JP2004314674A - Reinforcement structure of pillar for vehicle - Google Patents

Reinforcement structure of pillar for vehicle Download PDF

Info

Publication number
JP2004314674A
JP2004314674A JP2003107703A JP2003107703A JP2004314674A JP 2004314674 A JP2004314674 A JP 2004314674A JP 2003107703 A JP2003107703 A JP 2003107703A JP 2003107703 A JP2003107703 A JP 2003107703A JP 2004314674 A JP2004314674 A JP 2004314674A
Authority
JP
Japan
Prior art keywords
pillar
vehicle
outer plate
vertical direction
lower ends
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107703A
Other languages
Japanese (ja)
Inventor
Yuichi Kitagawa
裕一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003107703A priority Critical patent/JP2004314674A/en
Publication of JP2004314674A publication Critical patent/JP2004314674A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcement structure of a pillar for a vehicle effective to an external force inputted to a central part in the vertical direction of the pillar. <P>SOLUTION: A pillar 2 is curved in a manner that a central part 2 in its vertical direction projects outwardly of a straight line L connecting upper and lower ends 2b, 2c, and there are provided with a first reinforcement means for restraining elongation deformation of vertical ends α, β of an outside plate 2d of the pillar 2, and a second reinforcement means for restraining compression deformation of an approximately center part γ in the vertical direction of the outside plate 2d. Large strength against an external force is retained according to a curved shape of the pillar 2, and curvature of the vertical ends α, β of the pillar 2 is restrained from increasing at the time of side collision by the first reinforcement means. Also, the approximately center part γ in the vertical direction of the pillar 2 is restrained from curving inwardly of the compartment at the time of side collision by the second reinforcement means, so as to restrain the pillar 2 from entirely buckling and deforming inwardly of the compartment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車室の左右両側に上下方向に延在配置した車両用ピラー、とりわけ、上下方向中央部が上,下端を結ぶ直線よりも外方に湾曲した車両用ピラーの補強構造に関する。
【0002】
【従来の技術】
自動車等の車両は車室の左右両側に上下方向に延在するピラーを車両前後方向に複数本、例えばフロントピラー、センターピラー、リアピラーを設けてあり、これら各ピラー間をドア開口部としてある。
【0003】
ところで、このように車室の左右両側に設けたピラーは側面衝突に対処するため、ピラー内にリインホースを配設し、このリインホースの下端部をドア開口部の下縁部を形成するサイドシルに接続して補強している(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−347655号公報(第3頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の車両用ピラーの補強構造はピラーの下部を補強する構造となっているため、側面衝突する相手車両の車高が低い場合は有効であるが、相手車両の車高が高い場合は側突位置がピラーの上下方向中央部となるため、ピラーの座屈モードを安定化させることが容易ではなかった。
【0006】
そこで、本発明は、ピラーの上下方向中央部に入力する外力に対して有効となる車両用ピラーの補強構造を提供するものである。
【0007】
【課題を解決するための手段】
本発明にあっては、車室の左右両側に上下方向に延在配置した中空のピラーを、その上下方向中央部が上,下端を結ぶ直線よりも外方に突出するように湾曲して形成し、かつ、ピラーの外側板の上,下端部の伸び変形を抑制する第1の補強手段と、前記外側板の上下方向略中央部の圧縮変形を抑制する第2の補強手段と、を設けたことを特徴としている。
【0008】
【発明の効果】
本発明によれば、ピラーの上下方向中央部が上,下端を結ぶ直線よりも外方に突出するように湾曲しているため、この湾曲したピラーに側面衝突によって車室内方への外力が作用した場合にも、この外力に対してピラー自体が大きな強度を保有する。
【0009】
そして、第1の補強手段によりピラーの外側板の上,下端部の伸び変形を抑制することにより、側面衝突時にピラーの上,下端部の湾曲率が増大するのを抑え、かつ、第2の補強手段により前記外側板の上下方向略中央部の圧縮変形を抑制することにより、側面衝突時にピラーの上下方向略中央部が車室内方に湾曲変形するのを抑えることができるため、ピラーが全体的に車室内方に座屈変形するのを効果的に抑制することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0011】
図1〜図8は本発明にかかる車両用ピラーの補強構造の第1実施形態を示し、図1は車室内前部の斜視図、図2はピラーの正面図、図3はピラーの斜視図、図4は図3中、A−A線,B−B線,C−C線に沿った各断面を(a)〜(c)にそれぞれ示す断面斜視図、図5はピラーの形成工程を(a)〜(c)にそれぞれ示す断面斜視図、図6は湾曲したピラーの側面衝突時の変形挙動を(a)〜(c)に順を追って示す説明図、図7は補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図、図8は側面衝突時のピラーの変位−反力特性の説明図である。
【0012】
この第1実施形態の車両用ピラーの補強構造は、図1に示すように車両前後方向に所定間隔をおいてフロントピラー1およびセンターピラー2が、車室Rの左右両側に上下方向に延在しており、これらフロントピラー1およびセンターピラー2は上端部をルーフサイドレール3に結合するとともに、下端部をサイドシル4に結合してある。
【0013】
ここで、この実施形態では特にセンターピラー(以下、単にピラーと称する)2に本発明を適用した場合を例をとって以下説明する。
【0014】
この第1実施形態では、前記ピラー2を断面略矩形の中空状に形成し、図2に示すようにピラー2の上下方向中央部2aが上,下端2b,2cを結ぶ直線Lよりも外方に突出するように湾曲形成してある。
【0015】
そして、前記ピラー2には、図3,図4に示すように、外側板2dの上,下端部α,βの伸び変形を抑制する第1の補強手段としての前後方向リブ10を設けるとともに、前記外側板2dの上下方向略中央部(以下、単に略中央部と称する)γの圧縮変形を抑制する第2の補強手段としての車幅方向リブ11を設けてある。
【0016】
前記前後方向リブ10は、図4(a)〜(c)に示すように、ピラー2の中空部S内に車両前後方向に沿って形成し、ピラー2の上,下端部α,βでは外側板2d寄りに配置するとともに、ピラー2の略中央部γでは、ピラー2の内側板2e寄りに配置してある。
【0017】
また、前記車幅方向リブ11は、ピラー2の中空部S内に車幅方向に沿って形成してあり、本実施形態では、この中空部S内の車両前後方向中央部に配置してある。
【0018】
そして、これら前後方向リブ10および車幅方向リブ11により、ピラー2の中空部S内を複数の閉断面部分に隔成している。
【0019】
ところで、この第1実施形態のピラー2は、中空部S内に前後方向リブ10および車幅方向リブ11が十字状となって全長に亘って形成されるが、外側板2dと内側板2eとの間で相対位置が変化する前後方向リブ10の設定位置が調節できれば、前後方向リブ10および車幅方向リブ11をピラー2の本体部分(矩形状外側部分)2fと一体に押出し成形することができる。
【0020】
しかし、その押出し成形が困難な場合は、図5(a)に示すようにピラー2の本体部分2fと前後方向リブ10および車幅方向リブ11の結合体12とを別体として形成しておき、図5(b)に示すようにその結合体12を本体部分2fの中空部S内に挿入し、図5(c)に示すように位置合わせした状態で接着剤、若しくは本体部分2fの外側から一方向レーザ溶接により結合体12を接合して構成することができる。
【0021】
以上の構成によりこの第1実施形態にあっては、図6に示すように側面衝突時に荷重Fがピラー2の略中央部γに作用した場合、荷重Fが過大である場合はピラー2の変形モードは、同図(a)の初期状態から同図(b)の座屈前状態を経て同図(c)の座屈状態へと変形挙動が進行する傾向となる。
【0022】
この場合、ピラー2は、その上下方向中央部2aが上,下端2b,2cを結ぶ直線Lよりも外方に突出するように湾曲形成してあるので、図6(b)に示すように略中央部γに作用した衝突荷重Fは、ピラー2の上,下端2b,2cをルーフサイドレール3およびサイドシル4に押し付ける分力Fa,Fbに変換する。
【0023】
この分力変換作用は、略中央部γの車室R内への変位が小さい間は有効であるが、入力される荷重Fが過大である場合は図6(c)に示すようにピラー2が座屈することになり、座屈した場合のピラー2の変形は、上,下端部α,β近傍では湾曲率が増大し、略中央部γでは逆方向(車室R内方向)に湾曲するモードとなる。
【0024】
ここで、この第1実施形態では、前述のようにピラー2の中空部S内に前後方向リブ10および車幅方向リブ11が形成されているため、実際の変形挙動は図7に示すようになる。同図(a)は座屈前、同図(b)は座屈後の変形モードを示している。
【0025】
即ち、ピラー2の略中央部γに入力した衝突荷重Fは、前述したようにピラー2の上,下端2b,2cをルーフサイドレール3およびサイドシル4に押し付ける分力Fa,Fbに変換するが、中空部S内に形成した前後方向リブ10および車幅方向リブ11によって断面積が増大するため、分力Fa,Fbの伝達許容量が増大される。
【0026】
また、前後方向リブ10により外側板2dの上,下端部α,βの伸び変形を抑制することにより、側面衝突時にピラーの上,下端部α,βの湾曲率が増大するのを抑え、かつ、車幅方向リブ11により外側板2dの略中央部γの圧縮変形を抑制することにより、側面衝突時にピラー2の略中央部γが車室R内方に湾曲するのを抑えることができるため、ピラー2が全体的に車室R内方に座屈変形するのを効果的に抑えることができる。
【0027】
特に、この実施形態では、前後方向リブ10が上,下端部α,βでは外側板2d寄りに配置するとともに、略中央部γではピラー2の内側板2e寄りに配置してあるため、この外側板2dの上,下端部α,βおよび内側板2eの略中央部γの部位の伸び変形が抑制されることで、ピラー2の座屈変形を効果的に抑えて、車室R内への変形を抑制することができる。
【0028】
また、車幅方向リブ11は、これをピラー2の全長に亘って形成してあるため、ピラー2の湾曲変形を全体的に抑制して圧縮初期の剛性を更に高めることができる。
【0029】
従って、この第1実施形態の車両用ピラーの補強構造では、ピラー2の圧縮初期の剛性と荷重伝達許容量および座屈限界荷重を増大することができるため、図8中実線で示す変位−反力特性C1に示すように荷重ピーク値を高めることができる。尚、図8中破線は前後方向リブ10および車幅方向リブ11を設けないピラー2の本体部分2fのみの場合の特性C2である。
【0030】
即ち、この第1実施形態では、ピラー2の外側板2dの上,下端部α,βの伸びを抑制する前後方向リブ10および車幅方向リブ11を設けたので、側面衝突時にピラー2の上,下端部α,βの湾曲率が増大して略中央部γが逆方向に湾曲するような座屈変形を効果的に抑えることができる。
【0031】
また、第1,第2の補強手段として前記前後方向リブ10および前記車幅方向リブ11を用いたことにより、比較的簡単な追加補強のみで効果的に座屈変形を抑えることができ、更には、ピラー2の本体部分2fの成形過程に及ぼす影響を小さくできる。
【0032】
図9は本発明の第2実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図9はピラーの断面正面図である。
【0033】
この第2実施形態の車両用ピラーの補強構造にあっては、図9に示すようにピラー2の外側板2dの上,下端部α,βに、内側板2eよりも厚肉化した第1の補強手段としての第1肉厚部分13を設けてある。
【0034】
また、ピラー2の外側板2dの略中央部γに、内側板2eよりも厚肉化した第2肉厚部分14を設けてある。
【0035】
前記第1肉厚部分13と前記第2肉厚部分14は連続して形成され、この実施形態では外側板2dを全体的にほぼ同一に厚肉形成してある。
【0036】
以上の構成によりこの第2実施形態の構造によれば、前記第1実施形態と同様に第1肉厚部分13により外側板2dの上,下端部α,βの伸び変形を抑制できるため、側面衝突時にピラーの上,下端部α,βの湾曲率が増大するのを抑えることができる。
【0037】
また、第2肉厚部分14により外側板2dの略中央部γの圧縮変形を抑制することができるため、側面衝突時にピラー2の略中央部γが車室R内方に湾曲するのを抑えて、ピラー2が全体的に車室R内方に座屈変形するのを効果的に抑えることができる。
【0038】
そして、この第2実施形態ではピラー2の外側板2dを単に厚肉化するのみでよいため、特別な追加補強無しにピラー2の本体部分2fのみでも効果的に座屈変形を抑えることができるとともに、ピラー2の設計が簡単にある。
【0039】
図10〜図14は本発明の第3実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図10はピラーの斜視図、図11は図10中、D−D線,E−E線,F−F線,G−G線,H−H線に沿った各断面を(a)〜(e)にそれぞれ示す断面斜視図、図12は発泡材を取り除いた図10中E−E線およびG−G線に対応する断面を(a),(b)にそれぞれ示す断面斜視図、図13は補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図、図14は側面衝突時のピラーの変位−反力特性の説明図である。
【0040】
この第3実施形態の車両用ピラーの補強構造にあっては、図10,図11に示すように、第2の補強手段としての発泡アルミ材(発泡材)15を、ピラー2の中空部S内の上,下端部α,βでは内側板寄りに配置するとともに、略中央部γでは外側板2d寄りに配置してある。
【0041】
前記発泡アルミ材15は、図12に示すように、ピラー2の中空部S内を車幅方向に隔成する第1隔成リブ16と、ピラー2の中空部S内を上,下端部α,βと略中央部γとの間でそれぞれ上下方向に隔成する第2隔成リブ17と、によって形成した隔成空間S1,S2,S3内に充填保持してある。
【0042】
即ち、前記第1隔成リブ16は、ピラー2の全長に亘って連続して形成してあるとともに、前記第2隔成リブ17は図10中E−E線位置およびG−G線位置に配置することになる。
【0043】
従って、ピラー2の中空部S内は、E−E線位置の第2隔成リブ17よりも上方となる上端部α、E−E線位置およびG−G線位置の第2隔成リブ17,17間となる略中央部γ、G−G線位置の第2隔成リブ17よりも下方となる下端部βが、それぞれ第1隔成リブ16によって内外に2つの空間に隔成されるが、上端部αでは内側板2e側が前記隔成空間S1となり、略中間部γでは外側板2d側が前記隔成空間S2となり、下端部βでは内側板2e側が前記隔成空間S3となる。
【0044】
以上の構成によりこの第3実施形態の構造によれば、図13に示すように側面衝突時の荷重Fがピラー2の略中央部γに作用した場合、同図(a)の座屈前、同図(b)の座屈後の変形モードをもってピラー2が変形挙動する。
【0045】
即ち、この第3実施形態にあってもピラー2の略中央部γに入力した衝突荷重Fは、図13(a)に示すように、ピラー2の上,下端2b,2cをルーフサイドレール3およびサイドシル4に押し付ける分力Fa,Fbに変換するが、空間部S内に形成した第1隔成リブ16によって伝達力が増大することができる。
【0046】
また、前記空間部S内には、上端部αでは内側板2e側の隔成空間S1と、略中間部γでは外側板2d側の隔成空間S2と、下端部βでは内側板2e側の隔成空間S3と、にそれぞれ発泡アルミ材15を充填したことにより、この発泡アルミ材15の配置部位における圧縮変形を抑制し、ひいては、ピラー2の座屈変形を抑えることができる。
【0047】
特に、この実施形態ではピラー2が座屈した後に、発泡アルミ材15が初期の圧縮剛性のみならず圧縮変形後も反力低下が抑制される特徴を有しており、この発泡アルミ材15を前記隔成空間S1,S2,S3に封入することにより、過大な入力荷重Fによりピラー2が座屈した際に圧縮が進行する部位の断面変形を効果的に抑制し、座屈後のピラー2全体としての反力低下を低減することができる。
【0048】
従って、この第3実施形態ではピラー2の圧縮初期の剛性を向上できるとともに、特に、座屈後の反力維持が期待できるため、図14に示すように、側面衝突時の変位−反力特性C1′の荷重ピークP1より後方、つまり変位(変形)進行方向の範囲の反力を増大することができる。
【0049】
ところで、この第3実施形態では第1隔成リブ16,第2隔成リブ17によって発泡アルミ材15を隔成空間S1,S2,S3に密封したが、このように密封したことにより保持性が向上して発泡アルミ材15の機能を確実に発揮させることができる。
【0050】
即ち、この第3実施形態ではピラー2内の外側板2d近傍に発泡アルミ材15を挿入したことにより、比較的簡単な追加補強のみで効果的に座屈変形を抑えることができ、また、圧縮後も定常的に反力を備えるという発泡材の特性により、座屈変形が生じた場合にあってもピラー2の断面変形による反力低下を少なくすることができる。
【0051】
尚、前記発泡アルミ材15を保持できる手段を別途講ずることにより、前記第1隔成リブ16,第2隔成リブ17を設けない場合にも略同等の効果を奏することができる。
【0052】
また、ピラー2の中空部S内を全て発泡アルミ材15で充填した場合にも同等の効果を奏することができる。
【0053】
更に、この第3実施形態にあっても前記第1,第2隔成リブ16,17に加えて、前記第1実施形態に示した車幅方向リブ11と同様に車幅方向に沿ったリブを設けてもよい。
【0054】
また、前記発泡アルミ材15に限ることなく他の発泡材、例えば、発泡ウレタン等を用いることができ、その材料選択は圧縮効果のみに限ることなく、重量、コスト、対候性、対経時劣化性等を考慮して決定することが好ましい。
【0055】
図15〜図17は本発明の第4実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図15はピラーの断面斜視図、図16は図15中、I−I線,J−J線,K−K線に沿った各断面を(a)〜(c)にそれぞれ示す断面図、図17は補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図である。
【0056】
この第4実施形態の車両用ピラーの補強構造にあっては、図15,図16に示すように、第1の補強手段としての繊維強化材18を、ピラー2の中空部S内の外側板2d近傍に沿って上下方向に緊張状態で取り付けてある。
【0057】
即ち、前記外側板2dの中空部S内には、図16に示すように、底面19aと、その両側部に所定間隔(繊維強化材18の厚み分)をおいて分離配置した1対のフランジ部19bと、からなるチャンネル部材19をピラー2の全長に亘って配置し、前記底面19aを外側板2dの内面に接合してある。
【0058】
そして、前記繊維強化材18を、チャンネル部材19の底面19aとフランジ部19bとの間に挿入して保持してあり、繊維強化材18の上端部をピラー2の上端2bを越えてルーフサイドメンバ3内に挿入し、その挿入端部をクランプ20によってルーフサイドメンバ3に連結・固定するとともに、繊維強化材18の下端部をピラー2の下端2cを越えてサイドシル4内に挿入し、その挿入端部をクランプ21によってサイドシル4に連結・固定してある。
【0059】
勿論、繊維強化材18をクランプ20,21によって固定する際、この繊維強化材18を緊張状態に保持している。
【0060】
また、この第4実施形態では前記チャンネル部材19のフランジ部19bは、図16(b)に示すように、ピラー2の略中央部γで厚肉形成してあるとともに、ピラー2の中空部Sの断面積を、図16(a)〜(c)に示すように上端2bから下端2cに行くに従って徐々に大きくしてある。
【0061】
以上の構成によりこの第4実施形態の構造によれば、図17に示すように側面衝突時の荷重Fがピラー2の略中央部γに作用した場合、同図(a)の座屈前、同図(b)の座屈後の変形モードをもってピラー2は変形挙動する。
【0062】
即ち、この実施形態にあってもピラー2の略中央部γに入力した衝突荷重Fは、図17(a)に示すように、ピラー2の上,下端2b,2cをルーフサイドレール3およびサイドシル4に押し付ける分力Fa,Fbに変換するが、繊維強化材18を保持したチャンネル部材19を外側板2dに接合したことにより、圧縮初期の曲げ剛性を増大することができる。
【0063】
そして、衝突荷重Fが過大である場合は、ピラー2は上,下端部α,βで湾曲率が増大する方向の変形が誘発されるが、緊張状態でピラー2の中空部S内に挿入された繊維強化材18が伸びに対して高い剛性を有するため、前記上,下端部α,βの変形の進行を抑えることができる。
【0064】
一方、図17(b)に示すように、ピラー2の略中央部γでは逆方向(車室R内方向)に湾曲して圧縮方向の変形が誘発されるが、この部位ではチャンネル部材10のフランジ部19bを厚肉形成してあり、ひいては、ピラー2の外側板2dの板厚増加に相当するため、前記略中央部γの圧縮変形の進行を効果的に抑えることができる。
【0065】
従って、この実施形態の変位−反力特性による効果は、図8に示した第1実施形態の場合と同様となる。
【0066】
即ち、この第4実施形態ではピラー2内の外側板2dの近傍に繊維強化材18を挿入したことにより、外側板2dの伸び変形を抑制できることにより、ピラー2の座屈変形を効果的に抑えることができ、また、繊維強化材18を用いたことにより軽量化を図りつつ高い強度を備えることができる。
【0067】
ところで、この実施形態では側面衝突時にピラー2は波形状に変形するが、外側板2dの圧縮変形箇所が略中央部γの1箇所であるのに対して、伸び変形は上,下端部α,βの2箇所であるため、変形時に繊維強化材18が弛緩するのを防止できるが、繊維強化材18の緊張状態をより確実に維持するためには、繊維強化材18の適宜箇所をクランプ等を介してチャンネル部材19に固定することが好ましい。
【0068】
また、繊維強化材18としては、工業用材料として広く知られる炭素繊維を用いたFRPやガラス繊維を用いたGRPを用いることができ、更には、ナイロン繊維や蜘蛛の糸を折り込んだ布材等の引張り強度の高い材料を用いることができる。
【0069】
図18〜図21は本発明の第5実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図18はピラーの断面斜視図、図19は図18中、L−L線,M−M線,N−N線に沿った各断面を(a)〜(c)にそれぞれ示す断面図、図20は補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図、図21は側面衝突時のピラーの変位−反力特性の説明図である。
【0070】
この第5実施形態の車両用ピラーの補強構造にあっては、図18,図19に示すように、第2の補強手段としての多孔質材料22をピラー2の中空部S内に充填してあり、かつ、この多孔質材料22の繊維方向を、上,下端部α,βの外側板2d近傍と略中央部γの内側板2e近傍でピラー2の軸方向と平行な方向に整列するとともに、上,下端部α,βの内側板2e近傍と略中央部γの外側板2d近傍では繊維方向を不規則としてある。
【0071】
この第5実施形態のピラー2は、中空部S内にはリブや間仕切りを設けること無く、前記多孔質材料22を中空部S内全体に充填してある。
【0072】
また、ピラー2の中空部Sの断面積を、図19(a)〜(c)に示すように上端2bから下端2cに行くに従って徐々に大きくしてあり、更に、前記第2実施形態と同様にピラー2の外側板2dを内側板2eよりも厚肉形成してある。
【0073】
以上の構成によりこの第5実施形態の構造によれば、図20に示すように側面衝突時の荷重Fがピラー2の略中央部γに作用した場合、同図(a)の座屈前、同図(b)の座屈後の変形モードをもってピラー2は変形挙動する。
【0074】
即ち、この実施形態にあってもピラー2の略中央部γに入力した衝突荷重Fは、図20(a)に示すように、ピラー2の上,下端2b,2cをルーフサイドレール3およびサイドシル4に押し付ける分力Fa,Fbに変換するが、ピラー2の中空部S内に多孔質材料22を充填したことにより、この多孔質材料22によって伝達力を増大することができる。
【0075】
前記多孔質材料22は、繊維方向が整列している場合は伸び変形に対して大きな強度を発揮し、また、繊維方向が不規則な場合は圧縮変形に対して大きな強度を発揮する性質を有する。
【0076】
このような性質を踏まえてこの第5実施形態では、多孔質材料22の繊維方向を、上,下端部α,βの外側板2d近傍と略中央部γの内側板2e近傍でピラー2の軸方向と平行な方向に整列するとともに、上,下端部α,βの内側板2e近傍と略中央部γの外側板2d近傍では不規則としたので、衝突荷重Fが過大な場合にピラー2の座屈を誘発する変形を効果的に抑制することができる。
【0077】
また、ピラー2が座屈した後にあっても、圧縮部位にある多孔質材料22の繊維方向が不規則であるため、当該部位の断面変形を継続的に抑制してピラー2全体の反力低下を減少することができる。
【0078】
従って、この第5実施形態ではピラー2の圧縮初期の剛性と座屈強度が大幅に増大するとともに、座屈後も第3実施形態と同等な反力維持が期待できるため、図21に示すように、側面衝突時の変位−反力特性C1″の荷重レベルを全体的に押し上げることができる。
【0079】
即ち、この第5実施形態ではピラー2内に多孔質材料22を充填したことにより、前記第3実施形態と同様に比較的簡単な追加補強のみで効果的に座屈変形を抑えることができ、また、圧縮後も定常的に反力を備えるという多孔質材料22の特性により、座屈変形が生じた場合にあってもピラー2の断面変形による反力低下を少なくすることができる。
【0080】
また、この実施形態の多孔質材料22としては、第3実施形態に開示した発泡アルミ材や発泡ウレタンの他ににカルシウム素材等を用いることができる。
【0081】
ところで、本発明の車両用ピラーの補強構造は前記第1〜第5実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採ることができ、例えば、車両用ピラーとしてセンターピラー22に例をとって示したが、これに限ることなくフロントピラー1またはリアピラーにも本発明を適用することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す車室内前部の斜視図。
【図2】本発明の第1実施形態を示すピラーの正面図。
【図3】本発明の第1実施形態を示すピラーの斜視図。
【図4】図3中、A−A線,B−B線,C−C線に沿った各断面を(a)〜(c)にそれぞれ示す断面斜視図。
【図5】本発明の第1実施形態におけるピラーの形成工程を(a)〜(c)にそれぞれ示す断面斜視図。
【図6】本発明の第1実施形態おける湾曲したピラーの側面衝突時の変形挙動を(a)〜(c)に順を追って示す説明図。
【図7】本発明の第1実施形態における補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図。
【図8】本発明の第1実施形態を示す側面衝突時のピラーの変位−反力特性の説明図。
【図9】本発明の第2実施形態を示すピラーの断面正面図。
【図10】本発明の第3実施形態を示すピラーの斜視図。
【図11】図10中、D−D線,E−E線,F−F線,G−G線,H−H線に沿った各断面を(a)〜(e)にそれぞれ示す断面斜視図。
【図12】本発明の第3実施形態における発泡材を取り除いた図10中、E−E線およびG−G線に対応する断面を(a),(b)にそれぞれ示す断面斜視図。
【図13】本発明の第3実施形態における補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図。
【図14】本発明の第3実施形態を示す側面衝突時のピラーの変位−反力特性の説明図。
【図15】本発明の第4実施形態を示すピラーの断面斜視図。
【図16】図15中、I−I線,J−J線,K−K線に沿った各断面を(a)〜(c)にそれぞれ示す断面図。
【図17】本発明の第4実施形態における補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図。
【図18】本発明の第5実施形態を示すピラーの断面斜視図。
【図19】図18中、L−L線,M−M線,N−N線に沿った各断面を(a)〜(c)にそれぞれ示す断面図。
【図20】本発明の第5実施形態における補強構造を付加したピラーの側面衝突時の変形挙動を(a),(b)によって示す説明図。
【図21】本発明の第5実施形態における側面衝突時のピラーの変位−反力特性の説明図。
【符号の説明】
2 センターピラー(ピラー)
2a ピラーの上下方向中央部
2b ピラーの上端
2c ピラーの下端
2d 外側板
2e 内側板
2f ピラーの本体部分
3 ルーフサイドレール
4 サイドシル
10 前後方向リブ(第1の補強手段)
11 車幅方向リブ(第2の補強手段)
13 第1肉厚部分(第1の補強手段)
14 第2肉厚部分(第2の補強手段)
15 発泡アルミ材(第2の補強手段)
16 第1隔成リブ
17 第2隔成リブ
18 繊維強化材(第1の補強手段)
22 多孔質材料(第2の補強手段)
α ピラーの上端部
β ピラーの下端部
γ ピラーの上下方向略中央部
L ピラーの上,下端を結ぶ直線
S ピラーの中空部
S1,S2,S3 隔成空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle pillar that is vertically extended on both left and right sides of a vehicle compartment, and more particularly to a vehicle pillar reinforcement structure in which a vertical central portion is curved outward from a straight line connecting the upper and lower ends.
[0002]
[Prior art]
A vehicle such as an automobile is provided with a plurality of pillars extending in the up-down direction on both left and right sides of a vehicle compartment, for example, a front pillar, a center pillar, and a rear pillar, and a space between these pillars is a door opening.
[0003]
By the way, in order to deal with side collisions, the pillars provided on the left and right sides of the vehicle compartment are provided with rein hoses inside the pillars, and the lower end of the rein hose is connected to a side sill that forms the lower edge of the door opening. (See, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2002-347655 (Page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, such a conventional vehicle pillar reinforcement structure is a structure that reinforces the lower portion of the pillar, and is effective when the vehicle height of the opponent vehicle colliding sideways is low, but is effective when the vehicle height of the opponent vehicle is high. It was not easy to stabilize the buckling mode of the pillar because the side collision position was at the center in the vertical direction of the pillar.
[0006]
Accordingly, the present invention provides a vehicle pillar reinforcement structure that is effective against an external force input to the vertical center of the pillar.
[0007]
[Means for Solving the Problems]
According to the present invention, hollow pillars extending in the vertical direction on both left and right sides of the vehicle compartment are formed so as to be curved so that the central portion in the vertical direction projects outward beyond a straight line connecting the upper and lower ends. A first reinforcing means for suppressing extension deformation of upper and lower ends of the outer plate of the pillar; and a second reinforcing means for suppressing compression deformation of a substantially central portion of the outer plate in the vertical direction. It is characterized by having.
[0008]
【The invention's effect】
According to the present invention, since the center of the pillar in the vertical direction is curved so as to protrude outward from a straight line connecting the upper and lower ends, an external force acts on the curved pillar by a side collision due to side collision. In this case, the pillar itself has a large strength against this external force.
[0009]
The first reinforcing means suppresses the extension deformation of the upper and lower ends of the outer plate of the pillar, thereby suppressing an increase in the curvature of the upper and lower ends of the pillar at the time of a side collision. By suppressing the compressive deformation of the substantially central portion in the vertical direction of the outer plate by the reinforcing means, it is possible to suppress the substantially central portion in the vertical direction of the pillar from being bent toward the interior of the vehicle at the time of a side collision. Buckling deformation in the vehicle interior can be effectively suppressed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
1 to 8 show a first embodiment of a reinforcement structure for a vehicle pillar according to the present invention. FIG. 1 is a perspective view of a front portion of a vehicle interior, FIG. 2 is a front view of the pillar, and FIG. 3 is a perspective view of the pillar. FIG. 4 is a perspective view showing cross sections along lines AA, BB, and CC in FIG. 3 (a) to (c), and FIG. (A) to (c) are cross-sectional perspective views, respectively. FIG. 6 is an explanatory view showing the deformation behavior of a curved pillar at the time of a side collision in the order of (a) to (c). FIG. FIGS. 8A and 8B are explanatory diagrams showing the deformation behavior of the pillar at the time of a side collision, and FIGS. 8A and 8B are explanatory diagrams of the displacement-reaction characteristic of the pillar at the time of a side collision.
[0012]
In the reinforcing structure for a vehicle pillar according to the first embodiment, a front pillar 1 and a center pillar 2 are vertically extended on both left and right sides of a vehicle compartment R at predetermined intervals in a vehicle longitudinal direction as shown in FIG. The front pillar 1 and the center pillar 2 have an upper end connected to the roof side rail 3 and a lower end connected to the side sill 4.
[0013]
Here, in this embodiment, a case where the present invention is applied to a center pillar (hereinafter, simply referred to as a pillar) 2 will be described as an example.
[0014]
In the first embodiment, the pillar 2 is formed in a hollow shape having a substantially rectangular cross section, and as shown in FIG. 2, the center 2a in the vertical direction of the pillar 2 is located outside the straight line L connecting the upper and lower ends 2b and 2c. It is curved so as to protrude.
[0015]
As shown in FIGS. 3 and 4, the pillar 2 is provided with longitudinal ribs 10 as first reinforcing means for suppressing elongation deformation of the upper and lower ends α and β of the outer plate 2d. A vehicle width direction rib 11 is provided as a second reinforcing means for suppressing compressive deformation of a substantially central portion (hereinafter, simply referred to as a substantially central portion) γ in the vertical direction of the outer plate 2d.
[0016]
As shown in FIGS. 4A to 4C, the front-rear direction rib 10 is formed in the hollow portion S of the pillar 2 along the vehicle front-rear direction. In addition to being arranged closer to the plate 2d, it is arranged closer to the inner plate 2e of the pillar 2 at a substantially central portion γ of the pillar 2.
[0017]
The vehicle width direction rib 11 is formed in the hollow portion S of the pillar 2 along the vehicle width direction. In the present embodiment, the vehicle width direction rib 11 is disposed at the center of the hollow portion S in the vehicle longitudinal direction. .
[0018]
The interior of the hollow portion S of the pillar 2 is divided into a plurality of closed cross-sections by the front-rear direction rib 10 and the vehicle width direction rib 11.
[0019]
In the pillar 2 of the first embodiment, the front-rear direction rib 10 and the vehicle width direction rib 11 are formed in a cross shape in the hollow portion S over the entire length. If the set position of the front-rear direction rib 10 whose relative position changes between can be adjusted, the front-rear direction rib 10 and the vehicle width direction rib 11 can be extruded integrally with the main body portion (rectangular outer portion) 2f of the pillar 2. it can.
[0020]
However, when the extrusion molding is difficult, the main body 2f of the pillar 2 and the combined body 12 of the longitudinal rib 10 and the vehicle width direction rib 11 are formed separately as shown in FIG. As shown in FIG. 5B, the combined body 12 is inserted into the hollow portion S of the main body portion 2f, and the adhesive 12 or the outside of the main body portion 2f is aligned in the state shown in FIG. 5C. Thus, the joint body 12 can be joined by one-way laser welding.
[0021]
In the first embodiment with the above-described configuration, as shown in FIG. 6, when the load F acts on the substantially central portion γ of the pillar 2 at the time of a side collision, if the load F is excessive, the pillar 2 is deformed. In the mode, the deformation behavior tends to progress from the initial state in FIG. 10A to the buckling state in FIG. 10C through the pre-buckling state in FIG.
[0022]
In this case, the pillar 2 is curved so that the vertical central portion 2a protrudes outward beyond the straight line L connecting the upper and lower ends 2b and 2c, so that the pillar 2 is substantially formed as shown in FIG. The collision load F applied to the central portion γ is converted into component forces Fa and Fb for pressing the upper and lower ends 2 b and 2 c of the pillar 2 against the roof side rail 3 and the side sill 4.
[0023]
This component force conversion effect is effective while the displacement of the substantially central portion γ into the vehicle compartment R is small, but when the input load F is excessive, as shown in FIG. Is buckled, and the deformation of the pillar 2 in the case of buckling is such that the curvature rate increases near the upper and lower ends α and β, and the pillar 2 bends in the opposite direction (inward of the vehicle compartment R) at the approximate center γ. Mode.
[0024]
Here, in the first embodiment, since the front-back direction rib 10 and the vehicle width direction rib 11 are formed in the hollow portion S of the pillar 2 as described above, the actual deformation behavior is as shown in FIG. Become. FIG. 3A shows the deformation mode before buckling, and FIG. 3B shows the deformation mode after buckling.
[0025]
That is, the collision load F input to the substantially central portion γ of the pillar 2 is converted into component forces Fa and Fb for pressing the upper and lower ends 2b and 2c of the pillar 2 against the roof side rail 3 and the side sill 4, as described above. Since the cross-sectional area is increased by the longitudinal ribs 10 and the vehicle width direction ribs 11 formed in the hollow portion S, the allowable transmission amounts of the component forces Fa and Fb are increased.
[0026]
Further, by suppressing the extension deformation of the upper and lower ends α, β of the outer plate 2 d by the front-rear direction ribs 10, it is possible to suppress an increase in the curvature of the upper and lower ends α, β during the side collision, and By suppressing the compression deformation of the substantially central portion γ of the outer plate 2d by the vehicle width direction rib 11, it is possible to prevent the substantially central portion γ of the pillar 2 from bending inward into the vehicle compartment R at the time of a side collision. In addition, it is possible to effectively suppress the buckling deformation of the pillar 2 as a whole into the vehicle interior R.
[0027]
In particular, in this embodiment, the front and rear direction ribs 10 are arranged near the outer plate 2d at the upper and lower ends α and β, and are arranged closer to the inner plate 2e of the pillar 2 at the substantially central portion γ. The buckling deformation of the pillar 2 is effectively suppressed by suppressing the elongation deformation of the upper and lower ends α, β of the plate 2 d and the substantially central portion γ of the inner plate 2 e, and Deformation can be suppressed.
[0028]
In addition, since the vehicle width direction ribs 11 are formed over the entire length of the pillars 2, the bending deformation of the pillars 2 can be suppressed as a whole, and the rigidity in the initial stage of compression can be further increased.
[0029]
Therefore, in the vehicle pillar reinforcement structure of the first embodiment, the initial rigidity of the pillar 2, the allowable load transmission amount, and the buckling limit load of the pillar 2 can be increased. As shown in the force characteristic C1, the load peak value can be increased. The broken line in FIG. 8 indicates the characteristic C2 in the case where only the main body portion 2f of the pillar 2 without the longitudinal rib 10 and the vehicle width direction rib 11 is provided.
[0030]
That is, in the first embodiment, the front-rear direction rib 10 and the vehicle width direction rib 11 for suppressing the extension of the upper and lower ends α, β of the outer plate 2 d of the pillar 2 are provided. Buckling deformation in which the curvature of the lower end portions α and β increases and the substantially central portion γ curves in the opposite direction can be effectively suppressed.
[0031]
Further, by using the front-rear direction ribs 10 and the vehicle width direction ribs 11 as the first and second reinforcing means, buckling deformation can be effectively suppressed only by relatively simple additional reinforcement, and Can reduce the influence on the molding process of the main body portion 2f of the pillar 2.
[0032]
FIG. 9 shows a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 9 is a cross-sectional front view of a pillar.
[0033]
In the vehicle pillar reinforcement structure according to the second embodiment, as shown in FIG. 9, the upper and lower end portions α and β of the outer plate 2d of the pillar 2 are made thicker than the inner plate 2e. A first thick portion 13 is provided as a reinforcing means.
[0034]
Further, a second thick portion 14 which is thicker than the inner plate 2e is provided at a substantially central portion γ of the outer plate 2d of the pillar 2.
[0035]
The first thick portion 13 and the second thick portion 14 are formed continuously, and in this embodiment, the outer plate 2d is formed so as to have substantially the same overall thickness.
[0036]
According to the structure of the second embodiment with the above configuration, the first thick portion 13 can suppress the elongation deformation of the upper and lower ends α and β of the outer plate 2 d as in the first embodiment. It is possible to suppress an increase in the curvature of the upper and lower ends α and β at the time of collision.
[0037]
Further, since the second thick portion 14 can suppress the compressive deformation of the substantially central portion γ of the outer plate 2d, the substantially central portion γ of the pillar 2 is prevented from curving inward in the vehicle cabin R during a side collision. Thus, it is possible to effectively suppress the buckling deformation of the pillar 2 as a whole to the inside of the vehicle cabin R.
[0038]
In the second embodiment, since the outer plate 2d of the pillar 2 only needs to be simply thickened, buckling deformation can be effectively suppressed only by the main body portion 2f of the pillar 2 without any special additional reinforcement. At the same time, the design of the pillar 2 is simple.
[0039]
10 to 14 show a third embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 10 is a perspective view of a pillar, 11A to 11E are cross-sectional perspective views showing respective cross sections along the line DD, the line EE, the line FF, the line GG, and the line HH in FIG. 12, FIG. 12 is a sectional perspective view showing the cross section corresponding to the line EE and line GG in FIG. 10 with the foam material removed, and FIG. 13 is a sectional perspective view of the pillar to which a reinforcing structure is added. FIGS. 14A and 14B are explanatory diagrams showing deformation behavior at the time of a side collision, and FIGS. 14A and 14B are explanatory diagrams of displacement-reaction characteristics of pillars at the time of a side collision.
[0040]
In the vehicle pillar reinforcement structure according to the third embodiment, as shown in FIGS. 10 and 11, a foamed aluminum material (foamed material) 15 as a second reinforcement means is provided in the hollow portion S of the pillar 2. The inner upper and lower ends α and β are disposed closer to the inner plate, and the substantially central portion γ is disposed closer to the outer plate 2d.
[0041]
As shown in FIG. 12, the foamed aluminum material 15 includes a first separating rib 16 separating the inside of the hollow portion S of the pillar 2 in the vehicle width direction, and an upper and lower end portion α in the hollow portion S of the pillar 2. , .Beta. And a substantially central portion .gamma., Respectively, and are filled and held in separated spaces S1, S2, S3 formed by second separating ribs 17 formed in the vertical direction.
[0042]
That is, the first separating ribs 16 are formed continuously over the entire length of the pillar 2, and the second separating ribs 17 are located at the positions of the EE line and the GG line in FIG. Will be placed.
[0043]
Therefore, in the hollow portion S of the pillar 2, the upper end portion α which is higher than the second separating rib 17 at the EE line position, the second separating rib 17 at the EE line position and the GG line position. , 17 and a lower end portion β below the second separating rib 17 at the GG line position are separated into two spaces inside and outside by the first separating rib 16. However, at the upper end portion α, the inner plate 2e side becomes the separating space S1, at the substantially middle portion γ, the outer plate 2d side becomes the separating space S2, and at the lower end portion β, the inner plate 2e side becomes the separating space S3.
[0044]
According to the structure of the third embodiment with the above configuration, when the load F at the time of the side collision acts on the substantially central portion γ of the pillar 2 as shown in FIG. The pillar 2 behaves in a deformable manner in the post-buckling deformation mode shown in FIG.
[0045]
That is, even in the third embodiment, as shown in FIG. 13 (a), the collision load F input to the substantially central portion γ of the pillar 2 divides the upper and lower ends 2b and 2c of the pillar 2 into the roof side rail 3 The force is converted into the component forces Fa and Fb pressed against the side sill 4, but the transmission force can be increased by the first separating rib 16 formed in the space S.
[0046]
Further, in the space S, a separation space S1 on the inner plate 2e side at the upper end portion α, a separation space S2 on the outer plate 2d side at the substantially middle portion γ, and a separation space S2 on the inner plate 2e side at the lower end portion β. By filling the separation space S3 with the foamed aluminum material 15, the compression deformation at the location where the foamed aluminum material 15 is disposed can be suppressed, and the buckling deformation of the pillar 2 can be suppressed.
[0047]
In particular, in this embodiment, after the pillar 2 buckles, the foamed aluminum material 15 has a feature that not only the initial compression rigidity but also the reduction of the reaction force after compression deformation is suppressed. By enclosing the pillars 2 in the separation spaces S1, S2, and S3, when the pillar 2 buckles due to an excessive input load F, cross-sectional deformation of a portion where compression proceeds is effectively suppressed. The reduction in the reaction force as a whole can be reduced.
[0048]
Therefore, in the third embodiment, the rigidity of the pillar 2 in the initial stage of compression can be improved, and particularly, the reaction force after buckling can be expected. Therefore, as shown in FIG. The reaction force behind the load peak P1 of C1 ', that is, the range in the displacement (deformation) traveling direction can be increased.
[0049]
By the way, in the third embodiment, the foamed aluminum material 15 is sealed in the separation spaces S1, S2, and S3 by the first separation rib 16 and the second separation rib 17, but the holding property is improved by such sealing. Thus, the function of the foamed aluminum material 15 can be reliably exhibited.
[0050]
That is, in the third embodiment, the buckling deformation can be effectively suppressed only by relatively simple additional reinforcement by inserting the foamed aluminum material 15 near the outer plate 2d in the pillar 2, and the compression Even after buckling deformation occurs, a reduction in the reaction force due to the cross-sectional deformation of the pillar 2 can be reduced due to the characteristic of the foam material that constantly provides a reaction force.
[0051]
In addition, if the means for holding the foamed aluminum material 15 is separately provided, substantially the same effect can be obtained even when the first separating rib 16 and the second separating rib 17 are not provided.
[0052]
Further, the same effect can be obtained when the entire hollow portion S of the pillar 2 is filled with the aluminum foam material 15.
[0053]
Further, in the third embodiment, in addition to the first and second separating ribs 16 and 17, a rib extending in the vehicle width direction similarly to the vehicle width direction rib 11 shown in the first embodiment. May be provided.
[0054]
Further, other foam materials, for example, urethane foam, can be used without being limited to the foam aluminum material 15, and the material selection is not limited to the compression effect alone, and the weight, cost, weatherability, and deterioration over time can be selected. It is preferable to determine in consideration of properties and the like.
[0055]
FIGS. 15 to 17 show a fourth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 15 is a cross-sectional perspective view of a pillar. 16, FIG. 16 is a cross-sectional view showing each cross section along line II, JJ, and KK in FIG. 15, respectively (a) to (c), and FIG. 17 is a pillar to which a reinforcing structure is added. FIGS. 7A and 7B are explanatory diagrams showing deformation behavior at the time of a side collision of FIGS.
[0056]
In the vehicle pillar reinforcing structure according to the fourth embodiment, as shown in FIGS. 15 and 16, a fiber reinforcing material 18 as a first reinforcing means is provided with an outer plate in the hollow portion S of the pillar 2. It is attached in a tension state in the vertical direction along the vicinity of 2d.
[0057]
That is, as shown in FIG. 16, a pair of flanges separated and arranged at predetermined intervals (the thickness of the fiber reinforced material 18) on both sides thereof in the hollow portion S of the outer plate 2d as shown in FIG. A channel member 19 comprising a portion 19b and the pillar 19 is disposed over the entire length of the pillar 2, and the bottom surface 19a is joined to the inner surface of the outer plate 2d.
[0058]
The fiber reinforced material 18 is inserted and held between the bottom surface 19a of the channel member 19 and the flange portion 19b, and the upper end of the fiber reinforced material 18 is moved beyond the upper end 2b of the pillar 2 to the roof side member. 3 and the insertion end is connected and fixed to the roof side member 3 by the clamp 20, and the lower end of the fiber reinforced material 18 is inserted into the side sill 4 beyond the lower end 2 c of the pillar 2 and inserted. The end is connected and fixed to the side sill 4 by a clamp 21.
[0059]
Of course, when fixing the fiber reinforced material 18 with the clamps 20 and 21, the fiber reinforced material 18 is held in a tensioned state.
[0060]
Further, in the fourth embodiment, as shown in FIG. 16B, the flange portion 19b of the channel member 19 is formed so as to be thick at a substantially central portion γ of the pillar 2 and the hollow portion S of the pillar 2 is formed. Is gradually increased from the upper end 2b to the lower end 2c as shown in FIGS. 16 (a) to 16 (c).
[0061]
According to the structure of the fourth embodiment with the above configuration, when the load F at the time of a side collision acts on the substantially central portion γ of the pillar 2 as shown in FIG. The pillar 2 behaves in a deformable manner in the post-buckling deformation mode shown in FIG.
[0062]
That is, even in this embodiment, as shown in FIG. 17A, the collision load F inputted to the substantially central portion γ of the pillar 2 divides the upper and lower ends 2b, 2c of the pillar 2 into the roof side rail 3 and the side sill. The force is converted into the component forces Fa and Fb pressed against the outer plate 4. The channel member 19 holding the fiber reinforcement 18 is joined to the outer plate 2d, so that the initial bending rigidity can be increased.
[0063]
When the collision load F is excessive, the pillar 2 is deformed at the upper and lower ends α and β in a direction in which the curvature increases, but is inserted into the hollow portion S of the pillar 2 in a tensioned state. Since the fiber reinforced material 18 has high rigidity against elongation, the progress of deformation of the upper and lower ends α and β can be suppressed.
[0064]
On the other hand, as shown in FIG. 17 (b), at the substantially central portion γ of the pillar 2, it is bent in the opposite direction (inward of the vehicle compartment R) to induce deformation in the compression direction. Since the thickness of the flange portion 19b is increased, which corresponds to an increase in the thickness of the outer plate 2d of the pillar 2, the progress of the compressive deformation of the substantially central portion γ can be effectively suppressed.
[0065]
Therefore, the effect of the displacement-reaction characteristic of this embodiment is the same as that of the first embodiment shown in FIG.
[0066]
That is, in the fourth embodiment, the fiber reinforced material 18 is inserted in the vicinity of the outer plate 2d in the pillar 2, so that the elongation deformation of the outer plate 2d can be suppressed, so that the buckling deformation of the pillar 2 is effectively suppressed. In addition, the use of the fiber reinforcing material 18 can provide high strength while reducing the weight.
[0067]
By the way, in this embodiment, the pillar 2 is deformed into a wavy shape at the time of a side collision, but the compression deformation portion of the outer plate 2d is substantially one portion of the central portion γ, whereas the extension deformation is performed at the upper and lower ends α, Since the two locations are β, the fiber reinforcement 18 can be prevented from relaxing during deformation, but in order to maintain the tension state of the fiber reinforcement 18 more reliably, an appropriate portion of the fiber reinforcement 18 is clamped or the like. It is preferable to fix to the channel member 19 through a.
[0068]
Further, as the fiber reinforcing material 18, FRP using carbon fiber or GRP using glass fiber, which is widely known as an industrial material, can be used, and further, a cloth material in which a nylon fiber or a spider thread is folded is used. A material having a high tensile strength can be used.
[0069]
FIGS. 18 to 21 show a fifth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. FIG. 18 is a sectional perspective view of a pillar. 19 is a cross-sectional view showing each cross section along line LL, MM, and NN in FIG. 18 as (a) to (c), and FIG. 20 is a pillar to which a reinforcing structure is added. FIGS. 21A and 21B are explanatory diagrams showing the deformation behavior at the time of a side collision, and FIGS. 21A and 21B are explanatory diagrams of the displacement-reaction characteristics of the pillar at the time of a side collision.
[0070]
In the vehicle pillar reinforcement structure according to the fifth embodiment, as shown in FIGS. 18 and 19, a porous material 22 as a second reinforcement is filled in the hollow portion S of the pillar 2. The fiber direction of the porous material 22 is aligned in the direction parallel to the axial direction of the pillar 2 near the outer plate 2d at the upper and lower ends α and β and near the inner plate 2e at the substantially central portion γ. The fiber directions are irregular in the vicinity of the inner plate 2e at the upper and lower ends α and β and near the outer plate 2d at the substantially central portion γ.
[0071]
In the pillar 2 of the fifth embodiment, the porous material 22 is entirely filled in the hollow portion S without providing a rib or a partition in the hollow portion S.
[0072]
The cross-sectional area of the hollow portion S of the pillar 2 is gradually increased from the upper end 2b to the lower end 2c as shown in FIGS. 19 (a) to 19 (c). The outer plate 2d of the pillar 2 is formed thicker than the inner plate 2e.
[0073]
According to the structure of the fifth embodiment with the above configuration, when the load F at the time of a side collision acts on the substantially central portion γ of the pillar 2 as shown in FIG. The pillar 2 behaves in a deformable manner in the post-buckling deformation mode shown in FIG.
[0074]
That is, even in this embodiment, the collision load F input to the substantially central portion γ of the pillar 2 is such that the upper and lower ends 2b and 2c of the pillar 2 are connected to the roof side rail 3 and the side sills as shown in FIG. The force is converted into the component forces Fa and Fb pressed against the pillar 4, but the porous material 22 fills the hollow portion S of the pillar 2 with the porous material 22, so that the transmission force can be increased by the porous material 22.
[0075]
The porous material 22 has a property of exhibiting large strength against elongation deformation when the fiber direction is aligned, and exhibiting large strength against compression deformation when the fiber direction is irregular. .
[0076]
Based on such properties, in the fifth embodiment, the fiber direction of the porous material 22 is changed in the vicinity of the outer plate 2d of the upper and lower ends α and β and the vicinity of the inner plate 2e of the substantially central portion γ. In addition to being aligned in the direction parallel to the direction and irregular near the inner plate 2e of the upper and lower ends α and β and near the outer plate 2d of the substantially central portion γ, when the collision load F is excessive, The deformation that induces buckling can be effectively suppressed.
[0077]
Moreover, even after the pillar 2 buckles, the fiber direction of the porous material 22 at the compression site is irregular, so that the cross-sectional deformation of the site is continuously suppressed to reduce the reaction force of the entire pillar 2. Can be reduced.
[0078]
Therefore, in the fifth embodiment, the stiffness and buckling strength of the pillar 2 in the initial stage of compression are greatly increased, and the same reaction force maintenance as in the third embodiment can be expected after buckling, as shown in FIG. In addition, the load level of the displacement-reaction characteristic C1 ″ at the time of the side collision can be entirely raised.
[0079]
That is, in the fifth embodiment, since the pillar 2 is filled with the porous material 22, buckling deformation can be effectively suppressed only by relatively simple additional reinforcement as in the third embodiment, In addition, due to the characteristic of the porous material 22 that constantly has a reaction force even after compression, even if buckling deformation occurs, a reduction in reaction force due to cross-sectional deformation of the pillar 2 can be reduced.
[0080]
Further, as the porous material 22 of this embodiment, a calcium material or the like can be used in addition to the foamed aluminum material and the urethane foam disclosed in the third embodiment.
[0081]
By the way, the reinforcing structure of the vehicle pillar according to the present invention has been described by taking the first to fifth embodiments as examples. However, the present invention is not limited to these embodiments, and other embodiments may be used without departing from the gist of the present invention. Various types can be adopted. For example, the center pillar 22 is shown as an example of a vehicle pillar, but the present invention is not limited to this and can be applied to the front pillar 1 or the rear pillar.
[Brief description of the drawings]
FIG. 1 is a perspective view of a front portion of a vehicle interior showing a first embodiment of the present invention.
FIG. 2 is a front view of a pillar showing the first embodiment of the present invention.
FIG. 3 is a perspective view of a pillar showing the first embodiment of the present invention.
FIGS. 4A to 4C are cross-sectional perspective views showing cross sections along line AA, line BB, and line CC in FIG. 3, respectively.
FIGS. 5A to 5C are cross-sectional perspective views showing a pillar forming process according to the first embodiment of the present invention, respectively.
FIG. 6 is an explanatory view showing the deformation behavior of the curved pillar at the time of a side collision in the first embodiment of the present invention in the order of (a) to (c).
FIGS. 7A and 7B are explanatory diagrams showing deformation behavior of the pillar with the reinforcement structure according to the first embodiment of the present invention at the time of a side collision;
FIG. 8 is an explanatory diagram of a displacement-reaction characteristic of a pillar in a side collision according to the first embodiment of the present invention.
FIG. 9 is a sectional front view of a pillar showing a second embodiment of the present invention.
FIG. 10 is a perspective view of a pillar showing a third embodiment of the present invention.
FIGS. 11A to 11E are cross-sectional perspective views showing cross sections along lines DD, EE, FF, GG, and HH in FIG. FIG.
FIGS. 12A and 12B are cross-sectional perspective views corresponding to lines EE and GG in FIG. 10 from which a foaming material is removed according to a third embodiment of the present invention.
FIGS. 13A and 13B are explanatory views showing deformation behavior of a pillar with a reinforcement structure according to a third embodiment of the present invention at the time of a side collision;
FIG. 14 is an explanatory diagram of a displacement-reaction force characteristic of a pillar at the time of a side collision showing a third embodiment of the present invention.
FIG. 15 is a sectional perspective view of a pillar showing a fourth embodiment of the present invention.
16A to 16C are cross-sectional views showing respective cross sections along line II, line JJ, and line KK in FIG.
FIGS. 17A and 17B are explanatory views showing deformation behaviors of a pillar with a reinforcement structure according to a fourth embodiment of the present invention at the time of a side collision;
FIG. 18 is a sectional perspective view of a pillar showing a fifth embodiment of the present invention.
FIGS. 19A to 19C are cross-sectional views showing cross sections taken along lines LL, MM, and NN in FIG. 18, respectively.
FIGS. 20A and 20B are explanatory views showing deformation behavior of a pillar with a reinforcement structure according to a fifth embodiment of the present invention at the time of a side collision;
FIG. 21 is an explanatory diagram of a displacement-reaction force characteristic of a pillar at the time of a side collision according to a fifth embodiment of the present invention.
[Explanation of symbols]
2 Center pillar (pillar)
2a Vertical center of pillar
2b Upper end of pillar
2c Lower end of pillar
2d outer plate
2e inner plate
2f Pillar body
3 Roof side rail
4 Side sill
10 Front and rear direction ribs (first reinforcing means)
11 ribs in the vehicle width direction (second reinforcing means)
13 1st thick part (1st reinforcement means)
14 Second thick part (second reinforcing means)
15 Foamed aluminum material (second reinforcing means)
16 1st separation rib
17 Second separating rib
18. Fiber reinforcement (first reinforcement means)
22 Porous material (second reinforcing means)
α pillar upper end
lower end of β pillar
Approximately vertical center of γ pillar
Straight line connecting the upper and lower ends of the L pillar
Hollow part of S pillar
S1, S2, S3 isolated space

Claims (10)

車室の左右両側に上下方向に延在配置した中空のピラーであって、
該ピラーを、その上下方向中央部が上,下端を結ぶ直線よりも外方に突出するように湾曲して形成し、かつ、
ピラーの外側板の上,下端部の伸び変形を抑制する第1の補強手段と、
前記外側板の上下方向略中央部の圧縮変形を抑制する第2の補強手段と、を設けたことを特徴とする車両用ピラーの補強構造。
A hollow pillar extending vertically and arranged on both left and right sides of the vehicle compartment,
The pillar is formed so that its center in the vertical direction is curved so as to protrude outward from a straight line connecting the upper and lower ends, and
First reinforcing means for suppressing elongation deformation of upper and lower ends of the outer plate of the pillar;
A second reinforcing means for suppressing compressive deformation of a substantially central portion of the outer plate in the vertical direction, the reinforcing structure for a vehicle pillar being provided.
第1の補強手段が、ピラーの中空部内に車両前後方向に沿って形成されて、ピラーの上,下端部では外側板寄りに配置され、ピラーの上下方向略中央部では、ピラーの内側板寄りに配置された前後方向リブであることを特徴とする請求項1に記載の車両用ピラーの補強構造。A first reinforcing means is formed in the hollow portion of the pillar along the front-rear direction of the vehicle, is disposed near the outer plate at the upper and lower ends of the pillar, and is closer to the inner plate of the pillar at a substantially central portion in the vertical direction of the pillar. The reinforcing structure for a vehicle pillar according to claim 1, wherein the rib is a front-rear direction rib disposed on the vehicle. 第1の補強手段を、ピラーの外側板の少なくとも上,下端部に、内側板よりも厚肉化した第1肉厚部分を設けて構成したことを特徴とする請求項1に記載の車両用ピラーの補強構造。2. The vehicle according to claim 1, wherein the first reinforcing means includes a first thick portion which is thicker than the inner plate at least at upper and lower ends of the outer plate of the pillar. Pillar reinforcement structure. 第1の補強手段が、ピラーの中空部内の外側板近傍に沿って上下方向に緊張状態で取り付けた繊維強化材であることを特徴とする請求項請求項1に記載の車両用ピラーの補強構造。2. The vehicle pillar reinforcing structure according to claim 1, wherein the first reinforcing means is a fiber reinforced material attached in a vertically tensioned state along a vicinity of an outer plate in a hollow portion of the pillar. . 第2の補強手段が、ピラーの中空部内に車幅方向に沿って形成した車幅方向リブであることを特徴とする請求項1に記載の車両用ピラーの補強構造。The vehicle pillar reinforcing structure according to claim 1, wherein the second reinforcing means is a vehicle width direction rib formed in the hollow portion of the pillar along the vehicle width direction. 第2の補強手段を、ピラーの外側板の少なくとも上下方向略中央部に、内側板よりも厚肉化した第2肉厚部分を設けて構成したことを特徴とする請求項1に記載の車両用ピラーの補強構造。2. The vehicle according to claim 1, wherein the second reinforcing means is provided by providing a second thick portion thicker than the inner plate at least at a substantially central portion in the vertical direction of the outer plate of the pillar. Pillar reinforcement structure. 第2の補強手段が、ピラーの中空部内の上,下端部では内側板寄りに配置され、ピラーの上下方向略中央部では外側板寄りに配置された発泡材であることを特徴とする請求項1に記載の車両用ピラーの補強構造。The second reinforcing means is a foam material which is disposed near the inner plate at upper and lower ends in the hollow portion of the pillar, and is disposed closer to the outer plate at a substantially central portion in the vertical direction of the pillar. 2. The vehicle pillar reinforcement structure according to 1. 発泡材を、ピラーの中空部内を車幅方向に隔成する第1隔成リブと、ピラーの中空部内を上,下端部と上下方向略中央部との間でそれぞれ上下方向に隔成する第2隔成リブと、によって形成した隔成空間内に充填保持したことを特徴とする請求項7に記載の車両用ピラーの補強構造。A first separating rib for separating the foam material in the hollow portion of the pillar in the vehicle width direction, and a first separating rib for separating the inside of the hollow portion of the pillar in the vertical direction between the upper and lower ends and the substantially central portion in the vertical direction. The reinforcing structure for a vehicle pillar according to claim 7, wherein the separation space formed by the two separation ribs is filled and held. 第2の補強手段が、ピラーの中空部内に充填され、上,下端部の外側板近傍と上下方向略中央部の内側板近傍では繊維方向がピラーの軸方向と平行な方向に整列し、上,下端部の内側板近傍と上下方向略中央部の外側板近傍では繊維方向が不規則となる多孔質材料であることを特徴とする請求項1に記載の車両用ピラーの補強構造。The second reinforcing means is filled in the hollow portion of the pillar, and the fiber direction is aligned in the direction parallel to the axial direction of the pillar near the outer plate at the upper and lower ends and near the inner plate at the substantially central portion in the vertical direction. 2. The reinforcing structure for a vehicle pillar according to claim 1, wherein the porous material has a fiber direction that is irregular in the vicinity of the inner plate at the lower end and the outer plate substantially in the vertical direction. 第1の補強手段がピラーの中空部内に形成した車両前後方向に沿った前後方向リブであり、第2の補強手段がピラーの中空部内に車幅方向に沿って形成した車幅方向リブであり、これら前後方向リブおよび車幅方向リブをそれぞれ1つまたは複数設けたことを特徴とする請求項1に記載の車両用ピラーの補強構造。The first reinforcing means is a longitudinal rib formed in the hollow portion of the pillar along the longitudinal direction of the vehicle, and the second reinforcing means is a rib formed in the hollow portion of the pillar along the width direction of the vehicle. The vehicle pillar reinforcement structure according to claim 1, wherein one or more of the front-rear direction ribs and the vehicle width direction ribs are provided.
JP2003107703A 2003-04-11 2003-04-11 Reinforcement structure of pillar for vehicle Pending JP2004314674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107703A JP2004314674A (en) 2003-04-11 2003-04-11 Reinforcement structure of pillar for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107703A JP2004314674A (en) 2003-04-11 2003-04-11 Reinforcement structure of pillar for vehicle

Publications (1)

Publication Number Publication Date
JP2004314674A true JP2004314674A (en) 2004-11-11

Family

ID=33469463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107703A Pending JP2004314674A (en) 2003-04-11 2003-04-11 Reinforcement structure of pillar for vehicle

Country Status (1)

Country Link
JP (1) JP2004314674A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282099A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Fiber-reinforced resin structure
JP2008037123A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Upper structure for car body
JP2010083338A (en) * 2008-09-30 2010-04-15 Komatsu Ltd Cab and construction machinery
KR20110071080A (en) * 2008-09-19 2011-06-28 시카 테크놀러지 아게 Reinforced structure of a motor vehicle
JP2020062916A (en) * 2018-10-15 2020-04-23 マツダ株式会社 Fiber-reinforced composite material-made frame
JPWO2020194014A1 (en) * 2019-03-26 2020-10-01

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696651B2 (en) * 2005-04-04 2011-06-08 トヨタ自動車株式会社 Vehicle pillar structure
JP2006282099A (en) * 2005-04-04 2006-10-19 Toyota Motor Corp Fiber-reinforced resin structure
JP2008037123A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Upper structure for car body
US9376146B2 (en) 2008-09-19 2016-06-28 Sika Technology Ag Reinforced structure of a motor vehicle
KR20110071080A (en) * 2008-09-19 2011-06-28 시카 테크놀러지 아게 Reinforced structure of a motor vehicle
JP2012502841A (en) * 2008-09-19 2012-02-02 シーカ・テクノロジー・アーゲー Vehicle stiffening structure
KR101651655B1 (en) * 2008-09-19 2016-08-26 시카 테크놀러지 아게 Reinforced structure of a motor vehicle
US9592858B2 (en) 2008-09-19 2017-03-14 Sika Technology Ag Reinforced structure of a motor vehicle
JP2010083338A (en) * 2008-09-30 2010-04-15 Komatsu Ltd Cab and construction machinery
JP2020062916A (en) * 2018-10-15 2020-04-23 マツダ株式会社 Fiber-reinforced composite material-made frame
JP7155851B2 (en) 2018-10-15 2022-10-19 マツダ株式会社 Fiber-reinforced composite frame
JPWO2020194014A1 (en) * 2019-03-26 2020-10-01
JP7173288B2 (en) 2019-03-26 2022-11-16 日産自動車株式会社 Composite long members

Similar Documents

Publication Publication Date Title
JP5032853B2 (en) Car body rear structure
US10077080B2 (en) Vehicle
US8075047B2 (en) Automotive vehicle body structure
US7147272B2 (en) Vehicle body floor structure
US8991909B2 (en) Vehicle
US10112651B2 (en) Vehicle body front structure
EP1808362A2 (en) vehicle body
US6929314B2 (en) Vehicular body front structure
US20080315597A1 (en) Bumper beam structure
JP2004189208A (en) Front side rail rear part reinforcing structure of automobile
JP5346799B2 (en) Body superstructure
JP7460924B2 (en) Shock absorber
JP5196018B2 (en) Vehicle structure
CN108860321B (en) Vehicle beam member
EP2050659A1 (en) Vehicle body frame structure
JP2004314674A (en) Reinforcement structure of pillar for vehicle
JP5330668B2 (en) Vehicle pillar structure
KR101518577B1 (en) Side sill reinforcing structure for vehicle and manufacturing method thereof
JP2007168700A (en) Vehicle body side structure
US9527372B2 (en) Vehicle body structure having detachable roof
JP4394921B2 (en) Hollow member reinforcement structure
EP4335729A1 (en) Vehicle body
JP2008189273A (en) Front underrun protector
JP5194836B2 (en) Body side pillar structure
JP2005103002A (en) Seat back frame structure of vehicle