JP2004316657A - Mixed adjusting type hybrid bucket, and its relating method - Google Patents

Mixed adjusting type hybrid bucket, and its relating method Download PDF

Info

Publication number
JP2004316657A
JP2004316657A JP2004119687A JP2004119687A JP2004316657A JP 2004316657 A JP2004316657 A JP 2004316657A JP 2004119687 A JP2004119687 A JP 2004119687A JP 2004119687 A JP2004119687 A JP 2004119687A JP 2004316657 A JP2004316657 A JP 2004316657A
Authority
JP
Japan
Prior art keywords
buckets
bucket
group
steam turbine
rotor wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004119687A
Other languages
Japanese (ja)
Inventor
Kevin Joseph Barb
ケビン・ジョセフ・バーブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2004316657A publication Critical patent/JP2004316657A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/291Three-dimensional machined; miscellaneous hollowed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/615Filler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/50Vibration damping features

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the total weight of a bucket by maximum about 30% by a hybrid bucket, to reduce the mounting stress and to enhance the reliability without changing any aerodynamic characteristic of a blade-shaped portion. <P>SOLUTION: A steam turbine rotor wheel includes a plurality of buckets (10 and 34), each of which has a shank portion (12) and a blade-shaped portion (14) and is fixed around a circumferential part of the wheel, and a plurality of buckets include two groups of buckets (10 and 34) having predetermined resonance frequencies different from each other. A method for reducing the vibration in the bucket row on the steam turbine rotor wheel includes (a) a step of preparing the bucket (10) of the first group having the first predetermined natural frequency range, (b) a step of preparing the bucket (34) of the second group having the second predetermined natural frequency range different from the first predetermined natural frequency range, and (c) a step of assembling the bucket out of the buckets in the first and second groups on the rotor wheel in an alternate manner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般的に蒸気タービンバケット(又は、ブレード)に関し、より具体的には、特に異なる所定の振動数ダンピング特性を備えかつ改善されたシステムダンピングをもたらすように調整した複合バケットに関する。   The present invention relates generally to steam turbine buckets (or blades), and more particularly to composite buckets having different predetermined frequency damping characteristics and tuned to provide improved system damping.

蒸気タービンバケットは、大きな遠心荷重及び振動応力を受ける環境内で作動する。振動応力は、バケット固有振動数が共振状態になったときに増大する。バケットが共振状態で振動するときの振動応力の大きさは、システム内に存在するダンピング量(ダンピングは、材料的、空力的及び機械的要素からなる)と振動励振レベルとに比例する。連続結合されたバケットの場合には、振動周波数は、列になったブレードの全体システムの関数であって、必ずしもその列内の個々のブレードの関数ではない。   Steam turbine buckets operate in environments subject to large centrifugal loads and oscillating stresses. The vibration stress increases when the natural frequency of the bucket reaches a resonance state. The magnitude of the vibration stress when the bucket vibrates in resonance is proportional to the amount of damping (damping consists of material, aerodynamic and mechanical elements) and the vibration excitation level existing in the system. In the case of continuously coupled buckets, the vibration frequency is a function of the overall system of blades in the row, not necessarily of the individual blades in the row.

同時に、遠心荷重は、作動速度とバケット質量と質量が位置するエンジン中心線からの半径との関数である。バケット荷重(質量)が増大すると、所定の材料における許容可能な応力を超えることなく質量をバケット上に支持することを可能にするために、物理的面積すなわち断面積が、より低い半径方向高さにおいて増大されなければならない。このより低いスパンにおいてバケットの断面積を増大させることは、根元において流れを過剰に閉塞することになり、従って性能を低下させる。バケットの重量は、より大きなディスク応力の一因となり、従って信頼性を低下させるおそれがある。   At the same time, the centrifugal load is a function of operating speed, bucket mass and radius from the engine centerline where the mass is located. As the bucket load (mass) increases, the physical area or cross-section is reduced to a lower radial height to allow the mass to be supported on the bucket without exceeding the allowable stress in a given material. Must be increased in Increasing the cross-sectional area of the bucket at this lower span will result in excessive obstruction of the flow at the root, thus reducing performance. Bucket weight contributes to greater disk stress and can therefore reduce reliability.

幾つかの先行の米国特許が、翼形部分の一部が金属とポリマー充填材との組合せから構成された所謂「ハイブリッド」バケット設計に関連している。これらの先行特許には、特許文献1、特許文献2、特許文献3、及び特許文献4が含まれる。
特開平10−54204号 米国特許第6,042,338号 米国特許第5,931,641号 特開平9−303104
Several prior U.S. patents relate to so-called "hybrid" bucket designs in which a portion of the airfoil is comprised of a combination of metal and polymer filler. These prior patents include U.S. Pat. Nos. 6,086,098, 6,069,086, and 6,098,045.
JP-A-10-54204 U.S. Patent No. 6,042,338 US Patent No. 5,931,641 JP-A-9-303104

本発明は、バケット又はブレード列(連続結合式又は自立形)の空気弾性応答を、列内のブレード又はバケットの固有振動数を混合調整することによって抑制する手段を提案する。具体的には、本特許は、特許文献3(米国特許第5,931,641号)に開示されているようなハイブリッドバケットの概念を利用するが、バケットの翼形部分内の内部ポケット構成を最適化することを含むようにその概念を拡大して、例示的な実施形態では、各々が同一の外部空力形状及び輪郭を有するが異なるバケット共振振動数になるような異なる内部リブ及び/又はポケット形状を備えた2つのグループ又は集団のバケットを形成するようにする。バケットの翼形部分内部のポケットは、好ましくはポリマー充填材で充填し、このポリマー充填材によってもバケットの翼形部分の1面を形成する。2つのグループのバケットの固有振動数を意図的に変えることによって、バケットは、バケットの空力特性に悪影響を及ぼさずにこの固有共振振動数の固有差を同期及び非同期回転数振動に対するシステム応答をダンピングする手段として利用するように意図的かつ論理的に組立てることができる。   The present invention proposes a means of suppressing the aeroelastic response of a bucket or blade row (continuously coupled or free standing) by mixing and adjusting the natural frequencies of the blades or buckets in the row. Specifically, this patent utilizes the concept of a hybrid bucket as disclosed in U.S. Pat. No. 5,931,641 but uses an internal pocket configuration within the airfoil portion of the bucket. Extending the concept to include optimizing, in an exemplary embodiment, different internal ribs and / or pockets, each having the same external aerodynamic shape and profile, but resulting in different bucket resonance frequencies It is intended to form two groups or groups of buckets with shapes. The pockets inside the airfoil portion of the bucket are preferably filled with a polymer filler, which also forms one surface of the bucket airfoil. By intentionally altering the natural frequencies of the two groups of buckets, the bucket damps this natural difference in natural resonance frequencies without adversely affecting the aerodynamic characteristics of the bucket, and the system response to synchronous and asynchronous speed oscillations. Can be purposely and logically assembled for use as a means of doing so.

この例示的な実施形態では、バケットの正圧側面に沿って異なる内部ポケット構成を有する2つのグループ又は組のバケットが、バケットの単一列内において蒸気タービンのロータホイール上に組立てられる。1つのグループのバケットは、別のグループのバケットよりも高い共振振動数を有するように設計される。バケット構成が決定されると、バケットは、振動抑制の目標を最良に達成するパターンでホイール上に組立てられる。この例示的な実施形態では、各グループのバケットは、交互方式で、すなわち1つのグループの各バケットが他のグループのバケットに隣り合う状態でホイール上に組立てられる。しかしながら、依然として本発明の技術的範囲内にある別の配置も考えられる。   In this exemplary embodiment, two groups or sets of buckets having different internal pocket configurations along the pressure side of the bucket are assembled on a steam turbine rotor wheel in a single row of buckets. One group of buckets is designed to have a higher resonant frequency than another group of buckets. Once the bucket configuration has been determined, the buckets are assembled on the wheel in a pattern that best achieves the goal of vibration suppression. In this exemplary embodiment, the buckets of each group are assembled on a wheel in an alternating fashion, i.e., with each bucket of one group adjacent to another group of buckets. However, other arrangements still within the scope of the present invention are conceivable.

ハイブリッドバケットによってバケットの全体重量を最大約30%軽減することを達成できるので、翼形部分の空力特性を変えずに、取付け応力を減少させかつ信頼性を向上させることができる。   The hybrid bucket can achieve up to about a 30% reduction in the overall weight of the bucket, thereby reducing mounting stress and improving reliability without changing the aerodynamic characteristics of the airfoil.

従って、より広範な態様では、本発明は、蒸気タービンロータホイールに関し、該蒸気タービンロータホイールは、ホイールの円周周辺部の周りに固定した複数のバケットを含み、各バケットは、シャンク部分と翼形部分とを含み、複数のバケットは、それぞれ異なる所定の固有共振振動数をもつ2つのグループのバケットを含む。   Accordingly, in a broader aspect, the present invention relates to a steam turbine rotor wheel, the steam turbine rotor wheel including a plurality of buckets fixed about a circumferential periphery of the wheel, each bucket comprising a shank portion and a blade. And the plurality of buckets include two groups of buckets each having a different predetermined natural resonance frequency.

別の態様では、本発明は、蒸気タービンロータホイールに関し、該蒸気タービンロータホイールは、ホイールの円周周辺部の周りに固定したバケット列を含み、バケット列は、ホイールの周辺部の周りに交互パターンで配列された2つのグループのバケットを含み、各グループは、バケット列の振動の振幅を低減するための個別手段を有する。   In another aspect, the invention relates to a steam turbine rotor wheel, the steam turbine rotor wheel including a row of buckets fixed about a circumferential periphery of the wheel, the bucket rows alternating around a periphery of the wheel. It includes two groups of buckets arranged in a pattern, each group having individual means for reducing the amplitude of vibration of the bucket train.

別の態様では、本発明は、蒸気タービンロータホイール上のバケット列内の振動を減少させる方法に関し、該方法は、a)第1の所定の固有振動数範囲を有する第1のグループのバケットを準備する段階、b)第1の所定の固有振動数範囲とは異なる第2の所定の固有振動数範囲を有する第2のグループのバケットを準備する段階、及びc)第1及び第2のグループのバケットのうちのバケットを交互方式でロータホイール上に組立てる段階を含む。   In another aspect, the invention is directed to a method of reducing vibration in a row of buckets on a steam turbine rotor wheel, the method comprising the steps of: a) providing a first group of buckets having a first predetermined natural frequency range; Providing; b) preparing a second group of buckets having a second predetermined natural frequency range different from the first predetermined natural frequency range; and c) first and second groups. Assembling the buckets on the rotor wheel in an alternating manner.

次ぎに、以下に特定する図面に関連させて、本発明を詳細に説明する。   The present invention will now be described in detail with reference to the drawings specified below.

図1には、部分的に製造された形態の蒸気タービンバケット10を示す。バケット10は、シャンク部分12と翼形部分14とを含む。本発明は、鋼又はチタンで製作することが好ましい翼形部分に関するが、他の好適な材料としては、アルミニウム、コバルト又はニッケルが含まれる。リブ16、18が、翼形部分と一体に鋳造されて個別のポケット20、22及び24を形成する。しかしながら、リブは、翼形部分の側縁部26、28と同一平面で延びていないことが分かるであろう。実際には、リブ高さは、特定の用途に応じて異なるものとすることができる。米国特許第5,931,641号に記載されているようなポリマーベースの充填材30が、図2に示すように、翼形部の正圧側面上の所定位置に成型され、ポケット20、22及び24を充填しかつリブを覆い、それによってバケットの正圧側面に滑らかな面32を形成する。具体的には、充填材30は、本質的にはポリ(ジメチルシロキサン)のようなエラストマーからなることができる。エラストマーの他の好適な選択肢には、それに限定するのではないが、ポリ(ジフェニルジメチルシロキサン)、ポリ(フルオロシロキサン)、Viton(商標)、ポリサルファイド、ポリ(チオールエーテル)及びポリ(ホスファゼン)が含まれる。   FIG. 1 shows a steam turbine bucket 10 in a partially manufactured form. Bucket 10 includes a shank portion 12 and an airfoil portion 14. The present invention relates to an airfoil preferably made of steel or titanium, but other suitable materials include aluminum, cobalt or nickel. Ribs 16,18 are cast integrally with the airfoil to form individual pockets 20,22,24. However, it will be appreciated that the ribs do not extend flush with the side edges 26, 28 of the airfoil. In practice, the rib height can be different depending on the particular application. A polymer-based filler 30 as described in US Pat. No. 5,931,641 is molded into place on the pressure side of the airfoil, as shown in FIG. And 24 and cover the ribs, thereby forming a smooth surface 32 on the pressure side of the bucket. In particular, the filler 30 can consist essentially of an elastomer such as poly (dimethylsiloxane). Other suitable options for elastomers include, but are not limited to, poly (diphenyldimethylsiloxane), poly (fluorosiloxane), Viton ™, polysulfide, poly (thiol ether), and poly (phosphazene). It is.

充填材30を翼形部分の金属表面に接着するための選択肢には、それに限定するのではないが、自己接着、充填材30と翼形部分の金属表面との間の接着、粘着(粘着性フィルム又はペースト)及び融着が含まれる。   Options for bonding the filler 30 to the metal surface of the airfoil include, but are not limited to, self-adhesion, adhesion between the filler 30 and the metal surface of the airfoil, tackiness (tacky). Film or paste) and fusion.

エラストマーを充填材として用いる場合には、エラストマーは、作動温度範囲にわたってほぼ250psi(ポンド/平方インチ)〜ほぼ50,000psi(また、より好ましくはほぼ250psi〜ほぼ20,000psi)の平均弾性率をもつのが好ましいこともさらに注目される。柔らか過ぎる(つまり、ほぼ250psi未満の平均弾性率をもつ)エラストマーは、構造的に翼形部形状を形成することができず、また硬過ぎる(つまり、ほぼ50,000psiを越える平均弾性率をもつ)エラストマーは、必要な精密許容差に製造することができない。平均弾性率に対するより好ましい範囲は、ほぼ500psi〜ほぼ15,000psiである。一部の用途においては、従来型の薄膜(図示せず)及び従来型の耐食被膜(図示せず)で、バケットの翼形部分14の露出表面を覆うことができる。   When an elastomer is used as the filler, the elastomer has an average modulus of approximately 250 psi (pounds per square inch) to approximately 50,000 psi (and more preferably approximately 250 psi to approximately 20,000 psi) over the operating temperature range. It is further noted that is preferred. Elastomers that are too soft (i.e., having an average modulus of less than about 250 psi) are structurally unable to form an airfoil shape and are too hard (i.e., have an average modulus of greater than about 50,000 psi). ) Elastomers cannot be manufactured to the required close tolerances. A more preferred range for the average modulus is from about 500 psi to about 15,000 psi. In some applications, a conventional thin film (not shown) and a conventional corrosion-resistant coating (not shown) may cover the exposed surface of the bucket airfoil 14.

上述の実施形態では、リブ16、18は、翼形部分14の長さに沿って反対方向に傾斜するように図示しているが、別の配置もまた本発明の技術的範囲内にある。   In the embodiments described above, the ribs 16, 18 are illustrated as inclined in opposite directions along the length of the airfoil portion 14, but other arrangements are also within the scope of the invention.

図3に移ると、図示する別のバケット34は、リブ36、38、40、42、44、46と結合ウェブ部分48、50との一層複雑な組を含む。リブは、翼形部分の半径方向の中央付近に集中し、それに対応してより多数のポケットを形成する。しかしながら、充填材30が所定位置に成型されると、バケット34は、他の点では図2に示すバケット10と同じ外観を有することになる。   Turning to FIG. 3, another bucket 34 shown includes a more complex set of ribs 36, 38, 40, 42, 44, 46 and connecting web portions 48, 50. The ribs are concentrated near the radial center of the airfoil and correspondingly form a greater number of pockets. However, once the filler 30 is molded in place, the bucket 34 will otherwise have the same appearance as the bucket 10 shown in FIG.

次ぎに図4に移ると、調整したバケットのさらに別の実施形態を示している。ここでは、バケット52は、リブのない状態、もっと適切に言えば単一の大きなポケット54を備えた状態で形成されており、ポケットの全体がポリマーベースの充填材30で充填されることになる。   Turning now to FIG. 4, yet another embodiment of the adjusted bucket is shown. Here, the bucket 52 is formed without ribs, or more appropriately with a single large pocket 54, and the entire pocket will be filled with the polymer-based filler 30. .

例示的な実施形態では、上述のバケット設計は、図5に示すように蒸気タービンロータホイール56上にバケット列を形成するために用いることができる。具体的には、グループA及びB(それぞれ、例えばバケット10及び34からなる)を、交互方式、すなわちABAB...のパターンでタービンホイール56上に組立てて、1つのグループのバケットが、常にもう一方のグループのバケットに隣り合うようにする。バケットA、Bは、所望の振動周波数差を生じるように、本明細書で述べる構成以外の内部ポケット構成を有することもできる。やはり所望の振動ダンピング特性を得るためにバケットグループ分布のパターンを変更することも可能である。例えば、パターンAABBAA...等もまた用いることができる。   In an exemplary embodiment, the bucket design described above can be used to form a row of buckets on a steam turbine rotor wheel 56 as shown in FIG. Specifically, groups A and B (each comprising, for example, buckets 10 and 34, respectively) are arranged in an alternating manner, ie, ABAB. . . In a pattern such that one group of buckets is always adjacent to the other group of buckets. Buckets A, B can also have internal pocket configurations other than those described herein to produce the desired vibration frequency difference. Again, it is possible to change the pattern of the bucket group distribution to obtain the desired vibration damping characteristics. For example, the pattern AABBAA. . . Etc. can also be used.

特に、本発明では、2つの「一回転当たり」基準(例えば一回転当たり4分割及び一回転当たり5分割)間で固有振動数が等しくなるようにした1つのグループのバケットを設計し、別の組の「一回転当たり」刺激(例えば一回転当たり3分割及び一回転当たり4分割のような)に関して固有振動数が等しくなるように、異なるリブ又はポケット構成を有するもう一方のグループのバケットを設計する可能性が存在する。解析結果は、内部リブ構成及び/又はポケット形状を変更することにより、バケットの固有振動数を大きく(±10%又はそれ以上)変更することができることを示した。   In particular, the present invention designs one group of buckets with equal natural frequencies between two "per revolution" references (eg, 4 divisions per revolution and 5 divisions per revolution), and Design another group of buckets with different rib or pocket configurations so that the natural frequencies are equal for a set of "per revolution" stimuli (eg, 3 divisions per revolution and 4 divisions per revolution) There is a possibility to do. Analysis results have shown that the natural frequency of the bucket can be changed significantly (± 10% or more) by changing the internal rib configuration and / or pocket shape.

従って、本発明は、「製造したまま」の固有振動数に基づいて選択するのではなく、特に異なる固有振動数を得るようにブレードを製造することを可能にする。バケットの個々の固有振動数を混合調整することで、ブレード設計の空力特性に悪影響を及ぼさずに同期及び非同期振動に対するシステム応答をダンピングすることによってブレード列全体の振動の振幅が低減する。   Thus, the present invention allows blades to be manufactured to specifically obtain different natural frequencies, rather than selecting based on the "as-manufactured" natural frequencies. Coordinating the individual natural frequencies of the buckets reduces the vibration amplitude of the entire row of blades by damping the system response to synchronous and asynchronous vibrations without adversely affecting the aerodynamic characteristics of the blade design.

別の重要な考慮事項は、ポリマーベースの充填材30を用いることによって可能になった質量の減少である。例えば、図1及び図3に示すように全体を構成したブレードの場合には、バケット重量を約30%軽減することができる。このような重量の軽減により、翼形部分の空力的構成を変更せずに取付け応力を減少させ、それにより信頼性を向上させる。低サイクル疲労寿命が改善され、かつ応力腐食割れの危険性を少なくすることができる。   Another important consideration is the reduction in mass made possible by using a polymer-based filler 30. For example, in the case of a blade configured as a whole as shown in FIGS. 1 and 3, the bucket weight can be reduced by about 30%. Such weight reduction reduces mounting stresses without changing the aerodynamic configuration of the airfoil, thereby improving reliability. The low cycle fatigue life is improved and the risk of stress corrosion cracking can be reduced.

現在最も実用的かつ好ましい実施形態であると考えられるものに関して本発明を説明してきたが、本発明は、開示した実施形態に限定されるものではなく、また、特許請求の範囲に記載された符号は、理解容易のためであってなんら発明の技術的範囲を実施例に限縮するものではない。   Although the present invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, the present invention is not limited to the disclosed embodiments, and is not limited to the claims. Is for the sake of easy understanding and does not limit the technical scope of the invention to the embodiments.

本発明による、部分的に製造されたバケットの斜視図。1 is a perspective view of a partially manufactured bucket according to the present invention. ポリマー充填材がバケットに付加された後の、図1に示すバケットの斜視図。FIG. 2 is a perspective view of the bucket shown in FIG. 1 after a polymer filler has been added to the bucket. 本発明による別の構成を示す、部分的に完成されたバケットの斜視図。FIG. 4 is a perspective view of a partially completed bucket showing another configuration according to the invention. 本発明によるさらに別の構成を示す、部分的に完成されたバケットの斜視図。FIG. 4 is a perspective view of a partially completed bucket showing yet another configuration according to the present invention. 取付けられたバケットを備えたタービンホイールの軸方向概略正面図。The axial schematic front view of the turbine wheel provided with the attached bucket.

符号の説明Explanation of reference numerals

10 蒸気タービンバケット
12 シャンク部分
14 翼形部分
16、18 リブ
20、22、24 ポケット
26、28 翼形部分の側縁部
DESCRIPTION OF SYMBOLS 10 Steam turbine bucket 12 Shank part 14 Airfoil part 16, 18 Rib 20, 22, 24 Pocket 26, 28 Side edge of airfoil part

Claims (10)

ホイールの円周周辺部の周りに固定した複数のバケット(10、34)を含み、各バケット(10)が、シャンク部分(12)と翼形部分(14)とを含み、前記複数のバケットが、それぞれ異なる所定の共振振動数をもつ2つのグループのバケット(10、34)を含む蒸気タービンロータホイール(56)。 A plurality of buckets (10, 34) fixed around the circumference of the wheel, each bucket (10) including a shank portion (12) and an airfoil portion (14), wherein the plurality of buckets A steam turbine rotor wheel (56) comprising two groups of buckets (10, 34), each having a different predetermined resonant frequency. 1つのグループのバケット(10)が、前記ホイールの周辺部の周りで他のグループのバケット(34)と交互し、前記1つのグループのあらゆるバケットが、前記他のグループのバケットと隣り合っている、請求項1記載の蒸気タービンロータホイール。 One group of buckets (10) alternates with the other group of buckets (34) around the periphery of the wheel, and every bucket of the one group is adjacent to the other group of buckets. The steam turbine rotor wheel of claim 1. 前記翼形部分(14)が金属とポリマー充填材(30)とから構成されている、請求項1記載の蒸気タービンロータホイール。 The steam turbine rotor wheel of any preceding claim, wherein said airfoil (14) is comprised of a metal and a polymer filler (30). 前記ポリマー充填材(30)が、本質的にポリ(ジメチルシロキサン)、ポリ(ジフェニルジメチルシロキサン)、ポリ(フルオロシロキサン)、Viton(商標)、ポリサルファイド、ポリ(チオールエーテル)及びポリ(ホスファゼン)から成る群から選ばれる、請求項3記載の蒸気タービンロータホイール。 The polymer filler (30) consists essentially of poly (dimethylsiloxane), poly (diphenyldimethylsiloxane), poly (fluorosiloxane), Viton ™, polysulfide, poly (thiol ether) and poly (phosphazene). The steam turbine rotor wheel according to claim 3, wherein the wheel is selected from the group. 前記ポリマー充填材(30)が250psi〜50,000psiの平均弾性率をもつ、請求項3記載の蒸気タービンロータホイール。 The steam turbine rotor wheel of any preceding claim, wherein the polymer filler (30) has an average modulus of 250 psi to 50,000 psi. 前記ポリマー充填材(30)が250psi〜20,000psiの平均弾性率をもつ、請求項3記載の蒸気タービンロータホイール。 The steam turbine rotor wheel of any preceding claim, wherein the polymer filler (30) has an average modulus of 250 psi to 20,000 psi. 前記ポリマー充填材(30)が500psi〜15,000psiの平均弾性率をもつ、請求項3記載の蒸気タービンロータホイール。 The steam turbine rotor wheel of any of the preceding claims, wherein the polymer filler (30) has an average modulus of between 500 psi and 15,000 psi. 蒸気タービンロータホイール上のバケット列内の振動を減少させる方法であって、
a)第1の所定の固有振動数範囲を有する第1のグループのバケット(10)を準備する段階、
b)前記第1の所定の固有振動数範囲とは異なる第2の所定の固有振動数範囲を有する第2のグループのバケット(34)を準備する段階、及び
c)前記第1及び第2のグループのバケットのうちのバケットを交互方式で前記ロータホイール上に組立てる段階、
を含む方法。
A method for reducing vibration in a bucket train on a steam turbine rotor wheel, comprising:
a) providing a first group of buckets (10) having a first predetermined natural frequency range;
b) preparing a second group of buckets (34) having a second predetermined natural frequency range different from said first predetermined natural frequency range; and c) said first and second natural frequency ranges. Assembling the buckets of the buckets of the group on the rotor wheel in an alternating manner;
A method that includes
前記第1及び第2の所定の固有振動数範囲が、前記第1及び第2のグループのバケット(10、34)のそれぞれの翼形部分内の異なるリブ配置(16、18)(36、38、40、42、44、46)によって得られる、請求項8記載の方法。 The first and second predetermined natural frequency ranges correspond to different rib arrangements (16, 18) (36, 38) in respective airfoil portions of the first and second groups of buckets (10, 34). , 40, 42, 44, 46). 前記リブ配置(16、18)が、前記翼形部分の内部にポケット(20、22、24)を形成しており、当該方法が、前記ポケットをポリマー充填材(30)で充填する段階をさらに含む、請求項9記載の方法。 The rib arrangement (16, 18) forms a pocket (20, 22, 24) inside the airfoil portion, and the method further comprises the step of filling the pocket with a polymer filler (30). The method of claim 9 comprising:
JP2004119687A 2003-04-16 2004-04-15 Mixed adjusting type hybrid bucket, and its relating method Pending JP2004316657A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/249,518 US6854959B2 (en) 2003-04-16 2003-04-16 Mixed tuned hybrid bucket and related method

Publications (1)

Publication Number Publication Date
JP2004316657A true JP2004316657A (en) 2004-11-11

Family

ID=33158344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119687A Pending JP2004316657A (en) 2003-04-16 2004-04-15 Mixed adjusting type hybrid bucket, and its relating method

Country Status (3)

Country Link
US (1) US6854959B2 (en)
JP (1) JP2004316657A (en)
DE (1) DE102004018486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035658A1 (en) * 2010-09-17 2012-03-22 株式会社日立製作所 Wing arrangement method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0406444D0 (en) * 2004-03-23 2004-04-28 Rolls Royce Plc An article having a vibration damping coating and a method of applying a vibration damping coating to an article
FR2869069B1 (en) * 2004-04-20 2008-11-21 Snecma Moteurs Sa METHOD FOR INTRODUCING A VOLUNTARY CONNECTION TO AN AUBED WHEEL TURBOMACHINE WHEEL WITH VOLUNTARY DISCHARGE
US7104760B2 (en) * 2004-05-05 2006-09-12 General Electric Company Hybrid bucket and related method of pocket design
US7104761B2 (en) * 2004-07-28 2006-09-12 General Electric Company Hybrid turbine blade and related method
US7147437B2 (en) * 2004-08-09 2006-12-12 General Electric Company Mixed tuned hybrid blade related method
US7507073B2 (en) * 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for assembling a steam turbine bucket
US20070292265A1 (en) * 2006-06-14 2007-12-20 General Electric Company System design and cooling method for LP steam turbines using last stage hybrid bucket
US7429165B2 (en) * 2006-06-14 2008-09-30 General Electric Company Hybrid blade for a steam turbine
US20080199316A1 (en) * 2007-02-19 2008-08-21 Tse-Hua Chang Rotor blade structure for a pneumatic device
EP1985803A1 (en) * 2007-04-23 2008-10-29 Siemens Aktiengesellschaft Process for manufacturing coated turbine blades
GB2450937B (en) * 2007-07-13 2009-06-03 Rolls Royce Plc Component with tuned frequency response
BRPI0818107B1 (en) * 2007-11-16 2020-02-11 Borgwarner Inc. Method for designing a compressor wheel and compressor wheel for an air blast device
US8100641B2 (en) * 2008-09-09 2012-01-24 General Electric Company Steam turbine having stage with buckets of different materials
US8043063B2 (en) * 2009-03-26 2011-10-25 Pratt & Whitney Canada Corp. Intentionally mistuned integrally bladed rotor
FR2944049B1 (en) * 2009-04-02 2014-06-27 Turbomeca WHEEL IN AUBES WHOSE BLADES ARE DISCHARGED
CA2761208C (en) 2010-12-08 2019-03-05 Pratt & Whitney Canada Corp. Blade disk arrangement for blade frequency tuning
US9097125B2 (en) * 2012-08-17 2015-08-04 Mapna Group Intentionally frequency mistuned turbine blades
ES2546992T3 (en) * 2012-10-24 2015-09-30 MTU Aero Engines AG Method for de-tuning the blades of a gas turbine engine
FR3012515B1 (en) * 2013-10-31 2018-02-09 Safran AUBE COMPOSITE TURBOMACHINE
US10267156B2 (en) 2014-05-29 2019-04-23 General Electric Company Turbine bucket assembly and turbine system
FR3052182B1 (en) * 2016-06-06 2018-06-15 Safran TURBOMACHINE AUBAGEE WHEEL WITH IMPROVED VIBRATORY BEHAVIOR
US10641098B2 (en) 2017-07-14 2020-05-05 United Technologies Corporation Gas turbine engine hollow fan blade rib orientation
WO2019199320A1 (en) * 2018-04-13 2019-10-17 Siemens Aktiengesellschaft Mistuning of turbine blades with one or more internal cavities
US11560801B1 (en) 2021-12-23 2023-01-24 Rolls-Royce North American Technologies Inc. Fan blade with internal magnetorheological fluid damping
US11746659B2 (en) 2021-12-23 2023-09-05 Rolls-Royce North American Technologies Inc. Fan blade with internal shear-thickening fluid damping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097192A (en) * 1977-01-06 1978-06-27 Curtiss-Wright Corporation Turbine rotor and blade configuration
US5931641A (en) * 1997-04-25 1999-08-03 General Electric Company Steam turbine blade having areas of different densities
US6042338A (en) * 1998-04-08 2000-03-28 Alliedsignal Inc. Detuned fan blade apparatus and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720597A (en) 1996-01-29 1998-02-24 General Electric Company Multi-component blade for a gas turbine
JPH1054204A (en) 1996-05-20 1998-02-24 General Electric Co <Ge> Multi-component blade for gas turbine
US5947688A (en) 1997-12-22 1999-09-07 General Electric Company Frequency tuned hybrid blade
US6039542A (en) 1997-12-24 2000-03-21 General Electric Company Panel damped hybrid blade
US6033186A (en) 1999-04-16 2000-03-07 General Electric Company Frequency tuned hybrid blade
US6287080B1 (en) 1999-11-15 2001-09-11 General Electric Company Elastomeric formulation used in the construction of lightweight aircraft engine fan blades
US6364616B1 (en) 2000-05-05 2002-04-02 General Electric Company Submerged rib hybrid blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097192A (en) * 1977-01-06 1978-06-27 Curtiss-Wright Corporation Turbine rotor and blade configuration
US5931641A (en) * 1997-04-25 1999-08-03 General Electric Company Steam turbine blade having areas of different densities
US6042338A (en) * 1998-04-08 2000-03-28 Alliedsignal Inc. Detuned fan blade apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035658A1 (en) * 2010-09-17 2012-03-22 株式会社日立製作所 Wing arrangement method

Also Published As

Publication number Publication date
US20040208741A1 (en) 2004-10-21
US6854959B2 (en) 2005-02-15
DE102004018486A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP2004316657A (en) Mixed adjusting type hybrid bucket, and its relating method
JP2006052732A (en) Mixing synchronization hybrid blade and method related to it
JP2007332968A (en) Hybrid blade for steam turbine
US10801519B2 (en) Blade disk arrangement for blade frequency tuning
JP5101800B2 (en) Hybrid bucket and associated pocket design method
US7766625B2 (en) Methods and apparatus for reducing stress in turbine buckets
RU2580447C2 (en) Blades system and appropriate gas turbine
US20070292265A1 (en) System design and cooling method for LP steam turbines using last stage hybrid bucket
CN113227539B (en) Bladed rotor system and corresponding maintenance method
JP2005226648A (en) Advanced firtree and broach slot form for turbine stage 3 bucket and rotor wheel
EP1621728A2 (en) Hybrid turbine blade and related method
EP1698760B1 (en) Torque-tuned, integrally-covered bucket and related method
JP6905074B2 (en) Blade with shroud with improved flutter resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100310

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100409

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208