JP2004316434A - Variable speed supply water device - Google Patents

Variable speed supply water device Download PDF

Info

Publication number
JP2004316434A
JP2004316434A JP2003107265A JP2003107265A JP2004316434A JP 2004316434 A JP2004316434 A JP 2004316434A JP 2003107265 A JP2003107265 A JP 2003107265A JP 2003107265 A JP2003107265 A JP 2003107265A JP 2004316434 A JP2004316434 A JP 2004316434A
Authority
JP
Japan
Prior art keywords
pressure
rotation speed
pump
cascade pump
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107265A
Other languages
Japanese (ja)
Other versions
JP4245399B2 (en
Inventor
Hitoshi Kawaguchi
口 均 川
Goji Isobe
辺 剛 司 磯
Tsutomu Makino
野 力 牧
Ryota Miki
木 亮 太 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003107265A priority Critical patent/JP4245399B2/en
Publication of JP2004316434A publication Critical patent/JP2004316434A/en
Application granted granted Critical
Publication of JP4245399B2 publication Critical patent/JP4245399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly conduct control even when highest rotation speed and the level of suction water are unknown in conducting estimated terminal pressure constant control using a cascade pump. <P>SOLUTION: A controller 11 for a motor 4 to drive the cascade pump 2 automatically rewrites a map in accordance with the highest rotation or shutoff pressure by operation so as to determine highest rotation speed, thereby efficient estimated terminal pressure constant control is conducted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はカスケードポンプとそのカスケードポンプの吐出し側に設けた圧力センサとカスケードポンプを駆動するモータと、ポンプの回転速度を制御するコントローラとからなる可変速給水装置に関する。
【0002】
【従来技術】
従来、家庭に給水を行うために、受水槽に蓄えた水や井戸水を供給するのにカスケードポンプを使用した自動給水装置が多く用いられている。カスケードポンプを用いる理由は省エネおよび低騒音の点から好ましい。このような従来の自動給水装置はインバータを搭載しており、吐出し圧力一定制御を行っている(例えば特許文献1参照)。
【0003】
また配管の末端の家庭において所定の圧力や水量を得たい要請に応えるために推定末端圧力一定制御が知られている(例えば特許文献2、3および4参照)。
【0004】
特許文献1 特開平10−288185号公報
特許文献2 特開昭60−142097号公報
特許文献3 特開昭60−156995号公報
特許文献4 特開昭60−189519号公報
【0005】
しかしながら、本発明者は種々研究の結果、さらに改良すべき点があることを見出した。特に従来は最大回転数の設定や井戸の場合の水位に関して推定末端圧力一定制御が不充分であった。
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的は、カスケードポンプを用いてさらに正確に推定末端圧力制御を行うことのできる可変速給水装置を提供するにある。
【0007】
本発明の他の目的は、カスケードポンプの最大回転数の変化や井戸の水位の変化に応じて正しく制御できる可変速給水装置を提供するにある。
【0008】
【課題を解決するための手段】
本発明によれば、カスケードポンプとそのカスケードポンプの吐出し側に設けた圧力センサとそのカスケードポンプを駆動するモータと、そのモータの回転数を制御するコントローラとからなる可変速給水装置において、そのコントローラはポンプ回転速度と吐出し管の圧力とを記憶する記憶部を備え、最高回転数を求めて推定末端圧力一定制御を行い、使用中にさらに最高回転数が上昇したときその上昇した最高回転数により推定末端圧力一定制御を行う機能を有している。
【0009】
さらに本発明によれば、カスケードポンプとそのカスケードポンプの吐出し側に設けた圧力センサとそのカスケードポンプを駆動するモータと、そのモータの回転数を制御するコントローラとからなる可変速給水装置において、そのコントローラはポンプ特性を記憶する記憶部を備え、吸込側の水位の上昇下降に伴う運転圧力を判断して、推定末端圧力一定制御を行う機能を有している。
【0010】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。
図1および図2は本発明を実施したカスケードポンプを備えた自動給水装置Aの正面図および上面図を示し、配管機能を備えたユニットベース1上にモータ4で駆動されるカスケードポンプ2が設置され、ユニットベース1はユニットカバー3で覆われている。そしてユニットカバー3の中には吸込管5、吐出し管6がユニットベース1に固定されている。
【0011】
ポンプ2の回転に伴い、水は吸込管5を経由して、ポンプ停止時に吐出し側から吸込側への逆流を防止するための逆止弁7と、ポンプ停止のための水量を検知するフロースイッチ8とを介してポンプ2に吸込まれる。そしてポンプ2からの吐出し水は吐出し側に設けた圧力タンク9に流れる。この圧力タンク9はポンプ2の停止時に蓄水するためのものである。ポンプ2の吐出し側にはさらに吐出し側の圧力を検出する圧力センサ10が設けられており、その圧力センサ10の下流側に吐出し管6が設けられ、ポンプ2からの吐出し水は上述のようにして吐出し管6に導かれる。図中11はポンプの起動停止を行うためのコントローラである。
【0012】
図3は本発明を実施した可変速給水装置の説明図である。図3において地上Sから掘られた井戸12には水WがレベルLの所まで溜まっている。自動給水装置Aは井戸12に近接して地上Sに設置されている。
【0013】
図示の通り吸込管5には逆止弁7とフロースイッチ8とが設けられている。カスケードポンプ2の吐出し管6には圧力センサ10と圧力タンク9とが設けられている。この圧力センサ10からの信号はコントローラ11の制御部11aに送られ、後述するが制御部11aからの周波数指令がインバータ11bに送られてモータ4を制御するようになっている。図中Mは記憶部を示し、これに関しては後述する。
【0014】
図4は本発明に従って吐出し圧力一定制御よりも推定末端圧力一定制御の方がより効率がよくいわゆる省エネであることを説明する図であり、横軸に水量Qをそして縦軸は下側が消費電力L、上側が圧力Hを示し、回転数をパラメータとして図示してある。図中uは100%、vは90%、wは80%の曲線を示している。上図において水平な直線xは圧力H0で吐出し圧力一定制御をした場合であり、曲線yは本発明に従って推定末端圧力一定制御をした場合の特性である。
【0015】
この図4の上図と下図とを参照して、吐出し圧力一定制御の場合、線xと線u、v、wとの交点H0、H2、H1はそれぞれ回転数100%、90%、80%のときの水量Q0、Q2、Q1を示しており、同様に推定末端圧力一定制御の場合は交点H0、H4、H3の水量がQ0、Q4、Q3である。下図の回転数曲線の各水量に対応する点が吐出し圧力一定制御ではL0、L2、L1であり、これを結ぶ線xが吐出し圧力一定制御のときの消費電力Lの特性であり、同様に点L0、L4、L3を結ぶ線yが推定末端圧力一定制御の特性となる。
この線xと線yとを比べれば解る通り、回転数が100%以外ではいずれも消費電力が少なく効率的であることが解る。
【0016】
図3の記憶部Mは一実施例においてあらかじめポンプの回転速度と吐出し側の配管の内圧力との関係を記憶している。
また、他の実施例においてあらかじめ定められた複数の回転速度と給水管内圧力との関係を記憶している。
このような記憶部を有することで好適に推定末端圧力を求めることができる。
【0017】
またさらに他の実施例によれば、記憶部は可変速運転中の最大回転を記憶するようになっている。このようにすれば最大回転数をこえる正常な回転数が制御部に入力されたときに、その最大回転数の値を設定してポンプの回転速度毎の制御目標圧力を再設定できるようにするとさらに好適である。
【0018】
図4の説明から解るように水量Q0の点すなわち使用最高回転数の設定が必要となる。しかしながら本発明によれば、使用最高回転数の設定がなくても推定末端圧力一定制御ができるようになっている。
【0019】
図5において縦軸の圧力Hが、そして横軸に水量Qが示されている。図6はフローチャートを示している。図5の曲線a、b、cは図4と同様にカスケードポンプの特性曲線であり、カスケードポンプの回転数はaよりbが大であり、bよりcがさらに大である。
【0020】
図5および図6を参照して制御の態様を説明する。使用最高回転数のデータがない場合は、基準圧力PAを設定し、その基準圧力で吐出し圧力一定制御を行う(ステップS1)。その際カスケードポンプは直線dで示す運転を行う。そしてカスケードポンプ2の回転数の上昇に伴い、点eの所で最高回転数に達したものとする(ステップS2)。すなわち曲線aの回転数が一回目の最高回転数である。そこでコントローラ11はこの点eの回転数を最高回転数と設定して、推定末端圧力一定制御を行う(ステップS3)。その際のカスケードポンプ2の運転は曲線fで示す通りである。
【0021】
その後の運転において一回目の最高回転数aより大きい回転数例えば回転数bで運転された場合(ステップS4)、コントローラ11はその後の最高回転数b上の点gを新たな最高回転数として推定末端圧力一定制御を行う(ステップS5)。その際のカスケードポンプ2の特性は曲線hで示す通りである。
【0022】
また基準圧力PAを設定変更する場合はその使用最高回転数をキャンセルして再度前記の作動を行えばよい。
このようにして基準圧力と最高回転数のマップを記憶させておくと配管変更その他に対して便利である。
【0023】
また適切な最大回転数が得られない場合に、あらかじめ定めた仮の最大回転数に基づいて圧力を設定するのが好ましい。
【0024】
次に井戸12内の水位Lが変化した場合、吐出圧力一定制御では問題が生じないが、推定末端圧力一定制御ではカスケードポンプの性能曲線が変化するので、その水位に合わせて補正する必要がある。
まずこの点を図7を参照して説明する。なお図7は実質的に図4と同じである。
【0025】
図7において縦軸に圧力Hが、横軸に水量Qが示されており、線uが回転数100%すなわち最高回転数(最高周波数)のときのカスケードポンプの性能曲線である。前述のように、推定末端圧力一定制御では曲線yで示す通り、水量の零のときに圧力PBで始動し、最大水量時に圧力PAになるように水量別にカスケードポンプの吐出し圧力を制御しており、圧力PBは締切時の圧力となり、そのときのカスケードポンプの運転周波数は曲線HzBで示されている。なお、制御上、運転周波数はこの値HzBを最低運転周波数とし、これより下がらないように制御する。
【0026】
さて、井戸12の水位Lが上昇した場合、水位Lの上昇に伴い吸込圧が変化するので、図8に示すようにカスケードポンプの性能曲線も前記の曲線uからその外側に破線で示す曲線uaに変化する。このとき当然推定末端圧力一定制御も曲線yaで示すように変化する。しかしながら曲線yaで制御すると、曲線HzBと曲線yaとの交点Aから水量の少ないところは最低運転周波数HzBの曲線に沿う曲線部分ybで運転されるので、締切圧はPBaとなり、前記の締切圧PBより高いので、最低運転周波数HzBより低い周波数HzBaで運転されなければならない。
【0027】
図9は水位Lが下降した場合のカスケードポンプの推定末端圧力一定制御の態様を示している。
図8の場合とは逆に、この場合はカスケードポンプの特性は曲線Uの内側の曲線Ubとなり、その結果、推定末端圧力一定制御は曲線ycの通り変化する。このときの最低圧力PBの運転周波数は最低運転周波数HzBより高い周波数HzBbで運転される。
【0028】
井戸の水位の上下は勿論水位計を用いれば検知できる。またポンプの特性曲線がわかれば、吸込圧力と吐出し圧力から例えばマップを用いて演算できる。
しかしながら、図8、図9に基づいてカスケードポンプの特性曲線はコントローラに記憶されているので、これを用いれば水位計や吸込圧力を検出しなくても井戸の水位の上昇、下降による推定末端圧力一定制御を行うことができる。
【0029】
図10は水位の変化による補正のフローチャートを示している。まずスタートし、補正を行うタイミングとして所定時間経過したか否かを判断する(ステップS11)。このステップS11としては、タイミングとして所定時間の他に始動時、停止時等のいずれかのタイミングを用いることができる。したがって、例えば始動時をタイミングとした場合は、以下の各ステップにおける「所定時間内」を「始動時」と読み代えるものとする。
【0030】
そしてコントローラ11は所定時間内に図7の最低周波数HzBに達したときに圧力がPBまで低下したか否かを判断する(ステップS12)。低下していない場合、すなわちNOの場合は図8の状態であるから、水位上昇と判断する(ステップS13)。この場合、図8から解るように現状では周波数HzBで圧力PBaなので、最低周波数HzBaで圧力PBになるように補正する(ステップS14)。
【0031】
この補正は、井戸水位の上昇度合いが不明のためにその上昇度合いを好適に把握できるものである。
すなわち、所定の値の周波数のみに仮に低下させ、その時の吐出し圧力を捉え、最終的に圧力がPBまで低下するように最低周波数をさげ、PBに到達した時を新たな最低周波数HzBaとし、それ以降周波数HzBとHzBaとの差分だけ補正をかけ、推定末端圧力一定制御を行うようにするものである。
【0032】
ステップS12がYESの場合、コントローラ11は所定時間内に圧力がPBに達したときに最低周波数HzBまで低下したか否かを判断する(ステップS15)。YESの場合は水位の変化はないものと判断して補正は行わない。
【0033】
しかしながら、ステップS15がNOの場合、水位下降と判断し(ステップS16)、そして現状では周波数HzBbで圧力PBなので、周波数HzBとHzBbとの差分だけ水位が下降したものとして補正する(ステップS17)。
【0034】
この補正は仮に締切まで行ったものと想定し、所定時間内の最も低い運転周波数HzBbと初期の運転周波数との差分だけ井戸水位が下降したものと、補正を行い、推定末端圧力一定制御を行う。
【0035】
【発明の効果】
以上の通り、本発明によれば、下記のすぐれた効果を奏する。
(a) 最大回転数のデータがなくても、運転により最大回転数を設定でき、正しい推定末端圧力一定制御ができる。
(b) カスケードポンプは大水量運転の方が小水量運転より騒音が少ないので、騒音の少ない運転ができる。
(c) 吸込側の水位の変化があっても、正しい推定末端圧力一定制御ができる。
【図面の簡単な説明】
【図1】本発明を実施する可変速給水装置の正面図。
【図2】図1の上面図。
【図3】本発明の一実施例を示す説明図。
【図4】カスケードポンプを用いて推定末端圧力一定制御を行った場合に消費電力が節約されることを説明するための図。
【図5】使用最高回転数を設定しなくても自動的に推定末端圧力一定制御を行うことを説明するための図。
【図6】図5に従って推定末端圧力一定制御を行うためのフローチャート。
【図7】吸込側の水位の上下により推定末端圧力一定制御の変化を説明するための基本図。
【図8】水位の上昇により推定末端圧力一定制御の変化を説明するための図。
【図9】水位の下降により推定末端圧力一定制御の変化を説明するための図。
【図10】運転に先立って水位の上下の検知の態様を示すフローチャート。
【符号の説明】
2・・・カスケードポンプ
4・・・モータ
6・・・吐出し管
7・・・逆止弁
8・・・フロースイッチ
9・・・圧力タンク
10・・・圧力センサ
11・・・コントーラ
11a・・・制御部
11b・・・インバータ
12・・・井戸
M・・・記憶部
L・・・水位
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a variable speed water supply device including a cascade pump, a pressure sensor provided on a discharge side of the cascade pump, a motor for driving the cascade pump, and a controller for controlling a rotation speed of the pump.
[0002]
[Prior art]
BACKGROUND ART Conventionally, in order to supply water to a home, an automatic water supply device using a cascade pump is often used to supply water or well water stored in a water receiving tank. The reason for using a cascade pump is preferable in terms of energy saving and low noise. Such a conventional automatic water supply device is equipped with an inverter and performs discharge pressure constant control (for example, see Patent Document 1).
[0003]
In addition, in order to meet a demand for obtaining a predetermined pressure and water amount in a home at the end of a pipe, constant control of estimated end pressure is known (for example, see Patent Documents 2, 3, and 4).
[0004]
Patent Document 1 Japanese Patent Application Laid-Open No. 10-288185 Patent Document 2 Japanese Patent Application Laid-Open No. 60-142097 Patent Document 3 Japanese Patent Application Laid-Open No. 60-156959 Patent Document 4 Japanese Patent Application Laid-Open No. 60-189519
However, as a result of various studies, the inventor has found that there is a point to be further improved. In the past, in particular, the constant control of the estimated terminal pressure was insufficient with respect to the setting of the maximum rotation speed and the water level in the case of a well.
[0006]
[Problems to be solved by the invention]
Accordingly, it is an object of the present invention to provide a variable speed water supply device capable of performing more accurate estimated terminal pressure control using a cascade pump.
[0007]
Another object of the present invention is to provide a variable-speed water supply device that can be properly controlled according to a change in the maximum rotation speed of the cascade pump or a change in the water level of the well.
[0008]
[Means for Solving the Problems]
According to the present invention, in a variable speed water supply device comprising a cascade pump, a pressure sensor provided on the discharge side of the cascade pump, a motor for driving the cascade pump, and a controller for controlling the rotation speed of the motor, The controller has a storage unit that stores the pump rotation speed and the pressure of the discharge pipe, calculates the maximum rotation speed, performs constant control of the estimated end pressure, and increases the maximum rotation speed when the maximum rotation speed further increases during use. It has a function to perform constant control of the estimated terminal pressure by the number.
[0009]
Further according to the present invention, in a variable speed water supply device comprising a cascade pump, a pressure sensor provided on the discharge side of the cascade pump, a motor for driving the cascade pump, and a controller for controlling the rotation speed of the motor, The controller includes a storage unit for storing the pump characteristics, and has a function of determining the operating pressure associated with the rise and fall of the water level on the suction side and performing constant control of the estimated end pressure.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a front view and a top view of an automatic water supply apparatus A having a cascade pump embodying the present invention. A cascade pump 2 driven by a motor 4 is installed on a unit base 1 having a piping function. The unit base 1 is covered with a unit cover 3. A suction pipe 5 and a discharge pipe 6 are fixed to the unit base 1 in the unit cover 3.
[0011]
With the rotation of the pump 2, the water passes through the suction pipe 5, and a check valve 7 for preventing backflow from the discharge side to the suction side when the pump is stopped, and a flow for detecting the amount of water for stopping the pump. It is sucked into the pump 2 via the switch 8. And the water discharged from the pump 2 flows into the pressure tank 9 provided on the discharge side. This pressure tank 9 is for storing water when the pump 2 is stopped. A pressure sensor 10 for detecting the pressure on the discharge side is provided on the discharge side of the pump 2, and a discharge pipe 6 is provided on the downstream side of the pressure sensor 10. It is guided to the discharge pipe 6 as described above. In the figure, reference numeral 11 denotes a controller for starting and stopping the pump.
[0012]
FIG. 3 is an explanatory diagram of a variable speed water supply device embodying the present invention. In FIG. 3, water W accumulates at a level L in a well 12 dug from the ground S. The automatic water supply device A is installed on the ground S near the well 12.
[0013]
As shown, the suction pipe 5 is provided with a check valve 7 and a flow switch 8. The discharge pipe 6 of the cascade pump 2 is provided with a pressure sensor 10 and a pressure tank 9. The signal from the pressure sensor 10 is sent to the control unit 11a of the controller 11, and a frequency command from the control unit 11a is sent to the inverter 11b to control the motor 4 as described later. In the figure, M indicates a storage unit, which will be described later.
[0014]
FIG. 4 is a diagram illustrating that the constant estimated end pressure control is more efficient and more energy saving than the constant discharge pressure control according to the present invention. The horizontal axis represents the water amount Q, and the vertical axis represents the consumption. The power L and the pressure H are shown on the upper side, and the rotation speed is shown as a parameter in the figure. In the figure, u represents a curve of 100%, v represents a curve of 90%, and w represents a curve of 80%. In the above figure, a horizontal straight line x indicates the case where the discharge is performed at the pressure H0 and the pressure is controlled to be constant, and a curve y indicates the characteristic when the estimated terminal pressure is controlled according to the present invention.
[0015]
Referring to the upper and lower diagrams of FIG. 4, in the case of the discharge pressure constant control, the intersections H0, H2, and H1 of the line x and the lines u, v, and w are the rotation speeds of 100%, 90%, and 80%, respectively. %, Water amounts Q0, Q2, and Q1 are shown. Similarly, in the case of constant estimated end pressure control, water amounts at intersections H0, H4, and H3 are Q0, Q4, and Q3. Points corresponding to the respective water amounts in the rotation speed curve in the lower diagram are L0, L2, and L1 in the constant discharge pressure control, and a line x connecting these points is a characteristic of power consumption L in the constant discharge pressure control. The line y connecting the points L0, L4, L3 is the characteristic of the estimated terminal pressure constant control.
As can be seen from the comparison between the line x and the line y, it is understood that the power consumption is low and the efficiency is low at all rotations other than 100%.
[0016]
In one embodiment, the storage unit M in FIG. 3 stores in advance the relationship between the rotation speed of the pump and the internal pressure of the pipe on the discharge side.
In addition, the relationship between a plurality of predetermined rotation speeds and the pressure in the water supply pipe in another embodiment is stored.
With such a storage unit, the estimated terminal pressure can be suitably obtained.
[0017]
According to still another embodiment, the storage unit stores the maximum rotation during the variable speed operation. In this way, when a normal rotation speed exceeding the maximum rotation speed is input to the control unit, the value of the maximum rotation speed is set so that the control target pressure for each rotation speed of the pump can be reset. More preferred.
[0018]
As will be understood from the description of FIG. 4, it is necessary to set the point of the water amount Q0, that is, the setting of the maximum number of rotations to be used. However, according to the present invention, it is possible to perform the estimated terminal pressure constant control without setting the maximum operating speed.
[0019]
In FIG. 5, the pressure H is shown on the vertical axis, and the water amount Q is shown on the horizontal axis. FIG. 6 shows a flowchart. Curves a, b, and c in FIG. 5 are characteristic curves of the cascade pump similarly to FIG. 4, and the rotation speed of the cascade pump is b larger than a and c is larger than b.
[0020]
The control mode will be described with reference to FIGS. If there is no data on the maximum number of rotations to be used, a reference pressure PA is set, and discharge pressure constant control is performed at the reference pressure (step S1). At that time, the cascade pump performs an operation indicated by a straight line d. Then, as the rotational speed of the cascade pump 2 increases, it is assumed that the maximum rotational speed has been reached at the point e (step S2). That is, the rotation speed of the curve a is the first maximum rotation speed. Therefore, the controller 11 sets the rotation speed at the point e as the maximum rotation speed, and performs constant control of the estimated terminal pressure (step S3). The operation of the cascade pump 2 at that time is as shown by a curve f.
[0021]
In the subsequent operation, when the motor is operated at a rotation speed larger than the first maximum rotation speed a, for example, the rotation speed b (step S4), the controller 11 estimates a point g on the subsequent maximum rotation speed b as a new maximum rotation speed. Terminal pressure constant control is performed (step S5). The characteristic of the cascade pump 2 at that time is as shown by a curve h.
[0022]
When the setting of the reference pressure PA is changed, it is sufficient to cancel the maximum operating speed and perform the above operation again.
Storing the map of the reference pressure and the maximum number of revolutions in this way is convenient for piping changes and the like.
[0023]
Further, when an appropriate maximum rotation speed cannot be obtained, it is preferable to set the pressure based on a predetermined temporary maximum rotation speed.
[0024]
Next, when the water level L in the well 12 changes, there is no problem in the constant discharge pressure control. However, in the constant control of the estimated end pressure, the performance curve of the cascade pump changes. Therefore, it is necessary to correct according to the water level. .
First, this point will be described with reference to FIG. FIG. 7 is substantially the same as FIG.
[0025]
In FIG. 7, the vertical axis represents the pressure H and the horizontal axis represents the water amount Q, and the line u is the performance curve of the cascade pump when the rotation speed is 100%, that is, when the rotation speed is the maximum (highest frequency). As described above, in the constant control of the estimated end pressure, as shown by the curve y, the discharge pressure of the cascade pump is controlled for each water amount so as to start at the pressure PB when the water amount is zero and to reach the pressure PA at the maximum water amount. Thus, the pressure PB is the pressure at the time of shutoff, and the operating frequency of the cascade pump at that time is indicated by a curve HzB. In terms of control, the operating frequency is set to this value HzB as the minimum operating frequency and controlled so as not to fall below this value.
[0026]
When the water level L of the well 12 rises, the suction pressure changes with the rise of the water level L. Therefore, as shown in FIG. 8, the performance curve of the cascade pump also changes from the curve u to the curve ua indicated by a broken line outside the curve u. Changes to At this time, the constant control of the estimated terminal pressure naturally changes as shown by the curve ya. However, when the control is performed by the curve ya, the portion where the amount of water is small from the intersection A of the curve HzB and the curve ya is operated by the curve portion yb along the curve of the minimum operating frequency HzB, so that the cutoff pressure becomes PBa, and the cutoff pressure PB Since it is higher, it must be operated at a frequency HzBa lower than the minimum operating frequency HzB.
[0027]
FIG. 9 shows an aspect of constant control of the estimated end pressure of the cascade pump when the water level L drops.
Contrary to the case of FIG. 8, in this case, the characteristic of the cascade pump is a curve Ub inside the curve U, and as a result, the estimated end pressure constant control changes as a curve yc. At this time, the operation frequency of the lowest pressure PB is higher than the lowest operation frequency HzB.
[0028]
The water level in the well can be detected by using a water level meter. If the characteristic curve of the pump is known, it can be calculated from the suction pressure and the discharge pressure using, for example, a map.
However, since the characteristic curve of the cascade pump is stored in the controller based on FIGS. 8 and 9, if this is used, the estimated end pressure due to the rise and fall of the water level in the well can be obtained without detecting the water level gauge or the suction pressure. Constant control can be performed.
[0029]
FIG. 10 shows a flowchart of correction based on a change in water level. First, it is determined whether or not a predetermined time has elapsed as a timing for performing the correction (step S11). As this step S11, any of timings such as a start time and a stop time can be used in addition to a predetermined time. Therefore, for example, when the timing is at the time of starting, “within a predetermined time” in each of the following steps is replaced with “at the time of starting”.
[0030]
Then, the controller 11 determines whether or not the pressure has decreased to PB when the lowest frequency HzB of FIG. 7 is reached within a predetermined time (step S12). If it has not decreased, that is, if it is NO, the state is as shown in FIG. 8, and it is determined that the water level is rising (step S13). In this case, as can be seen from FIG. 8, since the pressure is PBa at the current frequency of HzB, the pressure is corrected to be the pressure PB at the lowest frequency HzBa (step S14).
[0031]
This correction can appropriately grasp the rise degree of the well water level because the rise degree is unknown.
That is, temporarily reduce only to the frequency of the predetermined value, capture the discharge pressure at that time, lower the lowest frequency so that the pressure finally drops to PB, and when the PB reaches the new lowest frequency HzBa, Thereafter, correction is performed by the difference between the frequencies HzB and HzBa, and the estimated terminal pressure constant control is performed.
[0032]
When step S12 is YES, the controller 11 determines whether or not the pressure has decreased to the lowest frequency HzB when the pressure reaches PB within a predetermined time (step S15). In the case of YES, it is determined that there is no change in the water level, and no correction is performed.
[0033]
However, if step S15 is NO, it is determined that the water level has dropped (step S16), and since it is the pressure PB at the frequency HzBb at present, correction is made assuming that the water level has dropped by the difference between the frequencies HzB and HzBb (step S17).
[0034]
This correction is supposed to have been performed until the deadline, and the well water level is lowered by the difference between the lowest operating frequency HzBb within the predetermined time and the initial operating frequency, and the correction is performed, and the estimated end pressure constant control is performed. .
[0035]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
(A) Even if there is no data of the maximum rotation speed, the maximum rotation speed can be set by the operation, and the correct estimated terminal pressure constant control can be performed.
(B) Since the cascade pump has less noise in large water volume operation than in small water volume operation, it can be operated with less noise.
(C) Even if there is a change in the water level on the suction side, correct constant control of the estimated end pressure can be performed.
[Brief description of the drawings]
FIG. 1 is a front view of a variable speed water supply device embodying the present invention.
FIG. 2 is a top view of FIG.
FIG. 3 is an explanatory view showing one embodiment of the present invention.
FIG. 4 is a diagram for explaining that power consumption is saved when constant estimated end pressure control is performed using a cascade pump.
FIG. 5 is a view for explaining that the estimated terminal pressure constant control is automatically performed without setting the maximum operating speed.
FIG. 6 is a flowchart for performing estimated terminal pressure constant control according to FIG. 5;
FIG. 7 is a basic diagram for explaining a change in the estimated terminal pressure constant control depending on the rise and fall of the water level on the suction side.
FIG. 8 is a diagram for explaining a change in estimated terminal pressure constant control due to a rise in water level.
FIG. 9 is a diagram for explaining a change in estimated terminal pressure constant control due to a decrease in water level.
FIG. 10 is a flowchart showing a manner of detecting a water level up and down before driving.
[Explanation of symbols]
2 Cascade pump 4 Motor 6 Discharge pipe 7 Check valve 8 Flow switch 9 Pressure tank 10 Pressure sensor 11 Controller 11a ..Control unit 11b ... Inverter 12 ... Well M ... Storage unit L ... Water level

Claims (2)

カスケードポンプとそのカスケードポンプの吐出し側に設けた圧力センサとそのカスケードポンプを駆動するモータと、そのモータの回転数を制御するコントローラとからなる可変速給水装置において、そのコントローラはポンプ回転速度と吐出し管の圧力とを記憶する記憶部を備え、最高回転数を求めて推定末端圧力一定制御を行い、使用中にさらに最高回転数が上昇したときその上昇した最高回転数により推定末端圧力一定制御を行う機能を有することを特徴とする可変速給水装置。In a variable speed water supply device comprising a cascade pump, a pressure sensor provided on the discharge side of the cascade pump, a motor for driving the cascade pump, and a controller for controlling the number of rotations of the motor, the controller has a pump rotation speed and Equipped with a storage unit that stores the pressure of the discharge pipe, performs the estimated end pressure constant control by obtaining the maximum rotation speed, and when the maximum rotation speed further increases during use, the estimated end pressure is fixed by the increased maximum rotation speed A variable speed water supply device having a function of performing control. カスケードポンプとそのカスケードポンプの吐出し側に設けた圧力センサとそのカスケードポンプを駆動するモータと、そのモータの回転数を制御するコントローラとからなる可変速給水装置において、そのコントローラはポンプ特性を記憶する記憶部を備え、吸込側の水位の上昇下降に伴う運転圧力を判断して、推定末端圧力一定制御を行う機能を有することを特徴とする可変速給水装置。In a variable speed water supply device comprising a cascade pump, a pressure sensor provided on the discharge side of the cascade pump, a motor for driving the cascade pump, and a controller for controlling the rotation speed of the motor, the controller stores the pump characteristics. A variable-speed water supply device, comprising: a storage unit that performs a control to determine an operating pressure accompanying rise and fall of a water level on a suction side and perform constant control of an estimated end pressure.
JP2003107265A 2003-04-11 2003-04-11 Variable speed water supply device Expired - Lifetime JP4245399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107265A JP4245399B2 (en) 2003-04-11 2003-04-11 Variable speed water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107265A JP4245399B2 (en) 2003-04-11 2003-04-11 Variable speed water supply device

Publications (2)

Publication Number Publication Date
JP2004316434A true JP2004316434A (en) 2004-11-11
JP4245399B2 JP4245399B2 (en) 2009-03-25

Family

ID=33469145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107265A Expired - Lifetime JP4245399B2 (en) 2003-04-11 2003-04-11 Variable speed water supply device

Country Status (1)

Country Link
JP (1) JP4245399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170309A (en) * 2005-12-22 2007-07-05 Ebara Corp Control method of pump and water supply device
WO2012140944A1 (en) * 2011-04-11 2012-10-18 富士電機株式会社 Water supply pump control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170309A (en) * 2005-12-22 2007-07-05 Ebara Corp Control method of pump and water supply device
WO2012140944A1 (en) * 2011-04-11 2012-10-18 富士電機株式会社 Water supply pump control device
JP2012219729A (en) * 2011-04-11 2012-11-12 Fuji Electric Co Ltd Water supply pump control device
CN103154518A (en) * 2011-04-11 2013-06-12 富士电机株式会社 Water supply pump control device
US9115722B2 (en) 2011-04-11 2015-08-25 Fuji Electric Co., Ltd. Feed water pump control device

Also Published As

Publication number Publication date
JP4245399B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US9382903B2 (en) Method and apparatus for optimizing energy efficiency of pumping system
CN110594956B (en) Filter screen filth blockage detection method and device and air conditioner
JP5323796B2 (en) Pump device
JP5274524B2 (en) Pump station
JP2004316434A (en) Variable speed supply water device
JP4741312B2 (en) Variable speed water supply device
JP4684478B2 (en) Control method of water supply device
JP6389532B2 (en) How to stop pumps and pump station equipment
JP5075390B2 (en) pump
EP2990652A1 (en) Pump device
JP5222203B2 (en) Pump device
JP6637692B2 (en) Pump device and operation control method thereof
JP6374998B2 (en) Self-priming pump operating device, liquid supply device, and self-priming pump operating method
JP2006250004A (en) Collective pump device
JP2005351252A (en) Method for delivering liquid from multiple tanks and device for delivering liquid
JP2005214137A (en) Compressor
JP2014218988A (en) Pump device
JP2006266191A (en) Method for operating vertical shaft pump
JP3533428B2 (en) Pump device and pump control device
JP2018066380A (en) Driving device of self-priming pump, liquid supply device, and driving method of self-priming pump
JP2000352393A (en) Method for correction control of suction side pressure of automatic water supply system and device thereof
JP4641594B2 (en) Control method of variable speed water supply device
JP2000054982A (en) Water feed method and its device
JP3614664B2 (en) Operation control method of drainage pump
JP3610190B2 (en) Operation control method of drainage pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4245399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term