図23にそれぞれ示す。各結晶粒の表面をそれぞれ一つの平面に近似しているため、相関がそれ程良くはないが、γzx/2−ωy とθx およびγyz/2+ωx とθy はほぼ等しい関係にあることがわかる。これは、本発明で用いた結晶粒の塑性ひずみおよび塑性回転の評価方法ならぴに評価結果が妥当であることを示している。
<Surface inclination angle of crystal grains>
As schematically shown in FIG. 21, under the small deformation, if the six components of the strain and the three components of the rotation in the target area are determined, the displacement gradient in the area can be obtained. In the crystal grains present on the surface of the test piece studied in the present invention, the components of strain and rotation evaluated in the previous section, θ x and θ y , which are the surface tilt angles of the x- and y-axis directions of each crystal grain surface Γ zx / 2−ω y and γ yz / 2 + ω x . In the present invention, both the surface inclination angles obtained from the plastic strain and the plastic rotation were compared with θ x and θ y separately measured using a surface shape measurement microscope. The relationship between the surface inclination angle theta x and γ zx / 2-ω y in FIG. 22, respectively the relationship between the surface inclination angle theta y and γ yz / 2 + ω x in FIG. Since the surface of each crystal grain is approximated to one plane, the correlation is not so good. However, γ zx / 2−ω y and θ x and γ yz / 2 + ω x and θ y have a substantially equal relationship. You can see that. This indicates that the evaluation result is appropriate if the method for evaluating plastic strain and plastic rotation of crystal grains used in the present invention is Δ.

<結言>
本発明では、後方散乱電子線回折(EBSD)法を利用して多結晶金属材料中に存在する各結晶粒の塑性回転を三次元的に求める手法を提案するとともに、提案した手法を多結晶銅の引張りに対して適用した。得られた結果は以下のように要約できる。
(l)EBSD法による結晶方位の測定結果を用いて、結晶粒の塑性回転(ωx ,ωy ,ωz )を評価する方法を提案した。また、前述の塑性ひずみ((εx ,εy ,εz ,γxy,γyz,γzx)の評価方法と併せると結晶粒の微小変形を表現するために必要な9成分全てを評価することが可能となった。
(2)結晶粒の塑性ひずみと塑生回転の関係を調べた結果、両者の問には明確な相関が見られなかった。これは、従来の簡単な単結晶塑性変形モデルから予測される剪断変形により生じる物体の外形角度の変化が剛体回転により補われるようなγij とωk の相互補完的な聞係が、実際の多結晶の塑性変形においては必ずしも成立していないことを示している。
(3)塑性ひずみおよび塑性回転の評価方法ならびに評価結果の妥当性について検討するため、各結晶粒の塑性ひずみおよび塑性回転から推定できる表面傾斜角度と、別途、実測した値を比較した。その結果、両者の対応は良好であり、提案した手法の妥当性が確認できた。
<Conclusion>
The present invention proposes a method for three-dimensionally obtaining the plastic rotation of each crystal grain present in a polycrystalline metal material using a backscattered electron beam diffraction (EBSD) method. Applied to the pull of The results obtained can be summarized as follows.
(1) A method for evaluating the plastic rotation (ω x , ω y , ω z ) of crystal grains using the measurement results of the crystal orientation by the EBSD method was proposed. When combined with the above-described method of evaluating plastic strain ((ε x , ε y , ε z , γ xy , γ yz , γ zx )), all nine components necessary for expressing microdeformation of crystal grains are evaluated. It became possible.
(2) As a result of examining the relationship between the plastic strain of the crystal grains and the plastic rotation, no clear correlation was found between the two. This is because the complementary interaction between γ ij and ω k is such that the change in the outer shape angle of the object caused by the shear deformation predicted from the conventional simple single-crystal plastic deformation model is compensated for by the rigid body rotation. This shows that this is not necessarily true in plastic deformation of polycrystal.
(3) In order to examine the evaluation method of plastic strain and plastic rotation and the validity of the evaluation result, the surface inclination angle that can be estimated from the plastic strain and plastic rotation of each crystal grain was compared with a separately measured value. As a result, the correspondence between the two was good, and the validity of the proposed method was confirmed.

以上、本発明の実施の形態について説明してきたが、本発明の趣旨の範囲内で結晶粒の変形前後の画像の取得形態(光学顕微鏡の他適宜の類似の画像取得形態も採用され得る)、被測定結晶粒の粒界の特定のための縦横寸法および面積を求める画像処理の際のピクセル数の選定、すべり線角度の取得形態(走査型電子顕微鏡の他に適宜の類似機器が採用され得る)、結晶すべり面の特定のための結晶方位の取得形態(後方散乱電子線回折法により求める他に適宜の類似方法が採用され得る)、垂直ひずみ成分(εx ,εy )および剪断ひずみγxyを求める計算式形態、結晶の回転量(角度変化)の取得形態、塑性回転3成分(ωx ,ωy ,ωz )の算出形態等は適宜選定できる。また、結晶粒の塑性変形を定量的に把握し、可視化する手段としての塑性変形顕微鏡の形式(走査型電子顕微鏡、必要であれば光学顕微鏡)、結晶方位解析装置および画像処理装置の形式等は適宜選定できる。また、実験装置の各諸元等は例示的なもので、これらを限定的に解釈してはならない。 As described above, the embodiments of the present invention have been described. However, within the scope of the present invention, an image acquisition mode before and after deformation of crystal grains (an appropriate similar image acquisition mode other than an optical microscope may be adopted), Selection of the number of pixels at the time of image processing for obtaining the vertical and horizontal dimensions and area for specifying the grain boundaries of the crystal grains to be measured, the acquisition form of the slip line angle (appropriate similar equipment other than the scanning electron microscope can be adopted) ), The form of obtaining the crystal orientation for specifying the crystal slip plane (an appropriate similar method may be employed in addition to the method obtained by the backscattered electron diffraction method), the vertical strain components (ε x , ε y ), and the shear strain γ The form of calculation for obtaining xy , the form of obtaining the amount of rotation (angle change) of the crystal, and the form of calculating the three components of plastic rotation (ω x , ω y , ω z ) can be appropriately selected. In addition, the format of the plastic deformation microscope (scanning electron microscope and, if necessary, the optical microscope) as a means for quantitatively grasping and visualizing the plastic deformation of the crystal grains, and the format of the crystal orientation analysis device and the image processing device are as follows. Can be selected as appropriate. In addition, the specifications of the experimental apparatus are illustrative, and should not be construed as limiting.

本発明の三次元塑性ひずみ解析方法の手順についてのフロー図である。It is a flow figure about a procedure of a three-dimensional plastic strain analysis method of the present invention. 同、引張り試験に使用した多結晶銅の平板試験片を示す図である。It is a figure which shows the flat plate test piece of polycrystalline copper used for the same tensile test. 同、結晶粒内でのすべり線が示された結晶粒変形後の走査電子顕微鏡画像図である。FIG. 3 is a scanning electron microscope image after deformation of the crystal grain, showing a slip line in the crystal grain. 同、試験片をz軸まわりに45°回転した場合の座標系に関する図である。FIG. 4 is a diagram related to a coordinate system when the test piece is rotated around the z-axis by 45 °. 同、結晶粒変形に関する模式図である。FIG. 同、荷重軸とすべり面、すべり線の幾何学的関係の模式的である。It is a schematic diagram of the geometric relationship between the load axis, the slip surface, and the slip line. 同、多数のすべり面のすべりにより構成される結晶粒の塑性変形状態を示した図である。FIG. 3 is a diagram showing a plastic deformation state of a crystal grain formed by a large number of slip surfaces. 同、実際の結晶粒の変形と仮定した変形様式を比較した結果図である。FIG. 7 is a diagram showing the result of comparing the actual deformation of crystal grains with the assumed deformation mode. 同、結晶粒の塑性ひずみの6成分の変化図である。FIG. 6 is a diagram showing changes in six components of plastic strain of crystal grains. 同、各結晶粒の最大主ひずみの変化図である。FIG. 4 is a graph showing the change of the maximum principal strain of each crystal grain. 同、主ひずみ方向の三次元分布図である。It is a three-dimensional distribution diagram of the same principal strain direction. 同、主ひずみ方向の変化の詳細図で、試験片であるx−y平面内の結果図である。FIG. 4 is a detailed view of the change in the principal strain direction, which is a result diagram in the xy plane as a test piece. 同、試験片奥行き方向であるz−x平面内の結果図である。It is a result figure in the zx plane which is the same as the test piece depth direction. 本発明の三次元塑性ひずみ解析方法を含む三次元塑性変形解析方法の手順についてのフロー図である。It is a flow figure about a procedure of a three-dimensional plastic deformation analysis method including a three-dimensional plastic strain analysis method of the present invention. 同、結晶粒塑性変形に関する模式図である。FIG. 4 is a schematic diagram relating to crystal grain plastic deformation. 同、結晶座標系x’y’z’およびx”y”z”と各結晶粒の塑性回転の関係図である。FIG. 4 is a diagram showing the relationship between the crystal coordinate systems x′y′z ′ and x ″ y ″ z ″ and the plastic rotation of each crystal grain. 同、変形前における正方形領域全域の光学顕微鏡画像図と変形後の拡大画像図である。FIG. 3B is an optical microscope image of the entire square area before deformation and an enlarged image after deformation. 同、塑性変形付与後の試験片表面法線方向と荷重軸方向の結晶方位分布図である。FIG. 3 is a crystal orientation distribution diagram of a test piece surface normal direction and a load axis direction after plastic deformation is applied. 同、垂直ひずみ成分と回転の関係図である。FIG. 4 is a diagram showing the relationship between vertical distortion components and rotation. 同、剪断ひずみ成分と回転の関係図である。FIG. 4 is a diagram showing the relationship between a shear strain component and rotation. 同、結晶粒表面の傾斜角度と試験片座標系との関係図である。FIG. 4 is a diagram showing the relationship between the inclination angle of the crystal grain surface and the test piece coordinate system. 同、表面傾斜角度θx とγzx/2−ωy の関係図である。Same, it is a relationship diagram of the surface inclination angle theta x and γ zx / 2-ω y. 同、表面傾斜角度θy とγyz/2+ωx の関係図である。Same, it is a relationship diagram of the surface inclination angle theta y and γ yz / 2 + ω x.

Claims (9)

試料表面に存在する結晶粒の二次元観察データから三次元の塑性ひずみを評価する三次元塑性ひずみ解析方法において、被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるとともに、被測定結晶粒の表面におけるすべり線角度および結晶方位を求め、前記粒界の縦横寸法、面積、すべり線角度および結晶方位から所定の計算式により、三次元の垂直ひずみ3成分(εx ,εy ,εz )と剪断ひずみ3成分(γxy,γyz,γzx)の6成分を算出することにより、結晶体内における三次元の塑性ひずみを評価することを特徴とする三次元塑性ひずみ解析方法。 In a three-dimensional plastic strain analysis method for evaluating three-dimensional plastic strain from two-dimensional observation data of crystal grains present on the sample surface, an image of the measured crystal grain before and after deformation on the sample surface is obtained, The vertical and horizontal dimensions and area of the grain boundary are determined by the number of pixels by image processing, and the slip line angle and crystal orientation on the surface of the crystal grain to be measured are determined, and the vertical and horizontal dimensions, area and slip line angle of the grain boundary are determined. By calculating the three components of three-dimensional vertical strain (ε x , ε y , ε z ) and three components of shear strain (γ xy , γ yz , γ zx ) from the crystal orientation and a predetermined calculation formula, A three-dimensional plastic strain analysis method characterized by evaluating three-dimensional plastic strain in a crystal. 前記縦横寸法および面積を、光学顕微鏡による画像により取得することを特徴とする請求項1に記載の三次元塑性ひずみ解析方法。 The three-dimensional plastic strain analysis method according to claim 1, wherein the vertical and horizontal dimensions and the area are obtained by an image using an optical microscope. 前記すべり線角度を、走査型電子顕微鏡により取得することを特徴とする請求項1または2に記載の三次元塑性ひずみ解析方法。 The three-dimensional plastic strain analysis method according to claim 1, wherein the slip line angle is obtained by a scanning electron microscope. 前記結晶方位を、後方散乱電子線回折(EBSD)法により求めて、結晶すべり面を特定することを特徴とする請求項1から3のいずれかに記載の三次元塑性ひずみ解析方法。 The three-dimensional plastic strain analysis method according to any one of claims 1 to 3, wherein the crystal orientation is determined by a backscattered electron beam diffraction (EBSD) method to specify a crystal slip plane. 前記被測定結晶粒の試料表面における変形前後の画像を取得して、被測定結晶粒の粒界を特定し、その縦横寸法および面積を画像処理によってピクセル数で求めるに際し、面内で45°回転した画像を変形前後で取得し、垂直ひずみ成分(εx ,εy )を所定の計算式により求めるとともに、剪断ひずみγxyを他の所定の計算式により求めることを特徴とする請求項1から4のいずれかに記載の三次元塑性ひずみ解析方法。 Obtain images before and after deformation of the crystal grain to be measured on the sample surface, specify the grain boundary of the crystal grain to be measured, and determine the vertical and horizontal dimensions and area by the number of pixels by image processing. The obtained image is obtained before and after the deformation, the vertical strain components (ε x , ε y ) are obtained by a predetermined calculation formula, and the shear strain γ xy is obtained by another predetermined calculation formula. 4. The method for analyzing three-dimensional plastic strain according to any one of 4. 前記請求項4または5に記載の三次元塑性ひずみ解析方法における後方散乱電子線回折(EBSD)法により求められる結晶方位の変形前後の差から結晶の回転量(角度変化)を求め、所定の計算式により塑性回転3成分(ωx ,ωy ,ωz )を算出することにより、三次元塑性ひずみにおける前記6成分に三次元塑性回転の3成分の評価を加えて、結晶体内における三次元の塑性変形を評価することを特徴とする三次元塑性変形解析方法。 A rotation amount (angle change) of the crystal is determined from a difference between before and after the deformation of the crystal orientation obtained by a backscattered electron diffraction (EBSD) method in the three-dimensional plastic strain analysis method according to claim 4 or 5, and a predetermined calculation is performed. By calculating the three components of plastic rotation (ω x , ω y , ω z ) according to the formula, the three components of three-dimensional plastic rotation are evaluated by adding the three components of three-dimensional plastic rotation to the six components in three-dimensional plastic strain. A three-dimensional plastic deformation analysis method characterized by evaluating plastic deformation. 前記各結晶の回転量から三次元的な塑性回転を求めることを特徴とする請求項6に記載の三次元塑性変形解析方法。 The three-dimensional plastic deformation analysis method according to claim 6, wherein a three-dimensional plastic rotation is obtained from the rotation amount of each crystal. 前記各結晶の塑性ひずみおよび塑性回転を同時に求め、それらを互いに比較することを特徴とする請求項6または7に記載の三次元塑性変形解析方法。 8. The three-dimensional plastic deformation analysis method according to claim 6, wherein a plastic strain and a plastic rotation of each of the crystals are obtained simultaneously and compared with each other. 前記各結晶の塑性ひずみおよび塑性回転から、変形後における結晶表面の角度を評価することを特徴とする請求項6から8のいずれかに記載の三次元塑性変形解析方法。
The three-dimensional plastic deformation analysis method according to claim 6, wherein an angle of the crystal surface after the deformation is evaluated from the plastic strain and the plastic rotation of each crystal.
JP2004014501A 2003-03-28 2004-01-22 Three-dimensional plastic deformation analysis method Expired - Fee Related JP4387810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014501A JP4387810B2 (en) 2003-03-28 2004-01-22 Three-dimensional plastic deformation analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003089578 2003-03-28
JP2004014501A JP4387810B2 (en) 2003-03-28 2004-01-22 Three-dimensional plastic deformation analysis method

Publications (2)

Publication Number Publication Date
JP2004317482A true JP2004317482A (en) 2004-11-11
JP4387810B2 JP4387810B2 (en) 2009-12-24

Family

ID=33478455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014501A Expired - Fee Related JP4387810B2 (en) 2003-03-28 2004-01-22 Three-dimensional plastic deformation analysis method

Country Status (1)

Country Link
JP (1) JP4387810B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191125A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Crystal grain analyzer, crystal grain analytical method, and computer program
JP2008224434A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal particle analyzer, crystal particle analysis method and computer program
JP2008224433A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method, and computer program
US7597866B2 (en) 2004-07-02 2009-10-06 Konoshima Chemical Co., Ltd. Translucent lutetium oxide sinter, and method for manufacturing same
JP2009250639A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method and computer program
JP2009264797A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp Method and apparatus for estimating deformation characteristics of polycrystalline material, program and recording medium
JP2009264750A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Analyzing system of material characteristics of polycrystalline solid, analyzing method of material characteristics of polycrystalline solid, analyzing program of material characteristics of polycrystalline solid and recording medium
JP2010181248A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Deformation amount evaluation supporter, method of supporting deformation amount evaluation, and program
JP2016161291A (en) * 2015-02-26 2016-09-05 新日鐵住金株式会社 Strain measurement method and device, program, and recording medium
CN111678931A (en) * 2020-06-05 2020-09-18 长沙学院 EBSD technology-based calculation method for volume fraction of magnesium alloy stretching twin crystal
CN112129794A (en) * 2020-09-21 2020-12-25 长安大学 Quantitative evaluation method for residual plastic deformation capacity rate of dual-phase steel
CN113203763A (en) * 2021-06-04 2021-08-03 哈尔滨工业大学 Fast and accurate calibration method for slip line by using pole figure analysis
CN113984496A (en) * 2021-10-15 2022-01-28 中国航发北京航空材料研究院 Method for measuring static elastic constant of single crystal high-temperature alloy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597866B2 (en) 2004-07-02 2009-10-06 Konoshima Chemical Co., Ltd. Translucent lutetium oxide sinter, and method for manufacturing same
JP2008191125A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Crystal grain analyzer, crystal grain analytical method, and computer program
JP2008224434A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal particle analyzer, crystal particle analysis method and computer program
JP2008224433A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method, and computer program
JP2009250639A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method and computer program
JP2009264750A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Analyzing system of material characteristics of polycrystalline solid, analyzing method of material characteristics of polycrystalline solid, analyzing program of material characteristics of polycrystalline solid and recording medium
JP2009264797A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp Method and apparatus for estimating deformation characteristics of polycrystalline material, program and recording medium
JP2010181248A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Deformation amount evaluation supporter, method of supporting deformation amount evaluation, and program
JP2016161291A (en) * 2015-02-26 2016-09-05 新日鐵住金株式会社 Strain measurement method and device, program, and recording medium
CN111678931A (en) * 2020-06-05 2020-09-18 长沙学院 EBSD technology-based calculation method for volume fraction of magnesium alloy stretching twin crystal
CN111678931B (en) * 2020-06-05 2023-04-11 长沙学院 EBSD technology-based calculation method for volume fraction of magnesium alloy stretching twin crystal
CN112129794A (en) * 2020-09-21 2020-12-25 长安大学 Quantitative evaluation method for residual plastic deformation capacity rate of dual-phase steel
CN112129794B (en) * 2020-09-21 2023-06-20 长安大学 Quantitative evaluation method for residual plastic deformation capacity rate of dual-phase steel
CN113203763A (en) * 2021-06-04 2021-08-03 哈尔滨工业大学 Fast and accurate calibration method for slip line by using pole figure analysis
CN113984496A (en) * 2021-10-15 2022-01-28 中国航发北京航空材料研究院 Method for measuring static elastic constant of single crystal high-temperature alloy

Also Published As

Publication number Publication date
JP4387810B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Wilkinson et al. Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction
Chen et al. Active slip system identification in polycrystalline metals by digital image correlation (DIC)
US9568442B2 (en) Strain mapping in TEM using precession electron diffraction
Kang et al. Microscopic strain mapping using scanning electron microscopy topography image correlation at large strain
JP2004317482A (en) Method of analyzing three-dimensional plastic deformation
Carroll et al. On the interactions between strain accumulation, microstructure, and fatigue crack behavior
Renversade et al. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy
Padilla et al. Relating inhomogeneous deformation to local texture in zirconium through grain-scale digital image correlation strain mapping experiments
Lin et al. 3D EBSD characterization of deformation structures in commercial purity aluminum
Shade et al. Experimental measurement of surface strains and local lattice rotations combined with 3D microstructure reconstruction from deformed polycrystalline ensembles at the micro-scale
Ososkov et al. In-situ measurement of local strain partitioning in a commercial dual-phase steel
Schwarzer Advances in crystal orientation mapping with the SEM and TEM
Zaefferer et al. Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels
Sola et al. A surface roughness based damage index for predicting future propagation path of microstructure-sensitive crack in pure nickel
Winiarski et al. Novel implementations of relaxation methods for measuring residual stresses at the micron scale
Winiarski et al. Correction of artefacts associated with large area EBSD
Musinski et al. Statistical aspects of grain-level strain evolution and reorientation during the heating and elastic-plastic loading of a Ni-base superalloy at elevated temperature
Hebert et al. The application of digital image correlation (DIC) in fatigue experimentation: A review
Nicoletto et al. Application of high magnification digital image correlation technique to micromechanical strain analysis
Gonzalez et al. Three-dimensional observation and image-based modelling of thermal strains in polycrystalline alumina
JP2016191562A (en) Analysis method of crystal orientation and analysis device
Shkurmanov et al. Slice thickness optimization for the focused ion beam-scanning electron microscopy 3D tomography of hierarchical nanoporous gold
Saylor et al. Determining crystal habits from observations of planar sections
CN112505071B (en) Dislocation three-dimensional quantitative characterization method and system based on transmission electron microscope
Sahu et al. Fractal analysis as applied to fractography in ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees