JP2004315373A - Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same - Google Patents

Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same Download PDF

Info

Publication number
JP2004315373A
JP2004315373A JP2003107647A JP2003107647A JP2004315373A JP 2004315373 A JP2004315373 A JP 2004315373A JP 2003107647 A JP2003107647 A JP 2003107647A JP 2003107647 A JP2003107647 A JP 2003107647A JP 2004315373 A JP2004315373 A JP 2004315373A
Authority
JP
Japan
Prior art keywords
group
compound
solvate
hydrate
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107647A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osada
裕之 長田
Hideaki Kakeya
秀昭 掛谷
Yujiro Hayashi
雄二郎 林
Mitsuru Shoji
満 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2003107647A priority Critical patent/JP2004315373A/en
Publication of JP2004315373A publication Critical patent/JP2004315373A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Epoxy Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound having an antitumor activity and a neovascularization inhibitory activity. <P>SOLUTION: The compound is represented by general formula (I) (wherein, R<SP>1</SP>denotes a ≥3C straight chain, a ≥3C branched chain or a ≥3C cycloalkyl group or an aromatic group; R<SP>2</SP>denotes a hydrogen atom, a straight chain, a branched chain or a cycloalkyl group, a straight chain, a branched chain or a cyclic acyl group or a protecting group of the hydroxy group; R<SP>3</SP>denotes a hydrogen atom, a straight chain, a branched chain or a cycloalkyl group, a straight chain, a branched chain or a cyclic acyl group or a protecting group of the hydroxy group; R<SP>4</SP>denotes a hydrogen atom, a straight chain, a branched chain or a cycloalkyl group; or an OR<SP>3</SP>and the R<SP>4</SP>together may denote an oxo group or an oxime group) or its optically active substance or a pharmaceutically acceptable salt thereof or a hydrate or a solvate thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、抗腫瘍活性および血管新生阻害活性を有する化合物、ならびにその製造方法に関するものである。
【0002】
【従来の技術】
外科療法や放射線療法と並んで、癌化学療法が「癌の治療法」において果たす比重は高い。1940年代にナイトロジェンマスタード関連化合物が抗癌剤として臨床使用されたのをはじめとして現在までの約60年の間にさまざまな種類の抗癌剤が開発されている。臨床使用されている抗癌剤が抱えている問題点は、副作用、獲得耐性細胞の出現などが挙げられる。化学物質の生物活性は、その化学構造に依存するところが大きいため、抗腫瘍活性を有する新規な化合物は、不断の希求があるといえる。
【0003】
これらを克服するために、直接、腫瘍細胞の増殖を抑制する抗腫瘍剤に加えて、腫瘍の増殖に不可欠な血管新生を阻害するいわゆる血管新生阻害剤などが有能視されている(非特許文献1を参照)。
【0004】
【非特許文献1】
Nat. Med., 1, 27−31 (1995)
【0005】
【発明が解決しようとする課題】
本発明は、上記の希求に応えるものであり、抗腫瘍活性および血管新生阻害活性を有する化合物、その製造方法、それを有効成分とする抗腫瘍剤および血管新生阻害剤の提供を目的とする。本発明化合物は、抗腫瘍剤、血管新生阻害剤として有効であり、さらには、転移抑制剤、抗リウマチ様関節炎剤、糖尿病性網膜症などをはじめとした過度の血管新生が原因とされている疾病の治療薬・予防薬などとして有効である。
【0006】
【課題を解決するための手段】
本発明者は、上記課題の解決のために鋭意検討した結果、抗腫瘍活性および血管新生阻害活性を有する新規化合物を見出し、本発明を完成するに至った。
すなわち、本発明の要旨は以下のとおりである。
1) 以下の一般式(I):
【0007】
【化11】

Figure 2004315373
【0008】
(式中、Rは炭素数3以上の直鎖状、分岐鎖状もしくは環状のアルキル基または芳香族基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し、Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基を示すが、−OR, Rが一緒になってオキソ基またはオキシム基を示してもよい)で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
【0009】
2) 以下の式(II):
【0010】
【化12】
Figure 2004315373
【0011】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
【0012】
3) 以下の式(III):
【0013】
【化13】
Figure 2004315373
【0014】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
4) 以下の式(IV):
【0015】
【化14】
Figure 2004315373
【0016】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
5) 以下の一般式(V):
【0017】
【化15】
Figure 2004315373
【0018】
(式中、Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく;Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく;Rはそれぞれ独立に水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基または直鎖状もしくは分岐鎖状のアルケニル基を示す)で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
【0019】
6) 以下の式(VI):
【0020】
【化16】
Figure 2004315373
【0021】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
7) 以下の式(VII):
【0022】
【化17】
Figure 2004315373
【0023】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
8) 以下の式(VIII):
【0024】
【化18】
Figure 2004315373
【0025】
(式中、n−Buはn−ブチル基を示す。)
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
9) 以下の一般式(V):
【0026】
【化19】
Figure 2004315373
【0027】
(式中、R〜Rは前記と同義である。)で表される化合物の製造方法であって、(1)以下の式(IX):
【0028】
【化20】
Figure 2004315373
【0029】
(式中、Rは前記と同義である。)で表される化合物を酸化し、
(2)得られた化合物を無溶媒下反応させることを特徴とする方法。
10) 1)〜8)に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する医薬組成物。
11) 1)〜8)に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する抗腫瘍剤。
12) 1)〜8)に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する血管新生阻害剤。
【0030】
【発明の実施の形態】
本発明は以下の一般式(I):
【0031】
【化21】
Figure 2004315373
【0032】
(式中、Rは炭素数3以上の直鎖状、分岐鎖状もしくは環状のアルキル基または芳香族基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し、Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基を示すが、−OR, Rが一緒になってオキソ基またはオキシム基を示してもよい)で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0033】
式中、Rは炭素数3以上の直鎖状、分岐鎖状もしくは環状のアルキル基または芳香族基を示すが、例えばアルキル基として、炭素数3〜18個のアルキル基、好ましくは炭素数3〜12個の直鎖状または分岐鎖状のアルキル基を用いることができる。より具体的には、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基などを用いることができる。例えば、芳香族基として、炭素数6〜22個、好ましくは炭素数6〜10個の単環式または多環式の芳香族基を挙げることができる。また環中には1個以上の窒素原子、酸素原子、硫黄原子を有してもよい。より具体的にはフェニル基などを用いることができる。
【0034】
で示されるアルキル基および芳香族基は置換基を有していてもよく、かかる置換基としては、フッ素原子、塩素原子、臭素原子などのハロゲン原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などの炭素数1〜6個の直鎖状、分岐鎖状もしくは環状のアルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などの炭素数1〜6個の直鎖状、分岐鎖状もしくは環状のアルコキシ基、フェニル基などの芳香族基、アミノ基、ヒドロキシ基またはオキソ基などが挙げられる。Rは好ましくは、n−ブチル基、フェニル基を用いることができる。
【0035】
式中、RおよびRは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示すが、例えば、アルキル基またはアシル基として、炭素数1〜6個のアルキル基またはアシル基、好ましくは直鎖状または分岐鎖状の炭素数1〜6個のアルキル基またはアシル基を用いることができる。より具体的には、アルキル基としてメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基など;アシル基としてホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ヘキサノイル基などを用いることができる。これらのアルキル基またはアシル基は置換基を有していてもよく、かかる置換基としては、Rにおいて前述した置換基と同様である。
【0036】
ヒドロキシ基の保護基としては当業者に種々知られており、適宜の保護基を選択することが可能である。例えば、ピバロイル基などのアシル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基などのアルキルシリル基、イソプロピリデンアセタール基などを用いることができるが、これらに限定されることはない。
【0037】
式中、Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基を示すが、例えば、アルキル基として、炭素数1〜12個のアルキル基、好ましくは直鎖状または分岐鎖状の炭素数1〜6個のアルキル基を用いることができる。より具体的には、アルキル基としてメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基などを用いることができる。これらのアルキル基は置換基を有していてもよく、かかる置換基としては、Rにおいて前述した置換基と同様である。また、−OR, Rが一緒になってオキソ基またはオキシム基を示してもよい。
【0038】
本発明の好ましい形態は、以下の式(II):
【0039】
【化22】
Figure 2004315373
【0040】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0041】
本発明の別の好ましい形態は、以下の式(III):
【0042】
【化23】
Figure 2004315373
【0043】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0044】
本発明の別の好ましい形態は、以下の式(IV):
【0045】
【化24】
Figure 2004315373
【0046】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0047】
化合物(II)〜(IV)の分子内のヒドロキシ基を通常のアルキル化反応、アシル化反応により、アルキル化、アシル化し、対応する任意のアルキル化体、アシル化体を得ることができる。また、通常のアルキル化反応によりシクロヘキセン環に置換基を導入することができる。さらに、通常の分子内のヒドロキシ基を通常のヒドロキシ基の保護化反応により保護化することができる。
【0048】
さらなる本発明は、以下の一般式(V):
【0049】
【化25】
Figure 2004315373
【0050】
(式中、R〜Rは前記と同義である。)
で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0051】
式中、Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく;Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく、保護基としてはRおよびRにおいて前述したアルキル基、アシル基またはヒドロキシ基の保護基と同様である。
【0052】
式中、Rはそれぞれ独立に水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基または直鎖状もしくは分岐鎖状のアルケニル基を示すが、アルキル基またはアルケニル基として、炭素数1〜12個のアルキル基またはアルケニル基、好ましくは直鎖状または分岐鎖状の炭素数1〜6個のアルキル基またはアルケニル基を用いることができる。より具体的には、アルキル基としてメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基など;アルケニル基としてビニル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基などを用いることができる。これらのアルキル基またはアルケニル基は置換基を有していてもよく、かかる置換基としては、Rにおいて前述した置換基と同様である。Rは好ましくは水素原子、メチル基、n−ブチル基を用いることができる。
【0053】
本発明の好ましい形態は、以下の式(VI):
【0054】
【化26】
Figure 2004315373
【0055】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0056】
本発明の別の好ましい形態は、以下の式(VII):
【0057】
【化27】
Figure 2004315373
【0058】
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0059】
本発明の別の好ましい形態は、以下の式(VIII):
【0060】
【化28】
Figure 2004315373
【0061】
(式中、n−Buは前記と同義である。)
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物である。
【0062】
化合物(VI)〜(VIII)の分子内のヒドロキシ基を通常のアルキル化反応、アシル化反応により、アルキル化、アシル化し、対応する任意のアルキル化体、アシル化体を得ることができる。また、分子内ヒドロキシ基を通常のヒドロキシ基の保護化反応により保護化することができる。
【0063】
上記式(I)〜(VIII)で表される化合物の光学活性体も本発明に含まれる。光学活性体は任意の立体異性体の混合物またはラセミ体から通常の光学分割方法を用いて光学分割を行うことによって得ることができる。
【0064】
上記式(I)〜(VIII)で表される化合物の製薬上許容される塩も本発明に含まれ、例えば、塩酸塩、硫酸塩などの鉱酸塩;又はp−トルエンスルホン酸塩などの有機酸塩;ナトリウム塩、カリウム塩、カルシウム塩などの金属塩;アンモニウム塩;メチルアンモニウム塩などの有機アンモニウム塩;グリシン塩などのアミノ酸塩を挙げることができるが、これらに限定されることはない。
【0065】
式(I)〜(VIII)で表される本発明の化合物は複数の不斉炭素を有しており、また置換基の種類によりさらに1個以上の不斉炭素を有する場合がある。これらの不斉炭素に基づく光学異性体またはジアステレオマーなどの立体異性体が存在するが、本発明の範囲には純粋な形態の立体異性体のほか、任意の立体異性体の混合物またはラセミ体などが含まれる。また、本発明の化合物にはオレフィン性の二重結合を有する場合も存在し、二重結合に基づく幾何異性体が存在するが、純粋な形態の幾何異性体のほか、任意の幾何異性体の混合物も本発明の範囲に含まれる。本発明の化合物は任意の結晶形として存在することができ、水和物または溶媒和物として存在する場合もある。これらの物質がいずれも本発明の範囲に含まれることはいうまでもない。
【0066】
また、本発明化合物は、後述する試験例に記載の通り、優れた抗腫瘍活性、血管新生阻害活性を示すため、上記の化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物は医薬組成物、具体的には例えば抗腫瘍剤および血管新生抑制剤として用いる医薬組成物の有効成分として有用である。したがって、本発明により、上記の化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物のいずれかまたはそれらの組み合わせを有効成分として含む医薬組成物が提供される。
【0067】
このような本発明の医薬組成物は、転移抑制剤、抗リウマチ様関節炎剤、糖尿病性網膜症などをはじめとした過度の血管新生が原因とされている疾病の治療薬・予防薬として用いることができる。さらに、上記化合物の治療有効量を、ヒトを含む哺乳類動物に投与する行程を含む方法、上記化合物の有効量を細胞に接触させる行程を含む方法が本発明により提供される。
【0068】
本発明の化合物を有効成分として含有する医薬組成物は、その使用目的にあわせて投与方法、剤型、投与量を適宜決定することが可能である。例えば治療あるいは予防を目的としてヒトに投与する場合は、散剤、顆粒剤、錠剤、カプセル剤、丸剤、溶剤等として経口的に、または注射剤、坐剤、経皮吸収剤、吸入剤等として非経口的に投与することができる。また、本化合物の有効量は、その剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤等の医薬用添加剤を必要に応じて混合し、医薬製剤とすることができる。注射剤の場合には、適当な担体とともに滅菌処理を行って製剤とする。投与量は疾患の状態、投与ルート、患者の年齢、または体重によっても異なり、最終的には医師の判断に委ねられるが、有効成分量として成人に経口で投与する場合、通常、0.1−100mg/kg/日、好ましくは、1−20mg/kg/日、非経口で投与する場合、通常、0.01−10mg/kg/日、好ましくは、0.1−2mg/kg/日を投与する。これを1回あるいは数回に分割して投与すればよい。
【0069】
また、本発明化合物を試薬として使用する場合には、有機溶剤又は含水有機溶剤に溶解して用いることができる。例えば、各種培養細胞系へ直接投与すると癌細胞の成長や血管内皮細胞の遊走を抑制することができる。使用可能な有機溶剤としては、例えばメタノールやジメチルスルホキシド等を挙げることができる。剤型としては、例えば、粉末などの固形剤、又は有機溶剤若しくは含水有機溶剤に溶解した液体剤などを挙げることができる。通常、上記の化合物を試薬として用いて細胞成長抑制作用や血管内皮細胞の遊走阻害活性を発揮させるための効果的な使用量は、培養細胞系中において0.1−100 μg/mlであるが、適切な使用量は培養細胞系の種類や使用目的により異なり、適宜選択可能である。また、必要により上記範囲外の量を用いることができる。
【0070】
本発明の化合物(I)〜(IV)は、以下の参考例および実施例に示す方法などにより製造することができる。例えば、以下のようにして得ることができる。
【0071】
アクロイルクロリド(ACROS社、和光純薬社製など)およびフラン(Aldrich社、Merck社製など)をDield−Alder(ディールスアルダー)反応させ、得られた化合物に水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液等のアルカリ性溶液を添加し、反応させる。得られた化合物をヨウ素、N−ヨードスクシミド等のヨウ化剤と反応させる。得られた化合物に水酸化カリウム、水酸化リチウム、水酸化ナトリウム等のアルカリを加えて反応させる。得られた化合物をヨードメタン、ヨードエタン、ブロモメタン等のエステル化剤と反応させる。得られた化合物にLDA(リチウムジイソプロピルアミド)、LiHMDS(リチウムヘキサメチルジシラシド)、KHMDS(カリウムヘキサメチルジシラジド)等の塩基を加えて反応させる。得られたラセミ体化合物に酢酸ビニル、酢酸プロペニル等の酢酸エステルおよびリパーゼを加えて反応させ、得られた化合物を通常の有機合成物の単離・精製方法により単離・精製して光学分割する。光学分割して得られた化合物をVO(acac)(ビス(アセチルアセトナート)オキソバナジウム(IV))、Mo(CO)等の遷移金属化合物、及びtert−ブチルヒドロペルオキシド、トリチルヒドロペルオキシド等の過酸化物を加えて反応させてエポキシ化する。光学分割して得られた化合物が保護基を有する場合は炭酸カリウム、炭酸ナトリウム等のアルカリを加えて反応させて保護基を脱保護する。得られた化合物にNaBH、LiAlH等の還元剤を加え、反応させて還元する。得られた化合物をトリエチルアミン等の塩基存在下、tert−ブチルジメチルシリルクロリド等のヒドロキシ基の保護基と反応させることによりヒドロキシメチル基に保護基を導入する。得られた化合物をDess−Martin periodinane(デスマーチンペルヨージナン)、TPAP(テトラプロピルアンモニウム過ルテニウム酸塩)存在下N−メチルモルホリン−N−オキシド等の酸化剤を加えて反応させ、酸化する。得られた化合物にシリカゲル、ピリジニウムパラトルエンスルホナート、トリエチルアミン等の酸性及び塩基性化合物を加えて反応させエポキシ環を開環させる。なお、上記酸化反応およびエポキシ環の開環反応の順序は適宜変更することが可能である。得られた化合物をDowex(ダウエックス)(登録商標)50WX4、Amberlyst(アンバーリスト)(登録商標) 15等の陽イオン交換樹脂を加えて反応させ、保護基を脱離する。得られた化合物の遊離のヒドロキシ基をイソプロピデンアセタール基などとして保護し、ヨウ素などのハロゲン化剤を反応させハロゲン化し、(E)−ヘキセニルボロン酸、フェニルエテニルボロン酸などのアルケニルホウ酸などを反応させ置換基を導入し、Dowex 50WX4、Amberlyst15等の陽イオン交換樹脂などを作用させ保護基を脱保護する。
【0072】
得られた化合物に、必要に応じて前述のRにおける置換基を通常の有機化合物の合成において使用されるアルキル化手法にて導入することができる。また必要に応じて前述のRおよびRで示される置換基または保護基を通常の有機化合物の合成において使用されるアルキル化、アシル化、保護基の導入手法にて遊離のヒドロキシ基に導入することができる。また必要に応じて通常の有機化合物の合成において使用されるオキソ化、オキシム化手法にて遊離のヒドロキシ基をオキソ化、オキシム化することができる。上記各反応を組み合わせてもよい。このようにして本発明の化合物(I)〜(IV)が得られる。
【0073】
上記化合物のヒドロキシ基のオキソ化は、例えば実施例において示すように、対象化合物をトリエチルアミン等の塩基存在下、tert−ブチルジメチルシリルクロリド等のヒドロキシ基の保護基と反応させることにより遊離のヒドロキシ基に保護基を導入し、得られた化合物をDess−Martin periodinane等の酸化剤を加えて反応させ、酸化することにより行うことができる。
【0074】
次に、本発明の化合物(V)〜(VIII)の製造方法について説明する。
【0075】
本発明の製造方法の出発原料となる、以下の式(IX):
【0076】
【化29】
Figure 2004315373
【0077】
(式中、Rは前記と同義である。)で表される化合物は、上記の化合物(I)〜(IV)の製造方法などにより製造することができる。Rがアルケニル基である化合物は、前述の化合物(I)〜(IV)の製造方法において、置換基を導入する際にアルケニルホウ酸、アルケニルスズなどのアルケニル化合物と、ジクロロビス(ベンゾニトリル)パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)などの遷移金属化合物を用いることにより同様に製造することができる。なお、アルケニル化合物と遷移金属化合物の組み合わせは適宜変更可能である。
【0078】
化合物(V)〜(VIII)の製造方法における各工程について説明する。
工程(1)
化合物(IX)を通常の酸化方法により酸化する。例えば同化合物をジクロロメタン等のハロゲン化炭化水素、ヘキサン等の脂肪族炭化水素、酢酸エチル等のエステル等の溶媒に溶解し、二酸化マンガン、酸素−塩化銅(I)−2,2,6,6−テトラメチル−1−ピペリジニロキシ等の酸化剤存在下、0〜30℃で、5分〜2時間反応させる。得られた化合物を通常の有機合成物の単離・精製方法により単離・精製する。
【0079】
工程(2)
得られた化合物を無溶媒下、0〜30℃で、0.5〜12時間反応させる。得られた化合物を必要に応じて通常の有機合成物の単離・精製方法により単離・精製する。
【0080】
以上のようにして得られた化合物に、必要に応じて前述のR, Rにおける保護基を通常の有機化合物の合成において使用されるアルキル化、アシル化、保護基の導入手法にて遊離のヒドロキシ基に導入することができる。また必要に応じて通常の有機化合物の合成において使用されるオキソ化、オキシム化手法にて遊離のヒドロキシ基をオキソ化、オキシム化することができる。上記各反応を組み合わせてもよい。このようにして一般式(V)〜(VIII)で表される本発明の化合物が得られる。
【0081】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
【0082】
以下、本発明の化合物の製造に用いられる化合物の合成方法を参考例として示す。なお、化合物(+)−5を用いた参考例において化合物(−)−5を使用することにより対応する光学活性化合物を得ることができ、以下、対応する化合物を得ることができる。合成経路を以下に示す。
【0083】
【化30】
Figure 2004315373
【0084】
【参考例1】化合物3の合成
室温でアクリロイルクロリド1(30 mL)にフラン2(225 mL)を加え、五時間撹拌する。反応液にNaOH水溶液を加え、溶液をアルカリ性にして、1時間撹拌する。水層を分液後、水層にCHCl(350 mL)、ヨウ素(46.8 g)を加え、激しく撹拌する。2時間後、Na水溶液を過剰のヨウ素の色が消えるまで加えた後、低沸点物を減圧下留去すると固体が析出する。固体をろ別し、乾燥させ、ヨードラクトン体3が41 g, 42%収率で得られる。
【0085】
H NMR (400 MHz, CDCl) δ= 2.15 (1H, dd, J = 13.5, 3.2 Hz), 2.20 (1H, ddd, J = 13.5, 10.4, 4.7 Hz), 2.77 (1H, ddd, J = 10.4, 4.7, 3.2 Hz), 3.94 (1H, s), 4.80 (1H, d, J = 4.7 Hz), 5.12 (1H, d, J = 4.9 Hz), 5.38 (1H, t, J = 4.9 Hz).
13C NMR (100 MHz, CDCl) δ= 25.0, 36.1, 38.0, 81.9, 84.2, 87.5, 175.8.IR (KBr) 2995, 1787, 1324, 1189, 1022, 661, 433 cm−1
HRMS (FAB): calcd for CI: 266.9518, found 266.9514.
【0086】
【参考例2】化合物4の合成
ヨードラクトン3 (17.9 g, 67.2 mmol) のDMF(ジメチルホルムアミド) (520 mL) 溶液にKOH (9.42 g, 168 mmol) を加え、60℃で27時間加熱環流する。室温でヨードメタン (12.5 mL, 202 mmol) を加えた後、超音波を2時間照射する。減圧下溶媒を留去後、1N HCl水溶液(18mL)、飽和NHCl水溶液(150 mL)を加える。有機物を酢酸エチルで3回抽出した後、有機層を食塩水で3回洗い、NaSOで乾燥する。溶媒留去後、カラムクロマトグラフ(酢酸エチル:ヘキサン=1:1)により精製を行い、9.25 gの4を得る(収率81%)。
【0087】
H NMR (400 MHz, CDCl) δ= 1.97 (1H, td, J = 11.6, 5.1 Hz), 2.08 (1H, dd, J = 11.6, 4.2 Hz), 2.91 (1H, dt, J = 11.6, 4.6 Hz), 3.74 (3H, s), 4.01 (1H, dd, J = 4.5, 2.5 Hz), 4.10 (1H, dd, J = 4.5, 2.3 Hz), 4.51 (1H, dt, J = 5.0, 2.5 Hz), 4.69 (1H, dt, J = 5.1, 2.0 Hz)
13C NMR (100 MHz, CDCl) δ= 29.2, 44.6, 51.5, 66.2, 66.4, 77.4, 78.0, 171.8.
IR (KBr) 3039, 2921, 1731, 1444, 1342, 1305, 1097, 956, 609cm−1
HRMS (FAB): calcd for C11: 177.0657, found 171.0663.
Elemental analysis: Calcd for C11: C 56.47, H 5.92, found C 56.55, H 5.88.
【0088】
【参考例3】化合物5の合成
ジイソプロピルアミン (11.7 mL, 83.2 mmol)のTHF(テトラヒドロフラン) (63 mL) 溶液に0℃でBuLi(ブチルリチウム) (1.58 M, 42.1 mL, 66.6 mmol)を滴下し、10分間撹拌し、LDAを調製する。4 (9.44g, 55.5 mmol)のTHF (84 mL)溶液に−90℃で上記のLDA溶液を加える。滴下終了後10分間撹拌し、リン酸緩衝液を加え、反応を停止する。有機物を酢酸エチルで3回抽出した後、有機層を食塩水で1回洗い、NaSOで乾燥する。溶媒留去後、カラムクロマトグラフ(酢酸エチル:ヘキサン=1:3)により精製を行い、6.32 gの5を得る(収率67%)。
【0089】
H NMR (400 MHz, CDCl) δ= 1.85 (1H, bs), 2.36 (1H, ddd, J = 17.6, 5.1, 3.4 Hz), 2.82 (1H, dt, J = 17.6, 1.8 Hz), 3.48 (1H, t, J = 4.8 Hz), 3.57−3.62 (1H, m), 4.55−4.61 (1H, m), 7.15 (1H, t, J = 3.4 Hz).
13C NMR (100 MHz, CDCl) δ= 29.2, 46.2, 52.1, 56.0, 63.3, 130.7, 133.4, 166.6.
IR (neat) 3444, 2954, 1716, 1438, 1207, 819, 609, 509 cm−1
HRMS (EI): calcd for C10: 170.0579, found 170.0619.
【0090】
【参考例4】化合物(+)−5および(−)−6の合成
ラセミ体5 (2.8 g, 16.5 mmol)の酢酸ビニル溶液 (30 mL) にPseudomonas stutzeri(シュードモナス・スタッツェリ) lipase (Meito TL) (278 mg) を加え、40時間室温で撹拌する。Pseudomonas stutzeri lipase (Meito TL)をろ別し、低沸点化合物を減圧下留去する。カラムクロマトグラフ(酢酸エチル:ヘキサン=1:3〜1:1)により精製を行い、(+)−5 1.35 g [収率49%, 光学純度99% ee], (−)−6 1.65 g [収率48%, 光学純度(96% ee)] を得る。
【0091】
(+)−5: [α] 26 +213 (c=0.56, MeOH)
5 の光学純度の決定:HPLC conditions: Chiralcel OD−H column, 2−propanol : hexane = 1 : 20, 1.5 mL/min, retention times, 28.7 min (major), 11.1 min (minor).
【0092】
(−)−6: [α] 22 −226 (c=0.46, MeOH)
H NMR (400 MHz, CDCl) δ= 2.04 (3H, s), 2.36 (1H, ddd, J = 18.1, 5.3, 3.3 Hz), 2.82 (1H, dt, Jt = 18.1 Hz, Jd = 1.8 Hz), 3.49 (1H, t, J = 3.9 Hz), 3.60−3.63 (1H, m), 3.77 (3H, s), 5.62 (1H, dt, J = 5.4, 2.7 Hz), 7.14 (1H, t, J = 3.6 Hz).
13C NMR (100 MHz, CDCl) δ= 20.9, 26.4, 46.5, 52.1, 53.9, 65.6, 131.0, 133.0, 166.1, 170.3.
IR (neat) 2964, 2850, 1739, 1714, 1649, 1265, 1028, 818, 600, 1439 cm−1
【0093】
6 の光学純度の決定:HPLC conditions: Chiralcel OD−H column, 2−propanol : hexane = 1 : 20, 1.5 mL/min, retention times, 5.6 min (major), 6.0 min (minor).
【0094】
【参考例5】化合物(−)−5の合成
(−)−6 (96 % ee, 198 mg, 0.93 mmol) のメタノール溶液 (1 mL)に0 ℃で炭酸カリウム(13 mg, 0.093 mmol) を加え、1時間撹拌する。飽和塩化アンモニウム水溶液で反応を停止後、減圧下、溶媒を留去する。有機物を酢酸エチルで3回抽出した後、有機層をNaSOで乾燥する。溶媒留去後、カラムクロマトグラフ(酢酸エチル:ヘキサン=1:3〜1:1)により精製を行い、154 mgの(−)−5を得る(収率97%)。
【0095】
【参考例6】化合物(+)−7の合成
エポキシエステル(+)−5 (282 m, 1.65 mmol) のCHCl溶液(15 mL)にVO(acac) (22.0 mg)、tert−ブチルヒドロペルオキシドのトルエン溶液 (4.2 M, 2.0 mL)を加え、反応溶液を70℃で9時間撹拌する。反応溶液にNa水溶液を加え反応を停止した後に、有機物を酢酸エチルで3回抽出した後、有機層を食塩水で洗い、NaSOで乾燥する。溶媒留去後、薄層クロマトグラフ(酢酸エチル:ヘキサン=1:3〜1:1)により精製を行い、297 mgの(+)− 7を得る(収率96%)。
【0096】
H NMR (400 MHz, CDCl) δ= 2.31(1H, d, J =15.5 Hz), 2.39 (1H, dd, J =16.0, 4.4 Hz), 2.53 (1H, d, J =12.0 Hz), 3.25 (1H, t, J =3.4 Hz), 3.49 (1H, dd, J =3.9, 2.8 Hz), 3.69 (3H, s), 3.78 (1H, d, J =2.5 Hz), 4.13−4.21 (1H, m).
13C NMR (100 MHz, CDCl) δ= 27.4, 50.4, 53.0, 53.8, 56.1, 57.4, 64.4, 168.6.
IR (neat) 3521, 2956, 1743, 1444, 1363, 1294, 1257, 1068, 863, 784 cm−1
HRMS (FAB): calcd for [C10 + H]: 187.0606, found 187.0622.
[α] 26 +60.9 (c=0.54, MeOH)
【0097】
【参考例7】化合物(+)−8の合成
(+)− 7 (367 mg)のMeOH(メタノール)溶液(3 mL)にNaBH(223 mg, 5.91 mmol) を0℃で加え、室温で30分間撹拌する。有機溶媒を減圧下留去後、カラムクロマトグラフ(MeOH:CHCl=1:10)により精製を行い、300 mgの(+)− 8を得る(収率96%)。
【0098】
H NMR (400 MHz, CDCl) δ= 2.05 (1H, dd, J =15.6, 2.6 Hz), 2.08 (1H, dd, J =15.6, 4.4 Hz), 3.22 (1H, bt, J =3.5 Hz), 3.43 (1H, d, J =12.4 Hz), 3.49 (1H, d, J =2.5 Hz), 3.53 (1H, t, J =3.2 Hz), 3.55 (1H, d, J =12.4 Hz), 4.14 (1H, dt, J =4.4, 3.0 Hz).
13C NMR (100 MHz, CDCl) δ= 29.3, 52.2, 55.2, 55.4, 62.1, 65.4, 65.5
IR (neat) 3399, 3369, 2927, 1423, 1074, 1047, 809, 619 cm−1
HRMS (FAB): calcd for [C10 + H]: 159.0657, found 159.0650.
[α] 26 +11.1 (c=0.77, MeOH)
【0099】
【参考例8】化合物(+)−9の合成
(+)− 8 (134 mg, 0.85 mmol) のCHCl溶液(2 mL)にトリエチルアミン(0.19 mL, 1.38 mmol)とDMAP(4−ジメチルアミノピリジン) (10.3 mg, 0.085 mmol)、tert−ブチルジメチルシリルクロリド(183 mg, 1.21 mmol)を0℃で加え、室温で15時間撹拌する。リン酸緩衝液を加え、反応を停止した後に、有機物を酢酸エチルで3回抽出した後、有機層を食塩水で洗い、NaSOで乾燥する。溶媒留去後、カラムクロマトグラフ(酢酸エチル:ヘキサン=1:10〜1:1)により精製を行い、339 mgの(+)− 9を得る(収率84%)。
【0100】
H NMR (400 MHz, CDCl) δ= 0.03 (6H, s), 0.87 (9H, s), 2.02 (1H, dd, J =15.4, 4.2 Hz), 2.10 (1H, d, J = 15.4 Hz), 2.82 (1H, d, J =12.0 Hz), 3.27 (1H, bs), 3.47 (1H, d, J = 12.0 Hz), 3.48 (2H, s), 3.64 (1H, d, J =12.0 Hz), 4.10−4.18 (1H, m).
13C NMR (100 MHz, CDCl) δ= −5.5, 18.2, 25.7, 27.8, 50.9, 54.3, 54.5, 62.2, 64.9, 65.0, 77.3.
IR (neat) 3517, 2954, 2929, 2857, 1116, 869, 688 cm−1
HRMS (FAB): calcd for [C1324Si + H]: 273.1522, found 273.1491.
[α] 26 +14.0 (c=0.89, MeOH)
【0101】
【参考例9】化合物(+)−10の合成
シリルエーテル (+)−9 (700 mg, 1.77 mmol)のCHCl (10 mL) 溶液に0℃でDess−Martin periodinane(1.03 g, 2.43 mmol)を加え、室温で50分撹拌する。飽和重曹水を加え、反応を停止する。有機物を酢酸エチルで3回抽出した後、有機層を飽和重曹水で洗い、NaSOで乾燥する。溶媒留去後、シリカゲルでろ過(酢酸エチル:ヘキサン=1:3)し、溶媒を留去する。これにトルエン(15 mL)、シリカゲル (7.0 g) を加え、70℃で4.5時間撹拌する。室温に冷却後、シリカゲルをろ過して686 mgの(+)− 10を得る(収率99%)。
【0102】
H NMR (400 MHz, CDCl) δ= 0.10 (6H, s), 0.91 (9H, s), 3.29 (1H, bs), 3.43 (1H, s), 3.78 (1H, dd, J = 3.4, 0.9 Hz), 4.28 (1H, d, J =15.6 Hz), 4.51 (1H, dd, J =15.6, 1.6 Hz), 4.63 (1H, bs), 5.96 (1H, d, J = 1.4 Hz).
13C NMR (100 MHz, CDCl) δ= −5.5, 18.2, 52.7, 56.4, 64.1, 77.2, 65.0, 121.1, 156.9, 193.6.
IR (neat) 3419, 2954, 2931, 2884, 1687, 1344, 1226, 1049, 879, 781 cm−1
HRMS (FAB): calcd for [C1322Si + H]: 271.1366, found 271.1368.
[α] 25 +149 (c=0.56, MeOH)
【0103】
【参考例10】化合物(+)−11の合成
エポキシケトン(+)−10 (38.7 mg)のMeOH (1 mL)溶液にAmberlyst 15 (11.3 mg)を加え、室温で5時間撹拌する。Amberlyst 15をろ別後、溶媒を減圧下留去しジオールを得る。このジオールのCHCl(0.5 mL) 溶液にジメトキシプロパン (0.35 mL), PPTS(ピリジンパラトルエンスルホン酸) (3.6 mg)を加え、室温で4時間撹拌する。飽和重曹水を加え、反応を停止する。有機物を酢酸エチルで3回抽出した後、有機層を食塩水で洗い、NaSOで乾燥する。溶媒留去後、フロリジルゲルを用いたカラムクロマトグラフ(酢酸エチル:ヘキサン=1:10)により精製を行い、18.0 mgのエポキシアセタール(+)−11を得る(収率64 %)。
【0104】
H NMR (400 MHz, CDCl) δ= 1.46 (3H, s), 1.62 (3H, s), 3.44−3.47 (1H, m), 3.68 (1H, d, J =3.2 Hz), 4.28 (1H, d, J = 14.6 Hz), 4.60 (1H, dt, J =14.6, 1.3 Hz), 4.83 (1H, s), 5.85 (1H, t, J = 1.1 Hz).
13C NMR (100 MHz, CDCl) δ= 21.4, 27.1, 52.4, 57.3, 63.8, 64.0, 101.2, 120.1, 154.0, 190.9
IR (neat) 1673, 1268, 1078, 1020, 779, 539cm−1
HRMS (FAB): calcd for [C1012 + H]: 197.0814, found 197.0818.
Elemental analysis: Calcd for C1012: C 61.22, H 6.16, found C 61.38, H 6.23.
[α] 25 +348.4 (c=0.10, CHCl
mp. 93.0−94.0 ℃
【0105】
【参考例12】化合物(+)−12の合成
アルミ箔で遮光した10 mLナスフラスコにCHCl (0.3 mL), I (23.4 mg), ピリジン11.2 μL, PhI(OCOCF (ビス(トリフルオロアセトキシ)ヨードベンゼン)(39.7 mg) を加え、室温で15分撹拌する。BHT(3,5−ビス(tert−ブチル)−4−ヒドロキシトルエン) (1.0 mg)、(+)−11 (18.1 mg) を加え、22時間撹拌する。飽和Na水溶液を加えて反応を停止させ、有機物を酢酸エチルで3回抽出した後、有機層を食塩水で洗い、NaSOで乾燥する。溶媒留去後、フロリジルゲルを用いたカラムクロマトグラフ(酢酸エチル:ヘキサン=1:50)により精製を行い、19.9 mgのエポキシアセタール(+)−12を得る(収率67%)。
【0106】
H NMR (400 MHz, CDCl) δ= 1.37 (3H, s), 1.52 (3H, s), 3.60 (1H, dd, J =3.4, 1.4 Hz), 3.74 (1H, d, J =3.2 Hz), 4.33 (1H, dd, J =18.3, 1.4 Hz), 4.38 (1H, dd, J = 18.3, 1.4 Hz), 4.48 (1H, dd, J = 18.3, 1.4 Hz), 4.70 (1H, d, J =0.8 Hz).
13C NMR (100 MHz, CDCl) δ= 23.9, 25.7, 51.3, 57.4, 65.3, 69.5, 98.0, 102.8, 162.2, 184.3.
IR (neat) 2989, 2858, 1683, 1384, 1228, 1097, 848, 518 cm−1
HRMS (FAB): calcd for [C1011I + H]: 322.9780, found 322.9791.
【0107】
以下、本発明の化合物の合成方法を実施例として示す。本発明の化合物の合成経路を以下に示す。
【0108】
【化31】
Figure 2004315373
【0109】
【実施例1】化合物(+)−RKTS−17の合成
化合物(+)−12 (52.0 mg, 0.161 mmol)のTHF−HO(0.72 mL, 0.09 mL)混合溶液中に(E)−ヘキセニルボロン酸(33.1 mg, 0.258 mmol)、AgO (63.7 mg)、PhAs(トリフェニルアルシン) (4.9 mg, 0.016 mmol) 、Pd(PhCN)Cl(ジクロロビス(ベンゾニトリル)パラジウム(II)) (3.1 mg, 0.0081 mmol)を加え、室温で7時間撹拌する。飽和NHCl溶液を加えた後に1時間撹拌し、反応を停止する。有機物を酢酸エチルで3回抽出した後、有機層を飽和食塩水で洗浄し、NaSOで乾燥する。溶媒留去後、フロリジルゲルを用いた濾過(酢酸エチル:ヘキサン=1:50)を行い、(+)−13を得る。(+)−13はそのまま次の反応に用いた。
(+)−13のMeOH (1 mL)溶液にDowex 50W−X4 (10 mg) を加え、室温で4時間撹拌した。反応混合物を脱脂綿で濾過し、溶媒留去後、シリカゲルカラムクロマトグラフ(酢酸エチル:ヘキサン=1:1)により精製を行い、ジオール (+)−RKTS−17 (19.5 mg, 2段階 51%)を得る。
【0110】
H NMR (400 MHz, CDCl) δ= 0.91 (3H, t, J =7.1 Hz), 1.25−1.47 (4H, m), 2.18 (2H, bq, J =6.8 Hz), 2.79 (1H, bs), 3.57 (1H, d, J =3.8 Hz), 3.68 (1H, bs), 3.82 (1H, d, J =3.8 Hz), 4.46 (1H, bd, J =14.4 Hz), 4.71 (1H, bd, J =14.4 Hz), 4.98 (1H, bs), 5.95 (1H, dt, J =16.0, 6.4 Hz), 6.03 (1H, d, J =16.0 Hz)
13C NMR (100 MHz, CDCl) δ= 13.8, 22.2, 31.1, 33.4, 53.5, 55.7, 62.5, 65.0, 120.1, 131.0, 140.7, 146.9, 195.0.
【0111】
【実施例2】化合物(+)−RKTS−36の合成
アルゴン雰囲気下、10 mlナスフラスコにジオール (+)−RKTS−17 (4.0 mg, 0.017 mmol)、CHCl (0.2 ml)、EtN(トリエチルアミン) (21 μl, 0.15 mmol)、DMAP (0.2 mg, 0.002 mmol) を加え、0 ℃に冷却した。これにTBSCl(tert−ブチルジメチルシリルクロリド) (15 mg, 0.10 mmol)を加え、4時間撹拌した。飽和塩化アンモニウム水溶液で反応を停止したのち、AcOEtを加え、室温に昇温した。有機層を分離後飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧下溶媒を留去した。残渣を薄層クロマトグラフィー(AcOEt/Hexane=1/1)で精製し、シリルエーテルを無色油状物として得た。
【0112】
アルゴン雰囲気下、10 mlナスフラスコに先のアルコール (5.0 mg, 0.014 mmol)、CHCl (0.4 ml)、を加え、0 ℃に冷却した。これにDess−Martin periodinane (25 mg, 0.059 mmol)を加え、室温に昇温した後4時間撹拌した。飽和炭酸水素ナトリウム水溶液で反応を停止した後、AcOEtを加えた。有機層を分離後飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧下溶媒を留去した。残渣をフロリジルゲルで濾過し(AcOEt/Hexane=1/1)、粗生成物のジケトンを得た。これにTHF (75μl), HO (3.3μl), AcOH (18μl), NHF (39 mg, 1.0 mmol) を加え、室温で10時間撹拌した。飽和炭酸水素ナトリウム水溶液で反応を停止した後、AcOEtを加えた。有機層を分離後飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧下溶媒を留去した。残渣を薄層クロマトグラフィー(AcOEt/Hexane=1/1)で精製し、アルコール (+)−RKTS−36 (0.8 mg, 18%)を無色油状物として得た。
【0113】
H NMR (400 MHz, CDCl) δ0.92 (3H, t, J=7.2 Hz), 1.23−1.50 (4H, m), 2.26 (2H, br−q, J=7.1 Hz), 2.30 (1H, br−s), 3.85 (1H, d, J=4.1 Hz), 3.89 (1H, d, J=4.1 Hz), 4.45 (1H, d, J=12.7 Hz), 4.57 (1H, d, J=12.7 Hz), 6.31 (1H, br−d, J=15.9 Hz), 6.56 (1H, dt, J=15.9, 7.1 Hz).
【0114】
【実施例3】化合物(+)−RKTS−35の合成
アルゴン雰囲気下、20 mlナスフラスコにヨウ化物(+)−12 (40.8 mg, 0.127 mmol)、THF (0.8 ml)、HO (0.1 ml)、アルケニルホウ酸 (93.7 mg, 0.633 mmol)、AgO (150 mg, 0.646 mmol)、PhAs (3.9 mg, 0.013 mmol)、Pd(PhCN)Cl (2.4 mg, 0.0063 mmol)を加え、遮光して室温で4時間撹拌した。飽和塩化アンモニウム水溶液を加えて1時間撹拌したのち、AcOEtを加え、セライトで濾過した。有機層を分離後飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧下溶媒を留去した。残渣にMeOH (1 ml), Dowex 50WX4 (20 mg) を加え、室温で4時間撹拌した。反応混合物を濾過し、減圧下溶媒を留去した後、残渣を薄層クロマトグラフィー(AcOEt/Hexane=1/1)で精製し、ジオール (+)− RKTS−35 (9.9 mg, 30%)を黄色油状物として得た。
【0115】
H NMR (400 MHz, CDCl) δ2.28 (1H, br−s), 3.29 (1H, br−s), 3.63 (1H, dd, J=3.9, 0.8 Hz), 3.86 (1H, dd, J=3.9, 1.6 Hz), 4.60 (1H, d, J=14.5 Hz), 4.87 (1H, d, J=14.5 Hz), 5.06 (1H, br−s), 6.77 (1H, d, J=16.4 Hz), 6.88 (1H, d, J=16.4 Hz), 7.27−7.37 (3H, m), 7.40−7.44 (2H, m); 13C NMR (100 MHz, CDCl) δ53.58, 55.70, 62.74, 65.19, 118.90, 126.80, 128.57, 128.71, 130.68, 136.56, 137.21, 147.89, 194.65; FT−IR (neat) ν 3384, 3057, 3026, 2924, 1684, 1448, 1338, 1047, 968, 738, 692 cm−1
【0116】
【実施例4】化合物(+)−16の合成
アルゴン雰囲気下、20 mlナスフラスコにヨウ化物(+)−12 (82.3 mg, 0.256 mmol)、THF (1.6 ml)、HO (0.2 ml)、ビニルホウ酸 (91.8 mg, 1.28 mmol)、AgO (308 mg, 1.33 mmol)、PhAs (7.8 mg, 0.026 mmol)、Pd(PhCN)Cl (4.9 mg, 0.013 mmol)を加え、遮光して室温で11時間撹拌した。飽和塩化アンモニウム水溶液を加えて1時間撹拌したのち、AcOEtを加え、セライトで濾過した。有機層を分離後飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧下溶媒を留去した。残渣にMeOH (2 ml), Dowex 50WX4 (30 mg) を加え、室温で5時間撹拌した。反応混合物を濾過し、減圧下溶媒を留去した後、残渣を薄層クロマトグラフィー(AcOEt/Hexane=1/3〜1/1)で精製し、ジオール(+)−16 (15.0 mg, 32%)を無色油状物として得た。
【0117】
H NMR (400 MHz, CDCl) δ2.76 (1H, br−s), 3.56 (1H, dd, J=3.8, 0.7 Hz), 3.66 (1H, br−s), 3.83 (1H, dd, J=3.8, 1.6 Hz), 4.49 (1H, d, J=14.6 Hz), 4.71 (1H, d, J=14.6 Hz), 4.99 (1H, br−s), 5.46 (1H, dd, J=17.7, 1.4 Hz), 5.53 (1H, dd, J=11.6, 1.4 Hz), 6.35 (1H, dd, J=17.7, 11.6 Hz); 13C NMR (100 MHz, CDCl) δ53.34, 55.70, 62.43, 64.84, 123.27, 127.64, 130.90, 148.68, 194.34.
【0118】
【実施例5】化合物18, 19の合成
ジオール(+)−17 (5.8 mg, 0.030 mmol)のジクロロメタン(0.5 ml) 溶液を0 ℃に冷却し、二酸化マンガン (75%, 44 mg, 0.38 mmol) を加え、15 分間撹拌する。反応混合物をセライト濾過し、酢酸エチルで洗浄する。溶媒留去後、重クロロホルム (0.5 ml) を加え、アルミ箔で遮光して室温で18 時間静置した。溶媒留去後、薄層クロマトグラフにより精製を行い、エポキシキノール A 18 (2.3 mg, 40%) とエポキシキノール B 19 (1.5 mg, 25%) を得る。
【0119】
【実施例6】化合物RKTS−18, 19の合成
ジオール(+)−RKTS−17 (13.0 mg, 0.055 mmol)のジクロロメタン(0.6 ml) 溶液を0 ℃に冷却し、二酸化マンガン (75%, 63.2 mg, 0.55 mmol)を加え、15 分間撹拌する。反応混合物をセライト濾過し、酢酸エチルで洗浄する。溶媒留去後、室温で11 時間静置した後、薄層クロマトグラフ(メタノール:クロロホルム=1:10)により精製を行い、RKTS−18 (R=C, 3.8 mg, 31%)とRKTS−19 (R=C, 3.2 mg, 25%)を得る。
【0120】
RKTS−18: H NMR (400 MHz, CDCl) δ= 0.83 (3H, t, J =7.1 Hz), 0.87 (3H, t, J =6.4 Hz), 1.06−1.48 (12H, m), 1.79 (1H, d, J =9.5 Hz), 2.12 (1H, d, J =7.9 Hz), 2.53 (1H, bs), 3.22 (1H, bs), 3.46 (1H, d, J =3.5 Hz), 3.48 (1H, dd, J =3.5, 0.8 Hz), 3.73 (1H, dd, J =3.5, 0.9 Hz), 3.79 (1H, d, J =3.5 Hz), 4.12 (1H, dd, J =9.2, 4.9 Hz), 4.17 (1H, t, J =6.3 Hz), 4.73 (1H, d, J =9.5 Hz), 5.08 (1H, bd, J =7.9 Hz), 5.14 (1H, s), 6.81 (1H, d, J =2.0 Hz).
【0121】
RKTS−19: H NMR (400 MHz, CDCl) δ= 0.83 (3H, t, J =7.0 Hz), 0.88 (3H, t, J =7.0 Hz), 1.18−1.41 (12H, m), 1.56 (2H, bs), 2.78 (1H, dd, J =5.1, 2.7 Hz), 3.16−3.20 (1H, m), 3.47−3.56 (3H, m), 3.63 (1H, dd, J =3.0, 2.2 Hz), 3.81 (1H, dd, J =3.5, 1.1 Hz), 3.98 (1H, bt, J =6.5 Hz), 4.67 (1H, d, J =1.7 Hz), 4.81 (1H, s), 5.04 (1H, s), 6.44 (1H, s).
【0122】
【実施例7】化合物RKTS−20の合成
化合物(+)−16を用いて実施例6と同様な行程で、化合物RKTS−20を得た。
【0123】
H NMR (400 MHz, CDCl) δ2.17 (1H, d, J=7.5 Hz), 2.63 (1H, br−s), 3.12 (1H, br−d, J=8.2 Hz), 3.29 (1H, br−s), 3.50 (2H, t, J=3.4 Hz), 3.57 (1H, dd, J=11.9, 4.7 Hz), 3.73 (1H, d, J=3.3 Hz), 3.77 (1H, d, J=3.6 Hz), 4.08−4.18 (3H, m), 4.75 (1H, d, J=9.2 Hz), 5.07 (1H, br−d, J=6.8 Hz), 5.20 (1H, s), 7.04 (1H, d, J=1.9 Hz); FT−IR (neat) ν3417, 2923, 2852, 1714, 1684, 1458, 1254, 1051, 737 cm−1
【0124】
【試験例1】RKTS−17, RKTS−35, RKTS−36によるヒト白血病細胞株Jurkat細胞における増殖抑制効果
ヒト白血病細胞株Jurkat細胞は、10%子牛血清を含むRPMI培地にて5%炭酸ガスと水蒸気を飽和させた培養器内で培養した。対数増殖期にあるJurkat細胞に一連の希釈系列の(+)−RKTS−17, 35, 36を添加し8時間培養し、細胞の生存率をMTT(3−(4,5−ジメチル−チアゾール−2−イル)−2,5−ジフェニルテトラゾリウムブロミド)法により検定した。
【0125】
化合物(+)−RKTS−17, (+)−RKTS−35, (+)−RKTS−36は、それぞれ20, 20, 10 μg/mlの濃度で、対数増殖期にあるJurkat細胞の増殖を50%阻害した。このことは、本発明のRKTS−17, RKTS−35, RKTS−36が抗腫瘍剤として有効であることを示している。
【0126】
【試験例2】RKTS−17, RKTS−35, RKTS−36, RKTS−18, RKTS−19, RKTS−20による血管内皮細胞の走化性の阻害
HuMedia−EG2 (KURABO)培地を用いて培養維持された正常ヒトさい帯静脈血管内皮細胞HUVEC細胞をケモタキセルチャンバーを用いた3次元培養の上層にまいた。下層に内皮細胞増殖因子(VEGF)を含むHuMedia−EG2を充填させることでHUVEC細胞の走化性を誘導した。(+)−RKTS−17, (+)−RKTS−35, (+)−RKTS−36, RKTS−18, RKTS−19, RKTS−20は、それぞれ、1−30μg/mlの濃度で、VEGFによって誘導されるHUVEC細胞の走化性を抑制した。この結果は、本発明化合物RKTS−17, RKTS−35, RKTS−36, RKTS−18, RKTS−19, RKTS−20が抗VEGF作用、血管内皮細胞の走化性の阻害、すなわち血管新生阻害剤、抗腫瘍剤などとして有効であることを示している。
【0127】
【製剤例1】注射・点滴剤
本発明化合物 10 mgを含有するように、粉末ブドウ糖5 gを加えてバイアルに無菌的に分配して密封し、窒素、ヘリウムなどの不活性ガスを封入して冷暗所に保存した。使用前にエタノールに溶解し、0.85%生理的食塩水100 mlを添加して静脈内注射剤とし、一日あたり10〜100 mlを症状に応じて静脈内注射または点滴で投与する。
【0128】
【製剤例2】顆粒剤
本発明化合物 1 g、乳糖98 g、およびヒドロキシプロピルセルロース1 gをそれぞれ取り、よく混和した後、定法にしたがって粒状に成形し、それをよく乾燥して、瓶やヒートシール包装などに適した顆粒剤を製造した。一日あたり100〜1000 mgを症状に応じて経口投与できる。
【0129】
【発明の効果】
本発明化合物は、抗腫瘍剤、血管新生阻害剤として有効であり、さらには、転移抑制剤、抗リウマチ様関節炎剤、糖尿病性網膜症などをはじめとした過度の血管新生が原因とされている疾病の治療薬・予防薬などとして有効である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound having antitumor activity and angiogenesis inhibitory activity, and a method for producing the same.
[0002]
[Prior art]
Alongside surgery and radiation therapy, cancer chemotherapy plays an important role in "treatment of cancer." Various types of anticancer drugs have been developed during the past 60 years, including the clinical use of nitrogen mustard-related compounds as anticancer drugs in the 1940s. Problems encountered by anticancer drugs used clinically include side effects and the appearance of acquired resistant cells. Since the biological activity of a chemical substance largely depends on its chemical structure, it can be said that there is a constant need for a novel compound having antitumor activity.
[0003]
In order to overcome these, in addition to antitumor agents that directly suppress the growth of tumor cells, so-called angiogenesis inhibitors that inhibit angiogenesis essential for tumor growth are considered to be effective (non-patented). Reference 1).
[0004]
[Non-patent document 1]
Nat. Med. , 1, 27-31 (1995)
[0005]
[Problems to be solved by the invention]
The present invention meets the above-mentioned demands, and aims to provide a compound having an antitumor activity and an angiogenesis inhibitory activity, a method for producing the same, an antitumor agent and an angiogenesis inhibitor containing the compound as an active ingredient. The compound of the present invention is effective as an antitumor agent and an angiogenesis inhibitor, and is caused by excessive angiogenesis including a metastasis inhibitor, an antirheumatic arthritis agent, and diabetic retinopathy. It is effective as a drug for treating or preventing diseases.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found a novel compound having antitumor activity and angiogenesis inhibitory activity, and have completed the present invention.
That is, the gist of the present invention is as follows.
1) The following general formula (I):
[0007]
Embedded image
Figure 2004315373
[0008]
(Where R1Represents a linear, branched or cyclic alkyl group or aromatic group having 3 or more carbon atoms;2Represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic acyl group or a protecting group for a hydroxy group;3Represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic acyl group or a protecting group for a hydroxy group;4Represents a hydrogen atom, a linear, branched or cyclic alkyl group;3, R4May together represent an oxo group or an oxime group) or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0009]
2) The following formula (II):
[0010]
Embedded image
Figure 2004315373
[0011]
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0012]
3) The following formula (III):
[0013]
Embedded image
Figure 2004315373
[0014]
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
4) The following formula (IV):
[0015]
Embedded image
Figure 2004315373
[0016]
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
5) The following general formula (V):
[0017]
Embedded image
Figure 2004315373
[0018]
(Where R5Represents a hydrogen atom;6Represents a hydroxy group or a hydroxy group protected by a protecting group,5, R6May together represent an oxo or oxime group;7Represents a hydrogen atom;8Represents a hydroxy group or a hydroxy group protected by a protecting group,7, R8May together represent an oxo or oxime group;9Independently represents a hydrogen atom, a linear, branched or cyclic alkyl group or a linear or branched alkenyl group) or an optically active form thereof, or a pharmaceutically acceptable compound thereof. Or a hydrate or solvate thereof.
[0019]
6) The following formula (VI):
[0020]
Embedded image
Figure 2004315373
[0021]
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
7) The following formula (VII):
[0022]
Embedded image
Figure 2004315373
[0023]
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
8) The following formula (VIII):
[0024]
Embedded image
Figure 2004315373
[0025]
(In the formula, n-Bu represents an n-butyl group.)
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
9) The following general formula (V):
[0026]
Embedded image
Figure 2004315373
[0027]
(Where R5~ R9Is as defined above. A method for producing a compound represented by the following formula (IX):
[0028]
Embedded image
Figure 2004315373
[0029]
(Where R9Is as defined above. ) Oxidizes the compound represented by
(2) A method characterized by reacting the obtained compound without solvent.
10) A pharmaceutical composition containing any of the compounds according to 1) to 8) or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof, as an active ingredient.
11) An antitumor agent comprising any of the compounds according to 1) to 8) or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof as an active ingredient.
12) An angiogenesis inhibitor comprising as an active ingredient any of the compounds according to 1) to 8) or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides the following general formula (I):
[0031]
Embedded image
Figure 2004315373
[0032]
(Where R1Represents a linear, branched or cyclic alkyl group or aromatic group having 3 or more carbon atoms;2Represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic acyl group or a protecting group for a hydroxy group;3Represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic acyl group or a protecting group for a hydroxy group;4Represents a hydrogen atom, a linear, branched or cyclic alkyl group;3, R4May together represent an oxo group or an oxime group) or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0033]
Where R1Represents a linear, branched or cyclic alkyl group having 3 or more carbon atoms or an aromatic group, for example, an alkyl group having 3 to 18 carbon atoms, preferably 3 to 12 carbon atoms. A linear or branched alkyl group can be used. More specifically, an n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and the like can be used. For example, examples of the aromatic group include a monocyclic or polycyclic aromatic group having 6 to 22 carbon atoms, preferably 6 to 10 carbon atoms. The ring may have one or more nitrogen, oxygen, and sulfur atoms. More specifically, a phenyl group or the like can be used.
[0034]
R1The alkyl group and the aromatic group represented by may have a substituent, such substituents include a fluorine atom, a chlorine atom, a halogen atom such as a bromine atom, a methyl group, an ethyl group, an n-propyl group, A linear, branched or cyclic alkyl group having 1 to 6 carbon atoms such as isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, methoxy group, ethoxy group, propoxy group A linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group; Examples thereof include an aromatic group such as a phenyl group, an amino group, a hydroxy group, and an oxo group. R1Preferably, an n-butyl group or a phenyl group can be used.
[0035]
Where R2And R3Represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic acyl group or a protecting group for a hydroxy group. An alkyl group or acyl group having 1 to 6 carbon atoms, preferably a linear or branched alkyl group or acyl group having 1 to 6 carbon atoms can be used. More specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl as alkyl groups And the like; as the acyl group, a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a hexanoyl group and the like can be used. These alkyl groups or acyl groups may have a substituent, and such substituents include R1Is the same as the substituent described above.
[0036]
Various protecting groups for the hydroxy group are known to those skilled in the art, and an appropriate protecting group can be selected. For example, an acyl group such as a pivaloyl group, an alkylsilyl group such as a tert-butyldimethylsilyl group and a tert-butyldiphenylsilyl group, an isopropylidene acetal group, and the like can be used, but are not limited thereto.
[0037]
Where R4Represents a hydrogen atom, a linear, branched or cyclic alkyl group. For example, as the alkyl group, an alkyl group having 1 to 12 carbon atoms, preferably a linear or branched alkyl group having 1 to 1 carbon atoms. Six alkyl groups can be used. More specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl as alkyl groups Etc. can be used. These alkyl groups may have a substituent, and such substituents include R1Is the same as the substituent described above. Also, -OR3, R4May together represent an oxo group or an oxime group.
[0038]
A preferred embodiment of the present invention has the following formula (II):
[0039]
Embedded image
Figure 2004315373
[0040]
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0041]
Another preferred embodiment of the present invention has the following formula (III):
[0042]
Embedded image
Figure 2004315373
[0043]
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0044]
Another preferred embodiment of the present invention has the following formula (IV):
[0045]
Embedded image
Figure 2004315373
[0046]
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0047]
The hydroxy groups in the molecules of the compounds (II) to (IV) can be alkylated or acylated by a usual alkylation reaction or acylation reaction to obtain any corresponding alkylated product or acylated product. Further, a substituent can be introduced into the cyclohexene ring by a usual alkylation reaction. Furthermore, a hydroxyl group in a normal molecule can be protected by a normal hydroxy group protection reaction.
[0048]
Further, the present invention provides the following general formula (V):
[0049]
Embedded image
Figure 2004315373
[0050]
(Where R5~ R9Is as defined above. )
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0051]
Where R5Represents a hydrogen atom;6Represents a hydroxy group or a hydroxy group protected by a protecting group,5, R6May together represent an oxo or oxime group;7Represents a hydrogen atom;8Represents a hydroxy group or a hydroxy group protected by a protecting group,7, R8May together represent an oxo group or an oxime group, and the protecting group may be R2And R3And the same as the above-described protective group for the alkyl group, acyl group or hydroxy group.
[0052]
Where R9Each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group or a linear or branched alkenyl group, and as the alkyl group or the alkenyl group, an alkyl group having 1 to 12 carbon atoms Alternatively, an alkenyl group, preferably a linear or branched alkyl or alkenyl group having 1 to 6 carbon atoms, can be used. More specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl as alkyl groups Etc .; As an alkenyl group, a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, a styryl group and the like can be used. These alkyl groups or alkenyl groups may have a substituent.1Is the same as the substituent described above. R9Preferably, a hydrogen atom, a methyl group or an n-butyl group can be used.
[0053]
A preferred embodiment of the present invention has the following formula (VI):
[0054]
Embedded image
Figure 2004315373
[0055]
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0056]
Another preferred embodiment of the present invention has the following formula (VII):
[0057]
Embedded image
Figure 2004315373
[0058]
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0059]
Another preferred embodiment of the present invention has the following formula (VIII):
[0060]
Embedded image
Figure 2004315373
[0061]
(In the formula, n-Bu is as defined above.)
Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
[0062]
The hydroxy groups in the molecules of the compounds (VI) to (VIII) can be alkylated or acylated by a usual alkylation reaction or acylation reaction to obtain any corresponding alkylated product or acylated product. Further, the intramolecular hydroxy group can be protected by a usual hydroxy group protection reaction.
[0063]
Optically active forms of the compounds represented by the above formulas (I) to (VIII) are also included in the present invention. The optically active substance can be obtained by performing optical resolution from a mixture of arbitrary stereoisomers or a racemate using an ordinary optical resolution method.
[0064]
Pharmaceutically acceptable salts of the compounds represented by the above formulas (I) to (VIII) are also included in the present invention, and include, for example, mineral salts such as hydrochloride and sulfate; and p-toluenesulfonate and the like. Organic acid salts; metal salts such as sodium, potassium and calcium salts; ammonium salts; organic ammonium salts such as methylammonium salts; and amino acid salts such as glycine salts, but are not limited thereto. .
[0065]
The compounds of the present invention represented by the formulas (I) to (VIII) have a plurality of asymmetric carbons, and may further have one or more asymmetric carbons depending on the type of the substituent. There exist stereoisomers such as optical isomers or diastereomers based on these asymmetric carbons, and the scope of the present invention includes not only stereoisomers in pure form but also mixtures or racemates of any stereoisomers And so on. Further, the compound of the present invention may have an olefinic double bond, and there are geometric isomers based on the double bond.In addition to the pure form of the geometric isomer, any of the geometric isomers Mixtures are also within the scope of the present invention. The compounds of the present invention can exist in any crystalline form, and may exist as hydrates or solvates. It goes without saying that all of these substances are included in the scope of the present invention.
[0066]
In addition, the compound of the present invention exhibits excellent antitumor activity and angiogenesis inhibitory activity, as described in the test examples described later, and therefore, the above compound or its optically active form, or a pharmaceutically acceptable salt or a salt thereof. The hydrate or solvate of is useful as an active ingredient of a pharmaceutical composition, specifically, for example, a pharmaceutical composition used as an antitumor agent and an angiogenesis inhibitor. Therefore, according to the present invention, there is provided a pharmaceutical composition comprising, as an active ingredient, any of the above-mentioned compounds or optically active forms thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof, or a combination thereof. Provided.
[0067]
Such a pharmaceutical composition of the present invention is used as a therapeutic / prophylactic agent for a disease caused by excessive angiogenesis such as a metastasis inhibitor, an anti-rheumatic arthritis agent, and diabetic retinopathy. Can be. Further, the present invention provides a method comprising the step of administering a therapeutically effective amount of the compound to a mammal, including a human, and the method comprising contacting a cell with an effective amount of the compound.
[0068]
The administration method, dosage form, and dosage of a pharmaceutical composition containing the compound of the present invention as an active ingredient can be appropriately determined according to the purpose of use. For example, when administered to humans for the purpose of treatment or prevention, orally, as powders, granules, tablets, capsules, pills, solvents, etc., or as injections, suppositories, transdermal absorbents, inhalants, etc. It can be administered parenterally. In addition, the effective amount of the compound may be, if necessary, mixed with excipients, binders, wetting agents, disintegrating agents, and other pharmaceutical additives such as lubricants suitable for the dosage form to form a pharmaceutical preparation. Can be. In the case of an injection, the preparation is prepared by sterilizing with an appropriate carrier. The dose varies depending on the disease state, administration route, age or weight of the patient, and is ultimately left to the discretion of the physician. 100 mg / kg / day, preferably 1-20 mg / kg / day, when administered parenterally, usually 0.01-10 mg / kg / day, preferably 0.1-2 mg / kg / day I do. This may be administered once or in several divided doses.
[0069]
When the compound of the present invention is used as a reagent, it can be used by dissolving it in an organic solvent or a water-containing organic solvent. For example, direct administration to various cultured cell lines can inhibit cancer cell growth and vascular endothelial cell migration. Examples of usable organic solvents include, for example, methanol and dimethyl sulfoxide. Examples of the dosage form include a solid agent such as a powder, and a liquid agent dissolved in an organic solvent or a water-containing organic solvent. Usually, the effective amount of the compound used as a reagent to exert a cell growth inhibitory activity or a vascular endothelial cell migration inhibitory activity is 0.1 to 100 μg / ml in a cultured cell system. The appropriate amount depends on the type of the cultured cell system and the purpose of use, and can be appropriately selected. If necessary, an amount outside the above range can be used.
[0070]
Compounds (I) to (IV) of the present invention can be produced by the methods shown in the following Reference Examples and Examples. For example, it can be obtained as follows.
[0071]
Acroyl chloride (made by ACROS, manufactured by Wako Pure Chemical Industries, Ltd.) and furan (made by Aldrich, Merck, etc.) are reacted with Field-Alder (Diels-Alder), and the resulting compound is subjected to aqueous sodium hydroxide solution and aqueous potassium hydroxide solution. , An alkaline solution such as an aqueous solution of sodium carbonate or an aqueous solution of sodium hydrogen carbonate is added and reacted. The obtained compound is reacted with an iodinating agent such as iodine and N-iodosuccinimide. An alkali such as potassium hydroxide, lithium hydroxide or sodium hydroxide is added to the obtained compound to cause a reaction. The obtained compound is reacted with an esterifying agent such as iodomethane, iodoethane, bromomethane and the like. A base such as LDA (lithium diisopropylamide), LiHMDS (lithium hexamethyldisilazide), and KHMDS (potassium hexamethyldisilazide) is added to the obtained compound and reacted. The obtained racemic compound is reacted with an acetate ester such as vinyl acetate or propenyl acetate and a lipase, and the obtained compound is isolated and purified by a conventional method for isolating and purifying an organic compound, followed by optical resolution. . The compound obtained by optical resolution is converted to VO (acac)2(Bis (acetylacetonato) oxovanadium (IV)), Mo (CO)6Epoxidation by adding a transition metal compound such as tert-butyl hydroperoxide and trityl hydroperoxide. When the compound obtained by optical resolution has a protecting group, the protecting group is deprotected by adding an alkali such as potassium carbonate or sodium carbonate to react. NaBH was added to the obtained compound.4, LiAlH4, Etc., and react to reduce. The resulting compound is reacted with a protecting group for a hydroxy group such as tert-butyldimethylsilyl chloride in the presence of a base such as triethylamine to introduce a protecting group into the hydroxymethyl group. The obtained compound is oxidized by adding an oxidizing agent such as N-methylmorpholine-N-oxide in the presence of Dess-Martin periodinane and TPAP (tetrapropylammonium perruthenate) in the presence of the compound. Acidic and basic compounds such as silica gel, pyridinium paratoluenesulfonate, triethylamine and the like are added to the obtained compound and reacted to open the epoxy ring. The order of the oxidation reaction and the ring opening reaction of the epoxy ring can be changed as appropriate. The obtained compound is reacted by adding a cation exchange resin such as Dowex (registered trademark) 50WX4 and Amberlyst (registered trademark) 15 to remove the protecting group. The free hydroxy group of the obtained compound is protected as an isopropylidene acetal group or the like, and halogenated by reacting with a halogenating agent such as iodine or the like. To introduce a substituent, and act on a cation exchange resin such as Dowex 50WX4 or Amberlyst 15 to deprotect the protecting group.
[0072]
The obtained compound is optionally added with the above-mentioned R.4Can be introduced by an alkylation technique used in the synthesis of ordinary organic compounds. Also, if necessary, the aforementioned R2And R3Can be introduced into a free hydroxy group by the alkylation, acylation, or introduction of a protecting group used in the synthesis of ordinary organic compounds. If necessary, a free hydroxy group can be oxo- or oxime-produced by an oxo-formation or oxime-formation technique used in the synthesis of ordinary organic compounds. The above reactions may be combined. Thus, the compounds (I) to (IV) of the present invention are obtained.
[0073]
The oxo-formation of the hydroxy group of the above compound is carried out, for example, by reacting the target compound with a protecting group for a hydroxy group such as tert-butyldimethylsilyl chloride in the presence of a base such as triethylamine as shown in Examples. The resulting compound can be oxidized by adding an oxidizing agent such as Dess-Martin periodinane and reacting the resulting compound.
[0074]
Next, methods for producing the compounds (V) to (VIII) of the present invention will be described.
[0075]
The following formula (IX) as a starting material for the production method of the present invention:
[0076]
Embedded image
Figure 2004315373
[0077]
(Where R9Is as defined above. The compound represented by the formula (1) can be produced by the method for producing the compounds (I) to (IV) described above. R9Is an alkenyl group, an alkenyl compound such as alkenyl boric acid or alkenyl tin when introducing a substituent and dichlorobis (benzonitrile) palladium (II) in the method for producing the compounds (I) to (IV) described above. ) And tris (dibenzylideneacetone) dipalladium (0). Note that the combination of the alkenyl compound and the transition metal compound can be appropriately changed.
[0078]
Each step in the method for producing the compounds (V) to (VIII) will be described.
Process (1)
Compound (IX) is oxidized by a usual oxidation method. For example, the compound is dissolved in a solvent such as a halogenated hydrocarbon such as dichloromethane, an aliphatic hydrocarbon such as hexane, an ester such as ethyl acetate, and the like, and manganese dioxide, oxygen-copper (I) -2,2,6,6 The reaction is carried out at 0 to 30 ° C for 5 minutes to 2 hours in the presence of an oxidizing agent such as tetramethyl-1-piperidinyloxy. The obtained compound is isolated and purified by a general organic compound isolation and purification method.
[0079]
Step (2)
The obtained compound is reacted at 0 to 30 ° C. for 0.5 to 12 hours without solvent. The obtained compound is isolated and purified as necessary by a conventional organic compound isolation and purification method.
[0080]
The compound obtained as described above may, if necessary,6, R8Can be introduced into a free hydroxy group by the alkylation, acylation, and introduction of a protecting group used in the synthesis of ordinary organic compounds. If necessary, a free hydroxy group can be oxo- or oxime-produced by an oxo-formation or oxime-formation technique used in the synthesis of ordinary organic compounds. The above reactions may be combined. Thus, the compounds of the present invention represented by formulas (V) to (VIII) are obtained.
[0081]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the scope of the present invention is not limited to the following Examples.
[0082]
Hereinafter, a method for synthesizing a compound used for producing the compound of the present invention will be described as a reference example. In the reference example using compound (+)-5, the corresponding optically active compound can be obtained by using compound (-)-5, and the corresponding compound can be obtained hereinafter. The synthesis route is shown below.
[0083]
Embedded image
Figure 2004315373
[0084]
Reference Example 1 Synthesis of Compound 3
At room temperature, furan 2 (225 mL) is added to acryloyl chloride 1 (30 mL) and stirred for 5 hours. An aqueous NaOH solution is added to the reaction solution to make the solution alkaline, and the mixture is stirred for 1 hour. After separating the aqueous layer, the aqueous layer2Cl2(350 mL) and iodine (46.8 g) are added and stirred vigorously. After 2 hours, Na2S2O3After adding the aqueous solution until the color of the excess iodine disappears, low-boiling substances are distilled off under reduced pressure to precipitate a solid. The solid is filtered off and dried, giving 41 g of iodolactone 3 in a 42% yield.
[0085]
1H NMR (400 MHz, CDCl3) Δ = 2.15 (1H, dd, J = 13.5, 3.2 Hz), 2.20 (1H, ddd, J = 13.5, 10.4, 4.7 Hz), 2.77 (1H, ddd, J = 10.4, 4.7, 3.2 Hz), 3.94 (1H, s), 4.80 (1H, d, J = 4.7 Hz), 5.12 ( 1H, d, J = 4.9 Hz), 5.38 (1H, t, J = 4.9 Hz).
ThirteenC NMR (100 MHz, CDCl3) = 25.0, 36.1, 38.0, 81.9, 84.2, 87.5, 175.8. IR (KBr) 2995, 1787, 1324, 1189, 1022, 661, 433 cm-1
HRMS (FAB): calcd for C7H8O3I: 266.9518, found 266.9514.
[0086]
Reference Example 2 Synthesis of Compound 4
To a solution of iodolactone 3 (17.9 g, 67.2 mmol) in DMF (dimethylformamide) (520 mL) is added KOH (9.42 g, 168 mmol), and the mixture is heated under reflux at 60 ° C. for 27 hours. After adding iodomethane (12.5 mL, 202 mmol) at room temperature, it is irradiated with ultrasonic waves for 2 hours. After evaporating the solvent under reduced pressure, 1N HCl aqueous solution (18 mL), saturated NH4Aqueous Cl solution (150 mL) is added. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed three times with a saline solution,2SO4And dry. After evaporating the solvent, purification is carried out by column chromatography (ethyl acetate: hexane = 1: 1) to obtain 9.25 g of 4 (yield 81%).
[0087]
1H NMR (400 MHz, CDCl3) Δ = 1.97 (1H, td, J = 11.6, 5.1 Hz), 2.08 (1H, dd, J = 11.6, 4.2 Hz), 2.91 (1H, dt) , J = 11.6, 4.6 Hz), 3.74 (3H, s), 4.01 (1H, dd, J = 4.5, 2.5 Hz), 4.10 (1H, dd, J = 4.5, 2.3 Hz), 4.51 (1H, dt, J = 5.0, 2.5 Hz), 4.69 (1H, dt, J = 5.1, 2.0 Hz) )
ThirteenC NMR (100 MHz, CDCl3) Δ = 29.2, 44.6, 51.5, 66.2, 66.4, 77.4, 78.0, 171.8.
IR (KBr) 3039, 2921, 1731, 1444, 1342, 1305, 1097, 956, 609 cm-1
HRMS (FAB): calcd for C8H11O4: 177.0657, found 171.0663.
Elemental analysis: Calcd for C8H11O4: C 56.47, H 5.92, found C 56.55, H 5.88.
[0088]
Reference Example 3 Synthesis of Compound 5
BuLi (butyllithium) (1.58 M, 42.1 mL, 66.6 mmol) was added dropwise to a solution of diisopropylamine (11.7 mL, 83.2 mmol) in THF (tetrahydrofuran) (63 mL) at 0 ° C. And stir for 10 minutes to prepare LDA. 4 To a solution of (9.44 g, 55.5 mmol) in THF (84 mL) at -90 ° C is added the above LDA solution. After completion of the dropwise addition, the mixture is stirred for 10 minutes, and a phosphate buffer is added to stop the reaction. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed once with a saline solution and extracted with Na.2SO4And dry. After evaporating the solvent, the residue is purified by column chromatography (ethyl acetate: hexane = 1: 3) to obtain 6.32 g of 5 (yield 67%).
[0089]
1H NMR (400 MHz, CDCl3) Δ = 1.85 (1H, bs), 2.36 (1H, ddd, J = 17.6, 5.1, 3.4 Hz), 2.82 (1H, dt, J = 17.6, 1.8 Hz), 3.48 (1H, t, J = 4.8 Hz), 3.57-3.62 (1H, m), 4.55-4.61 (1H, m), 7. 15 (1H, t, J = 3.4 Hz).
ThirteenC NMR (100 MHz, CDCl3) = 29.2, 46.2, 52.1, 56.0, 63.3, 130.7, 133.4, 166.6.
IR (neat) 3444, 2954, 1716, 1438, 1207, 819, 609, 509 cm-1
HRMS (EI): calcd for C8H10O4: 170.0579, found 170.0619.
[0090]
Reference Example 4 Synthesis of Compounds (+)-5 and (-)-6
Pseudomonas stutzeri (Pseudomonas stutzeri) lipase (Meito TL) (278 mg) is added to a vinyl acetate solution (30 mL) of racemic body 5 (2.8 g, 16.5 mmol), and the mixture is stirred at room temperature for 40 hours. Pseudomonas stutzeri lipase (Meito TL) is filtered off, and low-boiling compounds are distilled off under reduced pressure. Purification was performed by column chromatography (ethyl acetate: hexane = 1: 3 to 1: 1), and (+)-5 1.35 g [yield 49%, optical purity 99% ee], (-)-6 1 0.65 g [yield 48%, optical purity (96% ee)] is obtained.
[0091]
(+)-5: [α]D 26+213 (c = 0.56, MeOH)
Determination of optical purity of 5: HPLC conditions: Chiralcel OD-H column, 2-propanol: hexane = 1: 20, 1.5 mL / min, retention times, 28.7 min (major), 11.1 min ).
[0092]
(-)-6: [α]D 22-226 (c = 0.46, MeOH)
1H NMR (400 MHz, CDCl3) Δ = 2.04 (3H, s), 2.36 (1H, ddd, J = 18.1, 5.3, 3.3 Hz), 2.82 (1H, dt, Jt = 18.1 Hz) , Jd = 1.8 Hz), 3.49 (1H, t, J = 3.9 Hz), 3.60-3.63 (1H, m), 3.77 (3H, s), 5.62 (1H, dt, J = 5.4, 2.7 Hz), 7.14 (1H, t, J = 3.6 Hz).
ThirteenC NMR (100 MHz, CDCl3) = 20.9, 26.4, 46.5, 52.1, 53.9, 65.6, 131.0, 133.0, 166.1, 170.3.
IR (neat) 2964, 2850, 1739, 1714, 1649, 1265, 1028, 818, 600, 1439 cm-1
[0093]
Determination of optical purity of 6: HPLC conditions: Chiralcel OD-H column, 2-propanol: hexane = 1: 20, 1.5 mL / min, retention times, 5.6 min (major), 6.0 min ).
[0094]
Reference Example 5 Synthesis of Compound (-)-5
Potassium carbonate (13 mg, 0.093 mmol) was added to a methanol solution (1 mL) of (−)-6 (96% ee, 198 mg, 0.93 mmol) at 0 ° C., and the mixture was stirred for 1 hour. After terminating the reaction with a saturated aqueous solution of ammonium chloride, the solvent is distilled off under reduced pressure. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed with Na.2SO4And dry. After evaporating the solvent, the residue is purified by column chromatography (ethyl acetate: hexane = 1: 3 to 1: 1) to obtain 154 mg of (-)-5 (yield: 97%).
[0095]
Reference Example 6 Synthesis of Compound (+)-7
Epoxy ester (+)-5 (282 m, 1.65 mmol) CH2Cl2VO (acac) in solution (15 mL)2  (22.0 mg) and a toluene solution of tert-butyl hydroperoxide (4.2 M, 2.0 mL) are added, and the reaction solution is stirred at 70 ° C. for 9 hours. Na is added to the reaction solution.2S2O3After the reaction was stopped by adding an aqueous solution, the organic matter was extracted three times with ethyl acetate.2SO4And dry. After distilling off the solvent, the residue is purified by thin-layer chromatography (ethyl acetate: hexane = 1: 3 to 1: 1) to obtain 297 mg of (+)-7 (yield: 96%).
[0096]
1H NMR (400 MHz, CDCl3) Δ = 2.31 (1H, d, J = 15.5 Hz), 2.39 (1H, dd, J = 16.0, 4.4 Hz), 2.53 (1H, d, J = 12) 3.0 Hz), 3.25 (1H, t, J = 3.4 Hz), 3.49 (1H, dd, J = 3.9, 2.8 Hz), 3.69 (3H, s), 3.78 (1H, d, J = 2.5 Hz), 4.13-4.21 (1H, m).
ThirteenC NMR (100 MHz, CDCl3) = 27.4, 50.4, 53.0, 53.8, 56.1, 57.4, 64.4, 168.6.
IR (neat) 3521, 2956, 1743, 1444, 1363, 1294, 1257, 1068, 863, 784 cm-1
HRMS (FAB): calcd for [C8H10O5  + H]: 187.0606, found 187.0622.
[Α]D 26+60.9 (c = 0.54, MeOH)
[0097]
Reference Example 7 Synthesis of Compound (+)-8
NaBH was added to a solution of (+)-7 (367 mg) in MeOH (methanol) (3 mL).4(223 mg, 5.91 mmol) at 0 ° C. and stir at room temperature for 30 minutes. After evaporating the organic solvent under reduced pressure, column chromatography (MeOH: CHCl)3= 1:10) to obtain 300 mg of (+)-8 (96% yield).
[0098]
1H NMR (400 MHz, CDCl3) Δ = 2.05 (1H, dd, J = 15.6, 2.6 Hz), 2.08 (1H, dd, J = 15.6, 4.4 Hz), 3.22 (1H, bt) , J = 3.5 Hz), 3.43 (1H, d, J = 12.4 Hz), 3.49 (1H, d, J = 2.5 Hz), 3.53 (1H, t, J). = 3.2 Hz), 3.55 (1H, d, J = 12.4 Hz), 4.14 (1H, dt, J = 4.4, 3.0 Hz).
ThirteenC NMR (100 MHz, CDCl3) Δ = 29.3, 52.2, 55.2, 55.4, 62.1, 65.4, 65.5
IR (neat) 3399, 3369, 2927, 1423, 1074, 1047, 809, 619 cm-1
HRMS (FAB): calcd for [C7H10O4  + H]: 159.0657, found 159.0650.
[Α]D 26+11.1 (c = 0.77, MeOH)
[0099]
Reference Example 8 Synthesis of Compound (+)-9
(+)-8 (134 mg, 0.85 mmol) CH2Cl2Triethylamine (0.19 mL, 1.38 mmol), DMAP (4-dimethylaminopyridine) (10.3 mg, 0.085 mmol), tert-butyldimethylsilyl chloride (183 mg, 1) were added to the solution (2 mL). .21 mmol) at 0 ° C. and stir at room temperature for 15 hours. After adding a phosphate buffer and terminating the reaction, the organic matter was extracted three times with ethyl acetate.2SO4And dry. After distilling off the solvent, the residue is purified by column chromatography (ethyl acetate: hexane = 1: 10 to 1: 1) to obtain 339 mg of (+)-9 (yield 84%).
[0100]
1H NMR (400 MHz, CDCl3) Δ = 0.03 (6H, s), 0.87 (9H, s), 2.02 (1H, dd, J = 15.4, 4.2 Hz), 2.10 (1H, d, J) = 15.4 Hz), 2.82 (1H, d, J = 12.0 Hz), 3.27 (1H, bs), 3.47 (1H, d, J = 12.0 Hz), 3. 48 (2H, s), 3.64 (1H, d, J = 12.0 Hz), 4.10-4.18 (1H, m).
ThirteenC NMR (100 MHz, CDCl3) Δ = −5.5, 18.2, 25.7, 27.8, 50.9, 54.3, 54.5, 62.2, 64.9, 65.0, 77.3.
IR (neat) 3517, 2954, 2929, 2857, 1116, 869, 688 cm-1
HRMS (FAB): calcd for [CThirteenH24O4Si + H]: 273.1522, found 273.11491.
[Α]D 26+14.0 (c = 0.89, MeOH)
[0101]
Reference Example 9 Synthesis of Compound (+)-10
Silyl ether (+)-9 (700 mg, 1.77 mmol) in CH2Cl2  (10 mL) Dess-Martin periodinane (1.03 g, 2.43 mmol) is added to the solution at 0 ° C, and the mixture is stirred at room temperature for 50 minutes. The reaction is stopped by adding saturated aqueous sodium hydrogen carbonate. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution.2SO4And dry. After distilling off the solvent, the residue is filtered through silica gel (ethyl acetate: hexane = 1: 3), and the solvent is distilled off. Toluene (15 mL) and silica gel (7.0 g) are added thereto, and the mixture is stirred at 70 ° C. for 4.5 hours. After cooling to room temperature, the silica gel is filtered to obtain 686 mg of (+)-10 (99% yield).
[0102]
1H NMR (400 MHz, CDCl3) Δ = 0.10 (6H, s), 0.91 (9H, s), 3.29 (1H, bs), 3.43 (1H, s), 3.78 (1H, dd, J = 3) .4, 0.9 Hz), 4.28 (1H, d, J = 15.6 Hz), 4.51 (1H, dd, J = 15.6, 1.6 Hz), 4.63 (1H) , Bs), 5.96 (1H, d, J = 1.4 Hz).
ThirteenC NMR (100 MHz, CDCl3) =-5.5, 18.2, 52.7, 56.4, 64.1, 77.2, 65.0, 121.1, 156.9, 193.6.
IR (neat) 3419, 2954, 2931, 2884, 1687, 1344, 1226, 1049, 879, 781 cm-1
HRMS (FAB): calcd for [CThirteenH22O4Si + H]: 271.1366, found 271.1368.
[Α]D 25+149 (c = 0.56, MeOH)
[0103]
Reference Example 10 Synthesis of Compound (+)-11
Amberlyst 15 (11.3 mg) is added to a solution of epoxy ketone (+)-10 (38.7 mg) in MeOH (1 mL), and the mixture is stirred at room temperature for 5 hours. After filtering Amberlyst 15, the solvent is distilled off under reduced pressure to obtain a diol. CH of this diol2Cl2(0.5 mL) Dimethoxypropane (0.35 mL) and PPTS (pyridine paratoluenesulfonic acid) (3.6 mg) are added to the solution, and the mixture is stirred at room temperature for 4 hours. The reaction is stopped by adding saturated aqueous sodium hydrogen carbonate. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed with brine and extracted with Na.2SO4And dry. After evaporating the solvent, the residue is purified by column chromatography using florisil gel (ethyl acetate: hexane = 1: 10) to obtain 18.0 mg of epoxyacetal (+)-11 (yield: 64%).
[0104]
1H NMR (400 MHz, CDCl3) Δ = 1.46 (3H, s), 1.62 (3H, s), 3.44-3.47 (1H, m), 3.68 (1H, d, J = 3.2 Hz), 4.28 (1H, d, J = 14.6 Hz), 4.60 (1H, dt, J = 14.6, 1.3 Hz), 4.83 (1H, s), 5.85 (1H) , T, J = 1.1 Hz).
ThirteenC NMR (100 MHz, CDCl3) = 21.4, 27.1, 52.4, 57.3, 63.8, 64.0, 101.2, 120.1, 154.0, 190.9
IR (neat) 1673, 1268, 1078, 1020, 779, 539 cm-1
HRMS (FAB): calcd for [C10H12O4  + H]: 197.0814, found 197.0818.
Elemental analysis: Calcd for C10H12O4: C 61.22, H 6.16, found C 61.38, H 6.23.
[Α]D 25+348.4 (c = 0.10, CHCl3)
mp. 93.0-94.0 ° C
[0105]
Reference Example 12 Synthesis of compound (+)-12
CH into a 10 mL eggplant flask protected from light by aluminum foil2Cl2  (0.3 mL), I2  (23.4 mg), pyridine 11.2 μL, PhI (OCOCF3)2  (Bis (trifluoroacetoxy) iodobenzene) (39.7 mg) was added, and the mixture was stirred at room temperature for 15 minutes. BHT (3,5-bis (tert-butyl) -4-hydroxytoluene) (1.0 mg) and (+)-11 (18.1 mg) are added, and the mixture is stirred for 22 hours. Saturated Na2S2O3The reaction was stopped by adding an aqueous solution, and the organic matter was extracted three times with ethyl acetate.2SO4And dry. After evaporating the solvent, the residue is purified by column chromatography using florisil gel (ethyl acetate: hexane = 1: 50) to obtain 19.9 mg of epoxyacetal (+)-12 (yield 67%).
[0106]
1H NMR (400 MHz, CDCl3) Δ = 1.37 (3H, s), 1.52 (3H, s), 3.60 (1H, dd, J = 3.4, 1.4 Hz), 3.74 (1H, d, J) = 3.2 Hz), 4.33 (1H, dd, J = 18.3, 1.4 Hz), 4.38 (1H, dd, J = 18.3, 1.4 Hz), 4.48 (1H, dd, J = 18.3, 1.4 Hz), 4.70 (1H, d, J = 0.8 Hz).
ThirteenC NMR (100 MHz, CDCl3) Δ = 23.9, 25.7, 51.3, 57.4, 65.3, 69.5, 98.0, 102.8, 162.2, 184.3.
IR (neat) 2989, 2858, 1683, 1384, 1228, 1097, 848, 518 cm-1
HRMS (FAB): calcd for [C10H11O4I + H]: 322.9780, found 322.97971.
[0107]
Hereinafter, a method for synthesizing the compound of the present invention will be described as an example. The synthetic route of the compound of the present invention is shown below.
[0108]
Embedded image
Figure 2004315373
[0109]
Example 1 Synthesis of Compound (+)-RKTS-17
Compound (+)-12 (52.0 mg, 0.161 mmol) in THF-H2(E) -Hexenylboronic acid (33.1 mg, 0.258 mmol) in a mixed solution of O (0.72 mL, 0.09 mL) and Ag2O (63.7 mg), Ph3As (triphenylarsine) (4.9 mg, 0.016 mmol), Pd (PhCN)2Cl2(Dichlorobis (benzonitrile) palladium (II)) (3.1 mg, 0.0081 mmol) is added, and the mixture is stirred at room temperature for 7 hours. Saturated NH4Stir for 1 hour after adding the Cl solution to stop the reaction. After the organic matter was extracted three times with ethyl acetate, the organic layer was washed with a saturated saline solution,2SO4And dry. After evaporating the solvent, filtration (ethyl acetate: hexane = 1: 50) using florisil gel is performed to obtain (+)-13. (+)-13 was used for the next reaction as it was.
To a solution of (+)-13 in MeOH (1 mL) was added Dowex 50W-X4 (10 mg), and the mixture was stirred at room temperature for 4 hours. The reaction mixture was filtered through cotton wool, the solvent was distilled off, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1). Get).
[0110]
1H NMR (400 MHz, CDCl3) Δ = 0.91 (3H, t, J = 7.1 Hz), 1.25-1.47 (4H, m), 2.18 (2H, bq, J = 6.8 Hz), 2. 79 (1H, bs), 3.57 (1H, d, J = 3.8 Hz), 3.68 (1H, bs), 3.82 (1H, d, J = 3.8 Hz), 4. 46 (1H, bd, J = 14.4 Hz), 4.71 (1H, bd, J = 14.4 Hz), 4.98 (1H, bs), 5.95 (1H, dt, J = 16) 6.0, 6.4 Hz), 6.03 (1H, d, J = 16.0 Hz)
ThirteenC NMR (100 MHz, CDCl3) Δ = 13.8, 22.2, 31.1, 33.4, 53.5, 55.7, 62.5, 65.0, 120.1, 131.0, 140.7, 146.9. , 195.0.
[0111]
Example 2 Synthesis of Compound (+)-RKTS-36
Under an argon atmosphere, diol (+)-RKTS-17 (4.0 mg, 0.017 mmol), CH2Cl2  (0.2 ml), Et3N (triethylamine) (21 μl, 0.15 mmol) and DMAP (0.2 mg, 0.002 mmol) were added, and the mixture was cooled to 0 ° C. To this, TBSCl (tert-butyldimethylsilyl chloride) (15 mg, 0.10 mmol) was added and stirred for 4 hours. After terminating the reaction with a saturated aqueous ammonium chloride solution, AcOEt was added and the temperature was raised to room temperature. The organic layer was separated, washed with saturated saline, and dried over anhydrous sodium sulfate. After filtering off the drying agent, the solvent was distilled off under reduced pressure. The residue was purified by thin-layer chromatography (AcOEt / Hexane = 1/1) to obtain silyl ether as a colorless oil.
[0112]
In an argon atmosphere, the alcohol (5.0 mg, 0.014 mmol), CH2Cl2  (0.4 ml), and cooled to 0 ° C. Dess-Martin periodinane (25 mg, 0.059 mmol) was added thereto, and the mixture was heated to room temperature and stirred for 4 hours. After terminating the reaction with a saturated aqueous solution of sodium bicarbonate, AcOEt was added. The organic layer was separated, washed with saturated saline, and dried over anhydrous sodium sulfate. After filtering off the drying agent, the solvent was distilled off under reduced pressure. The residue was filtered through Florisil gel (AcOEt / Hexane = 1/1) to obtain a crude diketone. Add THF (75 μl), H2O (3.3 μl), AcOH (18 μl), NH4F (39 mg, 1.0 mmol) was added, and the mixture was stirred at room temperature for 10 hours. After terminating the reaction with a saturated aqueous solution of sodium bicarbonate, AcOEt was added. The organic layer was separated, washed with saturated saline, and dried over anhydrous sodium sulfate. After filtering off the drying agent, the solvent was distilled off under reduced pressure. The residue was purified by thin-layer chromatography (AcOEt / Hexane = 1/1) to give alcohol (+)-RKTS-36 (0.8 mg, 18%) as a colorless oil.
[0113]
1H NMR (400 MHz, CDCl31.) δ 0.92 (3H, t, J = 7.2 Hz), 1.23-1.50 (4H, m), 2.26 (2H, br-q, J = 7.1 Hz), 30 (1H, br-s), 3.85 (1H, d, J = 4.1 Hz), 3.89 (1H, d, J = 4.1 Hz), 4.45 (1H, d, J) = 12.7 Hz), 4.57 (1H, d, J = 12.7 Hz), 6.31 (1H, br-d, J = 15.9 Hz), 6.56 (1H, dt, J) = 15.9, 7.1 Hz).
[0114]
Example 3 Synthesis of Compound (+)-RKTS-35
Under an argon atmosphere, iodide (+)-12 (40.8 mg, 0.127 mmol), THF (0.8 ml), H2O (0.1 ml), alkenyl boric acid (93.7 mg, 0.633 mmol), Ag2O (150 mg, 0.646 mmol), Ph3As (3.9 mg, 0.013 mmol), Pd (PhCN)2Cl2  (2.4 mg, 0.0063 mmol) was added, and the mixture was stirred at room temperature for 4 hours under light shielding. After adding a saturated ammonium chloride aqueous solution and stirring for 1 hour, AcOEt was added and the mixture was filtered through celite. The organic layer was separated, washed with saturated saline, and dried over anhydrous sodium sulfate. After filtering off the drying agent, the solvent was distilled off under reduced pressure. MeOH (1 ml) and Dowex 50WX4 (20 mg) were added to the residue, and the mixture was stirred at room temperature for 4 hours. After the reaction mixture was filtered and the solvent was distilled off under reduced pressure, the residue was purified by thin-layer chromatography (AcOEt / Hexane = 1/1) to give diol (+)-RKTS-35 (9.9 mg, 30% ) Was obtained as a yellow oil.
[0115]
1H NMR (400 MHz, CDCl3) Δ 2.28 (1H, br-s), 3.29 (1H, br-s), 3.63 (1H, dd, J = 3.9, 0.8 Hz), 3.86 (1H, dd) , J = 3.9, 1.6 Hz), 4.60 (1H, d, J = 14.5 Hz), 4.87 (1H, d, J = 14.5 Hz), 5.06 (1H) , Br-s), 6.77 (1H, d, J = 16.4 Hz), 6.88 (1H, d, J = 16.4 Hz), 7.27-7.37 (3H, m) , 7.40-7.44 (2H, m);ThirteenC NMR (100 MHz, CDCl3) 53.58, 55.70, 62.74, 65.19, 118.90, 126.80, 128.57, 128.71, 130.68, 136.56, 137.21, 147.89, 194. .65; FT-IR (neat) ν 3384, 3057, 3026, 2924, 1684, 1448, 1338, 1047, 968, 738, 692 cm-1.
[0116]
Example 4 Synthesis of Compound (+)-16
Under an argon atmosphere, iodide (+)-12 (82.3 mg, 0.256 mmol), THF (1.6 ml), H2O (0.2 ml), vinyl boric acid (91.8 mg, 1.28 mmol), Ag2O (308 mg, 1.33 mmol), Ph3As (7.8 mg, 0.026 mmol), Pd (PhCN)2Cl2  (4.9 mg, 0.013 mmol) was added, and the mixture was stirred at room temperature for 11 hours under light shielding. After adding a saturated ammonium chloride aqueous solution and stirring for 1 hour, AcOEt was added and the mixture was filtered through celite. The organic layer was separated, washed with saturated saline, and dried over anhydrous sodium sulfate. After filtering off the drying agent, the solvent was distilled off under reduced pressure. MeOH (2 ml) and Dowex 50WX4 (30 mg) were added to the residue, and the mixture was stirred at room temperature for 5 hours. After the reaction mixture was filtered and the solvent was distilled off under reduced pressure, the residue was purified by thin-layer chromatography (AcOEt / Hexane = 1/3 to 1/1) to give diol (+)-16 (15.0 mg, 32%) as a colorless oil.
[0117]
1H NMR (400 MHz, CDCl3) Δ 2.76 (1H, br-s), 3.56 (1H, dd, J = 3.8, 0.7 Hz), 3.66 (1H, br-s), 3.83 (1H, dd) , J = 3.8, 1.6 Hz), 4.49 (1H, d, J = 14.6 Hz), 4.71 (1H, d, J = 14.6 Hz), 4.99 (1H) , Br-s), 5.46 (1H, dd, J = 17.7, 1.4 Hz), 5.53 (1H, dd, J = 11.6, 1.4 Hz), 6.35 ( 1H, dd, J = 17.7, 11.6 Hz);ThirteenC NMR (100 MHz, CDCl3) 53.34, 55.70, 62.43, 64.84, 123.27, 127.64, 130.90, 148.68, 194.34.
[0118]
Example 5 Synthesis of Compounds 18 and 19
A solution of diol (+)-17 (5.8 mg, 0.030 mmol) in dichloromethane (0.5 ml) was cooled to 0 ° C., and manganese dioxide (75%, 44 mg, 0.38 mmol) was added. Stir for 15 minutes. The reaction mixture is filtered through celite and washed with ethyl acetate. After the solvent was distilled off, heavy chloroform (0.5 ml) was added, and the mixture was allowed to stand at room temperature for 18 hours while shielding light from aluminum foil. After distilling off the solvent, purification is performed by thin-layer chromatography to obtain epoxyquinol A 18 (2.3 mg, 40%) and epoxyquinol B19 (1.5 mg, 25%).
[0119]
Example 6 Synthesis of Compounds RKTS-18 and RKTS-18
A solution of diol (+)-RKTS-17 (13.0 mg, 0.055 mmol) in dichloromethane (0.6 ml) was cooled to 0 ° C and manganese dioxide (75%, 63.2 mg, 0.55 mmol). ) And stir for 15 minutes. The reaction mixture is filtered through celite and washed with ethyl acetate. After evaporating the solvent, the mixture was allowed to stand at room temperature for 11 hours, and then purified by thin-layer chromatography (methanol: chloroform = 1: 10) to obtain RKTS-18 (R = C4H9, 3.8 mg, 31%) and RKTS-19 (R = C4H9, 3.2 mg, 25%).
[0120]
RKTS-18:1H NMR (400 MHz, CDCl3) Δ = 0.83 (3H, t, J = 7.1 Hz), 0.87 (3H, t, J = 6.4 Hz), 1.06-1.48 (12H, m), 79 (1H, d, J = 9.5 Hz), 2.12 (1H, d, J = 7.9 Hz), 2.53 (1H, bs), 3.22 (1H, bs), 46 (1H, d, J = 3.5 Hz), 3.48 (1H, dd, J = 3.5, 0.8 Hz), 3.73 (1H, dd, J = 3.5, 0.5). 9 Hz), 3.79 (1H, d, J = 3.5 Hz), 4.12 (1H, dd, J = 9.2, 4.9 Hz), 4.17 (1H, t, J = 6.3 Hz), 4.73 (1H, d, J = 9.5 Hz), 5.08 (1H, bd, J = 7.9 Hz), 5.14 (1H, s), 6.81 (1H, d, J = 2.0 Hz).
[0121]
RKTS-19:1H NMR (400 MHz, CDCl3) Δ = 0.83 (3H, t, J = 7.0 Hz), 0.88 (3H, t, J = 7.0 Hz), 1.18-1.41 (12H, m), 1. 56 (2H, bs), 2.78 (1H, dd, J = 5.1, 2.7 Hz), 3.16-3.20 (1H, m), 3.47-3.56 (3H, m), 3.63 (1H, dd, J = 3.0, 2.2 Hz), 3.81 (1H, dd, J = 3.5, 1.1 Hz), 3.98 (1H, bt) , J = 6.5 Hz), 4.67 (1H, d, J = 1.7 Hz), 4.81 (1H, s), 5.04 (1H, s), 6.44 (1H, s) ).
[0122]
Example 7 Synthesis of Compound RKTS-20
Compound RKTS-20 was obtained in the same manner as in Example 6 using compound (+)-16.
[0123]
1H NMR (400 MHz, CDCl3) Δ 2.17 (1H, d, J = 7.5 Hz), 2.63 (1H, br-s), 3.12 (1H, br-d, J = 8.2 Hz), 3.29 ( 1H, br-s), 3.50 (2H, t, J = 3.4 Hz), 3.57 (1H, dd, J = 11.9, 4.7 Hz), 3.73 (1H, d) , J = 3.3 Hz), 3.77 (1H, d, J = 3.6 Hz), 4.08-4.18 (3H, m), 4.75 (1H, d, J = 9. FT-IR; 2 Hz), 5.07 (1H, br-d, J = 6.8 Hz), 5.20 (1H, s), 7.04 (1H, d, J = 1.9 Hz); (Neat) ν 3417, 2923, 2852, 1714, 1684, 1458, 1254, 1 51, 737 cm-1.
[0124]
[Test Example 1] RKTS-17, RKTS-35, and RKTS-36 suppress the growth of human leukemia cell line Jurkat cells
The human leukemia cell line Jurkat cells were cultured in an RPMI medium containing 10% calf serum in an incubator saturated with 5% carbon dioxide and water vapor. Serial dilution series of (+)-RKTS-17, 35, and 36 were added to Jurkat cells in the logarithmic growth phase, and cultured for 8 hours. The viability of the cells was measured by MTT (3- (4,5-dimethyl-thiazole- 2-yl) -2,5-diphenyltetrazolium bromide).
[0125]
Compounds (+)-RKTS-17 and (+)-RKTS-35 and (+)-RKTS-36 at concentrations of 20, 20, and 10 μg / ml, respectively, inhibited proliferation of Jurkat cells in logarithmic growth phase by 50. % Inhibition. This indicates that RKTS-17, RKTS-35, and RKTS-36 of the present invention are effective as antitumor agents.
[0126]
[Test Example 2] Inhibition of chemotaxis of vascular endothelial cells by RKTS-17, RKTS-35, RKTS-36, RKTS-18, RKTS-19, and RKTS-20
Normal human umbilical vein vascular endothelial cells HUVEC cells cultured and maintained using HuMedia-EG2 (KURABO) medium were plated on the upper layer of three-dimensional culture using a chemotaxel chamber. HUVEC cell chemotaxis was induced by filling the lower layer with HuMedia-EG2 containing endothelial cell growth factor (VEGF). (+)-RKTS-17, (+)-RKTS-35, (+)-RKTS-36, RKTS-18, RKTS-19, and RKTS-20 were each at a concentration of 1-30 μg / ml by VEGF. Induced HUVEC cell chemotaxis was suppressed. This result indicates that the compounds RKTS-17, RKTS-35, RKTS-36, RKTS-18, RKTS-19, and RKTS-20 of the present invention exhibit anti-VEGF action and inhibition of vascular endothelial cell chemotaxis, ie, an angiogenesis inhibitor. It is shown to be effective as an antitumor agent and the like.
[0127]
[Formulation Example 1] Injection and infusion
5 g of powdered glucose was added to contain 10 mg of the compound of the present invention, aseptically distributed and sealed in vials, sealed with an inert gas such as nitrogen or helium, and stored in a cool dark place. Before use, it is dissolved in ethanol, and 100 ml of 0.85% physiological saline is added to give an intravenous injection, and 10 to 100 ml per day is administered by intravenous injection or infusion depending on symptoms.
[0128]
[Formulation Example 2] Granules
Take 1 g of the compound of the present invention, 98 g of lactose, and 1 g of hydroxypropylcellulose, mix well, form into granules according to a standard method, dry it well, and obtain granules suitable for bottles, heat seal packaging, etc. An agent was manufactured. 100 to 1000 mg per day can be administered orally depending on the condition.
[0129]
【The invention's effect】
The compound of the present invention is effective as an antitumor agent and an angiogenesis inhibitor, and is caused by excessive angiogenesis including a metastasis inhibitor, an antirheumatic arthritis agent, and diabetic retinopathy. It is effective as a drug for treating or preventing diseases.

Claims (12)

以下の一般式(I):
Figure 2004315373
(式中、Rは炭素数3以上の直鎖状、分岐鎖状もしくは環状のアルキル基または芳香族基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し;Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基、直鎖状、分岐鎖状もしくは環状のアシル基またはヒドロキシ基の保護基を示し、Rは水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基を示すが、−OR, Rが一緒になってオキソ基またはオキシム基を示してもよい)で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following general formula (I):
Figure 2004315373
(Wherein, R 1 represents a linear, branched or cyclic alkyl group or aromatic group having 3 or more carbon atoms; R 2 represents a hydrogen atom, a linear, branched or cyclic alkyl group, A linear, branched or cyclic acyl group or a protecting group for a hydroxy group; R 3 represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkyl group; R 4 represents a hydrogen atom, a linear, branched or cyclic alkyl group, and —OR 3 and R 4 together form an oxo group or an oxime group; Or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の式(II):
Figure 2004315373
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (II):
Figure 2004315373
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の式(III):
Figure 2004315373
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (III):
Figure 2004315373
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の式(IV):
Figure 2004315373
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (IV):
Figure 2004315373
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の一般式(V):
Figure 2004315373
(式中、Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく;Rは水素原子を示し、Rはヒドロキシ基または保護基で保護されたヒドロキシ基を示すが、R, Rが一緒になってオキソ基またはオキシム基を示してもよく;Rはそれぞれ独立に水素原子、直鎖状、分岐鎖状もしくは環状のアルキル基または直鎖状もしくは分岐鎖状のアルケニル基を示す)で表される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following general formula (V):
Figure 2004315373
(In the formula, R 5 represents a hydrogen atom, R 6 represents a hydroxy group or a hydroxy group protected by a protecting group, but R 5 and R 6 may together represent an oxo group or an oxime group. ; R 7 represents a hydrogen atom, R 8 is a hydroxy group protected with a hydroxy group or a protecting group, it may represent oxo group or oxime group R 7, R 8 together; R 9 Independently represents a hydrogen atom, a linear, branched or cyclic alkyl group or a linear or branched alkenyl group) or an optically active form thereof, or a pharmaceutically acceptable compound thereof. Or a hydrate or solvate thereof.
以下の式(VI):
Figure 2004315373
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (VI):
Figure 2004315373
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の式(VII):
Figure 2004315373
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (VII):
Figure 2004315373
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の式(VIII):
Figure 2004315373
(式中、n−Buはn−ブチル基を示す。)
で示される化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物。
The following formula (VIII):
Figure 2004315373
(In the formula, n-Bu represents an n-butyl group.)
Or a optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
以下の一般式(V):
Figure 2004315373
(式中、R〜Rは前記と同義である。)で表される化合物の製造方法であって、(1)以下の式(IX):
Figure 2004315373
(式中、Rは前記と同義である。)で表される化合物を酸化し、
(2)得られた化合物を無溶媒下反応させることを特徴とする方法。
The following general formula (V):
Figure 2004315373
(Wherein, R 5 to R 9 have the same meanings as described above). (1) The following method (IX)
Figure 2004315373
(Wherein R 9 has the same meaning as described above),
(2) A method characterized by reacting the obtained compound without solvent.
請求項1〜8に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する医薬組成物。A pharmaceutical composition comprising the compound according to any one of claims 1 to 8 or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof, as an active ingredient. 請求項1〜8に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する抗腫瘍剤。An antitumor agent comprising any one of the compounds according to claims 1 to 8 or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof as an active ingredient. 請求項1〜8に記載のいずれかの化合物もしくはその光学活性体、またはそれらの製薬上許容される塩もしくはそれらの水和物もしくは溶媒和物を有効成分として含有する血管新生阻害剤。An angiogenesis inhibitor comprising, as an active ingredient, any of the compounds according to claims 1 to 8 or an optically active form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
JP2003107647A 2003-04-11 2003-04-11 Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same Pending JP2004315373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107647A JP2004315373A (en) 2003-04-11 2003-04-11 Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107647A JP2004315373A (en) 2003-04-11 2003-04-11 Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004315373A true JP2004315373A (en) 2004-11-11

Family

ID=33469422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107647A Pending JP2004315373A (en) 2003-04-11 2003-04-11 Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004315373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131504A (en) * 2004-11-02 2006-05-25 Tokyo Univ Of Science New compound, medicine containing the same and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131504A (en) * 2004-11-02 2006-05-25 Tokyo Univ Of Science New compound, medicine containing the same and method for producing the same
JP4617136B2 (en) * 2004-11-02 2011-01-19 学校法人東京理科大学 NOVEL COMPOUND, MEDICINE CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
EP3686196B1 (en) Polycyclic compound acting as ido inhibitor and/or ido-hdac dual inhibitor
JP6511613B2 (en) Synthetic methods for the preparation of macrocyclic C1-keto analogues of halichondrin B and intermediates useful in said methods, such as intermediates containing -SO2- (p-tolyl) group
JP2012509351A (en) Fluorination of organic compounds
US9096550B2 (en) Bryostatin analogues and methods of making and using thereof
JP2022107010A (en) Bryostatin compounds and methods of preparing the same
US20230002425A1 (en) Cannabidiol derivatives, preparation method thereof and use thereof
JP5614858B2 (en) Novel cortisatin A analogs and uses thereof
WO2012054782A2 (en) Fluoroalkoxylation of organic compounds
Marcos et al. Synthesis of novel antitumoural analogues of dysidiolide from ent-halimic acid
JPH02504394A (en) Stereospecific method for producing furo[3,4-c]pyridine enantiomers, compounds thus obtained and pharmaceutical compositions thereof
JP5963278B2 (en) Novel atopenin analogs with a complex-selective electron transport system complex II inhibitory activity
Formánek et al. Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety
US5504107A (en) Optically pure 4-alkenyl- or 4-alkanyl-2-hydroxytetronic acids and pharmaceutical use thereof
WO2016025363A1 (en) Bryostatin analogs and use thereof as antiviral agents
JP2004315373A (en) Compound having antitumor activity and neovascularization inhibitory activity and method for producing the same
JP2004307420A (en) Compound having cell death-inhibiting activity and method for producing the same
WO2020084633A1 (en) Decalin derivatives, a process for the preparation and pharmaceutical composition thereof
US9771325B2 (en) Tricyclic compounds and preparation thereof
JP7518533B2 (en) Novel ynone compounds and their uses
US9346781B2 (en) Therapeutic compounds
US5952376A (en) Trienyl compounds
Cummins The Synthesis of the C-Ring Subunit of Bryostatin 1, and the Synthesis and Biological Evaluation of Fluorescent Bryostatin Analogs
CA2647655C (en) Novel c-1 analogs of pancratistatin and 7-deoxypancratistatin and processes for their preparation
WO2021139740A1 (en) Tetrahydrocannabinol derivative, and preparation method therefor and medical use thereof
Huntington Atlantic City

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215