JP2004314336A - Hollow multilayered resin molded article and its molding method - Google Patents

Hollow multilayered resin molded article and its molding method Download PDF

Info

Publication number
JP2004314336A
JP2004314336A JP2003108188A JP2003108188A JP2004314336A JP 2004314336 A JP2004314336 A JP 2004314336A JP 2003108188 A JP2003108188 A JP 2003108188A JP 2003108188 A JP2003108188 A JP 2003108188A JP 2004314336 A JP2004314336 A JP 2004314336A
Authority
JP
Japan
Prior art keywords
resin
resin layer
layer
main
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003108188A
Other languages
Japanese (ja)
Other versions
JP4340853B2 (en
Inventor
Kimio Takeuchi
公生 竹内
Takahiro Kurosawa
高博 黒沢
Chiyo Henmi
千代 片見
Takeshi Saito
剛 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003108188A priority Critical patent/JP4340853B2/en
Publication of JP2004314336A publication Critical patent/JP2004314336A/en
Application granted granted Critical
Publication of JP4340853B2 publication Critical patent/JP4340853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3631Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices moving in a frame for pressing and stretching; material being subjected to compressing stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a hollow multilayered resin molded article, which is constituted so as to prevent the exposure of a resin constituting an intermediate resin layer to the inner surface of the molded article, has excellent sanitation properties, does not cause the disturbance such as non-uniform wall thickness, multiplicity, cutting and the like of the intermediate resin layer, ensures a uniform layered constitution and has excellent functionality, by compression molding. <P>SOLUTION: A ring or disc-shaped auxiliary resin lump 9 comprising an inner surface coating resin is fused to the upper end part of a cylindrical main resin lump 7 having another resin layer excepting the inner surface coating resin to obtain a main/auxiliary resin lump 10. In such a state that the main/auxiliary resin lump is seated on the bottom surface of a cavity, the auxiliary resin lump is compressed by a core mold 13 so as to flow along the cylindrical inner layer of the cylindrical main resin lump to allow the inner surface coating resin to flow along the inner surface of a main resin layer to coat the inner surface of the main resin layer with an auxiliary resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、中空状多層樹脂成形物及びその成形方法、特に内面被覆樹脂層を有する筒状等の中空状多層樹脂成形物を圧縮成形により形成する中空状多層樹脂成形物及びその成形方法に関する。
【0002】
【従来の技術】
従来、例えば中間にバリヤー樹脂層を含む多層樹脂からなる筒状複合パリソンを押出し成形により形成し、該筒状複合パリソンをコア金型とキャビティ金型で圧縮成形することにより製造された多層構造の容器用プラスチックノズルが提供されている(特許文献1参照)。一方、このような複合パリソンにおいてバリヤー樹脂層がパリソンの両端の切断端縁部に露出し、ひいては成形物の端部に露出するのを防止するために、筒状パリソンとほぼ同じ外径を有するドーナツ状或いはディスク状の端末部材をバリヤー樹脂層が露出している筒状パリソンの端部に融着させて切断端部を覆った複合パリソンを用いて多層プラスチック容器乃至容器構成部材を製造する方法も提供されている(特許文献2参照)。また、単層の熱可塑性樹脂からなる溶融樹脂から圧縮成形物を成形する方法として、ダイから押出された溶融樹脂塊を、雌型内に配置され圧縮成形型の一部を構成する伸張可能な中間支持部材の表面に置き、型を閉じることにより中間支持部材が下がり、ひっこんだ位置で雄型と雌型により圧縮成形する圧縮成形法が知られている(特許文献3参照)。
【0003】
【特許文献1】
特開2001−55238号公報
【特許文献2】
特開2001−145952号公報
【特許文献3】
特公平7‐61656号公報
【0004】
【発明が解決しようとする課題】
筒状多層樹脂成形物の圧縮成形は、前記のようにキャビティ型内に供給された複合筒状パリソンの筒状内部に、コア型を押し込むことによりキャビティ型との間で行なわれるが、このようにして圧縮成形された中空状多層樹脂成形物を軸方向(即ちコア型の可動方向)に切断して、その切断面を顕微鏡で撮影して観察すると、成形物の内壁面に中間樹脂層が露出している部分や、内壁層による中間樹脂層の被覆が薄くなっている部分、また中間樹脂層肉厚が過度に薄い部分や切れている部分あるいは過度に厚い部分が存在していることがまれに観察される。このような中間樹脂層の偏肉、多重、切れ等の存在は、中間樹脂層の機能を損なうことになり、例えば中間樹脂層がガスバリヤー性樹脂層であるならば、ガスバリヤー機能を損なうという問題がある。また、内面層の肉厚が不均一で内面層による中間樹脂層の被覆が十分でなく、中間樹脂層が内面に露出すると、例えば成形物が容器で中間樹脂層樹脂が内容物に直接接触することが好ましくない場合は、それにより内容物に悪影響を与えるなどの不都合が生じる問題がある。また、バリヤー性樹脂が露出することにより、バリヤー性樹脂が内容品の水分を吸収してバリヤー性能が劣化する問題(ウォーターショック)も生じる。
【0005】
本発明は、上記従来技術の問題点を解消しようとするものであって、多層樹脂からなるパリソン等の中間成形物、あるいは容器やその部材等の最終成形物等の中空状多層樹脂成形物を圧縮成形する際に、内面被覆樹脂層が中間樹脂層を完全に覆って中間樹脂層が内面に露出することなく、或いは中間樹脂層が過度に肉厚になったり、肉薄さらには切れが生じるなどの不均一厚さになることを防止でき、且つ内面被覆樹脂層の肉厚を確保でき、しかも簡単な装置で容易に成形できる中空状多層樹脂成形物及びその成形方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するためにまずそれが生じる原因を究明した結果、筒状多層樹脂からなるパリソンを圧縮成形する際に、コア型が筒状樹脂内面の樹脂を巻き込みながら下方に引きずる現象が起きることに原因があることがわかった。そこで、それを解消する方法について鋭意研究した結果、従来多層樹脂筒状成形物を圧縮成形する場合、予め所望の多層構成のパリソン(樹脂塊)を押出し成形等で得て、それを圧縮成形しているが、多層樹脂塊を得る押出し成形では、最内側樹脂層となる内面被覆樹脂層を除くそれ以外の層構成部分のみを押し出し成形して主樹脂塊を得、内面被覆樹脂層となる樹脂は、圧縮成形時にその樹脂塊の上部に添加し、圧縮成形時に内面被覆樹脂を、予め得られた主樹脂塊の内面層に対して流動させて内面被覆樹脂層を形成することにより、上記問題点を解消できることを知見し、本発明に到達したものである。
【0007】
即ち、本発明の中空状多層樹脂成形物は、主樹脂層と該主樹脂層の内面を被覆する内面被覆樹脂層からなる中空状多層樹脂成形物であって、前記内面被覆樹脂層が前記主樹脂層に対して内面被覆樹脂を流動させて形成した樹脂層であることを特徴とするものである。前記中空状多層樹脂成形物の層構成及びその樹脂は特に限定されるものではないが、主樹脂層は用途に応じて単層であっても多層であってもよい。例えば、主樹脂層に機能を付与するためにガスバリヤー性樹脂を使用する場合には、主樹脂層に単層で使用しても良く、他の樹脂と組み合わせて多層として使用しても良い。
主樹脂層を多層の構成とする場合には、例えば、外側樹脂層とガスバリヤー性樹脂からなる中間樹脂層で形成された主樹脂層と、主樹脂層の内面を被覆する内面被覆樹脂層からなり、該内面被覆樹脂層を前記主樹脂層に対して流動させて形成するようにする。あるいは、別の形態として、主樹脂層を外側樹脂層、中間樹脂層、内側樹脂層で形成し、該内側樹脂層の内面を内面被覆樹脂層で被覆してなり、該内面被覆樹脂層を内側樹脂層に対して流動させて形成するようにするなど、種々の形態が採用可能である。
中間樹脂層としては、上記のガスバリヤー性樹脂に限らず、酸素吸収性樹脂、水分遮断性樹脂のような機能性樹脂材料や、リサイクル樹脂(リプロ材)等が使用できる。また、本発明の中空状多層樹脂成形物は、多層樹脂からなるパリソン等の中間成形物、あるいは容器やその部材等の最終成形物等その成形物は、特に限定されないが、スパウト等の筒状成形物や、容器等の有底成形物の何れにも適用可能である。また、中空状とは、上下端部が開口している筒状等、空間部に面する内面を有するものであればその形態は特に限定されない。
【0008】
そして、上記中空状多層樹脂成形物を成形するための本発明の中空状多層樹脂成形物の成形方法は、筒状主樹脂塊の上端部に内面被覆樹脂からなる副樹脂塊を融着させ、該副樹脂塊が前記筒状主樹脂塊の筒状内層に沿って流動するように圧縮することにより、主樹脂層内面を副樹脂で被覆することを特徴とする。前記副樹脂塊は、リング状又はディスク状として構成するのが好ましい。
【0009】
本発明の他の中空状多層樹脂成形物の圧縮成形方法は、主樹脂層と該主樹脂層の内面を被覆する内面被覆樹脂層からなる中空状多層樹脂成形物の圧縮成形方法であって、前記内面被覆樹脂層を除く他の樹脂層を有する筒状主樹脂塊を得る工程、該筒状主樹脂塊の上部に前記内面被覆樹脂層となる樹脂からなる副樹脂塊を融着させて主副複合樹脂塊を得る工程、該主副複合樹脂塊をキャビティ型とコア型で圧縮成形する工程からなり、該圧縮成形工程が、コア型により前記副樹脂塊を前記筒状主樹脂塊の筒状内層に沿って流動するように圧縮することにより、主樹脂層内面を副樹脂で被覆することを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき詳細に説明する。
図1は、本発明の実施形態に係る中空状多層樹脂成形物の成形方法の概略を説明するための成形工程順の断面模式図である。
本実施形態では、同図(e)に示す筒状の中空状多層樹脂成形物1を成形する場合であり、該成形物1は、主樹脂層が外側樹脂層2、中間樹脂層としてガスバリヤー性樹脂層3、内側樹脂層4からなり、内側樹脂層4を内面被覆樹脂層5で被覆している。内面被覆樹脂層5は多層筒状樹脂層の上端面に設けられた上端面被覆樹脂層6から延びて形成されている。したがって、ガスバリヤー性樹脂層3及び外側樹脂層2乃至内側樹脂層4の上端は上端面被覆樹脂層6により覆われ、外部に露出することがない。また、内面も後述するように内面被覆樹脂層5が内側樹脂層4に対して流動させて形成させているので、内面を均一に被覆することができ、ガスバリヤー性樹脂層3及び内側樹脂層4が内面に露出したり、層厚が不均一になることなく成形されている。
【0011】
以上のような層構成からなる中空状多層樹脂成形物1は、次のようにして成形される。まず、予め押出成形等で外側樹脂層2、ガスバリヤー性樹脂層3及び内側樹脂層4の順に層形成された主樹脂塊7を得る。次に、主樹脂塊7の上端面にリング状あるいはディスク状の副樹脂塊9を融着させて主副複合樹脂塊10を得る。このようにして、得られた主副複合樹脂塊をキャビティ型内で、同図(b)〜(d)に示すように、主樹脂塊7及びリング状の副樹脂塊9の内径より大きい直径を有するコア型13を主副複合樹脂塊10の筒状中心部に押し込むことにより、圧縮成形を行なう。圧縮成形は、主樹脂塊7及び副樹脂塊9の内径より大きい直径を有するコア型13を下降させると、コア型13の先端部が副樹脂塊9の内径近傍の樹脂に当り、その状態でコア型が下降することにより、同図(c)に示すように、コア型13の下降につれて副樹脂塊9の樹脂を流動させ、流動した副樹脂塊の樹脂が主樹脂塊7の内周面を被覆しながら、主副複合樹脂塊全体を図示してないキャビティ型の内周面に押し当て圧縮成形を行なう。コア型13が完全に下降した状態では、コア型13の上部径大平坦型面15が副樹脂塊9の上端面を所定厚さに圧縮して上端面を被覆し、上端面から内周面まで同一樹脂で連続して被覆された所望の中空状多層樹脂成形物1が成形される。そして、離型することにより、同図(e)に示す中空状多層樹脂成形物1を得ることができる。
【0012】
次に、本発明の方法により中空状多層樹脂成形物を圧縮成形する実施形態を図2により説明する。図2は、同図(g)に示すスパウト20を成形する場合の実施形態を示す工程図である。本実施形態の中空状多層樹脂成形物であるスパウト20は、各層間に設けられる接着層(図示せず)を除いて4層構成であり、外側樹脂層21、ガスバリヤー性樹脂層22、内側樹脂層23、そして、上端面被覆樹脂層24及び内面被覆樹脂層25で構成されている。
【0013】
これらの樹脂は熱可塑性樹脂であれば、用途に応じて任意の樹脂が採用でき、例えば、外側樹脂層21、内側樹脂層23、上端面被覆樹脂層24及び内面被覆樹脂層25としては、オレフィン系樹脂を選択することが好ましく、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)等のポリエチレン(PE)、ポロプロピレン(PP)、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体(EVA)、イオン架橋オレフィン共重合体(アイオノマー)或いはこれらのブレンド物が採用できる。また、熱可塑性ポリエステル樹脂全般についても用いることができ、エチレンフタレート系熱可塑性ポリエステル(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の他のポリエステル、或いはこれらとポリカーボネートやポリアリレート等とのブレンド物も採用できる。そして、ガスバリヤー性樹脂層22、外側樹脂層21、内側樹脂層23、及び副樹脂塊27の樹脂は、それぞれ同一樹脂又は異なる樹脂の採用も可能である。また、ガスバリヤー性樹脂層22としては、例えば、酸素ガスバリヤー層として用いる場合最も好適な例としては、ビニルアルコール単位の含有量が40乃至85モル%、特に55〜80モル%、ケン化度が96%以上、特に99%のエチレン−ビニルアルコール共重合体が挙げられる。
【0014】
また、他の酸素ガスバリヤー性樹脂としては、ナイロン樹脂、特にナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン10,6、ナイロン6/6,6共重合体等の脂肪族ナイロン、ポリメタキシリレンアジパミド等の部分芳香族ナイロン、さらにはポリグリコール酸樹脂が挙げられる。
そして、これらの酸素ガスバリヤー性樹脂は、内容物の保存性及び保香性の点から、酸素透過係数が5.5×10 12cc・cm/cm・sec・cmHg(23℃、0%RH)以下であることが好ましい。
【0015】
さらに、中間樹脂層を酸素吸収性樹脂層とした場合には、上記ガスバリヤー層に酸素吸収性を付加しても良く、上記ガスバリヤー層の樹脂自体が酸素吸収性を有する構造としても良い。このような樹脂としては、例えば樹脂の酸化反応を利用したものが挙げられ、酸化性の有機材料、例えばポリブタジエン、ポリイソプレン、ポリプロピレン、エチレン・酸化炭素重合体、ナイロン−6、ナイロン−12、メタキシリレンジアミン(MX)ナイロンのようなポリアミド類に、酸化触媒としてコバルト、ロジウム、銅等の遷移金属を含む有機酸塩類や、ベンゾフェン、アセトフェン、クロロケトン類のような光増感剤を加えたものが使用できる。これらの酸素吸収材料を使用した場合は、紫外線、電子線のような高エネルギー線を照射することによって、一層の効果を発現させることもできる。
また、上記ガスバリヤー層の樹脂に酸化可能な有機成分を含有させて、ガスバリヤー層の酸化劣化によるガスバリヤー性の低下を生じることなく酸素吸収性を発現してもよい。このような酸化有機成分としては、ポリエンから誘導されるポリエン系重合体が好ましく、カルボン酸基、カルボン酸無水物基、水酸基が導入されていることが好ましい。これらの官能基としては、アクリル酸、メタクリル酸、マレイン酸、不飽和カルボン酸、無水マレイン酸、不飽和カルボン酸の無水物等が挙げられ、遷移金属触媒としてはコバルトが好ましい。
また、上記ガスバリヤー層を構成する樹脂に酸素吸収剤を配合してもよく、このような酸素吸収剤としては還元性を有する金属粉、例えば、還元性鉄粉、還元性亜鉛、還元性錫粉、金属低位酸化物、還元性金属化合物の一種又は二種以上を組み合わせたものを主成分としたものが挙げられる。これらは必要に応じて、アルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、亜硫酸塩、有機酸塩、ハロゲン化物、さらに活性炭、活性アルミナのような助剤とも組み合わせて使用することができる。あるいは、多価フェノールを骨格内に有する高分子化合物、例えば、多価フェノール含有フェノール・アルデヒド樹脂等が挙げられる。
【0016】
水分遮断性樹脂としては、環状オレフィン系共重合体、オレフィンと環状オレフィンとの非晶質乃至低結晶性共重合体(COC)が使用できる。
上記のガスバリヤー性樹脂、酸素吸収性樹脂等には、充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属石鹸やワックス等の滑剤、改質剤を配合できる。
さらに、上記多層構成とする場合には、各樹脂層間に必要により接着剤、あるいは、接着剤層を介在させることもできる。
本実施形態の中空状多層樹脂成形物であるスパウト20の製造工程は次の通りである。
【0017】
本実施形態の圧縮成形装置32は、キャビティ33を有する雌型34と、雄型であるコア型36の組合せからなり、プランジャー35がキャビティ33の中心部を上下動自在に貫通するように設けられている。コア型36は、目的とする成形品であるスパウトの内径に相当する外径とスパウトの内部深さに相当する高さを有する円柱型部37と、その頂部に下端が平坦型面38となっている直径がスパウトの外径に等しいロッド部39から構成され、図示してないシリンダ装置により上下駆動される。そして、該圧縮成形装置の雌型34が、主樹脂塊を押出す多層多重リングダイ30及び副樹脂塊27を押出すリングダイ(図示してない)の下方に相対移動して、直接キャビティ内にダイから主樹脂塊及び副樹脂塊を受け入れることができるように構成されている。
【0018】
以上のような装置を使用して、まず、内側樹脂層、ガスバリヤー性樹脂層、外側樹脂層を構成する樹脂を同図(a)に示すように、多層多重リングダイ30により、3層リング状の主樹脂塊26を、圧縮成形装置32のキャビティ33内を上下動自在に貫通するプランジャー35に嵌合するように共押し出しし、所定の長さに切断して主樹脂塊26を形成する(同図(b))。切断された主樹脂塊は溶融状態のままプランジャーに案内されたキャビティ34内に落下する(同図(c))。次いで、単一樹脂からなる副樹脂塊27をリングダイから直接プランジャーに嵌合するように押出して所定長さに切断する。溶融状態で落下した副樹脂塊27は、キャビティ内の主樹脂塊26の上部に落下し、主樹脂塊と融着して主副複合樹脂塊28を構成する(同図(d))。この状態で、雄型であるコア型36がプランジャーと同軸的に下降して、プランジャーの上端を押しながら下降して、主副複合樹脂塊28をキャビティとの間で圧縮成形するが、圧縮成形開始時には、主副複合樹脂塊が、同図(d)に示すように、キャビティの底部に着座していることが、後述するように主樹脂を殆ど流動させることなく、副樹脂を主樹脂に対して大きく流動させてその内周面の被覆を確実なものとするのに重要な要素となる。なお、同図(e)は主副複合樹脂塊28の拡大正面図である。
【0019】
圧縮成形工程では、コア型36は、その円柱型部37の先端部がプランジャー35の係合部の先端と係合して、プランジャーを押し下げながら下降し、まず円柱型部37の先端部40が副樹脂塊の上面に圧接する。さらに下降を続けることにより、先端部40の下面の当接している部分の副樹脂が流動化し、円柱型部37の下降にともなってその外周部に引き連られながら、主樹脂塊の中空部に進入することによって主樹脂塊の内周面を副樹脂で被覆しながら進む。そして、流動化した副樹脂を介して主樹脂を周方向に押してキャビティ型との間で圧迫することによってコア型の下降通過に伴って、その位置が所定の形状に成形され、下端に達するとキャビティ型底面と円柱型部の先端面の間で樹脂を押圧し、プランジャー35が位置している部分が開口19している底壁が形成される(同図(f))。以上のようにして、同図(f)に示す中空状多層樹脂成形物としてのスパウト20を得ることができる。
【0020】
図3は、本発明の他の実施形態を示し、有底の中空状多層樹脂成形物を圧縮成形する場合の概略を模式的に示している。図1に示す実施形態の場合との相違点のみについて説明する。
本実施形態では、副樹脂塊50がリング状でなく、主樹脂塊の貫通孔上部全体を覆っている形状であり、図示のように中央部が薄肉の場合であってもよく、全体が略等厚のディスク状等であってもよく、圧縮成形物の形状に応じて適宜選択する。主樹脂塊51は、用途に応じて単層乃至多層の何れも選択できる。このように主複複合樹脂塊52を前記実施形態と同様な方法で雌型のキャビティ内でコア型55により押圧して成形する。本実施形態のコア型55は、同図(b)に示すように、その下端部が半球状になっており、図示してないがキャビティの底面も同様に半球状に形成されている。それにより、圧縮成形は、前記と同様な原理により、コア型が下降するに応じて、主樹脂塊に直接支持され且つコア型が当る部分が最も圧迫されてこの部分が流動して、主樹脂塊の内周面を被覆しながら下降し、下端面ではキャビティの形状に応じて主樹脂塊の開口部が1点に集中して連続した半球状となり、同図(c)に示す有底の中空状多層樹脂成形物53を得ることができる。
【0021】
図2に示す実施形態では、多層構造の主樹脂塊と単層構造の副樹脂塊を別々のリングダイで押出成形したが、図4に示す、本発明者らが以前提案した(特願2002−243806号参照)パリソン成形装置を適用することによって、同一の押出成形装置を使用して1工程で主樹脂塊と副樹脂塊が融着した主副複合樹脂塊を得ることができる。
図4の押出成形装置60は、第1樹脂押出機61a〜61cより連続して押出される単層又は多層の主樹脂を、コア部材62を上下させることにより第1ダイヘッド吐出口63を開閉して間欠的な主樹脂塊部57を形成する。そして、間欠的な主樹脂塊部間を第1ダイヘッド吐出口とは異なる第2ダイヘッド吐出口64から付与される一つ以上の樹脂からなる副樹脂により接続して副樹脂塊部58を形成することにより、パリソンの長手方向に二つ以上の樹脂塊部を配置することができる。したがって、副樹脂塊部から切断することによって、同一の押出成形装置を使用して1工程で主樹脂塊と副樹脂塊が融着した主副複合樹脂塊を得ることができる。
【0022】
【実施例】
実施例1
ポリプロピレンを内外層用押出機に供給し、エチレンビニルアルコール共重合体樹脂(クラレ製エバール)を最内中間層用押出機に供給し、また、これらの接着層として中間内外層用押出機に接着材を供給する。これらをダイ温度200℃の条件で溶融樹脂を筒状に共押出し、切断する。
この溶融筒状主樹脂塊をプランジャーにより調芯性を保ちながら圧縮金型内に落とし込み、続けてポリプロピレン単層からなる溶融筒状副樹脂塊を先の主樹脂塊の上にセットする。これをコア金型により圧縮成形して、重量が2.3g、高さが45mm、外径が11mm、肉厚1mmの、内層及び外層がポリプロピレン樹脂層、中間内外層が接着樹脂層、最内中間層がエチレンビニルアルコール共重合体樹脂層、さらに内面がポリプロピレン流動層により被覆された3種6層からなる図2(g)に示すスパウトを得た。
【0023】
実施例2
主樹脂として、フレーク状の回収ポリエステル樹脂を2軸押出機から、ダイ温度270℃の条件で筒状に押出し切断する。この溶融筒状主樹脂塊をプランジャーにより調芯性を保ちながら圧縮金型内に落とし込み、続けてバージンのポリエステル樹脂をダイ温度270℃の条件でディスク状に押出して主樹脂塊の上にセットする。これをコア金型により圧縮成形して、重量が25.0gの、回収ポリエステル樹脂を外層、バージンポリエステル樹脂を内層とする図3(c)に示す2層プリフォームを得た。
【0024】
以上のようにして得られた実施例1のスパウトのうち、10本について、縦方向中心に沿って切断して、カメラ画像によりその切断面を観察したところ、全てのスパウトについて成形物の内壁面にはポリプロピレン流動層がほぼ一様な厚さで形成されていることが観察され、接着材やエチレンビニルアルコール共重合体樹脂層が内壁面に露出している部分は観察されなかった。また、中間樹脂層であるエチレンビニルアルコール共重合体樹脂層は、過度に薄い部分や切れている部分あるいは過度に厚い部分は全くなく、ほぼ等厚になっているのが観察された。また、同様に実施例2の2層プリフォームについても、10本について軸心に沿って切断して縦断面をカメラ画像により観察したところ、成形物の内壁面にはバージンのポリエステル樹脂の流動層がほぼ一様な厚さで底部も連続して形成されていることが観察され、接着材や外層に露出している部分は全く観察されなかった。以上の結果から、本発明による中空状多層樹脂成形物の製造方法が、特に内面被覆樹脂層を均一に良好に形成するのに有効であることが確認できた。
【0025】
【発明の効果】
以上のように本発明によれば、内面被覆樹脂層が主樹脂層内面を完全に覆うことができ、主樹脂層を構成する樹脂が内面に露出することがなく衛生性に優れ、且つ中間層の偏肉、多重、切れ等の乱れがなく、均一の層構成を確保することができ、多層構造が有する機能を発揮できて機能性に優れている、パリソン等の中間成形物、あるいは容器やその部材等の最終成形物等の中空状多層樹脂成形物を得ることができる。したがって、例えば中間層がガスバリヤー性樹脂の場合、本発明によれば、従来の成形方法により得られるものよりも、一段と高ガスバリヤー性の中空状多層成形物を得ることができる。そして、本発明の中空状多層成形物の製造方法は、単層又は多層筒状主樹脂塊を間欠的に押出成形して、直接圧縮成形装置のキャビティ内に落とし込み、同様に副樹脂塊を成形して主樹脂塊の上に落とし込んで直接圧縮するものであるから、従来と比べて設備が単純で低コストにでき、また材料のロスも少なく効果的に成形できる。
【図面の簡単な説明】
【図1】(a)〜(e)は、本発明の中空状多層樹脂成形物の成形方法の概念を工程順に示す断面模式図である。
【図2】(a)〜(g)は、本発明の中空状多層樹脂成形物を圧縮成形する成形方法の実施形態を示す工程図である。
【図3】(a)〜(c)は、本発明の中空状多層樹脂成形物の成形方法の他の実施形態の概念を工程順に示す断面模式図である。
【図4】本発明の実施形態に係る主副複合樹脂塊を押出成形する装置の要部断面図である。
【符号の説明】
1 多層筒状成形物 2、21 外側樹脂層
3、22 ガスバリヤー性樹脂層 4、23 内側樹脂層
5、25 内面被覆樹脂層 6、24 上端面被覆樹脂層
7、26、51、57 主樹脂塊 9、27、50、58 副樹脂塊
10、28、52 主副複合樹脂塊 13、36、55 コア型
30 多層多重リングダイ 32 圧縮成形装置
33 キャビティ 34 雌型
35 プランジャー 37 円柱型部
60 押出成形装置 63 第1ダイヘッド吐出口
64 第2ヘッド吐出口
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hollow multilayer resin molded product and a method for molding the same, and more particularly to a hollow multilayer resin molded product formed by compression molding a hollow multilayer resin molded product such as a cylinder having an inner coating resin layer.
[0002]
[Prior art]
Conventionally, for example, a cylindrical composite parison formed of a multilayer resin including a barrier resin layer in the middle is formed by extrusion molding, and a multilayer structure manufactured by compression-molding the cylindrical composite parison with a core mold and a cavity mold. A plastic nozzle for a container is provided (see Patent Document 1). On the other hand, in such a composite parison, the barrier resin layer has almost the same outer diameter as the cylindrical parison in order to prevent the barrier resin layer from being exposed at the cut edges at both ends of the parison, and thus to be exposed at the ends of the molded product. A method of manufacturing a multilayer plastic container or container component using a composite parison having a donut-shaped or disk-shaped terminal member fused to an end of a cylindrical parison having an exposed barrier resin layer and covering a cut end. Is also provided (see Patent Document 2). Further, as a method of molding a compression molded product from a molten resin composed of a single layer of thermoplastic resin, a molten resin mass extruded from a die can be stretched to form a part of a compression molding die arranged in a female mold. A compression molding method is known in which the intermediate support member is placed on the surface of the intermediate support member and closed by closing the mold, and compression molding is performed by a male mold and a female mold at the recessed position (see Patent Document 3).
[0003]
[Patent Document 1]
JP 2001-55238 A
[Patent Document 2]
JP 2001-145952 A
[Patent Document 3]
Japanese Patent Publication No. Hei 7-61656
[0004]
[Problems to be solved by the invention]
The compression molding of the cylindrical multilayer resin molded product is performed between the cavity mold by pushing the core mold into the inside of the composite tubular parison supplied into the cavity mold as described above. The hollow multi-layer resin molded product obtained by compression molding is cut in the axial direction (that is, the movable direction of the core mold), and the cut surface is photographed and observed with a microscope, and the intermediate resin layer is formed on the inner wall surface of the molded product. Exposed portions, portions where the coating of the intermediate resin layer by the inner wall layer is thin, and portions where the thickness of the intermediate resin layer is excessively thin, cut off, or excessively thick exist. Rarely observed. Such unevenness of the intermediate resin layer, the presence of multiple layers, cuts, and the like impair the function of the intermediate resin layer. For example, if the intermediate resin layer is a gas barrier resin layer, the gas barrier function is impaired. There's a problem. In addition, when the thickness of the inner surface layer is not uniform and the coating of the intermediate resin layer by the inner surface layer is not sufficient, and the intermediate resin layer is exposed on the inner surface, for example, the molded product comes into direct contact with the contents in a container in a container. If this is not preferable, there is a problem that the contents may be adversely affected. Further, when the barrier resin is exposed, a problem (water shock) occurs in which the barrier resin absorbs moisture of the contents and the barrier performance is deteriorated.
[0005]
The present invention is intended to solve the above-mentioned problems of the prior art, and an intermediate molded article such as a parison made of a multilayer resin, or a hollow multilayer resin molded article such as a final molded article of a container or a member thereof is provided. During compression molding, the inner surface coating resin layer completely covers the intermediate resin layer and the intermediate resin layer is not exposed to the inner surface, or the intermediate resin layer becomes excessively thick, thin, and cut off. It is an object of the present invention to provide a hollow multi-layer resin molded product which can prevent the non-uniform thickness of the resin, can secure the thickness of the inner surface coating resin layer, and can be easily molded with a simple device, and a molding method thereof. I do.
[0006]
[Means for Solving the Problems]
The present inventors have first investigated the cause thereof to solve the above problems, and as a result, when compressing and molding a parison made of a cylindrical multilayer resin, the core mold was wound around the resin on the inner surface of the cylindrical resin. It turned out that the cause was the phenomenon of dragging downward. Therefore, as a result of diligent research on a method for solving the problem, when a conventional multilayer resin cylindrical molded product is compression-molded, a parison (resin block) having a desired multilayer configuration is obtained in advance by extrusion molding and the like, and then compression-molded. However, in the extrusion molding to obtain a multilayer resin mass, only the other layer components excluding the inner surface coating resin layer, which is the innermost resin layer, are extruded to obtain a main resin mass, and the resin to be the inner surface coating resin layer Is added to the upper portion of the resin mass at the time of compression molding, and at the time of compression molding, the inner surface coating resin is caused to flow with respect to the inner surface layer of the main resin mass obtained in advance, thereby forming the inner surface coating resin layer. The inventors have found that the point can be solved, and have reached the present invention.
[0007]
That is, the hollow multilayer resin molded product of the present invention is a hollow multilayer resin molded product comprising a main resin layer and an inner surface coating resin layer covering the inner surface of the main resin layer, wherein the inner surface coating resin layer is The resin layer is formed by flowing an inner surface coating resin to the resin layer. The layer structure and the resin of the hollow multilayer resin molded product are not particularly limited, but the main resin layer may be a single layer or a multilayer depending on the application. For example, when a gas barrier resin is used to give a function to the main resin layer, the gas barrier resin may be used as a single layer for the main resin layer, or may be used as a multilayer in combination with another resin.
When the main resin layer has a multilayer structure, for example, a main resin layer formed of an outer resin layer and an intermediate resin layer made of a gas barrier resin, and an inner surface coating resin layer covering the inner surface of the main resin layer. That is, the inner surface coating resin layer is formed by flowing with respect to the main resin layer. Alternatively, as another form, the main resin layer is formed of an outer resin layer, an intermediate resin layer, and an inner resin layer, and the inner surface of the inner resin layer is coated with an inner surface coating resin layer. Various forms can be adopted, such as flowing the resin layer to form the resin layer.
The intermediate resin layer is not limited to the above-mentioned gas barrier resin, but may be a functional resin material such as an oxygen-absorbing resin or a moisture-blocking resin, or a recycled resin (repro material). Further, the hollow multilayer resin molded product of the present invention is not particularly limited, and an intermediate molded product such as a parison made of a multilayer resin, or a final molded product such as a container or a member thereof is not particularly limited. The present invention can be applied to both molded products and bottomed molded products such as containers. In addition, the form of the hollow shape is not particularly limited as long as it has an inner surface facing the space, such as a tubular shape whose upper and lower ends are open.
[0008]
Then, the method of molding the hollow multilayer resin molded article of the present invention for molding the hollow multilayer resin molded article is performed by fusing a sub-resin mass formed of an inner surface coating resin to an upper end portion of the cylindrical main resin mass, The inner surface of the main resin layer is covered with the sub-resin by compressing the sub-resin mass so as to flow along the cylindrical inner layer of the cylindrical main resin mass. The sub-resin mass is preferably configured as a ring or a disk.
[0009]
The compression molding method of another hollow multilayer resin molded product of the present invention is a method of compression molding a hollow multilayer resin molded product comprising a main resin layer and an inner surface coating resin layer covering an inner surface of the main resin layer, A step of obtaining a cylindrical main resin mass having another resin layer except for the inner surface coating resin layer, and a main resin mass formed by fusing a sub-resin mass made of a resin to be the inner surface coating resin layer to an upper portion of the cylindrical main resin mass; A step of obtaining a sub-composite resin mass, and a step of compressing and molding the main and sub-composite resin mass with a cavity mold and a core mold. The inner surface of the main resin layer is covered with the auxiliary resin by compressing the inner surface of the main resin layer so as to flow along the inner layer.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view in the order of molding steps for explaining an outline of a method for molding a hollow multilayer resin molded product according to an embodiment of the present invention.
In this embodiment, a cylindrical hollow multilayer resin molded article 1 shown in FIG. 1E is molded, and the molded article 1 has a main resin layer as an outer resin layer 2 and an intermediate resin layer as a gas barrier. The inner resin layer 4 is covered with an inner surface coating resin layer 5. The inner surface coating resin layer 5 extends from an upper end surface coating resin layer 6 provided on the upper end surface of the multilayer tubular resin layer. Therefore, the upper ends of the gas barrier resin layer 3 and the outer resin layer 2 to the inner resin layer 4 are covered by the upper end surface coating resin layer 6 and are not exposed to the outside. Further, since the inner surface is formed by flowing the inner surface coating resin layer 5 with respect to the inner resin layer 4 as described later, the inner surface can be uniformly coated, and the gas barrier resin layer 3 and the inner resin layer 4 is formed without being exposed on the inner surface or having a nonuniform layer thickness.
[0011]
The hollow multilayer resin molded product 1 having the above-described layer configuration is molded as follows. First, a main resin block 7 in which the outer resin layer 2, the gas barrier resin layer 3, and the inner resin layer 4 are formed in this order by extrusion or the like is obtained in advance. Next, the ring-shaped or disk-shaped sub-resin mass 9 is fused to the upper end surface of the main resin mass 7 to obtain the main-sub-composite resin mass 10. The main and sub-composite resin masses thus obtained are placed in a cavity mold, as shown in FIGS. 3B to 3D, with a diameter larger than the inner diameter of the main resin mass 7 and the ring-shaped sub-resin mass 9. Is pressed into the cylindrical central portion of the main / sub composite resin block 10 to perform compression molding. In the compression molding, when the core mold 13 having a diameter larger than the inner diameter of the main resin mass 7 and the sub-resin mass 9 is lowered, the tip of the core mold 13 hits the resin near the inner diameter of the sub-resin mass 9, and in that state. When the core mold descends, the resin of the sub-resin mass 9 flows as the core mold 13 descends, as shown in FIG. , The entire main and sub composite resin blocks are pressed against the inner peripheral surface of a cavity mold (not shown) to perform compression molding. When the core mold 13 is completely lowered, the large-diameter upper flat mold surface 15 of the core mold 13 compresses the upper end surface of the sub-resin block 9 to a predetermined thickness to cover the upper end surface. Thus, a desired hollow multilayer resin molded article 1 continuously coated with the same resin is formed. Then, by releasing the mold, the hollow multilayer resin molded product 1 shown in FIG.
[0012]
Next, an embodiment in which a hollow multilayer resin molded product is compression-molded by the method of the present invention will be described with reference to FIG. FIG. 2 is a process chart showing an embodiment when the spout 20 shown in FIG. The spout 20, which is a hollow multilayer resin molded product of the present embodiment, has a four-layer structure except for an adhesive layer (not shown) provided between each layer, and includes an outer resin layer 21, a gas barrier resin layer 22, and an inner resin layer. It is composed of a resin layer 23, an upper end surface coating resin layer 24 and an inner surface coating resin layer 25.
[0013]
If these resins are thermoplastic resins, any resin can be adopted according to the application. For example, as the outer resin layer 21, the inner resin layer 23, the upper end surface coating resin layer 24, and the inner surface coating resin layer 25, olefin is used. It is preferable to select a resin such as low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and linear ultra-low-density polyethylene (LVLDPE). Polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer , Ethylene-vinyl acetate copolymer (EVA), ion-crosslinked olefin copolymer (ionomer) or These blends can be adopted. In addition, it can be used for thermoplastic polyester resins in general, and other polyesters such as ethylene phthalate-based thermoplastic polyester (PET), polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), or polycarbonate and polyarylate with these. Blends with E.g. The resin of the gas barrier resin layer 22, the outer resin layer 21, the inner resin layer 23, and the sub-resin mass 27 may be the same resin or different resins. For example, when the gas barrier resin layer 22 is used as an oxygen gas barrier layer, the most preferable example is that the content of vinyl alcohol units is 40 to 85 mol%, particularly 55 to 80 mol%, Is 96% or more, especially 99% of ethylene-vinyl alcohol copolymer.
[0014]
Other oxygen gas barrier resins include nylon resins, especially nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 10,6, and nylon 6 / 6,6. Examples thereof include aliphatic nylons such as polymers, partially aromatic nylons such as polymethaxylylene adipamide, and polyglycolic acid resins.
These oxygen gas barrier resins have an oxygen permeability coefficient of 5.5 × 10 5 from the viewpoint of the storage stability and fragrance retention of the contents. 12cc · cm / cm2Sec · cmHg (23 ° C., 0% RH) or less.
[0015]
Further, when the intermediate resin layer is an oxygen-absorbing resin layer, oxygen absorption may be added to the gas barrier layer, and the resin of the gas barrier layer may have a structure having oxygen absorption. Examples of such a resin include those utilizing an oxidation reaction of the resin, and oxidizing organic materials such as polybutadiene, polyisoprene, polypropylene, ethylene / carbon oxide polymer, nylon-6, nylon-12, and meta- Polyamides such as xylylenediamine (MX) to which an organic acid salt containing a transition metal such as cobalt, rhodium, copper or the like, or a photosensitizer such as benzophene, acetophene or chloroketone is added as an oxidation catalyst. Can be used. When these oxygen-absorbing materials are used, further effects can be exhibited by irradiating high energy rays such as ultraviolet rays and electron beams.
Further, an oxidizable organic component may be contained in the resin of the gas barrier layer so as to exhibit oxygen absorption without lowering gas barrier properties due to oxidative deterioration of the gas barrier layer. As such an oxidized organic component, a polyene-based polymer derived from polyene is preferable, and a carboxylic acid group, a carboxylic anhydride group, and a hydroxyl group are preferably introduced. Examples of these functional groups include acrylic acid, methacrylic acid, maleic acid, unsaturated carboxylic acid, maleic anhydride, and anhydride of unsaturated carboxylic acid. Cobalt is preferred as the transition metal catalyst.
Further, an oxygen absorbent may be added to the resin constituting the gas barrier layer. Examples of such an oxygen absorbent include reducing metal powders, such as reducing iron powder, reducing zinc, and reducing tin. Powders, low-metal oxides, and those containing a combination of two or more of reducing metal compounds as main components are exemplified. These can be used in combination with an auxiliary such as an alkali metal, an alkaline earth metal hydroxide, a carbonate, a sulfite, an organic acid salt, a halide, further activated carbon, or activated alumina, if necessary. . Alternatively, a polymer compound having a polyhydric phenol in the skeleton, for example, a phenol-aldehyde resin containing a polyhydric phenol may be used.
[0016]
As the moisture barrier resin, a cyclic olefin-based copolymer or an amorphous to low-crystalline copolymer (COC) of an olefin and a cyclic olefin can be used.
Fillers, colorants, heat stabilizers, weather stabilizers, antioxidants, antioxidants, light stabilizers, ultraviolet absorbers, antistatic agents, metals A lubricant and a modifier such as soap and wax can be blended.
Further, in the case of the above-mentioned multilayer structure, an adhesive or an adhesive layer may be interposed between the resin layers as necessary.
The manufacturing process of the spout 20 which is the hollow multilayer resin molded product of the present embodiment is as follows.
[0017]
The compression molding device 32 of the present embodiment includes a combination of a female mold 34 having a cavity 33 and a core mold 36 which is a male mold, and is provided so that a plunger 35 penetrates the center of the cavity 33 so as to be vertically movable. Have been. The core mold 36 has a cylindrical shape portion 37 having an outer diameter corresponding to the inner diameter of the spout, which is the target molded product, and a height corresponding to the inner depth of the spout, and a lower end having a flat mold surface 38 at the top. A rod portion 39 whose diameter is equal to the outer diameter of the spout is driven up and down by a cylinder device (not shown). Then, the female mold 34 of the compression molding apparatus relatively moves below the multi-layered multi-ring die 30 for extruding the main resin mass and the ring die (not shown) for extruding the sub-resin mass 27, and directly into the cavity. The main resin mass and the sub-resin mass can be received from the die.
[0018]
Using the apparatus as described above, first, the resin constituting the inner resin layer, the gas barrier resin layer, and the outer resin layer is three-layered by a multi-layered ring die 30 as shown in FIG. The main resin block 26 is co-extruded so as to fit into a plunger 35 that penetrates vertically through the cavity 33 of the compression molding device 32, and cut into a predetermined length to form the main resin block 26. (FIG. 2B). The cut main resin mass falls into the cavity 34 guided by the plunger in a molten state (FIG. 3C). Next, the sub-resin mass 27 made of a single resin is extruded from the ring die so as to fit directly into the plunger and cut into a predetermined length. The sub-resin mass 27 that has dropped in the molten state falls onto the upper portion of the main resin mass 26 in the cavity and fuses with the main resin mass to form a main-sub-composite resin mass 28 (FIG. 4D). In this state, the core mold 36, which is a male mold, descends coaxially with the plunger, descends while pressing the upper end of the plunger, and compression-molds the main / sub composite resin mass 28 with the cavity. At the start of compression molding, the main and sub-composite resin blocks are seated at the bottom of the cavity as shown in FIG. This is an important factor in making the resin flow greatly to ensure the coating of the inner peripheral surface. FIG. 4E is an enlarged front view of the main and sub composite resin block 28.
[0019]
In the compression molding step, the tip of the cylindrical mold 37 is engaged with the tip of the engaging portion of the plunger 35, and the core mold 36 descends while pushing down the plunger. 40 is pressed against the upper surface of the sub-resin mass. By continuing the downward movement, the sub-resin in the contacting portion of the lower surface of the tip portion 40 is fluidized, and is drawn to the outer peripheral portion with the lowering of the columnar portion 37, thereby forming the hollow portion of the main resin mass. By entering, the inner peripheral surface of the main resin block advances while being covered with the auxiliary resin. Then, by pressing the main resin in the circumferential direction through the fluidized sub-resin and pressing against the cavity mold, with the downward passage of the core mold, the position is molded into a predetermined shape, and when it reaches the lower end. The resin is pressed between the bottom surface of the cavity mold and the end surface of the cylindrical mold portion, and a bottom wall having an opening 19 in a portion where the plunger 35 is located is formed (FIG. 6F). As described above, the spout 20 as the hollow multilayer resin molded product shown in FIG.
[0020]
FIG. 3 shows another embodiment of the present invention, and schematically shows an outline of compression molding of a bottomed hollow multilayer resin molded product. Only differences from the embodiment shown in FIG. 1 will be described.
In the present embodiment, the sub-resin mass 50 is not ring-shaped, but has a shape that covers the entire upper portion of the through-hole of the main resin mass, and may be a case where the central portion is thin as shown in the drawing. It may be in the form of a disk having the same thickness, and is appropriately selected according to the shape of the compression molded product. The main resin mass 51 can be selected from any of a single layer and a multilayer depending on the application. In this way, the main composite resin mass 52 is pressed and molded by the core mold 55 in the female cavity in the same manner as in the above embodiment. As shown in FIG. 3B, the core mold 55 of the present embodiment has a hemispherical lower end, and although not shown, the bottom surface of the cavity is also formed hemispherically. Accordingly, in the compression molding, according to the same principle as described above, as the core mold descends, the portion directly supported by the main resin mass and hit by the core mold is pressed most, and this portion flows, and the main resin flows. It descends while covering the inner peripheral surface of the lump, and at the lower end surface, the opening of the main resin lump concentrates at one point to form a continuous hemisphere according to the shape of the cavity. The hollow multilayer resin molded product 53 can be obtained.
[0021]
In the embodiment shown in FIG. 2, the main resin mass having a multilayer structure and the sub-resin mass having a single-layer structure are extrusion-molded by separate ring dies. However, as shown in FIG. By applying the parison molding apparatus, a main-sub-composite resin block in which a main resin block and a sub-resin block are fused can be obtained in one process using the same extrusion molding apparatus.
The extrusion molding apparatus 60 of FIG. 4 opens and closes the first die head discharge port 63 by moving the single-layer or multilayer main resin continuously extruded from the first resin extruders 61a to 61c by moving the core member 62 up and down. Thus, an intermittent main resin block 57 is formed. Then, the intermittent main resin mass portions are connected by a sub-resin made of one or more resins provided from a second die head ejection port 64 different from the first die head ejection port to form a sub-resin mass portion 58. This makes it possible to dispose two or more resin blocks in the longitudinal direction of the parison. Therefore, by cutting from the sub-resin mass, it is possible to obtain a main-sub composite resin mass in which the main resin mass and the sub-resin mass are fused in one process using the same extrusion molding apparatus.
[0022]
【Example】
Example 1
Polypropylene is supplied to the extruder for the inner and outer layers, and ethylene vinyl alcohol copolymer resin (Eval manufactured by Kuraray) is supplied to the extruder for the innermost intermediate layer. These adhesive layers are bonded to the extruder for the inner and outer layers. Supply materials. These are co-extruded into a cylindrical shape with a molten resin at a die temperature of 200 ° C. and cut.
The molten cylindrical main resin mass is dropped into a compression mold with a plunger while maintaining alignment, and the molten cylindrical sub-resin mass consisting of a single layer of polypropylene is set on the main resin mass. This is compression molded with a core mold, and the inner layer and the outer layer are a polypropylene resin layer, the inner and outer layers are an adhesive resin layer, and the innermost layer is 2.3 g in weight, 45 mm in height, 11 mm in outer diameter, and 1 mm in thickness. The spout shown in FIG. 2 (g) was obtained in which the intermediate layer was composed of an ethylene vinyl alcohol copolymer resin layer, and the inner surface was composed of three types and six layers coated with a polypropylene fluidized bed.
[0023]
Example 2
As a main resin, a flake-shaped recovered polyester resin is extruded from a twin-screw extruder into a cylindrical shape at a die temperature of 270 ° C. and cut. The molten cylindrical main resin mass is dropped into a compression mold while maintaining alignment with a plunger, and then a virgin polyester resin is extruded into a disk at a die temperature of 270 ° C. and set on the main resin mass. I do. This was compression molded with a core mold to obtain a two-layer preform having a weight of 25.0 g and having a recovered polyester resin as an outer layer and a virgin polyester resin as an inner layer as shown in FIG. 3C.
[0024]
Of the spouts of Example 1 obtained as described above, 10 were cut along the center in the vertical direction, and the cut surface was observed with a camera image. It was observed that a fluidized bed of polypropylene was formed with a substantially uniform thickness, and no portion where the adhesive or the ethylene-vinyl alcohol copolymer resin layer was exposed on the inner wall surface was observed. Further, it was observed that the ethylene vinyl alcohol copolymer resin layer as the intermediate resin layer was almost equal in thickness without any excessively thin portion, cut portion or excessively thick portion. Similarly, with respect to the two-layer preform of Example 2, ten pieces were cut along the axis and their longitudinal sections were observed by a camera image. The fluidized layer of virgin polyester resin was found on the inner wall surface of the molded product. Was observed to have a substantially uniform thickness and a continuous bottom portion, and no portion exposed to the adhesive or the outer layer was observed. From the above results, it was confirmed that the method for producing a hollow multilayer resin molded product according to the present invention is particularly effective for uniformly and favorably forming the inner surface coating resin layer.
[0025]
【The invention's effect】
As described above, according to the present invention, the inner surface coating resin layer can completely cover the inner surface of the main resin layer, the resin constituting the main resin layer is not exposed on the inner surface, the hygiene is excellent, and the intermediate layer It is possible to ensure uniform layer structure without unevenness such as uneven wall thickness, multiple layers, cuts, etc., and to exhibit the functions of the multilayer structure and have excellent functionality. A hollow multilayer resin molded product such as a final molded product of the member or the like can be obtained. Therefore, for example, when the intermediate layer is a gas barrier resin, according to the present invention, a hollow multilayer molded article having a higher gas barrier property than that obtained by a conventional molding method can be obtained. The method for producing a hollow multilayer molded article according to the present invention comprises the steps of: extruding a single-layer or multilayer cylindrical main resin block intermittently, dropping it directly into a cavity of a compression molding apparatus, and similarly forming a sub-resin block. Since it is dropped onto the main resin mass and directly compressed, the equipment can be simplified and the cost can be reduced as compared with the related art, and the material can be effectively molded with less material loss.
[Brief description of the drawings]
FIGS. 1A to 1E are schematic cross-sectional views showing the concept of a method for forming a hollow multilayer resin molded product of the present invention in the order of steps.
FIGS. 2A to 2G are process diagrams showing an embodiment of a molding method for compression-molding a hollow multilayer resin molded product of the present invention.
FIGS. 3A to 3C are schematic cross-sectional views showing the concept of another embodiment of the method for forming a hollow multilayer resin molded product of the present invention in the order of steps.
FIG. 4 is a cross-sectional view of a main part of an apparatus for extruding a main / sub composite resin block according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Multilayer cylindrical molded article 2, 21 Outer resin layer
3,22 Gas barrier resin layer 4,23 Inner resin layer
5, 25 Inner surface coating resin layer 6, 24 Upper end surface coating resin layer
7, 26, 51, 57 Main resin mass 9, 27, 50, 58 Secondary resin mass
10, 28, 52 Main / sub composite resin mass 13, 36, 55 Core type
30 Multi-layer multiple ring die 32 Compression molding device
33 cavity 34 female type
35 plunger 37 columnar part
60 Extruder 63 First die head outlet
64 2nd head ejection port

Claims (8)

主樹脂層と該主樹脂層の内面を被覆する内面被覆樹脂層からなる中空状多層樹脂成形物であって、前記内面被覆樹脂層が前記主樹脂層に対して内面被覆樹脂を流動させて形成した樹脂層であることを特徴とする中空状多層樹脂成形物。A hollow multilayer resin molded article comprising a main resin layer and an inner surface coating resin layer covering an inner surface of the main resin layer, wherein the inner surface coating resin layer is formed by flowing the inner surface coating resin to the main resin layer. A hollow multilayer resin molded product characterized in that it is a resin layer formed. 前記主樹脂層が、2層以上の多層樹脂層からなる請求項1に記載の中空状多層樹脂成形物。The hollow multilayer resin molded product according to claim 1, wherein the main resin layer comprises two or more multilayer resin layers. 前記主樹脂層が、少なくとも1層以上のガスバリヤー性樹脂を有する請求項1又は2に記載の中空状多層樹脂成形物。The hollow multilayer resin molded product according to claim 1 or 2, wherein the main resin layer has at least one or more gas barrier resins. 前記中空状多層樹脂成形物が、筒状成形物である請求項1、2又は3に記載の中空状多層樹脂成形物。The hollow multilayer resin molded product according to claim 1, 2 or 3, wherein the hollow multilayer resin molded product is a cylindrical molded product. 前記中空状多層樹脂成形物が、有底成形物である請求項1、2又は3に記載の中空状多層樹脂成形物。The hollow multilayer resin molded product according to claim 1, 2 or 3, wherein the hollow multilayer resin molded product is a bottomed molded product. 主樹脂層と該主樹脂層の内面を被覆する内面被覆樹脂層からなる中空状多層樹脂成形物の成形方法であって、筒状主樹脂塊の上端部に内面被覆樹脂からなる副樹脂塊を融着させ、該副樹脂塊が前記筒状主樹脂塊の筒状内層に沿って流動するように圧縮することにより、主樹脂層内面を副樹脂で被覆することを特徴とする中空状多層樹脂成形物の圧縮成形方法。A method of molding a hollow multilayer resin molded product comprising a main resin layer and an inner surface coating resin layer covering the inner surface of the main resin layer, wherein a sub-resin mass formed of an inner surface coating resin is formed on an upper end portion of a cylindrical main resin mass. A hollow multilayer resin characterized in that the inner surface of the main resin layer is coated with the sub-resin by fusing and compressing the sub-resin mass so as to flow along the cylindrical inner layer of the cylindrical main resin mass. A compression molding method for molded articles. 前記副樹脂塊がリング状又はディスク状である請求項6に記載の中空状多層樹脂成形物の圧縮成形方法。The compression molding method for a hollow multilayer resin molded product according to claim 6, wherein the sub-resin mass is ring-shaped or disk-shaped. 主樹脂層と該主樹脂層の内面を被覆する内面被覆樹脂層からなる中空状多層樹脂成形物の圧縮成形方法であって、前記内面被覆樹脂層を除く他の樹脂層を有する筒状主樹脂塊を得る工程、該筒状主樹脂塊の上部に前記内面被覆樹脂層となる樹脂からなる副樹脂塊を融着させて主副複合樹脂塊を得る工程、該主副複合樹脂塊をキャビティ型とコア型とにより圧縮成形する工程からなり、該圧縮成形工程が、コア型により前記副樹脂塊を前記筒状主樹脂塊の筒状内層に沿って流動するように圧縮することにより、主樹脂層内面を副樹脂で被覆することを特徴とする中空状多層樹脂成形物の圧縮成形方法。A method for compression molding a hollow multilayer resin molded product comprising a main resin layer and an inner surface coating resin layer covering an inner surface of the main resin layer, the cylindrical main resin having a resin layer other than the inner surface coating resin layer A step of obtaining a lump, a step of fusing a sub-resin lump made of a resin to be the inner surface coating resin layer to an upper portion of the cylindrical main resin lump to obtain a main-sub-composite resin lump, And a step of compression molding with a core mold.The compression molding step comprises compressing the sub-resin mass by a core mold so as to flow along a cylindrical inner layer of the cylindrical main resin mass, thereby forming a main resin. A method for compression molding a hollow multilayer resin molded product, comprising coating an inner surface of a layer with a sub-resin.
JP2003108188A 2003-04-11 2003-04-11 Compression molding method for hollow multilayer resin molded product Expired - Fee Related JP4340853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108188A JP4340853B2 (en) 2003-04-11 2003-04-11 Compression molding method for hollow multilayer resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108188A JP4340853B2 (en) 2003-04-11 2003-04-11 Compression molding method for hollow multilayer resin molded product

Publications (2)

Publication Number Publication Date
JP2004314336A true JP2004314336A (en) 2004-11-11
JP4340853B2 JP4340853B2 (en) 2009-10-07

Family

ID=33469796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108188A Expired - Fee Related JP4340853B2 (en) 2003-04-11 2003-04-11 Compression molding method for hollow multilayer resin molded product

Country Status (1)

Country Link
JP (1) JP4340853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092603A1 (en) * 2004-03-29 2005-10-06 Toyo Seikan Kaisha, Ltd. Multi-layer resin molding and method of manufacturing the same
EP1990171A4 (en) * 2006-02-28 2010-06-02 Toyo Seikan Kaisha Ltd Molten resin supply method and molten resin supply device
US7731877B2 (en) 2005-01-21 2010-06-08 Toyo Seikan Kaisha, Ltd. Method and device for feeding molten resin, and method for manufacturing molded article by using the fed molten resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092603A1 (en) * 2004-03-29 2005-10-06 Toyo Seikan Kaisha, Ltd. Multi-layer resin molding and method of manufacturing the same
US7731877B2 (en) 2005-01-21 2010-06-08 Toyo Seikan Kaisha, Ltd. Method and device for feeding molten resin, and method for manufacturing molded article by using the fed molten resin
US8043540B2 (en) 2005-01-21 2011-10-25 Toyo Seikan Kaisha, Ltd. Method and device for feeding molten resin, and method for manufacturing molded article by using the fed molten resin
EP1990171A4 (en) * 2006-02-28 2010-06-02 Toyo Seikan Kaisha Ltd Molten resin supply method and molten resin supply device
US7776245B2 (en) 2006-02-28 2010-08-17 Toyo Seikan Kaisha, Ltd. Method of feeding molten resin and apparatus for feeding molten resin

Also Published As

Publication number Publication date
JP4340853B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US5656346A (en) Packaging tube
US4824618A (en) Coextrusion blowmolding process
US5927525A (en) Multi-layer containers and preforms
EP2146832A1 (en) Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
JP2007525348A6 (en) Multilayer composite object
JP2007525348A (en) Multilayer composite object
US20080254245A1 (en) Container constructions
JP2007525349A6 (en) Multi-layer dose with concave surface
JP4265122B2 (en) Multilayer bottle
JP2007525350A6 (en) Multilayer dose
JPS595035A (en) Manufacture of composite layer hollow molded object
CN101395068B (en) Composite spout, and injection molding device for molding the same
JP4784765B2 (en) Multilayer resin molding and method for producing the same
JP2004314336A (en) Hollow multilayered resin molded article and its molding method
JP4735808B2 (en) Multilayer resin molding and method for producing the same
JP4423689B2 (en) Extruded container with nozzle and method for producing the same
JP2004091002A (en) Polyester resin container and its manufacturing method
JP3936743B2 (en) Tube container processing method and processing equipment
JP5057006B2 (en) Multilayer spout manufacturing method
JP2001145952A (en) Method for manufacturing plastic container or container constituent member
JP2007238105A (en) Composite spout, and injection molding device for molding the same
JP7008440B2 (en) Original fabric for spout closure
JP2982274B2 (en) Frost-like multilayer plastic container and method for producing the same
JP2002145351A (en) Oxygen absorbing plastic container
KR20200043482A (en) Oxygen absorbent resin composition and method for manufacturing the same, and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4340853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees