JP2004313897A - Humidification device - Google Patents

Humidification device Download PDF

Info

Publication number
JP2004313897A
JP2004313897A JP2003110092A JP2003110092A JP2004313897A JP 2004313897 A JP2004313897 A JP 2004313897A JP 2003110092 A JP2003110092 A JP 2003110092A JP 2003110092 A JP2003110092 A JP 2003110092A JP 2004313897 A JP2004313897 A JP 2004313897A
Authority
JP
Japan
Prior art keywords
humidity control
control device
moisture
base material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110092A
Other languages
Japanese (ja)
Other versions
JP4239656B2 (en
JP2004313897A5 (en
Inventor
Hiroo Nitta
浩朗 新田
Koichi Nakano
幸一 中野
Noriyuki Komeno
範幸 米野
Shintaro Nozawa
真太郎 野澤
Akio Fukuda
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003110092A priority Critical patent/JP4239656B2/en
Publication of JP2004313897A publication Critical patent/JP2004313897A/en
Publication of JP2004313897A5 publication Critical patent/JP2004313897A5/ja
Application granted granted Critical
Publication of JP4239656B2 publication Critical patent/JP4239656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater

Landscapes

  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem in a conventional humidification device: temperature rise in an absorbent is slow in the moisture-desorption process, and it takes a long time to attain moisture-desorption temperature. <P>SOLUTION: The humidification device comprises an expansive metal 1 capable of heating by energization, and an absorbent layer 4 formed on the expansive metal 1. The expansive metal 1 is of a repeatedly usable type which is not energized in moisture-adsorption time and energized in moisture-desorption time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸湿剤を用いて空気中の水分を吸着により除去し、吸湿剤に吸着した水分を加熱により脱着再生させる調湿デバイスに関するものである。
【0002】
【従来の技術】
従来、空気中の水分の吸脱着装置として、ハニカム状セラミックスの基材の表面に吸湿剤を担持し、この吸湿剤に空気中の水分を吸着させ、また吸湿剤に吸着した水分を外部から主に輻射熱や対流熱により加熱して脱着再生するものがある(例えば、特許文献1参照)。
【0003】
しかしながら、上記従来のものでは、水分の脱着過程において吸湿剤の温度上昇が遅く、水分脱着温度に達するまでに時間が長くかかるという問題を有している。すなわち、吸着した水分を脱着させて吸湿剤を再生するには、基材を外部から主に輻射熱や対流熱により間接的に加熱しており、そしてセラミックスの基材を用いた場合、熱容量が大きく、かつ熱伝導率が低いことに起因して、水分脱着速度が遅いものであった。
【0004】
また、前記問題を解決するために、基材をハニカム状とした場合は、基材の温度分布が不均一となり、水分脱着効率が悪くなったり、空気中の塵などによってハニカム状の基材が目詰まりすることで、水分脱着効率が悪くなるなどの問題があった。
【0005】
【特許文献1】
特開平9−24235号公報
【0006】
【発明が解決しようとする課題】
上記従来の問題点に鑑み、本発明が解決しようとする課題は、水分脱着効率を向上させる調湿デバイスを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、通電により発熱可能な基材と、前記基材の表面に形成した吸湿剤層を有し、水分吸着時は非通電とし、水分脱着時に通電するようにした調湿デバイスを提供する。
【0008】
上記手段によれば、温度上昇が速く、温度分布が均一で水分脱着効率を向上させることができる。
【0009】
【発明の実施の形態】
上記した本発明の目的は、各請求項に記載した構成を実施の形態とすることにより達成できるので、以下には各請求項の構成にその構成による作用効果を併記し、併せて請求項記載の構成のうち説明を必要とする特定用語については詳細な説明を加えて本発明における実施の形態の説明とする。
【0010】
請求項1記載に係る発明は、通電により発熱可能な基材と、前記基材の表面に形成した吸湿剤層とを有し、水分吸着時は非通電とし、水分脱着時に通電するようにしたもので、基材の発熱により温度上昇が速く、かつ温度分布が均一になり、水分脱着効率の高い調湿デバイスとすることができる。
【0011】
請求項2記載に係る発明は、基材を金属とすることで、熱伝導率が大きく水分脱着効率の高い、そして形状保持が容易な調湿デバイスとすることができる。
【0012】
請求項3記載に係る発明は、基材を多孔状とすることで、熱容量が小さくなり温度上昇が速く、水分脱着効率の高い調湿デバイスとすることができる。
【0013】
請求項4記載に係る発明は、基材として少なくともパンチングメタル、エキスパンドメタル、金網のうちのいずれか一種を用いることで、ヒータとして必要な抵抗値を確保することができ、従って抵抗値設計が容易となり、かつ熱容量が小さくて温度上昇が速く、そして温度分布も均一で水分脱着効率の高い調湿デバイスとすることができる。
【0014】
請求項5記載に係る発明は、基材を波板状とすることで、水分を含んだ空気との接触面積を大きくすることができ、吸脱着効率の高い調湿デバイスとすることができる。
【0015】
請求項6記載に係る発明は、金属製の基材に焼鈍処理を施したもので、これにより基材の耐食性を向上させ、かつアンカー効果により吸湿剤層との密着性を向上させることで、高耐久性の調湿デバイスとすることができる。
【0016】
請求項7記載に係る発明は、吸湿剤層として少なくともゼオライト、シリカゲル、アルミナのいずれか一種以上を用いることで、水分の吸脱着性能が高い調湿デバイスとすることができる。
【0017】
請求項8記載に係る発明は、バインダーとして少なくともコロイダルシリカ、水ガラス、リン酸アルミニウムのいずれか一種以上を用いて吸湿剤層を基材に固着することで、吸湿剤層の基材への密着性が向上し、振動や熱伸縮に強い高耐久性の調湿デバイスとすることができる。特に振動の多い自動車に搭載し、車室の除湿を行なう除湿装置としては、極めて有益である。
【0018】
請求項9記載に係る発明は、基材の表面に形成したアルミナを主成分とするアンダーコート層とアンダーコート層の表面に設けた吸湿剤とを有する吸湿剤層にすることで、基材と吸湿剤層との密着性が向上し、より振動や熱伸縮に強い高耐久性の調湿デバイスとすることができる。特に振動の多い自動車に搭載し、車室の除湿を行なう除湿装置としては、極めて有益である。
【0019】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0020】
(実施例1)
図1は、本発明の実施例1における調湿デバイスを示し、かつそのA部を拡大断面した斜視図で、図2は、図1に示す調湿デバイスを展開した図である。
【0021】
図1において、1は通電により発熱する基材としてのエキスパンドメタルで、表面に吸湿剤層4が形成されている。2、2aはエキスパンドメタル1に通電する給電端子で、スポット溶接によりエキスパンドメタル1に取り付けられている。エキスパンドメタル1の材料としては、体積抵抗率が大きく、耐熱性、耐食性、耐孔食性に優れたFe−Cr−Al系耐熱鋼、Ni−Cr系耐熱鋼のいずれかが適している。本実施例では、エキスパンドメタル1の表面に形成する吸湿剤層4の熱膨張係数と整合するために、相対的に熱膨張係数が小さいFe−Cr−Al系耐熱鋼(R20−5SR t0.1mm(川崎製鉄製))を用いた。
【0022】
そして、以上のエキスパンドメタル1は、図1に示すように波板状に加工する。この時、繰返し応力による基材の破断を防止するため、山部1aと谷部1bに適切なR加工を施すと良い。
【0023】
次に、基材としてのエキスパンドメタル1の耐食性を向上させ、かつアンカー効果により吸湿剤層4との密着性を向上させる目的で、エキスパンドメタル1に焼鈍処理を施している。焼鈍処理温度としては、900〜1000℃が適切である。すなわち、900℃未満では酸化皮膜の形成量が不十分であり、1000℃より高くなると結晶粒の成長による脆化が問題になるためである。本実施例における焼鈍処理は大気中で行っているが、不活性ガス雰囲気中で行うこともできる。
【0024】
こうして焼鈍を終了したエキスパンドメタル1は、その表面に図1のA部を拡大断面して示すようにアルミナを主成分とするアンダーコート層3を塗布し焼成を行った後、ゼオライトを主成分とする吸湿剤4aを設けて吸湿剤層4の作製を行った。
【0025】
吸湿剤層4は、ゼオライト100重量部、コロイダルシリカ30重量部、イオン交換水100重量部を攪拌、混合して形成しているものである。このスラリーを、アンダーコート層3の上に塗布した後、130℃で20分間乾燥させ、600℃で20分間焼成して吸湿剤層4を形成している。本実施例では、吸湿剤4aとしてゼオライトを用いたが、他にシリカゲルや活性アルミナを用いても良い。
【0026】
以上のように構成された調湿デバイスについて、以下その動作と作用を説明する。調湿デバイスは、図1に示すように対流ファン(図示せず)により吸引した3個の矢印で示す空気の流路に、エキスパンドメタル1の波板状を沿わせて配置する。そして、水分脱着するときは、対流ファンの回転を停止し、給電端子2、2a間に通電するとエキスパンドメタル1は発熱するとともに、この発熱により同時に吸湿剤層4も加熱される。そして、水分脱着温度に達した吸湿剤層4からは、吸着されていた水分が脱着する。このとき、一部が開放してある空気の流路から積極的に自然排気するようにすれば良い。
【0027】
次に、流れる空気中の水分を吸着するときは、前記した一部が開放してある空気の流路を閉じ、調湿デバイスの給電端子2、2a間を非通電状態にするとともに、対流ファンを回転させる。そして、エキスパンドメタル1は非加熱状態となり吸湿剤層4の温度は下がり、流通する空気中の水分が吸湿剤4aに吸着される。以上の動作を繰り返すことにより、空気中の水分が吸着され、目的とする除湿された空気を所定の個所へ供給することができる。
【0028】
以上の構成による本実施例では、次のような効果を期待することができる。エキスパンドメタル1を一例として採用した基材の表面に吸湿剤層4を形成し、エキスパンドメタル1に通電して直接発熱させ、その発熱を利用して吸湿剤層4を加熱するため、吸湿剤層4の温度上昇が速く、水分脱着温度に達するまでの時間が非常に短くなるものである。
【0029】
すなわち、従来のようにハニカム状セラミックスの基材の表面に吸湿剤を担持し、この吸湿剤に空気中の水分を吸着させ、吸湿剤に吸着した水分を外部から主に輻射熱や対流熱により間接的に加熱して脱着再生するものと比較して、本実施例では入力電力量を同一とした場合、約3倍の速度で水分脱着温度に達した。従来のものでは、吸湿剤層の温度が200℃に達するまでの時間は100Wで約60秒であったが、本実施例では100Wで20秒弱であった。以上の結果より、吸脱着サイクルが比較的短い使用用途においては、本実施例の調湿デバイスは非常に有用である。
【0030】
また、エキスパンドメタルを基材として用い、かつ波板状に加工しているため、表面積を大きく確保できるとともに、それでいて、従来におけるハニカム形状の基材のように目詰まりする心配がなく、性能低下が少ない高耐久の調湿デバイスとすることができる。
【0031】
また、ヒータとしてエキスパンドメタルを用いているため、抵抗値の設定を自由に行え、任意の電力を吸湿剤層に供給できるものである。すなわち図2、図3に示すエキスパンドメタルの板厚、幅S、長さL、きざみ幅K、LW、SWのいずれを変更することによっても抵抗値を変えることができるものである。また、基材がパンチングメタルの場合は、基材の板厚、幅S、長さL、パンチング穴形状、開口率のいずれを変更することによっても抵抗値を変えることができるものである。さらに、基材が金網の場合は、基材の線径、幅S、長さL、メッシュのいずれを変更することによっても抵抗値を変えることができるものである。
【0032】
また、基材であるエキスパンドメタル1は、900〜1000℃の雰囲気中で焼鈍しているため、表面に酸化物の緻密な不働態皮膜を形成することで、耐熱性、耐食性が向上し、かつアンカー効果によりアンダーコート層3または吸湿剤層4との密着性を向上させることができる。
【0033】
以上の効果を示すため、図1に示す調湿デバイスを用いて、基材の耐食試験および基材とアンダーコート層との密着性試験を行った。すなわち、耐食試験としては、酸、アルカリ、塩化ナトリウム溶液浸漬試験により評価し、密着性試験としては、600℃の炉で一定時間加熱してから水中に投入することによる熱衝撃試験により評価を行った。比較例としては、焼鈍処理しない基材を使用し、それ以外は本実施例と同じ構成の調湿デバイスを用いた。
【0034】
液温25℃、1%塩化ナトリウム溶液、0.5%硫酸、0.5%水酸化ナトリウムの各水溶液に両サンプルを浸漬した結果、熱処理した本実施例の基材は全く腐食されなかったが、未熱処理の基材では1%塩化ナトリウム溶液、0.5%硫酸において、錆の発生が認められた。
【0035】
次に、熱衝撃試験を行った結果、熱処理の基材を使用した本実施例ではアンダーコート層に剥れはなかったが、未熱処理の基材を使用したものでは一部に剥れが認められた。
【0036】
また、吸湿剤層は、各吸湿剤に対して最適なバインダーを用いることにより、より強固に基材に固着させることができるものである。本実施例では、コロイダルシリカを用いたが、水ガラス、リン酸アルミニウムを用いても同様の効果が期待されるものである。
【0037】
【発明の効果】
以上のように本発明は、基材の表面に吸湿剤層を形成し、前記基材を水分吸着時は非通電とし、水分脱着時に通電するようにしたことにより、温度上昇が速く、温度分布が均一で水分脱着効率の高い調湿デバイスを提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1における調湿デバイスの全体と、そのA部を拡大断面して示す斜視図
【図2】同実施例1における調湿デバイスの展開図
【図3】同実施例1における調湿デバイスの要部の拡大図
【符号の説明】
1 エキスパンドメタル(基材)
2、2a 給電端子
3 アンダーコート層
4 吸湿剤層
4a 吸湿剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a humidity control device that removes moisture in the air by adsorption using a moisture absorbent and desorbs and regenerates the moisture adsorbed on the moisture absorbent by heating.
[0002]
[Prior art]
Conventionally, as a device for absorbing and desorbing moisture in the air, a desiccant is carried on the surface of a honeycomb-shaped ceramic base material, the moisture in the air is adsorbed by the desiccant, and the moisture adsorbed on the desiccant is mainly applied from outside. There is a method of heating by radiant heat or convective heat to perform desorption / regeneration (for example, see Patent Document 1).
[0003]
However, in the above-mentioned conventional one, there is a problem that the temperature rise of the hygroscopic agent is slow in the process of desorbing moisture, and it takes a long time to reach the moisture desorption temperature. In other words, in order to desorb adsorbed water and regenerate the desiccant, the base material is indirectly heated mainly by radiant heat or convection heat from the outside, and when a ceramic base material is used, the heat capacity is large. In addition, the water desorption rate was low due to the low thermal conductivity.
[0004]
Further, in order to solve the above problem, when the base material is formed into a honeycomb shape, the temperature distribution of the base material becomes non-uniform, the moisture desorption efficiency is deteriorated, or the honeycomb-shaped base material is reduced due to dust in the air. The clogging has a problem that the efficiency of desorption of water is reduced.
[0005]
[Patent Document 1]
JP-A-9-24235
[Problems to be solved by the invention]
In view of the above-mentioned conventional problems, an object of the present invention is to provide a humidity control device that improves the efficiency of desorption of moisture.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a substrate capable of generating heat by energization, and a hygroscopic layer formed on the surface of the substrate, deenergizing when adsorbing moisture, and energizing when desorbing moisture. A humidity control device is provided.
[0008]
According to the above means, the temperature rise is fast, the temperature distribution is uniform, and the moisture desorption efficiency can be improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The above-described object of the present invention can be achieved by implementing the configuration described in each claim as an embodiment. Hereinafter, the functions and effects of the configuration are described together with the configuration of each claim, and the claims are also described. The specific terms that need to be explained in the above configuration will be described in the embodiments of the present invention with a detailed explanation.
[0010]
The invention according to claim 1 has a base material capable of generating heat when energized, and a moisture absorbent layer formed on the surface of the base material, and is de-energized when adsorbing moisture and energized when desorbing moisture. In this case, the temperature rise is fast and the temperature distribution becomes uniform due to the heat generation of the base material, and a humidity control device having high moisture desorption efficiency can be obtained.
[0011]
According to the second aspect of the present invention, by using a metal as the base material, a humidity control device having high thermal conductivity, high moisture desorption efficiency, and easy shape retention can be obtained.
[0012]
According to the third aspect of the present invention, by making the base material porous, a heat control device having a small heat capacity, a rapid temperature rise, and a high moisture desorption efficiency can be obtained.
[0013]
The invention according to claim 4 can secure a necessary resistance value as a heater by using at least one of a punched metal, an expanded metal, and a wire mesh as a base material, so that the resistance value design is easy. In addition, a humidity control device having a small heat capacity, a rapid temperature rise, a uniform temperature distribution, and a high moisture desorption efficiency can be obtained.
[0014]
In the invention according to claim 5, by making the base material corrugated, the contact area with air containing moisture can be increased, and a humidity control device with high adsorption / desorption efficiency can be obtained.
[0015]
The invention according to claim 6, wherein the metal substrate is subjected to annealing treatment, thereby improving the corrosion resistance of the substrate, and by improving the adhesion with the moisture absorbent layer by the anchor effect, A highly durable humidity control device can be obtained.
[0016]
The invention according to claim 7 can provide a humidity control device having high moisture absorption / desorption performance by using at least one of zeolite, silica gel, and alumina as the moisture absorbent layer.
[0017]
The invention according to claim 8 is that the moisture absorbent layer is fixed to the substrate by using at least one of colloidal silica, water glass, and aluminum phosphate as a binder, whereby the moisture absorbent layer adheres to the substrate. The humidity control device has improved durability and is resistant to vibration and thermal expansion and contraction and has high durability. In particular, it is very useful as a dehumidifying device that is mounted on a vehicle with a lot of vibration and that dehumidifies a vehicle compartment.
[0018]
The invention according to claim 9 provides a moisture absorbent layer having an undercoat layer containing alumina as a main component formed on the surface of the substrate and a moisture absorbent provided on the surface of the undercoat layer, and Adhesion with the moisture absorbent layer is improved, and a highly durable humidity control device that is more resistant to vibration and thermal expansion and contraction can be obtained. In particular, it is very useful as a dehumidifying device that is mounted on a vehicle with a lot of vibration and that dehumidifies a vehicle compartment.
[0019]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
(Example 1)
FIG. 1 is a perspective view showing a humidity control device according to a first embodiment of the present invention, and is an enlarged cross-sectional view of a portion A. FIG. 2 is a developed view of the humidity control device shown in FIG.
[0021]
In FIG. 1, reference numeral 1 denotes an expanded metal as a base material that generates heat when energized, and has a moisture absorbent layer 4 formed on a surface thereof. Reference numerals 2 and 2a denote power supply terminals for supplying electricity to the expanded metal 1, and are attached to the expanded metal 1 by spot welding. As a material of the expanded metal 1, any of Fe-Cr-Al heat-resistant steel and Ni-Cr heat-resistant steel having large volume resistivity and excellent heat resistance, corrosion resistance, and pitting corrosion resistance is suitable. In the present embodiment, in order to match the coefficient of thermal expansion of the moisture absorbent layer 4 formed on the surface of the expanded metal 1, a heat-resistant Fe-Cr-Al-based steel (R20-5SR t 0.1 mm) having a relatively small coefficient of thermal expansion is used. (Made by Kawasaki Steel).
[0022]
Then, the above expanded metal 1 is processed into a corrugated plate shape as shown in FIG. At this time, in order to prevent the base material from being broken due to the repetitive stress, it is preferable to perform an appropriate rounding process on the peaks 1a and the valleys 1b.
[0023]
Next, the expanded metal 1 is subjected to an annealing treatment for the purpose of improving the corrosion resistance of the expanded metal 1 as a base material and improving the adhesion to the moisture absorbent layer 4 by an anchor effect. 900-1000 ° C. is appropriate as the annealing temperature. That is, when the temperature is lower than 900 ° C., the formation amount of the oxide film is insufficient, and when the temperature is higher than 1000 ° C., embrittlement due to growth of crystal grains becomes a problem. Although the annealing process in this embodiment is performed in the air, it can be performed in an inert gas atmosphere.
[0024]
The expanded metal 1 thus annealed is coated with an undercoat layer 3 mainly composed of alumina as shown in an enlarged sectional view of a portion A in FIG. The moisture absorbent 4a was provided, and the moisture absorbent layer 4 was produced.
[0025]
The moisture absorbent layer 4 is formed by stirring and mixing 100 parts by weight of zeolite, 30 parts by weight of colloidal silica, and 100 parts by weight of ion-exchanged water. The slurry is applied on the undercoat layer 3, dried at 130 ° C. for 20 minutes, and baked at 600 ° C. for 20 minutes to form the moisture absorbent layer 4. In this embodiment, zeolite is used as the hygroscopic agent 4a, but silica gel or activated alumina may be used instead.
[0026]
The operation and operation of the humidity control device configured as described above will be described below. As shown in FIG. 1, the humidity control device is arranged along the corrugated shape of the expanded metal 1 along the flow path of air indicated by three arrows sucked by a convection fan (not shown). When moisture is desorbed, the rotation of the convection fan is stopped, and when power is supplied between the power supply terminals 2 and 2a, the expanded metal 1 generates heat, and the generated heat also heats the moisture absorbent layer 4 at the same time. Then, the adsorbed moisture is desorbed from the moisture absorbent layer 4 which has reached the moisture desorption temperature. At this time, the air may be naturally naturally exhausted from the air flow path that is partially open.
[0027]
Next, when adsorbing moisture in the flowing air, the air flow path, which is partially open, is closed, the power supply terminals 2 and 2a of the humidity control device are turned off, and the convection fan is closed. To rotate. Then, the expanded metal 1 enters a non-heated state, the temperature of the moisture absorbent layer 4 decreases, and moisture in the flowing air is adsorbed by the moisture absorbent 4a. By repeating the above operation, moisture in the air is adsorbed, and the desired dehumidified air can be supplied to a predetermined location.
[0028]
In the present embodiment having the above configuration, the following effects can be expected. A hygroscopic layer 4 is formed on the surface of a substrate employing the expanded metal 1 as an example, and the expanded metal 1 is energized to directly generate heat, and the generated heat is used to heat the hygroscopic layer 4. The temperature of No. 4 rises quickly, and the time required to reach the moisture desorption temperature is extremely short.
[0029]
In other words, as in the conventional case, a desiccant is carried on the surface of the honeycomb-shaped ceramic substrate, and the moisture in the air is adsorbed to the desiccant, and the moisture adsorbed on the desiccant is indirectly indirectly radiated or convected from the outside. In this example, when the input electric energy was the same, the temperature reached the water desorption temperature at about three times the speed in comparison with the method in which the desorption regeneration was carried out by heating. In the conventional case, the time required for the temperature of the moisture absorbent layer to reach 200 ° C. was about 60 seconds at 100 W, but in this example, it was less than 20 seconds at 100 W. From the above results, the humidity control device of the present embodiment is very useful in applications where the adsorption / desorption cycle is relatively short.
[0030]
In addition, since expanded metal is used as a base material and processed into a corrugated plate, a large surface area can be ensured, but there is no risk of clogging unlike a conventional honeycomb-shaped base material, and the performance is reduced. A small and highly durable humidity control device can be obtained.
[0031]
Further, since the expanded metal is used as the heater, the resistance value can be freely set, and any electric power can be supplied to the moisture absorbent layer. That is, the resistance value can be changed by changing any of the sheet thickness, width S, length L, and step width K, LW, and SW of the expanded metal shown in FIGS. When the base material is a punched metal, the resistance value can be changed by changing any of the thickness, width S, length L, punched hole shape, and aperture ratio of the base material. Further, when the base material is a wire mesh, the resistance value can be changed by changing any of the wire diameter, width S, length L, and mesh of the base material.
[0032]
In addition, since the expanded metal 1 as the base material is annealed in an atmosphere at 900 to 1000 ° C., by forming a dense passive film of oxide on the surface, heat resistance and corrosion resistance are improved, and Due to the anchor effect, the adhesion with the undercoat layer 3 or the moisture absorbent layer 4 can be improved.
[0033]
In order to exhibit the above effects, a corrosion resistance test of the substrate and an adhesion test between the substrate and the undercoat layer were performed using the humidity control device shown in FIG. That is, the corrosion resistance test is evaluated by an acid, alkali, sodium chloride solution immersion test, and the adhesion test is performed by a thermal shock test by heating in a furnace at 600 ° C. for a certain period of time and then throwing into water. Was. As a comparative example, a base material without annealing treatment was used, and a humidity control device having the same configuration as that of the present example was used except for the above.
[0034]
As a result of immersing both samples in aqueous solutions of a liquid temperature of 25 ° C., 1% sodium chloride solution, 0.5% sulfuric acid and 0.5% sodium hydroxide, the heat-treated base material of this example was not corroded at all. On the unheated substrate, generation of rust was observed in a 1% sodium chloride solution and 0.5% sulfuric acid.
[0035]
Next, as a result of a thermal shock test, no peeling was observed in the undercoat layer in the present example using the heat-treated base material, but some peeling was observed in the case using the unheated base material. Was done.
[0036]
The moisture absorbent layer can be more firmly fixed to the base material by using an optimal binder for each moisture absorbent. In this embodiment, colloidal silica was used, but the same effect can be expected by using water glass or aluminum phosphate.
[0037]
【The invention's effect】
As described above, the present invention forms a desiccant layer on the surface of a substrate, de-energizes the substrate when adsorbing moisture, and energizes when desorbing moisture. And a humidity control device having high moisture desorption efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is an enlarged perspective view showing the entirety of a humidity control device according to a first embodiment of the present invention and a portion A thereof. FIG. 2 is a developed view of the humidity control device according to the first embodiment. Enlarged view of main part of humidity control device in Example 1.
1 Expanded metal (base material)
2, 2a power supply terminal 3 undercoat layer 4 desiccant layer 4a desiccant

Claims (9)

通電により発熱可能な基材と、前記基材の表面に形成した吸湿剤層とを有し、水分吸着時は非通電とし、水分脱着時に通電するようにした調湿デバイス。A humidity control device comprising: a base material capable of generating heat by energization; and a moisture absorbent layer formed on the surface of the base material. 前記発熱可能な基材は、金属で形成した請求項1に記載の調湿デバイス。The humidity control device according to claim 1, wherein the heat-producable base material is formed of a metal. 前記発熱可能な基材は、多孔状に形成した請求項1または2に記載の調湿デバイス。The humidity control device according to claim 1, wherein the heat-generating substrate is formed in a porous shape. 前記発熱可能な基材は、少なくともパンチングメタル、エキスパンドメタル、金網のうちいずれか一種を用いてなる請求項1〜3のいずれか1項に記載の調湿デバイス。The humidity control device according to any one of claims 1 to 3, wherein the heat-generating base material is at least one of a punched metal, an expanded metal, and a wire mesh. 前記発熱可能な基材は、波板状に形成した請求項1〜4のいずれか1項に記載の調湿デバイス。The humidity control device according to any one of claims 1 to 4, wherein the heat-generating substrate is formed in a corrugated shape. 前記発熱可能な金属の基材は、焼鈍処理を施してなる請求項2または4に記載の調湿デバイス。The humidity control device according to claim 2, wherein the heat-generating metal substrate is subjected to an annealing treatment. 前記吸湿剤層は、少なくともゼオライト、シリカゲル、アルミナのいずれか一種以上を用いてなる請求項1〜6のいずれか1項に記載の調湿デバイス。The humidity control device according to any one of claims 1 to 6, wherein the moisture absorbent layer is made of at least one of zeolite, silica gel, and alumina. 前記吸湿剤層は、バインダーとして少なくともコロイダルシリカ、水ガラス、リン酸アルミニウムのいずれか一種以上を用いて基材に固着した請求項1〜7のいずれか1項に記載の調湿デバイス。The humidity control device according to any one of claims 1 to 7, wherein the moisture absorbent layer is fixed to the substrate using at least one of colloidal silica, water glass, and aluminum phosphate as a binder. 前記吸湿剤層は、基材表面に形成したアルミナを主成分とするアンダーコート層とアンダーコート層の表面に設けた吸湿剤とを有する請求項1〜8のいずれか1項に記載の調湿デバイス。The humidity control according to any one of claims 1 to 8, wherein the moisture absorbent layer has an undercoat layer containing alumina as a main component formed on the surface of the base material and a moisture absorbent provided on the surface of the undercoat layer. device.
JP2003110092A 2003-04-15 2003-04-15 Humidity control device Expired - Fee Related JP4239656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110092A JP4239656B2 (en) 2003-04-15 2003-04-15 Humidity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110092A JP4239656B2 (en) 2003-04-15 2003-04-15 Humidity control device

Publications (3)

Publication Number Publication Date
JP2004313897A true JP2004313897A (en) 2004-11-11
JP2004313897A5 JP2004313897A5 (en) 2006-05-18
JP4239656B2 JP4239656B2 (en) 2009-03-18

Family

ID=33471044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110092A Expired - Fee Related JP4239656B2 (en) 2003-04-15 2003-04-15 Humidity control device

Country Status (1)

Country Link
JP (1) JP4239656B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082875A (en) * 2007-10-02 2009-04-23 Toshiba Corp Moisture absorption device
WO2011132527A1 (en) 2010-04-22 2011-10-27 三菱樹脂株式会社 Adsorptive member and device using same
JP2015526272A (en) * 2012-06-13 2015-09-10 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Nutzfahrzeuge GmbH Air dryer cartridge and method of manufacturing air dryer cartridge
JPWO2018131591A1 (en) * 2017-01-16 2019-06-27 株式会社巴川製紙所 Self-heating sheet material for moisture absorption and release, moisture absorption and release body, and moisture absorption and release device using them
JP2021130091A (en) * 2020-02-20 2021-09-09 進和テック株式会社 Desiccant filter, desiccant filter unit and method for regenerating desiccant filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317635A (en) * 1992-05-18 1993-12-03 Nissin Electric Co Ltd Air dryer
JPH10216458A (en) * 1997-01-31 1998-08-18 Sharp Corp Humidity controller
JP2001232139A (en) * 2000-02-25 2001-08-28 Ngk Insulators Ltd Dehumidifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317635A (en) * 1992-05-18 1993-12-03 Nissin Electric Co Ltd Air dryer
JPH10216458A (en) * 1997-01-31 1998-08-18 Sharp Corp Humidity controller
JP2001232139A (en) * 2000-02-25 2001-08-28 Ngk Insulators Ltd Dehumidifier

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082875A (en) * 2007-10-02 2009-04-23 Toshiba Corp Moisture absorption device
WO2011132527A1 (en) 2010-04-22 2011-10-27 三菱樹脂株式会社 Adsorptive member and device using same
JP2015526272A (en) * 2012-06-13 2015-09-10 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Nutzfahrzeuge GmbH Air dryer cartridge and method of manufacturing air dryer cartridge
JPWO2018131591A1 (en) * 2017-01-16 2019-06-27 株式会社巴川製紙所 Self-heating sheet material for moisture absorption and release, moisture absorption and release body, and moisture absorption and release device using them
CN110167658A (en) * 2017-01-16 2019-08-23 株式会社巴川制纸所 The spontaneous hot tablet of moisture adsorption and releasing, moisture adsorption and releasing body and the moisture adsorption and releasing device using them
EP3569302A4 (en) * 2017-01-16 2020-11-11 Tomoegawa Co., Ltd. Self-heating sheet-shaped article to be used for moisture absorption/desorption, moisture-absorbing/desorbing body, and moisture-absorbing/desorbing device using said article and body
JP2021058887A (en) * 2017-01-16 2021-04-15 株式会社巴川製紙所 Self-heating sheet-like product for moisture absorption and desorption, moisture absorption and desorption body and moisture adsorbing and desorbing device with use thereof
CN110167658B (en) * 2017-01-16 2022-02-08 株式会社巴川制纸所 Self-heating sheet for moisture absorption and desorption, moisture absorption and desorption body, and moisture absorption and desorption device using same
US11291945B2 (en) 2017-01-16 2022-04-05 Tomoegawa Co., Ltd. Self-heating sheet-like material for moisture absorption and desorption, moisture absorption and desorption body, and moisture absorption and desorption device using the same
JP7072631B2 (en) 2017-01-16 2022-05-20 株式会社巴川製紙所 A self-heating sheet for moisture absorption and desorption, a moisture absorption and desorption body, and a moisture absorption and desorption device using them.
JP2021130091A (en) * 2020-02-20 2021-09-09 進和テック株式会社 Desiccant filter, desiccant filter unit and method for regenerating desiccant filter

Also Published As

Publication number Publication date
JP4239656B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
CN102989258A (en) Adsorption module, adsorption device and regeneration method thereof
KR0130128B1 (en) Heating element for deodorization
JP2950453B2 (en) Sheet-shaped sorbent body having a heating element, sorption laminate having a heating element, and dehumidifier using sorption laminate having a heating element
JPH11311117A (en) Catalyst heating system
JP2004313897A (en) Humidification device
JP2005279390A (en) Adsorption/desorption filter, adsorption/desorption tube and adsorption-regenerating device
JPH07275641A (en) Dehumidifier
JP2004333021A (en) Humidity controller
JP5453490B2 (en) Dehumidification and release device and system
JP2008093504A (en) Adsorption decomposition element, its manufacturing method, and air-conditioner using it
JP2005046796A (en) Moisture-conditioning device and moisture controller using the device
JP2004330095A (en) Method for forming moisture absorbent layer
JPH0866460A (en) Deodorizing device
JP2005046796A5 (en)
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
TW443073B (en) Adsorption, decomposition and deodorization element
JP3800747B2 (en) Catalyst heater and catalyst apparatus using the catalyst heater
JP5361461B2 (en) Dehumidification system
JP3755734B2 (en) Moisture exchange device
WO2023234218A1 (en) Voc removal method
JP2005172389A (en) Air conditioner
JP2001254421A (en) Deodorizor for toilet
JPH11267445A (en) Deodorizing device and deodorizing machine and air conditioner equipped with same
JPH09159198A (en) Deodorizing function equipped air conditioner
JPH10337434A (en) Absorbing body for gas and air purifier using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees