JP2004315845A - Spheroidal graphite cast iron - Google Patents

Spheroidal graphite cast iron Download PDF

Info

Publication number
JP2004315845A
JP2004315845A JP2003107584A JP2003107584A JP2004315845A JP 2004315845 A JP2004315845 A JP 2004315845A JP 2003107584 A JP2003107584 A JP 2003107584A JP 2003107584 A JP2003107584 A JP 2003107584A JP 2004315845 A JP2004315845 A JP 2004315845A
Authority
JP
Japan
Prior art keywords
weight
cast iron
spheroidal graphite
graphite cast
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107584A
Other languages
Japanese (ja)
Inventor
Toshiaki Kuroki
俊昭 黒木
Yasuhiro Nemoto
康広 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUSHIMA SEIKO KK
Hino Motors Ltd
Original Assignee
FUKUSHIMA SEIKO KK
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUSHIMA SEIKO KK, Hino Motors Ltd filed Critical FUKUSHIMA SEIKO KK
Priority to JP2003107584A priority Critical patent/JP2004315845A/en
Publication of JP2004315845A publication Critical patent/JP2004315845A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide spheroidal graphite cast iron by which superior workability can be maintained while securing high fatigue strength in an as-cast state and raw-material costs can be reduced. <P>SOLUTION: This spheroidal graphite cast iron can be obtained by combinedly adding 0.4 to 0.8 wt.% Cu and 0.5 to 1.0 wt.% Ni and also adding 0.003 to <0.010 wt.% Ca to a spheroidal graphite cast iron having a composition consisting of, by weight, 3.2 to 3.8% C, 2.0 to 2.8% Si, ≤0.3% Mn, ≤0.04% P, 0.02 to 0.06% Mg and the balance Fe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、球状黒鉛鋳鉄に関するものである。
【0002】
【従来の技術】
一般的に、シャシフレームのブラケットやサスペンションのアーム等の自動車部品には、安価で強度の高い球状黒鉛鋳鉄を採用したものがあるが、従来においては、この種の球状黒鉛鋳鉄の部品を黒皮表面のままの状態で使用していることが多い。
【0003】
球状黒鉛鋳鉄を用いた部品設計においては、黒皮表面状態での疲労強度を用いて設計が行われることになるが、従来における球状黒鉛鋳鉄の黒皮表面の組織は、内部の組織と比較して脱炭によるフェライト組織の析出が多く、疲労強度の面で不利な組織となっていたため、球状黒鉛鋳鉄を用いた部品の薄肉軽量設計や低コスト化を阻む大きな要因となっていた。
【0004】
また、球状黒鉛鋳鉄を用いた部品の高強度化を図る手法として、部品に熱処理を施すことが従来より知られているが、熱処理の工程を増やすことはコストの高騰を招いてしまうことになり、しかも、このような熱処理により内部強度を向上できても黒皮表面の疲労強度を向上する効果が低いという不具合もあるため、鋳放しで高い疲労強度を有するような球状黒鉛鋳鉄の開発が望まれている。
【0005】
そこで、本発明者らは、Cu(銅)及びSn(錫)を鋳鉄中に適切な含有率で添加することにより、黒皮表面のフェライト組織の析出を抑制して表面組織のパーライト化を図り、鋳放しで高い疲労強度を有する球状黒鉛鋳鉄を得られることを見出し、これを既に特願2002−20378号として出願している。
【0006】
また、この出願の発明に関連する先行技術文献情報としては、次にあげる特許文献1〜3等がある。
【0007】
【特許文献1】
特開平10−96041号公報
【特許文献2】
特開平10−195587号公報
【特許文献3】
特開2001−131678号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述した如き鋳放しで高い疲労強度を有する球状黒鉛鋳鉄を得るに際し、Cu添加やNi(ニッケル)添加により球状黒鉛鋳鉄の高強度化を図るという手法自体は従来より知られているところではあるが、前者のCu添加による高強度化では、Cuが安価であることから素材コストが安く済むという利点がある反面、疲労強度の向上に伴い硬さも大幅に上がってしまって加工性の悪化が避け難くなるという欠点があり、他方、後者のNi添加による高強度化では、Cu添加の場合よりも硬くなり難いという利点がある反面、高強度化のために高価なNiの多量添加が必要となって素材コストが高くつくという欠点があった。
【0009】
本発明は上述の実情に鑑みてなしたもので、鋳放しで高い疲労強度を得ながらも良好な加工性を維持することが可能で且つ素材コストを安価に抑制し得る球状黒鉛鋳鉄を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明は、C:3.2〜3.8重量%、Si:2.0〜2.8重量%、Mn:0.3重量%以下、P:0.04重量%以下、Mg:0.02〜0.06重量%を含み、残部がFeから成る球状黒鉛鋳鉄であって、Cu:0.4〜0.8重量%とNi:0.5〜1.0重量%を複合添加すると共に、Ca:0.003〜0.010重量%未満を添加したことを特徴とするものである。
【0011】
ここで、Cは湯流れを良化して鋳造性を高めるための元素として含有されており、良好な鋳造性を確保するために少なくとも3.2重量%以上の添加が必要であるが、3.8重量%を越えて添加すると、ドロス等の異常組織の発生を招いてしまうことになるので、鋳鉄中に占めるCの含有率を3.2〜3.8重量%の範囲に規定している。
【0012】
また、Siも鋳造性を高める元素として含有されているが、2.0重量%を下まわると耐力低下を引き起こしてしまい、また、2.8重量%を越えて添加してしまうと、基地組織にフェライトが多くなってしまうので、鋳鉄中に占めるSiの含有率を2.0〜2.8重量%の範囲に規定している。
【0013】
更に、Mnは原料の銑鉄やリターン材から入ってくる成分であるが、0.3重量%を越えて添加してしまうと、パーライト組織の疎密化が進んで基地組織の不均一が顕著に現れ始めるので、鋳鉄中に占めるMnの含有率を0.3重量%以下に抑制している。
【0014】
また、Pも原料の銑鉄やリターン材から入ってくる成分で、ステダイトを晶出して鋳鉄を脆くする成分であるので、機械的性質を悪化させないよう鋳鉄中に占めるPの含有率は0.04重量%以下に規定する。
【0015】
更に、Mgは黒鉛の球状化を促進する元素として含有されているが、0.02重量%を下まわると、黒鉛の球状化が不十分となって機械的性質が低下してしまい、また、0.06重量%を越えて添加してしまうと、Mgドロスが発生してしまうので、鋳鉄中に占めるMgの含有率を0.02〜0.06重量%の範囲に抑制している。
【0016】
そして、Cuはパーライト化を促進してフェライト組織の析出を抑制し且つ鋳鉄の基地組織の強度を高める元素として、Niは耐力値を上げて機械的特性の改善を図る元素として夫々添加されており、これらCu及びNiの複合添加による相乗的な作用により、Cu単独で添加した場合と比較して必要な耐力を確保しながらも硬さを低く抑えることが可能となり、しかも、Ni単独で添加した場合と比較して同じ耐力を得るのに必要なNiの添加量が少なくて済むことになる。
【0017】
尚、このようなCu及びNiの複合添加による相乗的な作用を得るにあたり、Cuの有効なパーライト化促進効果を得ると共に、Niの機械的特性改善効果と相乗的に作用して鋳放しで十分に高い疲労強度を得るためには、少なくとも0.4重量%以上のCuが必要となるが、0.8重量%を超えてCuを添加してしまうと、Niを複合添加しても硬さを低く抑えられなくなって切削性や靭性の著しい低下を招いてしまうので、鋳鉄中に占めるCuの含有率を0.4〜0.8重量%の範囲に規定している。
【0018】
他方、Niは0.5重量%を下まわると耐力値の向上が十分に現れず、また、1.0重量%を越えて添加しても、実用上必要な耐力レベルを越えて素材コストばかりが高くついてしまうので、鋳鉄中に占めるNiの含有率を0.5〜1.0重量%に規定している。
【0019】
更に、Caは、加工時にツールの切削表面に付着し、これがツールの切削表面の保護皮膜(Caが低融点であることから滑りが生じる)となることで該ツールの切削表面の摩耗を抑制する元素として添加されているが、このような保護皮膜の形成に少なくとも0.003重量%以上を必要とする一方、0.010重量%以上を添加してしまうと、硬質のCaOが生成されることにより加工性に悪影響を及ぼす結果となり、また、黒皮表面のフェライト組織の析出が増加して生地組織の強化が十分ではなくなる虞れもあるので、鋳鉄中に占めるCaの含有率を0.003〜0.010重量%未満の範囲に規定している。
【0020】
而して、このようにすれば、Cu及びNiの複合添加により必要な耐力を確保しながらもCu単独添加より硬さを低く抑えることが可能となり、しかも、カルシウムの添加により加工時にツールの切削表面の保護皮膜を形成して該ツールの切削表面の摩耗を抑制することが可能となるので、鋳放しで高い疲労強度を得ながらも良好な加工性を維持することが可能となり、更には、Niを単独で添加する場合と比較して、同じ耐力を得るのに必要なNiの添加量が少なくて済むので、素材コストを安価に抑制することが可能となる。
【0021】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0022】
本発明は、C(炭素):3.2〜3.8重量%、Si(珪素):2.0〜2.8重量%、Mn(マンガン):0.3重量%以下、P(燐):0.04重量%以下、Mg(マグネシウム):0.02〜0.06重量%を含み、残部がFe(鉄)から成る球状黒鉛鋳鉄であって、Cu(銅):0.4〜0.8重量%とNi(ニッケル):0.5〜1.0重量%を複合添加すると共に、Ca(カルシウム):0.003〜0.010重量%未満を添加した球状黒鉛鋳鉄に関するものである。
【0023】
図1のグラフは他の組成を略同等としてCu及びニッケルを複合添加した場合の試験片Aと、Cuを単独で添加した場合の試験片Bとを耐力と硬さの関係について比較したものであり、このグラフから明らかな通り、同じ耐力を得るにあたり、試験片Aの方が試験片Bよりも大幅に硬さが低く抑えられていることが判明した。
【0024】
しかも、特に本発明で規定している含有率でCu及びNiを複合添加した例では、鋳放しで約480MPa以上の耐力(因みに引張り強度は約780MPa以上)が得られることも確認され、このような約480MPa以上の耐力が得られる領域での試験片Bとの硬さの違いが極めて顕著に現れることも確認された。
【0025】
尚、図1のグラフ中における試験片A’は、Cu及びNiを複合添加したものであるが、Cuを1.0重量%を超えて添加したものであり、このように本発明で規定する範囲を超えたものは、硬さを低く抑える効果が十分に得られないものとなる。
【0026】
即ち、Cuには、パーライト化を促進してフェライト組織の析出を抑制し且つ鋳鉄の基地組織の強度を高める機能があり、Niには、耐力値を上げて機械的特性の改善を図る機能があるので、これらCu及びNiの複合添加による相乗的な作用によれば、Cu単独で添加した場合と比較して、必要な耐力を確保しながらも硬さを低く抑えることが可能となり、しかも、Ni単独で添加した場合と比較して同じ耐力を得るのに必要なNiの添加量が少なくて済むことになる。
【0027】
尚、本発明者らによる検証試験によれば、このようなCu及びNiの複合添加による相乗的な作用を得るにあたり、Cuの有効なパーライト化促進効果を得ると共に、Niの機械的特性改善効果と相乗的に作用して鋳放しで十分に高い疲労強度を得るためには、少なくとも0.4重量%以上のCuを必要とすることが判った。
【0028】
一方、0.8重量%を超えてCuを添加してしまうと、Niを複合添加しても硬さを低く抑えられなくなって切削性や靭性の著しい低下を招いてしまうので、鋳鉄中に占めるCuの含有率を0.4〜0.8重量%の範囲に規定する必要があることも判った。
【0029】
また、Niは0.5重量%を下まわると耐力値の向上が十分に現れず、また、1.0重量%を越えて添加しても、実用上必要な耐力レベルを越えて素材コストばかりが高くついてしまうので、鋳鉄中に占めるNiの含有率を0.5〜1.0重量%に規定する必要がある。
【0030】
更に、図2のグラフは本発明で規定した組成から成る鋳放しで約480MPaの耐力(引張り強度は約780MPa)を有する球状黒鉛鋳鉄の実施例xと、約320MPaの耐力(引張り強度は約500MPa)を有する球状黒鉛鋳鉄の従来品y[FCD500]とを加工性について評価したものであり、このグラフにおいては、ドリル加工長(加工穴一つ当たりの長さに加工穴数を掛けたもの)を横軸にとり、ドリルの逃げ面(切削仕上面との不必要な接触を避けるために逃がした面:この面とすくい面との交線部分が切れ刃を成す)の摩耗量を縦軸にとっている。
【0031】
この図2のグラフから明らかな通り、本発明に係る実施例xは、従来品y[FCD500]と比較して、その耐力や強度が大幅に高いものであるにもかかわらず、加工による逃げ面摩耗量は略同等であり、その加工性に関して格別な差異がないことが確認された。
【0032】
即ち、Caは、加工時にツールの切削表面に付着し、これがツールの切削表面の保護皮膜(Caが低融点であることから滑りが生じる)となることで該ツールの切削表面の摩耗を抑制する元素として添加されているのであり、本発明者らによる検証試験によれば、このような保護皮膜の形成に少なくとも0.003重量%以上を必要とするが、0.010重量%以上を添加してしまうと、硬質のCaOが生成されることにより加工性に悪影響を及ぼす結果となり、また、黒皮表面のフェライト組織の析出が増加して生地組織の強化が十分ではなくなる虞れもあるので、鋳鉄中に占めるCaの含有率を0.003〜0.010重量%未満の範囲に規定する必要があることが判った。
【0033】
而して、このような球状黒鉛鋳鉄を採用すれば、Cu及びNiの複合添加により必要な耐力を確保しながらもCu単独添加より硬さを低く抑えることが可能となり、しかも、Caの添加により加工時にツールの切削表面の保護皮膜を形成して該ツールの切削表面の摩耗を抑制することが可能となるので、鋳放しで高い疲労強度を得ながらも良好な加工性を維持することが可能となり、更には、Niを単独で添加する場合と比較して同じ耐力を得るのに必要なNiの添加量が少なくて済み、これにより素材コストを安価に抑制することが可能となる。
【0034】
尚、本発明の球状黒鉛鋳鉄は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0035】
【発明の効果】
以上に説明したことから明らかなように、上記した本発明の球状黒鉛鋳鉄によれば、鋳放しで高い疲労強度を得ながらも良好な加工性を維持することができ、しかも、Niを単独で添加する場合と比較して同じ耐力を得るのに必要なNiの添加量が少なくて済むので、素材コストを安価に抑制することもでき、これによって、球状黒鉛鋳鉄を用いた部品の薄肉軽量設計や低コスト化を加工性を損なうことなく実現できるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明に係る試験片Aと比較用試験片Bの耐力と硬さの関係について評価したグラフである。
【図2】本発明に係る実施例xと従来品yを加工性について評価したグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to spheroidal graphite cast iron.
[0002]
[Prior art]
In general, some automotive parts, such as chassis frame brackets and suspension arms, use inexpensive and high-strength spheroidal graphite cast iron. Often used as is on the surface.
[0003]
In the design of parts using spheroidal graphite cast iron, the design will be performed using the fatigue strength in the state of the surface of the black scale, but the structure of the surface of the black scale of conventional spheroidal graphite cast iron is compared with the internal structure. As a result, a large amount of ferrite structure was precipitated due to decarburization, and the structure was disadvantageous in terms of fatigue strength. This was a major factor that hindered thin and lightweight design and cost reduction of parts using spheroidal graphite cast iron.
[0004]
As a method of increasing the strength of parts using spheroidal graphite cast iron, it has been conventionally known to perform heat treatment on parts, but increasing the number of heat treatment steps leads to a rise in cost. In addition, even if the internal strength can be improved by such heat treatment, there is a problem that the effect of improving the fatigue strength of the black scale surface is low. Therefore, it is desired to develop a spheroidal graphite cast iron having a high fatigue strength as cast. It is rare.
[0005]
Thus, the present inventors have attempted to add Cu (copper) and Sn (tin) to cast iron at an appropriate content to suppress the precipitation of ferrite structure on the surface of black scale and to achieve a pearlite surface structure. It has been found that a spheroidal graphite cast iron having high fatigue strength can be obtained as-cast, and has already been filed as Japanese Patent Application No. 2002-20378.
[0006]
Further, as prior art document information related to the invention of this application, there are the following Patent Documents 1 to 3 and the like.
[0007]
[Patent Document 1]
JP-A-10-96041 [Patent Document 2]
JP-A-10-195587 [Patent Document 3]
JP 2001-131678 A
[Problems to be solved by the invention]
However, in order to obtain a spheroidal graphite cast iron having a high fatigue strength by as-casting as described above, the method itself of increasing the strength of the spheroidal graphite cast iron by adding Cu or Ni (nickel) is conventionally known. However, in the former case of increasing the strength by adding Cu, there is an advantage that the material cost can be reduced because Cu is inexpensive, but on the other hand, the hardness is greatly increased with the improvement of the fatigue strength, and the workability is deteriorated. There is a disadvantage that it is difficult to avoid, and on the other hand, in the latter case of increasing strength by adding Ni, there is an advantage that it is harder to harden than in the case of adding Cu, but on the other hand, it is necessary to add a large amount of expensive Ni for increasing strength. The disadvantage is that the material cost is high.
[0009]
The present invention has been made in view of the above-described circumstances, and provides a spheroidal graphite cast iron capable of maintaining good workability while obtaining high fatigue strength as cast and capable of suppressing material cost at low cost. It is intended to be.
[0010]
[Means for Solving the Problems]
In the present invention, C: 3.2 to 3.8% by weight, Si: 2.0 to 2.8% by weight, Mn: 0.3% by weight or less, P: 0.04% by weight or less, Mg: 0. This is a spheroidal graphite cast iron containing 02 to 0.06% by weight, with the balance being Fe and containing 0.4 to 0.8% by weight of Cu and 0.5 to 1.0% by weight of Ni. , Ca: 0.003 to less than 0.010% by weight.
[0011]
Here, C is contained as an element for improving the flow of the molten metal and increasing the castability, and it is necessary to add at least 3.2% by weight or more in order to ensure good castability. If added in excess of 8% by weight, an abnormal structure such as dross will be generated, so the content of C in the cast iron is specified in the range of 3.2 to 3.8% by weight. .
[0012]
Also, Si is contained as an element for improving castability, but if it is less than 2.0% by weight, the yield strength is reduced, and if it is added in excess of 2.8% by weight, the base structure is not formed. Therefore, the content of Si in the cast iron is specified in the range of 2.0 to 2.8% by weight because ferrite increases.
[0013]
Further, Mn is a component coming from the raw material pig iron and the return material, but if added in excess of 0.3% by weight, the density of the pearlite structure increases, and the nonuniformity of the matrix structure remarkably appears. Since starting, the content of Mn in the cast iron is suppressed to 0.3% by weight or less.
[0014]
Further, P is a component coming from the raw material such as pig iron and a return material, and is a component that crystallizes steadite and makes the cast iron brittle, so that the content of P in the cast iron is 0.04 so as not to deteriorate the mechanical properties. It is defined as not more than% by weight.
[0015]
Further, Mg is contained as an element that promotes spheroidization of graphite, but if it is less than 0.02% by weight, spheroidization of graphite becomes insufficient and mechanical properties deteriorate, and If it is added in excess of 0.06% by weight, Mg dross is generated, so the content of Mg in the cast iron is suppressed to the range of 0.02 to 0.06% by weight.
[0016]
Cu is added as an element that promotes pearlitization to suppress the precipitation of ferrite structure and increases the strength of the base structure of cast iron, and Ni is added as an element that increases the proof stress and improves mechanical properties. The synergistic action of the combined addition of Cu and Ni makes it possible to reduce the hardness while securing the necessary proof stress as compared with the case of adding Cu alone, and to add Ni alone. In comparison with the case, the amount of Ni required to obtain the same proof stress can be reduced.
[0017]
In addition, in obtaining such a synergistic action by the combined addition of Cu and Ni, it is possible to obtain an effective pearlitization promoting effect of Cu, and to act synergistically with the effect of improving the mechanical properties of Ni, so that as-cast is sufficient. In order to obtain high fatigue strength, Cu must be at least 0.4% by weight or more. However, if Cu is added in excess of 0.8% by weight, even if Ni is added in combination, the Therefore, the content of Cu in the cast iron is specified in the range of 0.4 to 0.8% by weight.
[0018]
On the other hand, if Ni is less than 0.5% by weight, the yield strength will not be sufficiently improved, and even if it is added in excess of 1.0% by weight, the material cost will exceed the practically required yield level and increase the material cost. Therefore, the content of Ni in the cast iron is specified to be 0.5 to 1.0% by weight.
[0019]
Further, Ca adheres to the cutting surface of the tool at the time of machining and forms a protective film on the cutting surface of the tool (slip occurs because Ca has a low melting point), thereby suppressing wear of the cutting surface of the tool. Although it is added as an element, at least 0.003% by weight or more is required for the formation of such a protective film, but if 0.010% by weight or more is added, hard CaO is generated. As a result, there is a possibility that the precipitation of the ferrite structure on the surface of the black scale increases and the strengthening of the base structure may not be sufficient, so that the content of Ca in the cast iron is reduced to 0.003. It is specified in the range of less than 0.010% by weight.
[0020]
Thus, it is possible to keep the required proof stress by the combined addition of Cu and Ni while keeping the hardness lower than by adding Cu alone, and to add the calcium to the cutting of the tool during machining. Since it becomes possible to form a protective film on the surface and to suppress wear of the cutting surface of the tool, it is possible to maintain good workability while obtaining high fatigue strength by as-cast, Compared with the case where Ni is added alone, the amount of Ni required to obtain the same proof stress can be reduced, so that the material cost can be suppressed at a low cost.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
In the present invention, C (carbon): 3.2 to 3.8% by weight, Si (silicon): 2.0 to 2.8% by weight, Mn (manganese): 0.3% by weight or less, P (phosphorus) : 0.04% by weight or less, Mg (magnesium): 0.02 to 0.06% by weight, the balance being spheroidal graphite cast iron composed of Fe (iron), Cu (copper): 0.4 to 0 The present invention relates to a spheroidal graphite cast iron to which 0.8% by weight and Ni (nickel): 0.5 to 1.0% by weight are combined and Ca (calcium): 0.003 to less than 0.010% by weight is added. .
[0023]
The graph of FIG. 1 compares the test piece A in the case where Cu and nickel are added in combination with the test piece B in the case where Cu is added alone with respect to the relationship between proof stress and hardness, with other compositions being substantially equal. As is clear from this graph, in obtaining the same proof stress, it was found that the hardness of the test piece A was much lower than that of the test piece B.
[0024]
In addition, in particular, in the case where Cu and Ni are added in combination at the contents specified in the present invention, it has been confirmed that a proof stress of about 480 MPa or more can be obtained by as-cast (the tensile strength is about 780 MPa or more). It was also confirmed that the difference in hardness from the test piece B in a region where a yield strength of about 480 MPa or more was obtained was extremely remarkable.
[0025]
The test piece A ′ in the graph of FIG. 1 is a composite to which Cu and Ni are added, but to which Cu is added in excess of 1.0% by weight, and is thus defined in the present invention. If the hardness exceeds the range, the effect of suppressing the hardness is not sufficiently obtained.
[0026]
That is, Cu has a function of promoting pearlitization to suppress precipitation of a ferrite structure and increasing the strength of a base structure of cast iron, and Ni has a function of increasing a proof stress and improving mechanical properties. Therefore, according to the synergistic action of the composite addition of Cu and Ni, it is possible to reduce the hardness while securing the necessary proof stress, as compared with the case of adding Cu alone, and As compared with the case where Ni is added alone, the amount of Ni required to obtain the same proof stress can be reduced.
[0027]
According to the verification test by the present inventors, in obtaining such a synergistic action by the composite addition of Cu and Ni, an effective pearlitizing promoting effect of Cu is obtained and a mechanical property improving effect of Ni is obtained. It has been found that at least 0.4% by weight or more of Cu is required in order to obtain a sufficiently high fatigue strength by casting as a synergistic effect.
[0028]
On the other hand, if Cu is added in excess of 0.8% by weight, the hardness cannot be suppressed to a low level even if Ni is added in combination, leading to a significant decrease in machinability and toughness. It was also found that the Cu content had to be defined in the range of 0.4 to 0.8% by weight.
[0029]
Also, if Ni is less than 0.5% by weight, the yield strength is not sufficiently improved, and even if Ni is added in excess of 1.0% by weight, the material cost exceeds the practically required yield level and the material cost only increases. Therefore, it is necessary to regulate the content of Ni in the cast iron to 0.5 to 1.0% by weight.
[0030]
Further, the graph of FIG. 2 shows an example x of a spheroidal graphite cast iron having an as-cast strength (tensile strength of about 780 MPa) of as-cast having the composition specified in the present invention, and a yield strength of about 320 MPa (tensile strength of about 500 MPa). ) Is evaluated with respect to workability with a conventional product y [FCD500] of spheroidal graphite cast iron, and in this graph, a drilling length (length per machining hole multiplied by the number of machining holes) is shown. Is plotted on the abscissa, and the amount of wear on the flank of the drill (the surface escaping to avoid unnecessary contact with the cut surface: the intersection of this surface and the rake surface forms the cutting edge) is plotted on the ordinate. I have.
[0031]
As is clear from the graph of FIG. 2, the flank surface of the working example x according to the present invention is processed in spite of the fact that its yield strength and strength are significantly higher than those of the conventional product y [FCD500]. The wear amount was substantially the same, and it was confirmed that there was no particular difference in workability.
[0032]
That is, Ca adheres to the cutting surface of the tool at the time of machining and forms a protective film on the cutting surface of the tool (slip occurs because Ca has a low melting point), thereby suppressing wear of the cutting surface of the tool. According to a verification test by the present inventors, at least 0.003% by weight or more is required for forming such a protective film, but 0.010% by weight or more is added. If hard CaO is generated, the result will be a bad influence on workability due to the generation of hard CaO, and the precipitation of the ferrite structure on the surface of the black scale may increase, and the strengthening of the dough structure may not be sufficient. It has been found that the Ca content in the cast iron needs to be defined in the range of 0.003 to less than 0.010% by weight.
[0033]
Thus, if such a spheroidal graphite cast iron is employed, it is possible to suppress the hardness lower than the single addition of Cu while securing the necessary proof stress by the composite addition of Cu and Ni, and further, by adding Ca, Since a protective film on the cutting surface of the tool can be formed during processing and wear of the cutting surface of the tool can be suppressed, it is possible to maintain good workability while obtaining high fatigue strength as cast. Further, compared to the case where Ni is added alone, the amount of Ni necessary to obtain the same proof stress can be reduced, thereby making it possible to suppress the material cost inexpensively.
[0034]
Note that the spheroidal graphite cast iron of the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the scope of the present invention.
[0035]
【The invention's effect】
As is apparent from the above description, according to the spheroidal graphite cast iron of the present invention described above, it is possible to maintain good workability while obtaining high fatigue strength in an as-cast state, and moreover, Ni alone is used. Since the amount of Ni required to obtain the same proof stress is smaller than in the case of adding Ni, the material cost can also be reduced and the thin and lightweight design of parts using spheroidal graphite cast iron can be achieved. It is possible to achieve an excellent effect that cost reduction can be realized without impairing workability.
[Brief description of the drawings]
FIG. 1 is a graph showing an evaluation of the relationship between proof stress and hardness of a test piece A and a comparative test piece B according to the present invention.
FIG. 2 is a graph showing the workability of Example x and the conventional product y according to the present invention.

Claims (1)

C:3.2〜3.8重量%、Si:2.0〜2.8重量%、Mn:0.3重量%以下、P:0.04重量%以下、Mg:0.02〜0.06重量%を含み、残部がFeから成る球状黒鉛鋳鉄であって、Cu:0.4〜0.8重量%とNi:0.5〜1.0重量%を複合添加すると共に、Ca:0.003〜0.010重量%未満を添加したことを特徴とする球状黒鉛鋳鉄。C: 3.2 to 3.8% by weight, Si: 2.0 to 2.8% by weight, Mn: 0.3% by weight or less, P: 0.04% by weight or less, Mg: 0.02 to 0.8%. Is a spheroidal graphite cast iron containing 0.6% by weight, with the balance being Fe, containing 0.4 to 0.8% by weight of Cu and 0.5 to 1.0% by weight of Ni in a combined manner. 0.003 to less than 0.010% by weight of spheroidal graphite cast iron.
JP2003107584A 2003-04-11 2003-04-11 Spheroidal graphite cast iron Pending JP2004315845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107584A JP2004315845A (en) 2003-04-11 2003-04-11 Spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107584A JP2004315845A (en) 2003-04-11 2003-04-11 Spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JP2004315845A true JP2004315845A (en) 2004-11-11

Family

ID=33469374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107584A Pending JP2004315845A (en) 2003-04-11 2003-04-11 Spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP2004315845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283571A (en) * 2013-06-28 2016-01-27 株式会社理研 Spheroidal graphite cast iron
CN108642368A (en) * 2018-04-27 2018-10-12 武汉理工大学 A kind of As-cast High Strength Toughness synthetic nodular cast iron QT800-5 and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283571A (en) * 2013-06-28 2016-01-27 株式会社理研 Spheroidal graphite cast iron
CN108642368A (en) * 2018-04-27 2018-10-12 武汉理工大学 A kind of As-cast High Strength Toughness synthetic nodular cast iron QT800-5 and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5012231B2 (en) High-strength spheroidal graphite cast iron with excellent wear resistance
JP4835424B2 (en) High strength spheroidal graphite cast iron
JP6032881B2 (en) Hot mold steel
JP2005206913A (en) Alloy tool steel
JP4326959B2 (en) Nodular cast iron alloy
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP2007154295A (en) Wear resistant cast steel and its production method
JPS6338418B2 (en)
JPH07145444A (en) High strength spheroidal graphite case iron
JP2004315845A (en) Spheroidal graphite cast iron
JP2004002951A (en) Free cutting tool steel
JP2003221638A (en) Globular graphite cast iron
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JPH10317093A (en) High rigidity spheroidal graphite cast iron and its production
JPH1096040A (en) High strength gray cast iron excellent in cutting workability
JP2004091840A (en) Steel for metal mold with excellent machinability and polishability
JP2010031301A (en) Nickel-chromium-aluminum alloy base material
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
JPH11323479A (en) Heat resistant cast steel
JPS61143554A (en) Cast iron material for surface hardening
JP7300351B2 (en) Polishing surface plate using spheroidal graphite cast iron
JP2002003982A (en) Cast iron excellent in machinability and mechanical property
JPH0734190A (en) Steel for machine structure excellent in machinability and cold forgeability
JP5712531B2 (en) Spheroidal graphite cast iron products with excellent wear resistance