JP2004315316A - Manufacturing method of lithium tantalate crystal which is singly polarized - Google Patents

Manufacturing method of lithium tantalate crystal which is singly polarized Download PDF

Info

Publication number
JP2004315316A
JP2004315316A JP2003113380A JP2003113380A JP2004315316A JP 2004315316 A JP2004315316 A JP 2004315316A JP 2003113380 A JP2003113380 A JP 2003113380A JP 2003113380 A JP2003113380 A JP 2003113380A JP 2004315316 A JP2004315316 A JP 2004315316A
Authority
JP
Japan
Prior art keywords
lithium tantalate
crystal
tantalate crystal
conductivity
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113380A
Other languages
Japanese (ja)
Other versions
JP4071670B2 (en
Inventor
Yoshiyuki Shiono
嘉幸 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003113380A priority Critical patent/JP4071670B2/en
Publication of JP2004315316A publication Critical patent/JP2004315316A/en
Application granted granted Critical
Publication of JP4071670B2 publication Critical patent/JP4071670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium tantalate crystal by increasing the conductivity with a reduction treatment, which prevents the degradation of the previously reduced non-product lithium tantarate crystal used as a reducing material and which lessens the scattering of the conductivity in the product lithium tantarate wherein the singly polarized conductivity of the purpose. <P>SOLUTION: The method for manufacturing the special lithium tantalate can increase the conductivity of the product crystal and lessen the scattering by incorporating deuterium into the atmosphere at the time of reduction treatment of the non-product lithium tantalate in a high temperature and into the atmosphere at the time of reduction treatment by bringing the non-product lithium tantalate crystal into contact with the singly polarized product lithium tantalate crystal in a lower temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波素子などのウエハ上に金属電極でパターンを形成して電気信号を処理する用途に使用するタンタル酸リチウム結晶の特性改善に関する方法を提供する。
【0002】
【従来の技術】
タンタル酸リチウムは、弾性表面波(SAW)の信号処理といった電気的特性を利用する用途に使用されている。この用途に適したタンタル酸リチウム結晶は、その結晶構造に起因するSAWデバイスに必要とされる圧電気応答(圧電性)を示すが、通常の方法で入手できるタンタル酸リチウム結晶は圧電性に加えて焦電気応答(焦電性)を生じる。
【0003】
タンタル酸リチウム結晶の圧電性はタンタル酸リチウム結晶をSAWデバイスとして利用する時に、不可欠となる特性であるが、一方、焦電性はタンタル酸リチウム結晶に温度変化を与えることで結晶の外側表面に発生する表面電荷として観察され、結晶を帯電させるものである。この表面電荷は、タンタル酸リチウム結晶をSAWデバイスとして使用するときに、タンタル酸リチウム結晶からなるウエハ上に形成された金属電極間で火花放電を起こし、SAWデバイスの著しい性能の欠陥を引き起こすとされている。このため、タンタル酸リチウム結晶を用いるSAWデバイスの設計では、表面電荷を発生させない工夫、発生した表面電荷を逃がす工夫、あるいは金属電極同士の間隔を広くするなどの工夫が必要とされ、これら工夫を取り入れるために、SAWデバイス自体の設計に制約が加わるといった不利益があった。
【0004】
また、タンタル酸リチウム結晶を用いたSAWデバイスの製造工程では金属膜の蒸着、レジストの除去といった工程でタンタル酸リチウム結晶に熱が加わる工程があり、これら工程で加熱あるいは降温といった温度変化がタンタル酸リチウム結晶に与えられるとタンタル酸リチウム結晶の焦電性により外側表面に電荷が発生する。この表面電荷により、金属電極間に火花放電が生じ、電極パターンの破壊となるため、SAWデバイスの製造工程では出来るだけ温度変化を与えないように工夫をしたり、温度変化を緩やかにするといった工夫をしており、これら工夫のために製造工程のスループットが低下したり、あるいはSAWデバイスの性能を保証するマージンが狭くなるといった不利益が生じている。
【0005】
通常の方法で製造されたタンタル酸リチウム結晶では、焦電性により発生した外側表面の電荷は周囲環境からの遊離電荷により中和され、時間の経過とともに消失するが、この消失時間は数時間以上と長く、SAWデバイスの製造工程では、この自発的な焦電性の消失に期待できない。
【0006】
弾性表面波(SAW)デバイスのような用途に対してはデバイス特性を発揮するために必要とされる圧電性を維持した上で、上記背景により、結晶外側表面に電荷の発生が見られない圧電性結晶の要求が増大しており、このような用途に対して表面電荷の蓄積が見られないタンタル酸リチウム結晶が必要とされており、特願2003−060603にあるように、温度T1で還元処理した非製品タンタル酸リチウム結晶を温度T1より低い温度T2でかつ還元雰囲気中で単一分域化されたタンタル酸リチウム結晶と接触させることで後者において導電率が向上した単一分域化された製品タンタル酸リチウムを得ることができる。
【0007】
しかし、この方法では高温で還元処理を繰り返すと非製品タンタル酸リチウム結晶が脆くなり、場合により割れるという欠点があり、また、還元処理した非製品タンタル酸リチウム結晶と単一分域化された製品タンタル酸リチウム結晶を還元雰囲気中で接触させ、加熱することで単一分域化された製品タンタル酸リチウム結晶の導電率は増加するが結晶内で導電率にばらつきが生じるといった欠点があることが分かった。
【発明が解決しようとする課題】
【0008】
本発明は、上記された問題の解決方法を提供するものであり、高温での非製品タンタル酸リチウム結晶の還元処理においてこのタンタル酸リチウム結晶を劣化させることなく繰り返し使える方法を提供するものであり、また、還元処理されたタンタル酸リチウム単結晶と単一分域化された製品タンタル酸リチウム結晶を還元雰囲気中で接触させ、加熱することで導電率が増加し、かつそのばらつきが小さな単一分域化されたタンタル酸リチウム結晶の製造方法を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明では、重水素を含む第1の還元雰囲気中にて熱処理されたタンタル酸リチウム結晶を、当該熱処理の温度より低い温度でかつ重水素を含む第2の還元雰囲気中において、単一分域化されたタンタル酸リチウム結晶に接触することで該単一分域化されたタンタル酸リチウム結晶の導電率を増加することを特徴とする導電率が増加され単一分極化されたタンタル酸リチウム結晶の製造方法を提供する。加熱還元処理を重水素を含む雰囲気中でおこなうことで非製品タンタル酸リチウム結晶の劣化を抑えることができ、また導電率が増加し、かつばらつきが小さな単一分域化された製品タンタル酸リチウム結晶を得ることができ(請求項1)、この結果この単一分域化されたタンタル酸リチウム結晶を用いてSAWデバイスを製造したときに均一な特性をもったデバイスができるという方法を提供するものである。
【0010】
本発明で、還元雰囲気中の重水素の濃度はその影響を発揮できるようにするため0.5%以上とすることが好ましい(請求項2)。
【0011】
本発明で、 重水素以外の還元雰囲気を構成するガスとしては通常知られている還元性のガス雰囲気とすればよく、たとえば、一酸化炭素,NOx(x<2.5)のいずれか、あるいはこれらのうち2種以上よりなる混合ガス、を含む還元性のガス雰囲気中で処理をすることができる(請求項3)。
【0012】
本発明で還元処理されたタンタル酸リチウム結晶と接触させる単一分域化されたタンタル酸リチウム結晶としては、スライス処理が行われたウェハ、あるいはラップ処理が行われたウエハを用いることができる(請求項4)。
【0013】
本発明で還元雰囲気中にて熱処理されたタンタル酸リチウム結晶は、炭酸リチウムと五酸化タンタルとを秤量し、混合し、電気炉で1000℃以上に加熱することで得られた多結晶のタンタル酸リチウムを貴金属製のルツボに入れ、加熱、溶融後に種結晶を用いて回転引上げ(いわゆるチョクラルスキー法)にて育成することでたとえば直径が4インチのタンタル酸リチウム結晶が得られる。
【0014】
このようにして得られた4インチのタンタル酸リチウム結晶を石英台に載せ、封止された炉内に置き、重水素を含む還元性ガスを毎分約1.5リットルの速度で封止炉に流通させ、炉温度を室温から毎分約6.7℃の速度で表1の温度T1まで昇温させ、1時間保持後、炉を毎分約6.7℃の速度で降温させ、250℃以下で炉内に大気を導入し、30℃以下となったところで石英台を炉から取り出すことで還元処理した4インチのタンタル酸リチウム結晶として得られる。
この4インチのタンタル酸リチウム結晶を、たとえばワイヤソーを用いてスライスすることでスライス処理がされた直径4インチ、厚さ0.5mmのスライス処理がおこなわれたタンタル酸リチウム結晶が得られ、さらにこのウェハをラップ機で処理することで直径4インチ、厚さ0.4mmのラップウェハが得られる。
【0015】
上記した還元処理前のたとえば直径4インチのタンタル酸リチウム結晶に貴金属電極を設置し、キュリー点以上の温度、たとえば650℃にて電圧を印加することで単一分域化処理ができ、この単一分域化処理がなされた結晶を、たとえばワイヤソーを用いてスライスすることで直径4インチ、厚さ0.5mmのスライス処理がおこなわれたウエハが得られ、さらにこのウエハをラップ機で処理することで直径4インチ、厚さ0.4mmラップウエハが得られる。
【0016】
本発明で目的とする単一分域化構造をもち、かつ、ばらつきの小さな導電率を向上させたタンタル酸リチウム結晶を得る方法としては、たとえば、単一分域化処理がおこなわれたタンタル酸リチウム結晶ラップウエハと[0014]で示した処理を行った黒く変色した非製品タンタル酸リチウムウエハを接触するように交互に積層し、炉中に設置し、重水素ガスを毎分約1.5リットルの速度で流し、炉の温度を室温から毎分約6.7℃の速度で昇温させ、タンタル酸リチウム結晶のキュリー点以下の温度、たとえば550℃に1時間保持後に炉を毎分約6.7℃の速度で降温し、250℃以下で炉内に大気を導入し、30℃以下となったところでウエハを炉から取り出すことで得られる。
【0017】
本発明で得られたタンタル酸リチウム結晶の導電率は次のように測定した。導電率は体積抵抗率の逆数である。体積抵抗率は三菱油化社製、MCP−HT260及びHRSプローブを用いて測定した。体積抵抗率は次式により得ることができる。
ρ=(πd/4t)・R
ρ: 体積抵抗率(Ω・cm)
π: 円周率
d: 中心電極直径(cm)
t: T2処理LTウエハ厚さ(cm)
R: 抵抗値(Ω)
500ボルトの電圧を印加し、電圧を印加してから1分後の抵抗値を測定した。この装置を用い、4インチウェハのウェハ中央部とウェハ端部より10mm内側の90度間隔となる4点、合計5点について測定し、最大値と最小値の差をもってばらつきと定義した。
【0018】
本発明で得られた還元雰囲気中で熱処理されたタンタル酸リチウム結晶は、重水素の効果により結晶の劣化がないものであり、単一分域化されたタンタル酸リチウム結晶と接触した後、再度還元雰囲気で処理することで再利用が可能であり、この再利用回数が20回以上となるという利点がある。
また、本発明で得られた単一分域化されたタンタル酸リチウム結晶は結晶内での導電率のばらつきが小さいものであり、SAWデバイスを製造したときに均一な特性を与えることができるという利点がある。
【発明の実施の形態】
【0019】
タンタル酸リチウムウェハ作製は次の通り行った。y方向40゜回転の直径
4インチ、長さ50mmのタンタル酸リチウム結晶を、チョクラルスキー法で育成し、単一分域化処理をおこなった。この単一分域化されたタンタル酸リチウム結晶をワイヤソーにて切断、ラップ加工を行い、厚さ0.4mmの両面ラップウエハを得た。この両面ラップウエハの片面を研磨し、厚さ0.35mmのウエハを得た。このウェハは、無色で半透明であった。
【0020】
実施例、比較例
▲1▼還元処理タンタル酸リチウム結晶を得る工程
単一分域化されたタンタル酸リチウム結晶からなる両面ラップウェハを、炉中に置き、重水素を毎分約1.5リットルの速度で流した。この炉は、水平方向の直径200mmのアルミナ処理管を備えた3つの帯域を有する管状炉から成り立っていた。ウエハを前記処理管の中心に置かれたアルミナ担体によって支持した。アルミナ処理管は、炉から延在しており、したがってこのアルミナ処理管の端部は、室温に晒されることで冷却される。ウエハを処理管中に入れ、次にこの処理管を端部キャップで封止し、ガス流を流し始め、炉の加熱を開始した。炉の温度を室温から毎分約6.7℃の速度で950℃まで昇温した。温度950℃にて1時間保持後、炉を毎分約6.7℃の速度で降温した。250℃以下で炉内に大気を導入し、30℃以下となったところでウェハを炉から取り出すことで黒色をした還元処理タンタル酸リチウム結晶を得た。尚、この結晶は950℃の熱をかけられたので多分域化してしまっている。
▲2▼還元処理かつ単一分域化されたタンタル酸リチウム結晶を得る工程
上記した還元処理タンタル酸リチウム結晶からなるラップウェハと単一分域化されたタンタル酸リチウム結晶からなる両面ラップウェハを接触するように交互に積層し、炉中に置き、表1の還元ガスを毎分約1.5リットルの速度で流した。この炉は、▲1▼の還元処理工程で用いたものと同一のものである。炉の温度を室温から毎分約6.7℃の速度で昇温した。キュリー点より低い温度である550℃に1時間保持後、炉を毎分約6.7℃の速度で降温した。250℃以下で炉内に大気を導入し、30℃以下となったところでウエハを炉から取り出した。
このウエハを両面ラップ後、SAWデバイス用基板として標準的な仕様である片面鏡面とするため研磨機で研磨し、導電率の測定を[0017]にて記載した方法でおこなった。
導電率の平均値とばらつきを表1に示す。尚、表1において、導電率の、例えば「9.5E−12」というような記載は、「9.5x10−12」という意味である。
▲3▼還元処理タンタル酸リチウム結晶の再生工程
上記した▲2▼の還元処理工程で使用した非製品還元処理タンタル酸リチウム結晶からなるラップウェハは▲1▼の工程に戻すことで再度還元処理タンタル酸リチウム結晶とすることができた。しかし、繰り返しこの再生工程に流すと、タンタル酸リチウム結晶からなるラップウェハが次第に脆くなり、還元処理後に取り出すと割れているため、再利用ができなくなる。
この再利用可能な回数は表2のように還元ガス組成で異なる。
ここで、投入したウェハ枚数のうち10%が割れるまで回数を再利用回数と定義する。
【表1】
表1 還元処理かつ単一分域化処理されたタンタル酸リチウム結晶の導電率

Figure 2004315316
導電率の平均値はウエハ面内5点の平均値をサンプル数5枚についてさらに平均したもの
導電率のばらつきはウエハ面内5点の差をサンプル数5枚について平均したもの
【表2】
表2 還元処理タンタル酸リチウム結晶の再生工程
Figure 2004315316
実施例、比較例で得られた還元処理タンタル酸リチウムは全て還元処理かつ単一分域化されたタンタル酸リチウム結晶の製造に使うことが可能であった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for improving characteristics of a lithium tantalate crystal used for processing a signal by forming a pattern on a wafer such as a surface acoustic wave device with a metal electrode.
[0002]
[Prior art]
Lithium tantalate is used for applications that utilize electrical characteristics such as surface acoustic wave (SAW) signal processing. Lithium tantalate crystals suitable for this application exhibit the piezoelectric response (piezoelectricity) required for SAW devices due to their crystal structure. This produces a pyroelectric response (pyroelectricity).
[0003]
The piezoelectricity of lithium tantalate crystal is an indispensable property when using lithium tantalate crystal as a SAW device. On the other hand, pyroelectricity is applied to the outer surface of the crystal by giving temperature change to lithium tantalate crystal. It is observed as a generated surface charge and charges the crystal. When the lithium tantalate crystal is used as a SAW device, this surface charge causes a spark discharge between metal electrodes formed on a wafer made of the lithium tantalate crystal, which causes a significant performance defect of the SAW device. ing. For this reason, in the design of a SAW device using a lithium tantalate crystal, a device that does not generate a surface charge, a device that releases the generated surface charge, and a device that increases the distance between metal electrodes are required. There is a disadvantage that the design of the SAW device itself is restricted due to the adoption.
[0004]
Further, in the manufacturing process of a SAW device using lithium tantalate crystal, there is a process in which heat is applied to the lithium tantalate crystal in processes such as deposition of a metal film and removal of a resist. When applied to the lithium crystal, charges are generated on the outer surface due to the pyroelectricity of the lithium tantalate crystal. This surface charge causes a spark discharge between the metal electrodes and destroys the electrode pattern. Therefore, in the manufacturing process of the SAW device, a device is devised so as not to change the temperature as much as possible, or a device to reduce the temperature change. Due to these contrivances, disadvantages such as a decrease in the throughput of the manufacturing process or a decrease in the margin for guaranteeing the performance of the SAW device are caused.
[0005]
In lithium tantalate crystals manufactured by the usual method, the charge on the outer surface generated by pyroelectricity is neutralized by free charges from the surrounding environment and disappears with time, but this disappearance time is several hours or more. In the manufacturing process of a SAW device, it is not possible to expect this spontaneous loss of pyroelectricity.
[0006]
For applications such as surface acoustic wave (SAW) devices, while maintaining the piezoelectricity required to exhibit the device characteristics, the above-described background prevents the generation of electric charges on the outer surface of the crystal. For such applications, there is a need for a lithium tantalate crystal that does not show accumulation of surface charges. As described in Japanese Patent Application No. 2003-060603, reduction in temperature T1 is required. By contacting the treated non-product lithium tantalate crystal with a single domain lithium tantalate crystal at a temperature T2 lower than the temperature T1 and in a reducing atmosphere, a single domain having improved conductivity in the latter is obtained. Product lithium tantalate can be obtained.
[0007]
However, this method has the drawback that the non-product lithium tantalate crystal becomes brittle when the reduction treatment is repeated at a high temperature, and may be broken in some cases. By bringing lithium tantalate crystals into contact in a reducing atmosphere and heating, the conductivity of a single-domain lithium tantalate crystal increases, but there is a drawback that the conductivity varies within the crystal. Do you get it.
[Problems to be solved by the invention]
[0008]
The present invention provides a solution to the above-mentioned problem, and provides a method of repeatedly using a non-product lithium tantalate crystal without deteriorating it in a reduction treatment of the non-product lithium tantalate crystal at a high temperature. In addition, by bringing a reduced lithium tantalate single crystal and a single-domain lithium tantalate crystal into a single domain in a reducing atmosphere and heating, the conductivity increases, and the variation thereof is small. An object of the present invention is to provide a method for producing a domain-divided lithium tantalate crystal.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, a lithium tantalate crystal that has been heat-treated in a first reducing atmosphere containing deuterium is subjected to a second reduction containing deuterium at a temperature lower than the temperature of the heat treatment. In an atmosphere, the conductivity of the single-domain lithium tantalate crystal is increased by contacting the single-domain lithium tantalate crystal, and the conductivity is increased. Provided is a method for producing a polarized lithium tantalate crystal. By performing the heat reduction treatment in an atmosphere containing deuterium, the deterioration of non-product lithium tantalate crystals can be suppressed, and the conductivity is increased and the dispersion of lithium tantalate product is reduced to a single domain. Crystals can be obtained (claim 1), and as a result, a method is provided in which when a SAW device is manufactured using this single-domain lithium tantalate crystal, a device having uniform characteristics can be obtained. Things.
[0010]
In the present invention, the concentration of deuterium in the reducing atmosphere is preferably 0.5% or more in order to exert the effect (claim 2).
[0011]
In the present invention, the gas constituting the reducing atmosphere other than deuterium may be a generally known reducing gas atmosphere. For example, any of carbon monoxide and NOx (x <2.5), or The treatment can be performed in a reducing gas atmosphere containing a mixed gas of two or more of these (claim 3).
[0012]
As the single-domain lithium tantalate crystal to be brought into contact with the lithium tantalate crystal reduced in the present invention, a sliced wafer or a wrapped wafer can be used ( Claim 4).
[0013]
Lithium tantalate crystals heat-treated in a reducing atmosphere according to the present invention are polycrystalline tantalate obtained by weighing and mixing lithium carbonate and tantalum pentoxide, and heating to 1000 ° C. or more in an electric furnace. Lithium is put into a noble metal crucible, heated and melted, and then grown by rotation pulling (so-called Czochralski method) using a seed crystal, whereby a lithium tantalate crystal having a diameter of, for example, 4 inches can be obtained.
[0014]
The 4-inch lithium tantalate crystal thus obtained is placed on a quartz table, placed in a sealed furnace, and a reducing gas containing deuterium is supplied at a rate of about 1.5 liters per minute to a sealed furnace. The furnace temperature was raised from room temperature to a temperature T1 shown in Table 1 at a rate of about 6.7 ° C./min, and after holding for 1 hour, the furnace was cooled at a rate of about 6.7 ° C./min. Atmospheric temperature is introduced into the furnace at a temperature of 30 ° C. or less, and when the temperature becomes 30 ° C. or less, the quartz table is taken out of the furnace to obtain a 4-inch lithium tantalate crystal reduced.
The 4-inch lithium tantalate crystal is sliced by using, for example, a wire saw to obtain a sliced lithium tantalate crystal having a diameter of 4 inches and a thickness of 0.5 mm. By processing the wafer with a lapping machine, a wrapped wafer having a diameter of 4 inches and a thickness of 0.4 mm is obtained.
[0015]
A noble metal electrode is placed on, for example, a 4 inch diameter lithium tantalate crystal before the above-described reduction treatment, and a voltage is applied at a temperature higher than the Curie point, for example, at 650 ° C., whereby a single domaining treatment can be performed. The crystal subjected to the one-domain processing is sliced using, for example, a wire saw to obtain a sliced wafer having a diameter of 4 inches and a thickness of 0.5 mm, which is further processed by a lapping machine. As a result, a lap wafer having a diameter of 4 inches and a thickness of 0.4 mm can be obtained.
[0016]
As a method for obtaining a lithium tantalate crystal having a single-domain structure intended in the present invention and having improved conductivity with small variations, for example, tantalum acid having a single-domain treatment The lithium crystal wrap wafer and the non-product lithium tantalate wafer that has undergone the treatment shown in [0014] and turned black are alternately stacked so as to be in contact with each other, placed in a furnace, and about 1.5 liters of deuterium gas per minute. The temperature of the furnace is raised from room temperature at a rate of about 6.7 ° C. per minute, and the furnace is maintained at a temperature below the Curie point of lithium tantalate crystal, for example, 550 ° C. for 1 hour, and then the furnace is heated at about 6 The temperature is lowered at a rate of 0.7 ° C., the atmosphere is introduced into the furnace at a temperature of 250 ° C. or less, and the wafer is taken out of the furnace at a temperature of 30 ° C. or less.
[0017]
The conductivity of the lithium tantalate crystal obtained in the present invention was measured as follows. Conductivity is the reciprocal of volume resistivity. The volume resistivity was measured using MCP-HT260 and HRS probe manufactured by Mitsubishi Yuka Corporation. The volume resistivity can be obtained by the following equation.
ρ = (πd 2 / 4t) · R
ρ: Volume resistivity (Ω · cm)
π: Pi d: Center electrode diameter (cm)
t: T2 treated LT wafer thickness (cm)
R: Resistance value (Ω)
A voltage of 500 volts was applied, and the resistance value was measured one minute after the application of the voltage. Using this apparatus, measurements were made at four points at 90 ° intervals from the center of the 4-inch wafer and 10 mm inside the edge of the wafer, for a total of five points, and the difference between the maximum value and the minimum value was defined as variation.
[0018]
Lithium tantalate crystals heat-treated in a reducing atmosphere obtained in the present invention have no crystal deterioration due to the effect of deuterium, and after contact with a single-domain lithium tantalate crystal, Recycling is possible by processing in a reducing atmosphere, and there is an advantage that the number of reuses is 20 or more.
In addition, the single-domain lithium tantalate crystal obtained in the present invention has a small variation in conductivity in the crystal, and can provide uniform characteristics when a SAW device is manufactured. There are advantages.
BEST MODE FOR CARRYING OUT THE INVENTION
[0019]
The production of the lithium tantalate wafer was performed as follows. Lithium tantalate crystals having a diameter of 4 inches and a length of 50 mm rotated by 40 ° in the y direction were grown by the Czochralski method, and subjected to a single domaining treatment. This single-domain lithium tantalate crystal was cut and wrapped with a wire saw to obtain a double-sided lap wafer having a thickness of 0.4 mm. One side of this double-sided lap wafer was polished to obtain a wafer having a thickness of 0.35 mm. This wafer was colorless and translucent.
[0020]
Example, Comparative Example (1) Step of Obtaining Reduction-Treatment Lithium Tantalate Crystal A double-sided lap wafer made of a single-domain lithium tantalate crystal was placed in a furnace, and deuterium was added at a rate of about 1.5 liters per minute. Flowed at speed. The furnace consisted of a three-zone tubular furnace with a horizontal 200 mm diameter alumina treatment tube. The wafer was supported by an alumina carrier placed at the center of the processing tube. The alumina treatment tube extends from the furnace, so that the end of the alumina treatment tube is cooled by exposure to room temperature. The wafer was placed in a processing tube, which was then sealed with an end cap, gas flow was started, and furnace heating was started. The furnace temperature was raised from room temperature to 950 ° C. at a rate of about 6.7 ° C. per minute. After holding at a temperature of 950 ° C. for 1 hour, the furnace was cooled at a rate of about 6.7 ° C. per minute. The atmosphere was introduced into the furnace at a temperature of 250 ° C. or lower, and when the temperature reached 30 ° C. or lower, the wafer was taken out of the furnace to obtain blackened lithium-treated lithium tantalate crystals. In addition, since this crystal | crystallization was heated at 950 degreeC, it was divided into many domains.
{Circle over (2)} Step of Obtaining a Reduced and Single-Domain Lithium Tantalate Crystal The lap wafer made of the reduced lithium tantalate crystal and the double-sided lap wafer made of the single domain lithium tantalate crystal are contacted Were alternately stacked as above, placed in a furnace, and the reducing gas of Table 1 flowed at a rate of about 1.5 liters per minute. This furnace is the same as that used in the reduction step (1). The temperature of the furnace was increased from room temperature at a rate of about 6.7 ° C per minute. After holding at 550 ° C., a temperature lower than the Curie point, for one hour, the furnace was cooled at a rate of about 6.7 ° C. per minute. Atmosphere was introduced into the furnace at 250 ° C. or lower, and the wafer was taken out of the furnace at 30 ° C. or lower.
After lapping the wafer on both sides, the wafer was polished with a polishing machine to obtain a single-sided mirror surface as a standard specification for a substrate for a SAW device, and the conductivity was measured by the method described in [0017].
Table 1 shows the average value and the variation of the conductivity. In Table 1, the description of the conductivity, such as “9.5E- 12 ”, means “9.5 × 10 −12 ”.
(3) Step of regenerating reduction-treated lithium tantalate crystal The wrapped wafer made of the non-product reduction-treated lithium tantalate crystal used in the above-mentioned reduction step (2) is returned to the step (1) to reduce it again. A lithium crystal could be obtained. However, when the reflow process is repeated, the wrapped wafer made of lithium tantalate crystal becomes gradually brittle, and when it is taken out after the reduction treatment, it is broken, so that it cannot be reused.
The number of reusable times differs depending on the reducing gas composition as shown in Table 2.
Here, the number of times until 10% of the number of input wafers is broken is defined as the number of reuses.
[Table 1]
Table 1 Conductivity of lithium tantalate crystal after reduction treatment and single domain treatment
Figure 2004315316
The average value of the electric conductivity is obtained by further averaging the average value of 5 points on the wafer surface with respect to 5 samples. The variation in the electric conductivity is obtained by averaging the difference of 5 points on the wafer surface with respect to 5 samples.
Table 2 Regeneration process of reduction treated lithium tantalate crystal
Figure 2004315316
All of the reduction-treated lithium tantalate obtained in the examples and comparative examples could be used for producing a reduction-treated and single-domain lithium tantalate crystal.

Claims (4)

重水素を含む第1の還元雰囲気中にて熱処理されたタンタル酸リチウム結晶を、当該熱処理の温度より低い温度でかつ重水素を含む第2の還元雰囲気中において、単一分域化されたタンタル酸リチウム結晶に接触することで該単一分域化されたタンタル酸リチウム結晶の導電率を増加することを特徴とする導電率が増加され単一分極化されたタンタル酸リチウム結晶の製造方法。Lithium tantalate crystal heat-treated in a first reducing atmosphere containing deuterium is subjected to single domain tantalum at a temperature lower than the temperature of the heat treatment and in a second reducing atmosphere containing deuterium. A method for producing a single-polarized lithium tantalate crystal having increased conductivity, wherein the conductivity of the single-domain lithium tantalate crystal is increased by contacting the lithium tantalate crystal. 前記第1と第2の少なくとも一方の還元雰囲気中の重水素の濃度が0.5%以上であることを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein the concentration of deuterium in at least one of the first and second reducing atmospheres is 0.5% or more. 前記第1と第2の還元雰囲気の少なくとも一方が更に一酸化炭素とNOx(x<2.5)の少なくとも一方を含むことを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein at least one of the first and second reducing atmospheres further contains at least one of carbon monoxide and NOx (x <2.5). 該単一分極化されたタンタル酸リチウム結晶として、スライス処理が行われたウエハ、あるいはラップ処理が行われたウエハを用いることを特徴とする請求項1記載の製造方法。2. The manufacturing method according to claim 1, wherein a slice-processed wafer or a lap-processed wafer is used as the single-polarized lithium tantalate crystal.
JP2003113380A 2003-04-17 2003-04-17 Method for producing single-domain lithium tantalate crystals Expired - Fee Related JP4071670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113380A JP4071670B2 (en) 2003-04-17 2003-04-17 Method for producing single-domain lithium tantalate crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113380A JP4071670B2 (en) 2003-04-17 2003-04-17 Method for producing single-domain lithium tantalate crystals

Publications (2)

Publication Number Publication Date
JP2004315316A true JP2004315316A (en) 2004-11-11
JP4071670B2 JP4071670B2 (en) 2008-04-02

Family

ID=33473340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113380A Expired - Fee Related JP4071670B2 (en) 2003-04-17 2003-04-17 Method for producing single-domain lithium tantalate crystals

Country Status (1)

Country Link
JP (1) JP4071670B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038098A1 (en) * 2003-10-16 2005-04-28 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method for producing same
WO2005038099A1 (en) * 2003-10-16 2005-04-28 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method for producing same
WO2006067836A1 (en) * 2004-12-21 2006-06-29 Ulvac Singapore Pte Ltd. Film forming mask and mask assembly jig
US7527755B2 (en) 2002-06-28 2009-05-05 Silicon Light Machines Corporation Method for increasing bulk conductivity of a ferroelectric material such as lithium tantalate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527755B2 (en) 2002-06-28 2009-05-05 Silicon Light Machines Corporation Method for increasing bulk conductivity of a ferroelectric material such as lithium tantalate
WO2005038098A1 (en) * 2003-10-16 2005-04-28 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method for producing same
WO2005038099A1 (en) * 2003-10-16 2005-04-28 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method for producing same
US7442250B2 (en) 2003-10-16 2008-10-28 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method for producing same
US7713511B2 (en) 2003-10-16 2010-05-11 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and process for its manufacture
WO2006067836A1 (en) * 2004-12-21 2006-06-29 Ulvac Singapore Pte Ltd. Film forming mask and mask assembly jig
KR101082866B1 (en) 2004-12-21 2011-11-11 알박 싱가포르 피티이 리미티드 Film forming mask and mask assembly jig

Also Published As

Publication number Publication date
JP4071670B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4220997B2 (en) Method for producing lithium tantalate crystals
KR100573664B1 (en) Lithium tantalate substrate and method of manufacturing same
JP5133279B2 (en) Method for producing lithium tantalate crystals
JPH1012563A (en) Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
JP2005119908A (en) Lithium tantalate substrate and its producing method
TWI345001B (en) Lithium tantalate substrate and production thereof
JP4995847B2 (en) Method for producing lithium tantalate crystals
US7374612B2 (en) Method of producing single-polarized lithium tantalate crystal and single-polarized lithium tantalate crystal
JP2009249254A (en) Method for producing lithium tantalate crystal and lithium tantalate crystal
JP2004269300A (en) Method for manufacturing lithium tantalate crystal
JP4071670B2 (en) Method for producing single-domain lithium tantalate crystals
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP4063190B2 (en) Method for producing lithium tantalate substrate
JP4482761B2 (en) Method for producing lithium tantalate crystals
JP4596149B2 (en) Method for producing lithium tantalate crystals
JP2005317822A (en) Manufacturing method of singly polarized lithium tantalate
JP6598378B2 (en) Method for producing lithium tantalate single crystal substrate
JPS60200519A (en) Heating element
JPH0769789A (en) Highly oriented diamond thin film
JP2005535555A (en) Method for producing lithium tantalate single crystal substrate for surface acoustic wave device
JP6926022B2 (en) Crystal manufacturing method
JPH06345598A (en) Cdte crystal for radiation detecting element and its production
JP2004331443A (en) Method for manufacturing singly polarized advanced lithium tantalate crystal
JP2005119950A (en) Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal
JPWO2006051610A1 (en) Method for producing lithium tantalate crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Effective date: 20070809

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Effective date: 20080117

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110125

LAPS Cancellation because of no payment of annual fees