JP2004312811A - Method and apparatus for measuring rotor attitude angle of multiple-degree-of-freedom ultrasonic motor - Google Patents

Method and apparatus for measuring rotor attitude angle of multiple-degree-of-freedom ultrasonic motor Download PDF

Info

Publication number
JP2004312811A
JP2004312811A JP2003100029A JP2003100029A JP2004312811A JP 2004312811 A JP2004312811 A JP 2004312811A JP 2003100029 A JP2003100029 A JP 2003100029A JP 2003100029 A JP2003100029 A JP 2003100029A JP 2004312811 A JP2004312811 A JP 2004312811A
Authority
JP
Japan
Prior art keywords
rotor
plane
attitude angle
finite
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100029A
Other languages
Japanese (ja)
Other versions
JP4162218B2 (en
Inventor
Hiroshi Kawano
洋 川野
Tatsuya Hirahara
達也 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003100029A priority Critical patent/JP4162218B2/en
Publication of JP2004312811A publication Critical patent/JP2004312811A/en
Application granted granted Critical
Publication of JP4162218B2 publication Critical patent/JP4162218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring the rotor attitude angle of a multiple-degree-of-freedom ultrasonic motor which can accurately perform a required rotary angle measurement for a long time. <P>SOLUTION: A characteristic constitution means includes a displacement geometry plane surface assembly 4 constituted expressibly for the attitude angle of the rotor 3 by first finite planar coordinates on first planar member 41 perpendicularly crossing with the axis of rotating center of a rotor 3 including the central point of rotation of the rotor 3 in a stator coordinate system with the central axis of installing a stator 2 as a reference and second finite planar coordinates on second planar member 42 including the axis of the rotating center in the plane, first and second laser type range finding sensors 5 and 6 for optically measuring distances between two intersections crossing with the first finite plane on the first planar member 41 in the displacement geometry plane surface assembly 4 and one intersection crossing with the second finite plane on the second plane member 42 of straight lines generated from three measuring reference points, and a third laser type range finding sensor 7. The characteristic constitution means is adopted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多自由度超音波モータの回転子姿勢角計測方法及び装置に関し、詳しくは、複数の圧電素子が重層構成された円筒形の固定子と、この固定子の設置中心軸上にその回動中心点及び回転中心軸を含むよう当該固定子上に載置構成された球形の回転子とを有して構成される多自由度超音波モータにおいて、複数の圧電素子への交流電圧の印加に伴う前記回転子の姿勢角の変位を随時計測するための多自由度超音波モータの回転子姿勢角計測方法、及びその実施に直接使用される多自由度超音波モータの回転子姿勢角計測装置に係わる。
【0002】
【従来の技術】
近年、人間型ロボットの関節機構など、高トルク、高自由度動作を要求される部位に使用されるアクチュエータとして、従来の1自由度電磁式サーボモータに代り、省スペース、高トルクの多自由度超音波モータの適用が期待されている。特に、人間型ロボットの首関節部のように、重量物たる頭部を鉛直に支えつつその姿勢を多自由度に変位させる必要のある部位に対し、この種の多自由度超音波モータの応用が大いに期待されている。
【0003】
一般に、多自由度超音波モータは、互いに振動方向が異なる複数の圧電素子を積層してなる円筒形の固定子(ステータ)と、この固定子上に密着して載置された球形の回転子(ロータ)とを有して構成される。当該多自由度超音波モータの固定子の圧電素子に、周波数が等しく互いに位相が異なる交流電圧を印加した場合、各圧電素子に固有振動が励起されて超音波が発生し、それら固有振動モードの組み合せにより、回転子が3自由度に回転して(x,y,z軸を回転中心軸として)その姿勢を変位させる。
【0004】
なお、上記多自由度超音波モータの構成及び動作原理の詳細は、以下に示す非特許文献1及び2に記載されている。
【0005】
【非特許文献1】
Takemura, K. & Maeno, T. ‘Characteristics of an Ultrasonic Motor Capable of Generating a Multi−Degrees of Freedom Motion’, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, April 2000.
【0006】
【非特許文献2】
Takemura, K. & Maeno, T. ‘Control of Multi−DOF Ultrasonic Motor using Neural Network based Inverse Model’, Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2002.
【0007】
ここで、以上のように3自由度の回転動作を行う多自由度超音波モータを適切に駆動するには、当該多自由度超音波モータの回転子の回転角度(x,y,z軸に対する姿勢角)を正確に計測する必要があるが、例えば、上述した従来の1自由度電磁式サーボモータの回転角度計測に利用されているエンコーダは、多自由度超音波モータの回転角度計測の手段としては原理的に不向きである。
【0008】
このため、従来では、所要の回転角度計測に際し、例えば、3つの1自由度回転角度センサを機構的に組み合せて多自由度超音波モータに接続し、各回転角度センサの計測値を元に回転角度算出に係る幾何学的計算を行う手法や、或いは、小型の回転角速度計測用のレートジャイロを回転子に固定し、その回転に伴って計測された角速度を積分する手法などが提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、回転角度センサなどからなる機構物を利用して所要の回転角度計測を行おうとする場合、その機構部分の発生する騒音が問題となり、また、3自由度の回転角度を同時に計測可能な機構物を構成しようとすると、その機構自体が複雑となって、回転子の可動範囲を極端に狭めてしまうなどの新たな問題を生じてしまう。
【0010】
これに対し、所要の回転角度計測にレートジャイロを利用する場合、一般に、レートジャイロは低速回転時における角速度計測精度が悪いため、回転子の回転に伴って連続的に計測された角速度値を積分するに当り、積分誤差が徐々に蓄積されていくという不可避の問題があり、所要の回転角度計測を長時間に亙って高精度に行うことは期待できない。
【0011】
ここにおいて、本発明の解決すべき主要な目的は、次のとおりである。
【0012】
即ち、本発明の第1の目的は、所要の回転角度計測を長時間に亙り高い周波数領域で高精度に行うことの可能な多自由度超音波モータの回転子姿勢角計測方法及び装置を提供せんとするものである。
【0013】
本発明の第2の目的は、回転子の可動範囲を広く確保することの可能な多自由度超音波モータの回転子姿勢角計測方法及び装置を提供せんとするものである。
【0014】
本発明の第3の目的は、回転速度計測に際して騒音を生じることのない多自由度超音波モータの回転子姿勢角計測方法及び装置を提供せんとするものである。
【0015】
本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から、自ずと明らかとなろう。
【0016】
【課題を解決するための手段】
まず、本発明方法においては、光学的距離計測手段により、固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ変位幾何平面集合体における第1有限平面と交差する2点の交点及び第2有限平面と交差する1点の交点との間の各距離をそれぞれ計測する過程を実施した後に、情報処理手段により、3箇所の計測基準点と変位幾何平面集合体における第1有限平面内の2点の交点及び第2有限平面内の1点の交点との間の各距離に基づき、対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する過程と、変位幾何平面集合体における第1有限平面内の2点の交点座標及び第2有限平面内の1点の交点座標に基づき、回転子の姿勢角を演算する過程とを順次実施する、という特徴的構成手法を講じる。
【0017】
一方、本発明装置においては、回転子の姿勢角を、固定子の設置中心軸を基準とした固定子座標系における、当該回転子の回動中心点を面内に含んで同回転子の回転中心軸と直交する第1有限平面の座標と、当該回転中心軸を面内に含む第2有限平面の座標とにより表現可能に構成された、回転子と一体動する変位幾何平面集合体と、固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ変位幾何平面集合体における第1有限平面と交差する2点の交点及び第2有限平面と交差する1点の交点との間の各距離をそれぞれ光学的に計測する光学的距離計測手段と、この光学的距離計測手段により計測された、3箇所の計測基準点と変位幾何平面集合体における第1有限平面内の2点の交点及び第2有限平面内の1点の交点との間の各距離に基づき、対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する集合体交点座標算出手段と、この集合体交点座標算出手段により算出された、変位幾何平面集合体における第1有限平面内の2点の交点座標及び第2有限平面内の1点の交点座標に基づき、回転子の姿勢角を演算する回転子姿勢角演算手段とを具備させる、という特徴的構成手段を講じる。
【0018】
さらに、具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位概念に亙る新規な特徴的構成手法又は手段を採用することにより、上記目的を達成するよう為される。
【0019】
即ち、本発明方法の第1の特徴は、複数の圧電素子が重層構成された円筒形の固定子と、この固定子の設置中心軸上にその回動中心点及び回転中心軸を含むよう当該固定子上に載置構成された球形の回転子とを有して構成される多自由度超音波モータにおいて、前記複数の圧電素子への交流電圧の印加に伴う前記回転子の姿勢角の変位を随時計測するための回転子姿勢角計測方法であって、前記回転子の前記姿勢角を、前記固定子の前記設置中心軸を基準とした固定子座標系における、当該回転子の前記回動中心点を面内に含んで同回転子の前記回転中心軸と直交する第1有限平面の座標と、当該回転中心軸を面内に含む第2有限平面の座標とにより表現可能に構成された、前記回転子と一体動する変位幾何平面集合体を採用し、光学的距離計測手段により、前記固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ前記変位幾何平面集合体における前記第1有限平面と交差する2点の交点及び前記第2有限平面と交差する1点の交点との間の各距離をそれぞれ計測する過程を実施した後に、情報処理手段により、前記3箇所の計測基準点と前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点及び前記第2有限平面内の前記1点の交点との間の前記各距離に基づき、対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する過程と、前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標及び前記第2有限平面内の前記1点の交点座標に基づき、前記回転子の前記姿勢角を演算する過程とを順次実施してなる、多自由度超音波モータの回転子姿勢角計測方法の構成採用にある。
【0020】
本発明方法の第2の特徴は、上記本発明方法の第1の特徴における前記情報処理手段による前記回転子の姿勢角演算の過程が、前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標に基づき、当該第1有限平面についての第1法線ベクトルを算出する過程と、前記変位幾何平面集合体における前記第2有限平面内の前記1点の交点座標及び前記第1法線ベクトルに基づき、当該第2有限平面についての第2法線ベクトルを算出する過程と、前記第1法線ベクトル及び前記第2法線ベクトルに基づき、前記回転子の前記姿勢角を算出する過程とを順次実施してなる、多自由度超音波モータの回転子姿勢角計測方法の構成採用にある。
【0021】
本発明方法の第3の特徴は、上記本発明方法の第2の特徴における前記情報処理手段による前記回転子の姿勢角算出の過程が、前記回転子の前記姿勢角として、前記固定子の前記設置中心軸に対する当該回転子の回転中心軸の傾斜角成分を算出する過程を実施してなる、多自由度超音波モータの回転子姿勢角計測方法の構成採用にある。
【0022】
本発明方法の第4の特徴は、上記本発明方法の第2又は第3の特徴における前記情報処理手段による前記回転子の姿勢角算出の過程が、前記回転子の前記姿勢角として、当該回転子の前記回転中心軸に沿う回転角成分を算出する過程を実施してなる、多自由度超音波モータの回転子姿勢角計測方法の構成採用にある。
【0023】
本発明方法の第5の特徴は、上記本発明方法の第1、第2、第3又は第4の特徴における前記光学的距離計測手段による距離計測の過程が、前記3箇所の計測基準点から発する前記直線をそれぞれレーザ光軸線により得る過程を実施してなる、多自由度超音波モータの回転子姿勢角計測方法の構成採用にある。
【0024】
一方、本発明装置の第1の特徴は、複数の圧電素子が重層構成された円筒形の固定子と、この固定子の設置中心軸上にその回動中心点及び回転中心軸を含むよう当該固定子上に載置構成された球形の回転子とを有して構成される多自由度超音波モータにおいて、前記複数の圧電素子への交流電圧の印加に伴う前記回転子の姿勢角の変位を随時計測するための回転子姿勢角計測装置であって、前記回転子の前記姿勢角を、前記固定子の前記設置中心軸を基準とした固定子座標系における、当該回転子の前記回動中心点を面内に含んで同回転子の前記回転中心軸と直交する第1有限平面の座標と、当該回転中心軸を面内に含む第2有限平面の座標とにより表現可能に構成された、前記回転子と一体動する変位幾何平面集合体と、前記固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ前記変位幾何平面集合体における前記第1有限平面と交差する2点の交点及び前記第2有限平面と交差する1点の交点との間の各距離をそれぞれ光学的に計測する光学的距離計測手段と、この光学的距離計測手段により計測された、前記3箇所の計測基準点と前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点及び前記第2有限平面内の前記1点の交点との間の前記各距離に基づき、変位対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する集合体交点座標算出手段と、この集合体交点座標算出手段により算出された、前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標及び前記第2有限平面内の前記1点の変位交点座標に基づき、前記回転子の前記姿勢角を演算する回転子姿勢角演算手段とを有して構成されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0025】
本発明装置の第2の特徴は、上記本発明装置の第1の特徴における前記回転子姿勢角演算手段が、前記集合体交点座標算出手段により算出された前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標に基づき、当該第1有限平面についての第1法線ベクトルを算出する第1法線ベクトル算出手段と、前記集合体交点座標算出手段により算出された前記変位幾何平面集合体における前記第2有限平面内の前記1点の交点座標、及び前記第1法線ベクトル算出手段により算出された前記第1法線ベクトルに基づき、当該第2有限平面についての第2法線ベクトルを算出する第2法線ベクトル算出手段と、前記第1法線ベクトル算出手段により算出された前記第1法線ベクトル、及び前記第2法線ベクトル算出手段により算出された前記第2法線ベクトルに基づき、前記回転子の前記姿勢角を算出する回転子姿勢角算出手段とを有して構成されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0026】
本発明装置の第3の特徴は、上記本発明装置の第2の特徴における前記回転子姿勢角算出手段が、前記回転子の前記姿勢角として、前記固定子の前記設置中心軸に対する当該回転子の回転中心軸の傾斜角成分を算出する機能手段を具備してなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0027】
本発明装置の第4の特徴は、上記本発明装置の第2又は第3の特徴における前記回転子姿勢角算出手段が、前記回転子の前記姿勢角として、当該回転子の前記回転中心軸に沿う回転角成分を算出する機能手段を具備してなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0028】
本発明装置の第5の特徴は、上記本発明装置の第1、第2、第3又は第4の特徴における前記光学的距離計測手段が、前記3箇所の計測基準点から発する前記直線をそれぞれレーザ光軸線により得る機能手段を具備してなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0029】
本発明装置の第6の特徴は、上記本発明装置の第5の特徴における前記光学的距離計測手段が、前記固定子の前記設置中心軸と平行する2つの直線上にそれぞれ前記レーザ光軸線による第1及び第2の計測基準点をもつ第1及び第2のレーザ式測距センサと、当該設置中心軸の前後左右方向直交仮想面と平行する1つの一次直線上に前記レーザ光軸線による第3の計測基準点をもつ第3のレーザ式測距センサとを有して構成されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0030】
本発明装置の第7の特徴は、上記本発明装置の第6の特徴における前記第1及び第2のレーザ式測距センサにおける前記第1及び第2の計測基準点が、それぞれ前記レーザ光軸線の発射点を構成してなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0031】
本発明装置の第8の特徴は、上記本発明装置の第7の特徴における前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点が、当該第1及び第2の計測基準点の位置を定義する前記2つの直線を共に含む1つの仮想面が前記固定子の前記設置中心軸を含まない領域に設定されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0032】
本発明装置の第9の特徴は、上記本発明装置の第7又は第8の特徴における前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点が、当該第1及び第2の計測基準点の位置を定義する前記2つの直線をそれぞれ含む前記設置中心軸を通る2つの仮想面の交差角が当該固定子の前記設置中心軸において約90°をなす領域に設定されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0033】
本発明装置の第10の特徴は、上記本発明装置の第7、第8又は第9の特徴における前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点が、当該第1及び第2の計測基準点の位置を定義する前記2つの直線が前記変位幾何平面集合体における前記第1有限平面と常に交差する領域に設定されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0034】
本発明装置の第11の特徴は、上記本発明装置の第6、第7、第8、第9又は第10の特徴における前記第3のレーザ式測距センサが、前記固定子の前記設置中心軸と平行する1つの二次直線上に前記レーザ光軸線の発射点をもち、前記第3の計測基準点が、当該発射点から発射された前記レーザ光軸線の直角反射点を構成してなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0035】
本発明装置の第12の特徴は、上記本発明装置の第11の特徴における前記第3のレーザ式測距センサにおいて前記レーザ光軸線の前記直角反射点を構成する前記第3の計測基準点が、当該第3の計測基準点の位置を定義する前記一次直線が前記変位幾何平面集合体における前記第1有限平面と常に交差しない領域に設定されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0036】
本発明装置の第13の特徴は、上記本発明装置の第11又は第12の特徴における前記第3のレーザ式測距センサにおいて前記レーザ光軸線の前記直角反射点を構成する前記第3の計測基準点が、前記レーザ光軸線の前記発射点の位置を定義する前記二次直線が前記変位幾何平面集合体における前記第1有限平面と常に交差しない領域に設定されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0037】
本発明装置の第14の特徴は、上記本発明装置の第6、第7、第8、第9、第10、第11、第12又は第13の特徴における前記変位幾何平面集合体が、前記第1及び第2のレーザ式測距センサにおける前記第1及び第2の計測基準点との対向面に前記第1有限平面を設定され、かつ前記レーザ光軸線を折り返し反射する第1平面部材と、前記第3のレーザ式測距センサにおける前記第3の計測基準点との対向面に前記第2有限平面を設定され、かつ前記レーザ光軸線を折り返し反射する第2平面部材とを有して構成されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0038】
本発明装置の第15の特徴は、上記本発明装置の第14の特徴における前記変位幾何平面集合体における前記第1平面部材が、前記回転子の前記回動中心点を中心にもつ同心円形に形成され、当該変位幾何平面集合体における前記第2平面部材が、前記回転子の前記回転中心軸を一辺にもつ直角扇形に形成されてなる、多自由度超音波モータの回転子姿勢角計測装置の構成採用にある。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態につき、添付図面を参照しつつ、その装置例及びこれに対応する方法例を順に挙げて説明する。
【0040】
(装置例)
まず、図1及び図2は、それぞれ、本発明の一装置例に係る回転子姿勢角計測装置の機構的構成を多自由度超音波モータへの適用形態と共に示す正面図及び右側面図である。また、図3は、図1及び図2に示される変位幾何平面集合体に対する第1〜第3のレーザ式測距センサの配置形態を示す図である。
【0041】
図1及び図2に示すように、本装置例に係る回転子姿勢角計測装置αに適用される多自由度超音波モータβは、複数の圧電素子1,1,…が重層構成された円筒形の固定子2と、この固定子2のモータ設置面Sに対する設置中心軸(固定子座標系におけるz軸)上にその回動中心点及び回転中心軸を含むよう当該固定子2上に非拘束状態で載置構成された球形の回転子3とを有して構成される。
【0042】
なお、モータ設置面Sへの固定子2の設置に際しては、当該固定子2に発生する超音波振動の節にあたる部位(即ち、固定子2の固有振動時に振幅を生じない部位)に予め構成された固定子懸架保持部材2aに、それぞれモータ設置面Sに向かって延伸する複数の固定子設置脚2b(本例では、90°の相互等間隔で配置された4つの固定子設置脚2b)を取り付け、当該固定子設置脚2bを以って固定子2を懸架保持するようにする。これにより、固定子2に発生した超音波振動は、当該固定子2上に載置構成された回転子3に効率的に伝達され、モータ設置面Sには殆ど伝達されないようになる。
【0043】
以上のような構成をもつ多自由度超音波モータβにおいて、複数の圧電素子1,1,…への交流電圧の印加に伴う回転子3の姿勢角の変位を随時計測するために、本装置例の回転子姿勢角計測装置αは、図1〜図3に示すように、回転子3の姿勢角を固定子2の設置中心軸を基準とした固定子座標系の座標により一意に表現可能な変位幾何平面集合体4と、それぞれ光学的距離計測手段を構成する第1、第2及び第3のレーザ式測距センサ5,6及び7と、これら測距センサのうちの第3のレーザ式測距センサ7から発射されるレーザ光軸線を直角に反射するレーザ反射鏡8と、このレーザ反射鏡8を所要の空間位置に安定的に支持する反射鏡支持部材9とを有して構成される。
【0044】
ここで、回転子3に対して固定的に設置される変位幾何平面集合体4は、当該回転子3の回動中心点(固定子座標系における原点と等価)を中心にもち、かつレーザ光軸線を折り返し反射する同心円形の第1平面部材41と、同回転子3の回転中心軸(固定子座標系におけるz軸と等価)を一辺にもち、かつレーザ光軸線を折り返し反射する直角扇形の第2平面部材42とを有して構成される。
【0045】
そして、変位幾何平面集合体4を構成する上記平面部材のうち、第1平面部材41には、モータ設置面Sにそれぞれ設置された第1及び第2のレーザ式測距センサ5及び6との対向面(図1及び図2における下方)に、回転子3の回動中心点を面内に含んで同回転子3の回転中心軸と直交する第1有限平面が設定され、当該第1平面部材41が、固定子2の設置中心軸に対する回転子3の回転中心軸の傾斜角(姿勢角の一成分要素)を計測する際に用いられる。
【0046】
また、第2平面部材42には、反射鏡支持部材9によりモータ設置面S上に支持されたレーザ反射鏡8との対向面(図2における右側方)に、回転子3の回転中心軸を面内に含む第2有限平面が設定され、当該第2平面部材42が、回転子3の回転中心軸に沿う回転角(姿勢角の一成分要素)を計測する際に利用される。
【0047】
一方、光学的距離計測手段を構成する第1及び第2のレーザ式測距センサ5及び6は、固定子2の設置中心軸と平行する2つの直線上に、それぞれレーザ光軸線の発射点(図示の該当する矢印の始点)を構成する第1及び第2の計測基準点をもち、また、第3のレーザ測距センサ7は、固定子2の設置中心軸と平行する1つの直線(二次直線)上にレーザ光軸線の発射点(図示の該当する矢印の始点)をもつと共に、第3の計測基準点として、当該設置中心軸の前後左右方向直交仮想面と平行する1つの直線(一次直線)上に、上記発射点から発射されたレーザ光軸線の直角反射点(図示の該当する矢印の直角屈折点)を構成するレーザ反射鏡8を有した構造となっている。
【0048】
ここで、第1及び第2のレーザ式測距センサ5及び6における第1及び第2の計測基準点(即ち、第1及び第2のレーザ式測距センサ5及び6自身)は、それらの位置を定義する2つの直線を共に含む1つの仮想面が固定子2の設置中心軸を含まない領域、即ち、第1及び第2の計測基準点を結んだ延長線上に固定子2の設置中心軸が位置しない領域に設定され、好ましくは、当該2つの直線をそれぞれ含む2つの仮想面の交差角が固定子2の設置中心軸において約90°をなす領域(固定子座標系におけるx軸及びy軸をそれぞれ含む面内)に設定される(特に図3参照)。
【0049】
また、第3のレーザ式測距センサ7における第3の計測基準点(即ち、レーザ反射鏡8)は、その位置を定義する上記一次直線及び二次直線が、変位幾何平面集合体4における第1平面部材41上の第1有限平面と常に交差しない領域、即ち、回転子3の如何なる姿勢角変位によっても第1平面部材41がレーザ光軸線の進行を妨げることのない領域に設定される(特に図2参照)。なお、変位幾何平面集合体4における第1平面部材41の形状を同心円形に選定しているのは、それが、上記レーザ光軸線の進行を妨げることのない最も適した形状であるからである。
【0050】
次に、図4は、図1〜図3に示される変位幾何平面集合体4の第1平面部材41に対する第1及び第2のレーザ式測距センサ5及び6の配置形態を示す図である(図面の簡素化のため、固定子設置脚2bの一部は示していない)。
【0051】
同図に示すように、第1及び第2のレーザ式測距センサ5及び6においてレーザ光軸線の発射点を構成する第1及び第2の計測基準点(第1及び第2のレーザ式測距センサ5及び6自身)は、それらの位置を定義する2つの直線が変位幾何平面集合体4における第1平面部材41上の第1有限平面と常に交差する領域、即ち、回転子3の如何なる姿勢角変位(傾斜角変位)によっても第1平面部材41(41a,41b)にレーザ光軸線が常に照射される領域に設定される。
【0052】
ここで、上記第1及び第2のレーザ式測距センサ5及び6における第1及び第2の計測基準点の位置を定義する2つの直線の、固定子2の設置中心軸(回転子3の回転中心軸)からの距離Wは、変位幾何平面集合体4における第1平面部材41の半径をR、回転子3(変位幾何平面集合体4)の最大許容傾斜角をθとすれば、W=R×cosθと表すことができる。
【0053】
なお、固定子2の設置中心軸に対する回転子3の回転中心軸の傾斜角を計測する際の誤差を最小にするには、上記距離Wを可能な範囲でできるだけ大きな値に設定する必要があるが、第1及び第2のレーザ式測距センサ5及び6から発射されるレーザ光軸線が第1平面部材41上の第1有限平面に確実に照射されて、回転子3の傾斜角が安定して計測されるよう、実際の距離Wは、R×cosθよりも若干小さい値に設定しておくことが好ましい。
【0054】
次に、図5(a)及び(b)は、共に、図1〜図3に示される変位幾何平面集合体4の第2平面部材42に対するレーザ照射点を示す図である。
【0055】
同図に示すように、第3のレーザ式測距センサ7においてレーザ光軸線の直角反射点を構成する第3の計測基準点(レーザ反射鏡8)は、その位置を定義する二次直線が変位幾何平面集合体4における第2平面部材42上の第2有限平面と常に交差する領域、即ち、回転子3の如何なる姿勢角変位(傾斜角及び回転角変位)によっても第2平面部材42(42a,42b,42c)にレーザ光軸線が常に照射される領域に設定される。
【0056】
即ち、同図(a)に示すように、回転子3が、図示のx軸を中心軸として最大許容傾斜角θでその傾斜角を変位させたときに、レーザ照射点Pは、変位幾何平面集合体4における第2平面部材42の半径をR(第1平面部材41のそれと同じ)とすれば、少なくとも、図示のR×cosθで表される点線円弧上になければならない。このため、回転子3のz軸を中心軸とした最大許容回転角φは、図示のように制限される。
【0057】
次に、同図(b)に示すように、回転子3が、図示のx軸及びz軸と共に直交するy軸(図示されず)を中心軸として最大許容傾斜角θで傾斜角を変位させたときに、レーザ照射点Pの座標は、そのx座標がR×cosθ×sinθからR×cosθ×sin(90°−θ)までの範囲にあり、かつ、z座標がR×cosθ×cosθからR×cosθ×cos(90°−θ)までの範囲にある上記点線円弧上になければならない。このため、最大許容傾斜角θ(最大許容回転角φ)は、その2倍の値が90°以下に制限される(図示のレーザ照射点Pの座標はθ=45°の場合であり、このときの座標が標準値となる)。
【0058】
そして、以上の第1、第2及び第3のレーザ式測距センサ5,6及び7並びにレーザ反射鏡8の配置構造により、固定子座標系に設定された上記3箇所の計測基準点と、これら3箇所の計測基準点から発するレーザ光軸線により得られる直線が、それぞれ変位幾何平面集合体4における第1平面部材41上の第1有限平面と交差する2点の交点、及び第2平面部材42上の第2有限平面と交差する1点の交点との間の各距離を、これら第1平面部材41及び第2平面部材42からのレーザ反射光の位相遅延角(位相遅延時間)を取得するなどして、それぞれ光学的に計測する機能手段が提供される。
【0059】
次に、図6は、図1〜図3に示される回転子姿勢角計測装置αの機構的構成と共に適用される情報処理手段である回転子姿勢角演算装置の構成を示すブロック図である。
【0060】
同図に示すように、回転子姿勢角演算装置10は、変位幾何平面集合体4における交点座標を算出すると共に、回転子3の姿勢角を演算する情報処理手段(集合体交点座標演算手段を含む回転子姿勢角演算手段)であり、詳しくは、第1法線ベクトル算出部101と、第2法線ベクトル算出部102と、回転子姿勢角算出部103とを有して構成される。
【0061】
このうち、第1法線ベクトル算出部101は、まず、第1及び第2のレーザ式測距センサ5及び6(第1及び第2の計測基準点)と、変位幾何平面集合体4における第1平面部材41上の第1有限平面内における2点の交点との間の各距離の計測値(以下「第1及び第2の距離計測値」という)に基づき、当該変位幾何平面集合体4における交点座標の算出を行う機能手段により、当該第1平面部材41上の第1有限平面内における2点の交点座標(以下「第1及び第2の交点座標」という)をそれぞれ算出し、さらに、それら算出された第1及び第2の交点座標に基づき、当該第1平面部材41上の第1有限平面に関する第1法線ベクトルを算出する機能手段である。
【0062】
また、第2法線ベクトル算出部102は、まず、レーザ反射鏡8(第3の計測基準点)と、変位幾何平面集合体4における第2平面部材42上の第2有限平面内における1点の交点との間の距離の計測値(以下「第3の距離計測値」という)に基づき、当該変位幾何平面集合体4における交点座標の算出を行う機能手段により、当該第2平面部材42上の第2有限平面内における1点の交点座標(以下「第3の交点座標」という)を算出し、さらに、その算出された第3の交点座標と上記第1法線ベクトル算出部101により算出された第1法線ベクトルとに基づき、当該第2平面部材42上の第2有限平面に関する第2法線ベクトルを算出する機能手段である。
【0063】
さらに、回転子姿勢角算出部103は、上記第1法線ベクトル算出部101により算出された第1法線ベクトル、及び上記第2法線ベクトル算出部102により算出された第2法線ベクトルに基づき、算出すべき回転子3の姿勢角として、固定子2の設置中心軸に対する当該回転子3の回転中心軸の傾斜角、及び当該回転子3の回転中心軸に沿う回転角の各成分を算出する機能手段である。
【0064】
(方法例)
続いて、以上のように構成された装置例に係る回転子姿勢角計測装置αにより実施される方法例を説明する。
【0065】
図7は、本発明の一装置例に係る回転子姿勢角計測装置αの動作を説明するためのフローチャートである。
【0066】
同図に示すように、本回転子姿勢角計測装置αにおいては、まず、光学的距離計測手段を構成する第1及び第2のレーザ式測距センサ5及び6が、自身と変位幾何平面集合体4における第1平面部材41上の第1有限平面内における2点の交点との間の各距離をレーザ光軸線により得られる直線で計測して、そのときの第1及び第2の距離計測値を取得すると共に、同光学的距離計測手段を構成する第3のレーザ式測距センサ7が、レーザ反射鏡8と変位幾何平面集合体4における第2平面部材42上の第2有限平面内における1点の交点との間の距離をレーザ光軸線により得られる直線で計測して、そのときの第3の距離計測値を取得することにより開始される(ST1)。そして、以上のようにして取得された第1及び第2の距離計測値並びに第3の距離計測値は、情報処理手段を構成する回転子姿勢角演算装置10に入力されて、回転子3の姿勢角演算に供される。
【0067】
次に、回転子姿勢角演算装置10における第1法線ベクトル算出部101、及び第2法線ベクトル算出部102は、それぞれ、第1及び第2のレーザ式測距センサ5及び6から入力された第1及び第2の距離計測値、並びに第3のレーザ式測距センサ7から入力された第3の距離計測値に基づき、変位幾何平面集合体4における交点座標の算出を行う機能手段により、第1平面部材41上の第1有限平面内における第1及び第2の交点座標を算出すると共に、第2平面部材42上の第2有限平面内における第3の交点座標を算出する(ST2)。
【0068】
次に、回転子姿勢角演算装置10における第1法線ベクトル算出部101は、以上のようにして算出された第1及び第2の交点座標に基づき、変位幾何平面集合体4における第1平面部材41上の第1有限平面に関する第1法線ベクトルを算出し(ST3)、これに対し、同回転子姿勢角演算装置10における第2法線ベクトル算出部102は、その算出された第3の交点座標と上記第1法線ベクトル算出部101により算出された第1法線ベクトルとに基づき、第2平面部材42上の第2有限平面に関する第2法線ベクトルを算出する(ST4)。
【0069】
そして、回転子姿勢角演算装置10における回転子姿勢角算出部103は、上記第1法線ベクトル算出部101により算出された第1法線ベクトル、及び上記第2法線ベクトル算出部102により算出された第2法線ベクトルに基づき、算出すべき回転子3の姿勢角として、固定子2の設置中心軸に対する当該回転子3の回転中心軸の傾斜角、及び当該回転子3の回転中心軸に沿う回転角の各成分をそれぞれ算出し(ST5)、以下、本回転子姿勢角計測装置αは、回転子3の姿勢角変位が長時間に亙って定常的かつ永続的に計測されるよう、以上に示したST1からST5までの一連の処理を繰り返し実行する。
【0070】
以上、本発明の実施の形態につき、その装置例及びこれに対応する方法例を挙げて説明したが、本発明は、必ずしも上述した手段及び手法にのみ限定されるものではなく、後述する効果を有する範囲内において、適宜、変更実施することが可能なものである。
【0071】
【発明の効果】
以上、詳細に説明したように、本発明によれば、回転子の可動範囲を広く確保しながらも、所要の回転角度計測を、何ら騒音を生じさせることなく、長時間に亙り高い周波数領域で高精度に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一装置例に係る回転子姿勢角計測装置の機構的構成を多自由度超音波モータへの適用形態と共に示す正面図である。
【図2】本発明の一装置例に係る回転子姿勢角計測装置の機構的構成を多自由度超音波モータへの適用形態と共に示す右側面図である。
【図3】図1及び図2に示される変位幾何平面集合体に対する第1〜第3のレーザ式測距センサの配置形態を示す図である。
【図4】図1〜図3に示される変位幾何平面集合体の第1平面部材に対する第1及び第2のレーザ式測距センサの配置形態を示す図である。
【図5】図1〜図3に示される変位幾何平面集合体の第2平面部材に対するレーザ照射点を示す図である。
【図6】図1〜図3に示される回転子姿勢角計測装置の機構的構成と共に適用される情報処理手段である回転子姿勢角演算装置の構成を示すブロック図である。
【図7】本発明の一装置例に係る回転子姿勢角計測装置の動作を説明するためのフローチャートである。
【符号の説明】
α…(多自由度超音波モータの)回転子姿勢角計測装置
β…多自由度超音波モータ
S…モータ設置面
1…圧電素子
2…固定子
2a…固定子懸架保持部材
2b…固定子設置脚
3…回転子
4…変位幾何平面集合体
41(41a,41b)…第1平面部材
42(42a,42b,42c)…第2平面部材
5…第1のレーザ式測距センサ
6…第2のレーザ式測距センサ
7…第3のレーザ式測距センサ
8…レーザ反射鏡
9…反射鏡支持部材
10…回転子姿勢角演算装置
101…第1法線ベクトル算出部
102…第2法線ベクトル算出部
103…回転子姿勢角演算部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor, and more particularly, to a cylindrical stator in which a plurality of piezoelectric elements are layered, and the In a multi-degree-of-freedom ultrasonic motor having a spherical rotor mounted on the stator so as to include a rotation center point and a rotation center axis, an AC voltage applied to a plurality of piezoelectric elements is Rotor posture angle measurement method of multi-degree-of-freedom ultrasonic motor for measuring displacement of posture angle of the rotor due to application at any time, and rotor posture angle of multi-degree-of-freedom ultrasonic motor used directly in its implementation It relates to a measuring device.
[0002]
[Prior art]
In recent years, as an actuator used for a part requiring high torque and high degree of freedom such as a joint mechanism of a humanoid robot, it replaces the conventional one-degree-of-freedom electromagnetic servomotor, and saves space and has multiple degrees of freedom with high torque. Applications of ultrasonic motors are expected. In particular, this type of multi-degree-of-freedom ultrasonic motor is applied to parts that need to be displaced in multiple degrees of freedom while supporting the heavy head vertically, such as the neck joint of a humanoid robot. Is highly expected.
[0003]
Generally, a multi-degree-of-freedom ultrasonic motor has a cylindrical stator (stator) formed by laminating a plurality of piezoelectric elements having different vibration directions from each other, and a spherical rotor closely mounted on the stator. (Rotor). When AC voltages having the same frequency and different phases are applied to the piezoelectric elements of the stator of the multi-degree-of-freedom ultrasonic motor, natural vibrations are excited in the respective piezoelectric elements, and ultrasonic waves are generated. The combination causes the rotor to rotate in three degrees of freedom (with the x, y, and z axes as rotation axes) to displace its attitude.
[0004]
The details of the configuration and operation principle of the multi-degree-of-freedom ultrasonic motor are described in Non-Patent Documents 1 and 2 below.
[0005]
[Non-patent document 1]
Takemura, K .; & Maeno, T .; 'Characteristics of an Ultrasonic Motor Capable of Generating a Multi-Degrees of Freedom Motion', Proceedings of the Recommendations of the International Association of the International Association of International Relations.
[0006]
[Non-patent document 2]
Takemura, K .; & Maeno, T .; 'Control of Multi-DOF Ultrasonic Motor Using Neural Network based Inverse Model', Proceedings of the 2002 IEEE / RSJ International Conference of International Conferences.
[0007]
Here, in order to appropriately drive the multi-degree-of-freedom ultrasonic motor that performs the three-degree-of-freedom rotation operation as described above, the rotation angle of the rotor of the multi-degree-of-freedom ultrasonic motor (with respect to the x, y, and z axes). It is necessary to accurately measure the rotation angle of the multi-degree-of-freedom ultrasonic motor, for example, the encoder used for measuring the rotation angle of the conventional one-degree-of-freedom electromagnetic servomotor described above is required. Is not suitable in principle.
[0008]
For this reason, conventionally, when measuring a required rotation angle, for example, three one-degree-of-freedom rotation angle sensors are mechanically combined and connected to a multi-degree-of-freedom ultrasonic motor, and rotation is performed based on the measurement value of each rotation angle sensor. A method of performing a geometric calculation related to an angle calculation or a method of fixing a small-sized rate gyro for measuring a rotational angular velocity to a rotor and integrating an angular velocity measured with the rotation has been proposed. .
[0009]
[Problems to be solved by the invention]
However, when performing a required rotation angle measurement using a mechanism such as a rotation angle sensor, noise generated by the mechanism part becomes a problem, and a mechanism capable of simultaneously measuring three degrees of freedom of rotation angle. If an attempt is made to construct an object, the mechanism itself becomes complicated, and new problems arise, such as extremely narrowing the movable range of the rotor.
[0010]
In contrast, when a rate gyro is used to measure the required rotation angle, the rate gyro generally has poor accuracy in measuring the angular velocity during low-speed rotation, so that the angular velocity value continuously measured with the rotation of the rotor is integrated. In doing so, there is an unavoidable problem that integration errors gradually accumulate, and it is not expected that required rotation angle measurement can be performed with high accuracy over a long period of time.
[0011]
Here, the main objects to be solved by the present invention are as follows.
[0012]
That is, a first object of the present invention is to provide a method and an apparatus for measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor capable of performing required rotation angle measurement in a high frequency region for a long time with high accuracy. It's something you want.
[0013]
A second object of the present invention is to provide a method and an apparatus for measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor capable of securing a wide movable range of a rotor.
[0014]
A third object of the present invention is to provide a method and an apparatus for measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor which does not generate noise when measuring a rotational speed.
[0015]
Other objects of the present invention will become apparent from the description of the specification, drawings, and particularly from the claims.
[0016]
[Means for Solving the Problems]
First, in the method of the present invention, three measurement reference points set in the stator coordinate system and straight lines generated from these three measurement reference points are respectively set in the displacement geometric plane aggregate by the optical distance measurement means. After performing the process of measuring each distance between the intersection of two points intersecting the first finite plane and the intersection of one point intersecting the second finite plane, the information processing means performs three measurement reference points. A corresponding intersection of two points in the first finite plane based on each distance between the point and an intersection of two points in the first finite plane in the set of displacement geometric planes. Calculating the coordinates and the intersection coordinates of one point in the second finite plane, and the intersection coordinates of two points in the first finite plane and the intersection coordinates of one point in the second finite plane in the displacement geometric plane assembly The rotor's attitude angle based on the Sequentially carrying out the steps of, taking a characteristic configuration method called.
[0017]
On the other hand, in the device of the present invention, the rotation angle of the rotor is defined by including the rotation center point of the rotor in the plane of the stator coordinate system with respect to the installation center axis of the stator in the plane. A displacement geometric plane assembly integrally movable with the rotor, configured to be expressed by coordinates of a first finite plane orthogonal to the center axis and coordinates of a second finite plane including the rotation center axis in the plane; Three measurement reference points set in the stator coordinate system, and a straight line generated from these three measurement reference points intersects a second point and a second finite point, respectively, which intersect the first finite plane in the displacement geometric plane assembly. Optical distance measuring means for optically measuring respective distances between the plane and one intersection point intersecting with each other; a set of three measurement reference points and a displacement geometric plane measured by the optical distance measuring means Intersection and two points in the first finite plane of the body Based on each distance between the two points on the second finite plane, the coordinates of the two points on the first finite plane and the coordinates of the one point on the second finite plane are calculated. An assembly intersection coordinate calculating means, and an intersection coordinate of two points in the first finite plane and an intersection coordinate of one point in the second finite plane in the displacement geometric plane aggregate calculated by the assembly intersection coordinate calculating means. And a rotor attitude angle calculation means for calculating the attitude angle of the rotor based on the characteristic configuration means.
[0018]
More specifically, in solving the problem, the present invention achieves the above object by adopting a novel characteristic configuration method or means ranging from a higher concept to a lower concept, which are enumerated below. Is done.
[0019]
That is, the first feature of the method of the present invention is that a plurality of piezoelectric elements are stacked to form a cylindrical stator, and the rotation center point and the rotation center axis are included on the installation center axis of the stator. In a multi-degree-of-freedom ultrasonic motor having a spherical rotor mounted on a stator, displacement of the attitude angle of the rotor caused by application of an AC voltage to the plurality of piezoelectric elements A posture angle measurement method for measuring the posture of the rotor at any time, wherein the posture angle of the rotor in a stator coordinate system with respect to the installation center axis of the stator, the rotation of the rotor It is configured to be able to be represented by coordinates of a first finite plane orthogonal to the rotation center axis of the rotator including the center point in the plane and coordinates of a second finite plane including the rotation center axis in the plane. Adopts a displacement geometric plane assembly that moves integrally with the rotor, Measuring means, three measurement reference points set in the stator coordinate system, and straight lines generated from these three measurement reference points intersect with the first finite plane in the displacement geometric plane assembly, respectively. After performing a process of measuring each distance between an intersection of points and an intersection of one point that intersects the second finite plane, the information measurement means sets the three measurement reference points and the displacement geometric plane set. A corresponding intersection of two points in the first finite plane based on the respective distances between the intersection of the two points in the first finite plane and the intersection of the one point in the second finite plane in the body. Calculating the coordinates and the coordinates of the intersection of one point in the second finite plane, and the coordinates of the intersection of the two points in the first finite plane and the coordinates of the intersection in the second finite plane in the displacement geometric plane aggregate. One point of intersection coordinates Hazuki sequentially formed by carrying out the steps of calculating the attitude angle of the rotor, in the configuration adopting the multi-DOF rotor attitude angle measurement method of the ultrasonic motor.
[0020]
A second feature of the method of the present invention is that, in the first feature of the method of the present invention, the process of calculating the attitude angle of the rotor by the information processing means is performed within the first finite plane in the displacement geometric plane assembly. Calculating a first normal vector for the first finite plane based on the coordinates of the intersection of the two points; and calculating the coordinates of the intersection of the one point in the second finite plane in the set of displacement geometric planes and the Calculating a second normal vector for the second finite plane based on the first normal vector, and calculating the attitude angle of the rotor based on the first normal vector and the second normal vector And a method of measuring the rotor attitude angle of the multi-degree-of-freedom ultrasonic motor, which is sequentially performed.
[0021]
A third feature of the method of the present invention is that, in the second feature of the method of the present invention, the process of calculating the attitude angle of the rotor by the information processing means is performed by setting the attitude angle of the rotor as the attitude angle of the rotor. A configuration of a method of measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor, which implements a process of calculating a tilt angle component of a rotation center axis of the rotor with respect to an installation center axis.
[0022]
According to a fourth aspect of the method of the present invention, the process of calculating the attitude angle of the rotor by the information processing means according to the second or third aspect of the method of the present invention is such that the rotation angle is defined as the attitude angle of the rotor. The present invention resides in adopting a configuration of a method of measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor, which implements a process of calculating a rotation angle component of a child along the rotation center axis.
[0023]
A fifth feature of the method of the present invention is that, in the first, second, third, or fourth feature of the method of the present invention, the step of measuring the distance by the optical distance measuring means is performed from the three measurement reference points. The present invention resides in adopting a configuration of a method of measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor, which performs a process of obtaining each of the emitted straight lines by a laser optical axis.
[0024]
On the other hand, a first feature of the present invention is that a plurality of piezoelectric elements are stacked to form a cylindrical stator, and the rotation center point and the rotation center axis are included on the installation center axis of the stator. In a multi-degree-of-freedom ultrasonic motor having a spherical rotor mounted on a stator, displacement of the attitude angle of the rotor caused by application of an AC voltage to the plurality of piezoelectric elements The posture angle of the rotor, in the stator coordinate system with respect to the installation center axis of the stator, the rotation of the rotor It is configured to be able to be represented by coordinates of a first finite plane orthogonal to the rotation center axis of the rotator including the center point in the plane and coordinates of a second finite plane including the rotation center axis in the plane. A set of displacement geometric planes integrally moving with the rotor, and the stator coordinate system The set three measurement reference points, and the straight line generated from these three measurement reference points, respectively, the intersection point and the second finite plane of the two points that intersect the first finite plane in the displacement geometric plane aggregate. Optical distance measuring means for optically measuring each distance between the intersections of one intersecting point, and a set of the three measurement reference points and the displacement geometric plane measured by the optical distance measuring means Based on the respective distances between the intersection of the two points in the first finite plane and the intersection of the one point in the second finite plane of the body, two points in the first finite plane corresponding to the displacement are An intersection intersection coordinate calculating means for calculating an intersection coordinate and an intersection coordinate of one point in the second finite plane; and the first finite element in the displacement geometric plane aggregate calculated by the assembly intersection coordinate calculating means. In plane Rotor attitude angle calculation means for calculating the attitude angle of the rotor based on the coordinates of the intersection of the two points and the coordinates of the displacement intersection of the one point in the second finite plane. An object of the present invention is to adopt a configuration of a rotor attitude angle measuring device of a multi-degree-of-freedom ultrasonic motor.
[0025]
A second feature of the device of the present invention resides in that the rotor attitude angle calculating means in the first feature of the present device is configured such that the rotor posture angle calculating means calculates the first position in the displacement geometric plane aggregate calculated by the assembly intersection coordinate calculating means. First normal vector calculation means for calculating a first normal vector for the first finite plane based on the intersection coordinates of the two points in the finite plane; and the displacement calculated by the assembly intersection coordinate calculation means Based on the coordinates of the intersection of the one point in the second finite plane in the set of geometric planes and the first normal vector calculated by the first normal vector calculation means, a second A second normal vector calculating means for calculating a normal vector, the first normal vector calculated by the first normal vector calculating means, and a second normal vector calculating means; A rotor attitude angle calculating device configured to calculate the attitude angle of the rotor based on the obtained second normal vector. Configuration.
[0026]
A third feature of the present invention device is that the rotor attitude angle calculation means in the second feature of the present invention device is configured such that the rotor attitude angle with respect to the installation center axis of the stator is defined as the attitude angle of the rotor. And a function for calculating a tilt angle component of the rotation center axis of the multi-degree-of-freedom ultrasonic motor.
[0027]
A fourth feature of the device of the present invention is that the rotor attitude angle calculation means in the second or third feature of the present device is configured such that the rotor attitude angle is defined as the attitude angle of the rotor with respect to the rotation center axis of the rotor. Another object of the present invention is to adopt a configuration of a rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor, which comprises a function means for calculating a rotation angle component along the rotor.
[0028]
A fifth feature of the apparatus of the present invention is that the optical distance measuring means in the first, second, third, or fourth feature of the above-described apparatus of the present invention is configured such that each of the straight lines emitted from the three measurement reference points is Another object of the present invention is to adopt a configuration of a rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor, which is provided with a function means obtained by a laser optical axis.
[0029]
A sixth feature of the device of the present invention is that the optical distance measuring means according to the fifth feature of the device of the present invention is arranged such that the optical distance measuring means uses the laser beam axis on two straight lines parallel to the installation center axis of the stator. First and second laser-type distance measuring sensors having first and second measurement reference points, and a first linear straight line parallel to an imaginary plane orthogonal to the front-rear and left-right directions of the installation center axis. A third laser type distance measuring sensor having three measurement reference points is provided, and a rotor attitude angle measuring device of a multi-degree-of-freedom ultrasonic motor is adopted.
[0030]
A seventh feature of the device of the present invention is that the first and second measurement reference points in the first and second laser distance measuring sensors in the sixth feature of the above device of the present invention respectively correspond to the laser optical axis. And a configuration of a rotor posture angle measuring device for a multi-degree-of-freedom ultrasonic motor, which constitutes the launch point of the present invention.
[0031]
An eighth feature of the apparatus of the present invention is the first and second laser type distance measuring sensors according to the seventh feature of the present invention, wherein the first and second laser beam axis constitute the launch point of the laser optical axis. A virtual plane including both the two straight lines defining the positions of the first and second measurement reference points is set in an area not including the installation center axis of the stator. Another aspect of the present invention resides in adopting a configuration of a rotor attitude angle measuring device of a multi-degree-of-freedom ultrasonic motor.
[0032]
A ninth feature of the present invention device is the first or second laser distance measuring sensor according to the seventh or eighth feature of the present invention device, wherein the first point constituting the launch point of the laser optical axis is provided. And a second measurement reference point, the intersection angle of two virtual planes passing through the installation center axis including the two straight lines respectively defining the positions of the first and second measurement reference points is the intersection angle of the stator. An object of the present invention is to adopt a configuration of a rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor, which is set in a region forming about 90 ° with respect to an installation center axis.
[0033]
A tenth feature of the present invention apparatus is that the launch point of the laser optical axis is constituted by the first and second laser distance measuring sensors according to the seventh, eighth, or ninth features of the present invention apparatus. The first and second measurement reference points are located in a region where the two straight lines defining the positions of the first and second measurement reference points always intersect with the first finite plane in the displacement geometric plane aggregate. The present invention is to adopt a configuration of a rotor attitude angle measuring device of a multi-degree-of-freedom ultrasonic motor which is set.
[0034]
An eleventh feature of the device of the present invention resides in that the third laser-type distance measuring sensor according to the sixth, seventh, eighth, ninth or tenth feature of the device of the present invention is arranged such that The laser beam axis has a launch point on one secondary straight line parallel to the axis, and the third measurement reference point constitutes a right-angled reflection point of the laser beam axis emitted from the launch point. Another aspect of the present invention resides in adopting a configuration of a rotor attitude angle measuring device of a multi-degree-of-freedom ultrasonic motor.
[0035]
A twelfth feature of the device of the present invention is the third laser ranging sensor according to the eleventh feature of the device of the present invention, wherein the third measurement reference point that forms the perpendicular reflection point of the laser optical axis is used. A rotor posture of the multi-degree-of-freedom ultrasonic motor, wherein the primary straight line defining the position of the third measurement reference point is set in an area that does not always intersect with the first finite plane in the displacement geometric plane assembly. The configuration of the angle measuring device is adopted.
[0036]
A thirteenth feature of the device of the present invention is the third measurement according to the eleventh or twelfth feature of the device of the present invention, wherein the third laser type distance measuring sensor forms the perpendicular reflection point of the laser optical axis. A multi-degree-of-freedom ultrasonic wave, wherein a reference point is set in a region where the quadratic line defining the position of the launch point of the laser optical axis does not always intersect with the first finite plane in the displacement geometric plane assembly. The present invention resides in adopting a configuration of a motor rotor posture angle measuring device.
[0037]
A fourteenth feature of the device of the present invention is that the displacement geometric plane aggregate in the sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, or thirteenth feature of the above-described device of the present invention, A first plane member having the first finite plane set on a surface facing the first and second measurement reference points in the first and second laser distance measuring sensors, and reflecting the laser optical axis back; A second plane member having the second finite plane set on a surface facing the third measurement reference point in the third laser distance measuring sensor, and reflecting the laser optical axis in a folded manner. The present invention resides in the adoption of a configuration of a rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor.
[0038]
A fifteenth feature of the device of the present invention resides in that the first plane member in the displacement geometric plane assembly according to the fourteenth feature of the device of the present invention is formed as a concentric circle having the rotation center point of the rotor as a center. A rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor, wherein the second plane member in the displacement geometric plane assembly is formed in a right-angle fan shape having one side of the rotation center axis of the rotor. Configuration.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, in which an example of the apparatus and an example of a method corresponding thereto will be sequentially described.
[0040]
(Example of device)
First, FIG. 1 and FIG. 2 are a front view and a right side view, respectively, showing a mechanical configuration of a rotor attitude angle measuring device according to an example of the present invention together with an application form to a multi-degree-of-freedom ultrasonic motor. . FIG. 3 is a diagram showing an arrangement of the first to third laser distance measuring sensors with respect to the displacement geometric plane assembly shown in FIGS. 1 and 2.
[0041]
As shown in FIGS. 1 and 2, the multi-degree-of-freedom ultrasonic motor β applied to the rotor attitude angle measuring device α according to the present device example is a cylinder in which a plurality of piezoelectric elements 1, 1,. A stator 2 having a shape, and a non-rotating portion on the stator 2 so as to include a rotation center point and a rotation center axis on an installation center axis (z axis in the stator coordinate system) with respect to the motor installation surface S of the stator 2. And a spherical rotor 3 mounted in a restrained state.
[0042]
When the stator 2 is installed on the motor installation surface S, the stator 2 is configured in advance at a portion corresponding to a node of the ultrasonic vibration generated in the stator 2 (that is, a portion that does not generate an amplitude when the stator 2 inherently vibrates). A plurality of stator installation legs 2b (four stator installation legs 2b arranged at equal intervals of 90 ° in this example) extending toward the motor installation surface S are respectively attached to the stator suspension holding member 2a. The stator 2 is suspended and held by the stator installation leg 2b. Thereby, the ultrasonic vibration generated in the stator 2 is efficiently transmitted to the rotor 3 mounted on the stator 2 and hardly transmitted to the motor installation surface S.
[0043]
In the multi-degree-of-freedom ultrasonic motor β having the above configuration, the present apparatus is used to measure the displacement of the attitude angle of the rotor 3 due to the application of the AC voltage to the plurality of piezoelectric elements 1, 1,. As shown in FIGS. 1 to 3, the rotor posture angle measuring device α of the example can uniquely represent the posture angle of the rotor 3 by the coordinates of the stator coordinate system with respect to the installation center axis of the stator 2. Displacement geometric plane assembly 4, first, second, and third laser distance measuring sensors 5, 6, and 7, which constitute optical distance measuring means, respectively, and a third laser among these distance measuring sensors A laser reflecting mirror 8 for reflecting a laser optical axis emitted from a distance measuring sensor 7 at a right angle, and a reflecting mirror supporting member 9 for stably supporting the laser reflecting mirror 8 at a required spatial position. Is done.
[0044]
Here, the displacement geometric plane assembly 4 fixedly installed with respect to the rotor 3 is centered on the rotation center point of the rotor 3 (equivalent to the origin in the stator coordinate system) and has a laser beam. A concentric circular first plane member 41 for reflecting the axis back and reflecting, and a right-angle sector shape having a rotation center axis of the rotor 3 (equivalent to the z-axis in the stator coordinate system) on one side and reflecting the laser beam axis back. The second flat member 42 is provided.
[0045]
The first planar member 41 among the planar members constituting the displacement geometric planar assembly 4 is connected to the first and second laser distance measuring sensors 5 and 6 installed on the motor installation surface S, respectively. A first finite plane that includes the rotation center point of the rotor 3 in the plane and is orthogonal to the rotation center axis of the rotor 3 is set on the facing surface (the lower side in FIGS. 1 and 2), and the first plane is set. The member 41 is used when measuring the inclination angle (one component element of the attitude angle) of the rotation center axis of the rotor 3 with respect to the installation center axis of the stator 2.
[0046]
In addition, the second plane member 42 has a rotation center axis of the rotor 3 on a surface (the right side in FIG. 2) facing the laser reflecting mirror 8 supported on the motor mounting surface S by the reflecting mirror supporting member 9. A second finite plane included in the plane is set, and the second plane member 42 is used when measuring the rotation angle (one component element of the attitude angle) along the rotation center axis of the rotor 3.
[0047]
On the other hand, the first and second laser distance measuring sensors 5 and 6 constituting the optical distance measuring means are arranged such that the laser beam axis launch point (2) is located on two straight lines parallel to the installation center axis of the stator 2. The third laser ranging sensor 7 has first and second measurement reference points constituting the start point of the corresponding arrow shown in the figure, and the third laser distance measuring sensor 7 has one straight line (two parallel to the installation center axis of the stator 2). The laser beam axis emission point (the starting point of the corresponding arrow shown in the drawing) on the next straight line), and as a third measurement reference point, one straight line (parallel to the virtual plane orthogonal to the front-rear and left-right directions of the installation center axis) A laser reflecting mirror 8 is formed on the primary straight line) to form a right-angle reflection point (right-angle refraction point of the corresponding arrow shown in the figure) of the laser optical axis emitted from the above-mentioned emission point.
[0048]
Here, the first and second measurement reference points in the first and second laser distance measuring sensors 5 and 6 (that is, the first and second laser distance measuring sensors 5 and 6 themselves) are One imaginary plane including both of the two straight lines defining the position does not include the installation center axis of the stator 2, that is, the installation center of the stator 2 on an extension line connecting the first and second measurement reference points. It is set in a region where the axis is not located, and is preferably a region where the intersection angle of two virtual planes including the two straight lines respectively makes about 90 ° with the installation center axis of the stator 2 (x-axis and stator in the stator coordinate system). (in a plane including the y-axis) (see FIG. 3 in particular).
[0049]
Further, the third measurement reference point (that is, the laser reflecting mirror 8) in the third laser distance measuring sensor 7 is defined by the first and second straight lines that define the position of the third measurement reference point in the displacement geometric plane assembly 4. An area that does not always intersect with the first finite plane on the one-plane member 41, that is, an area where the first plane member 41 does not hinder the progress of the laser optical axis due to any attitude angular displacement of the rotor 3 is set ( In particular, see FIG. The reason why the shape of the first plane member 41 in the displacement geometric plane assembly 4 is selected to be concentric is that it is the most suitable shape which does not hinder the advance of the laser optical axis. .
[0050]
Next, FIG. 4 is a diagram showing an arrangement of the first and second laser distance measuring sensors 5 and 6 with respect to the first plane member 41 of the displaced geometric plane assembly 4 shown in FIGS. (A part of the stator installation leg 2b is not shown for simplification of the drawing).
[0051]
As shown in the drawing, first and second measurement reference points (first and second laser type measurement points) constituting the emission point of the laser optical axis in the first and second laser type distance measurement sensors 5 and 6 are shown. The distance sensors 5 and 6 themselves) are in a region where two straight lines defining their positions always intersect with the first finite plane on the first plane member 41 in the displacement geometric plane assembly 4, that is, any region of the rotor 3. The first plane member 41 (41a, 41b) is set to a region where the laser beam axis is always irradiated by the posture angle displacement (tilt angle displacement).
[0052]
Here, two straight lines defining the positions of the first and second measurement reference points in the first and second laser-type distance measuring sensors 5 and 6 are defined by the installation center axis of the stator 2 (the rotation axis of the rotor 3). The distance W from the rotation center axis) is W, given that the radius of the first plane member 41 in the displacement geometric plane assembly 4 is R and the maximum allowable inclination angle of the rotor 3 (displacement geometric plane assembly 4) is θ. = R × cos θ.
[0053]
In order to minimize an error when measuring the inclination angle of the rotation center axis of the rotor 3 with respect to the installation center axis of the stator 2, it is necessary to set the distance W to a value as large as possible within a possible range. However, the laser optical axes emitted from the first and second laser distance measuring sensors 5 and 6 are reliably irradiated to the first finite plane on the first plane member 41, and the inclination angle of the rotor 3 is stabilized. It is preferable to set the actual distance W to a value slightly smaller than R × cos θ so as to be measured.
[0054]
Next, FIGS. 5A and 5B are diagrams showing laser irradiation points on the second plane member 42 of the displaced geometric plane assembly 4 shown in FIGS. 1 to 3.
[0055]
As shown in the figure, the third measurement reference point (laser reflection mirror 8) that forms the right-angle reflection point of the laser optical axis in the third laser-type distance measuring sensor 7 has a secondary straight line that defines its position. The area always intersecting with the second finite plane on the second plane member 42 in the displacement geometric plane assembly 4, that is, the second plane member 42 (regardless of any posture angle displacement (tilt angle and rotation angle displacement) of the rotor 3. 42a, 42b, and 42c) are set to regions where the laser beam axis is always irradiated.
[0056]
That is, as shown in FIG. 3A, when the rotor 3 displaces the inclination angle at the maximum allowable inclination angle θ with the illustrated x-axis as the center axis, the laser irradiation point P becomes the displacement geometric plane. Assuming that the radius of the second planar member 42 in the assembly 4 is R (the same as that of the first planar member 41), it must be at least on a dotted arc represented by R × cos θ in the drawing. For this reason, the maximum allowable rotation angle φ of the rotor 3 about the z-axis as the center axis is limited as shown in the figure.
[0057]
Next, as shown in FIG. 2B, the rotor 3 displaces the inclination angle at the maximum allowable inclination angle θ with the y-axis (not shown) orthogonal to the illustrated x-axis and z-axis as the center axis. The coordinates of the laser irradiation point P are such that the x coordinate is in the range from R × cos θ × sin θ to R × cos θ × sin (90 ° −θ), and the z coordinate is from R × cos θ × cos θ. Must lie on the dotted arc above R × cos θ × cos (90 ° −θ). For this reason, the maximum allowable inclination angle θ (maximum allowable rotation angle φ) is limited to a value twice as large as 90 ° or less (the coordinates of the laser irradiation point P shown in FIG. The coordinates at the time are standard values.)
[0058]
Then, by the arrangement structure of the first, second and third laser distance measuring sensors 5, 6 and 7 and the laser reflecting mirror 8, the three measurement reference points set in the stator coordinate system, A straight line obtained by the laser optical axis emitted from these three measurement reference points intersects a first finite plane on the first plane member 41 in the displacement geometric plane assembly 4, and a second plane member. The distance between the second finite plane and the intersection of one point intersecting with each other is obtained as the phase delay angle (phase delay time) of the laser reflected light from the first plane member 41 and the second plane member 42. For example, a functional means for optically measuring each is provided.
[0059]
Next, FIG. 6 is a block diagram showing a configuration of a rotor posture angle calculation device which is information processing means applied together with the mechanical configuration of the rotor posture angle measurement device α shown in FIGS.
[0060]
As shown in FIG. 1, the rotor posture angle calculation device 10 calculates intersection coordinates in the displacement geometric plane aggregate 4 and calculates the posture angle of the rotor 3. Specifically, it is configured to include a first normal vector calculation unit 101, a second normal vector calculation unit 102, and a rotor posture angle calculation unit 103.
[0061]
Among them, the first normal vector calculation unit 101 first determines the first and second laser distance measuring sensors 5 and 6 (first and second measurement reference points) and the first and second laser distance measuring sensors 5 and 6 in the displacement geometric plane assembly 4. Based on the measured values of the distances between the two intersections in the first finite plane on the one plane member 41 (hereinafter referred to as “first and second distance measured values”), the displacement geometric plane aggregate 4 Calculates the intersection coordinates of the two points in the first finite plane on the first plane member 41 (hereinafter referred to as “first and second intersection coordinates”), and further calculates the intersection coordinates. A functional unit that calculates a first normal vector with respect to a first finite plane on the first plane member 41 based on the calculated first and second intersection coordinates.
[0062]
In addition, the second normal vector calculation unit 102 first determines the position of the laser reflecting mirror 8 (third measurement reference point) and one point in the second finite plane on the second plane member 42 in the displacement geometric plane assembly 4. The function of calculating the coordinates of the intersection in the displacement geometric plane assembly 4 based on the measured value of the distance to the intersection (hereinafter, referred to as “third measured distance”) of the second plane member 42 , The intersection coordinates of one point in the second finite plane (hereinafter referred to as “third intersection coordinates”) are calculated, and the calculated third intersection coordinates and the first normal vector calculation unit 101 calculate the intersection coordinates. Based on the obtained first normal vector, a second normal vector for a second finite plane on the second plane member 42 is calculated.
[0063]
Further, the rotor posture angle calculation unit 103 converts the first normal vector calculated by the first normal vector calculation unit 101 and the second normal vector calculated by the second normal vector calculation unit 102 into each other. The inclination angle of the rotation center axis of the rotor 3 with respect to the installation center axis of the stator 2 and the components of the rotation angle along the rotation center axis of the rotor 3 are calculated as posture angles of the rotor 3 based on the rotation angle. This is a functional means for calculating.
[0064]
(Example of method)
Subsequently, an example of a method performed by the rotor attitude angle measuring device α according to the example of the device configured as described above will be described.
[0065]
FIG. 7 is a flowchart for explaining the operation of the rotor posture angle measuring device α according to one device example of the present invention.
[0066]
As shown in the figure, in the rotor posture angle measuring device α, first, the first and second laser distance measuring sensors 5 and 6 constituting the optical distance measuring means are themselves and a displacement geometric plane set. Each distance between the two points in the first finite plane on the first plane member 41 of the body 4 is measured by a straight line obtained by the laser optical axis, and the first and second distance measurement at that time are measured. The third laser-type distance measuring sensor 7 constituting the optical distance measuring means is provided with a laser reflecting mirror 8 and a second finite plane on the second plane member 42 of the displacement geometric plane assembly 4 while acquiring the values. The measurement is started by measuring the distance between the one point and the point of intersection with a straight line obtained by the laser optical axis and obtaining a third distance measurement value at that time (ST1). Then, the first and second distance measurement values and the third distance measurement value acquired as described above are input to the rotor posture angle calculation device 10 constituting information processing means, and the Used for attitude angle calculation.
[0067]
Next, the first normal vector calculation unit 101 and the second normal vector calculation unit 102 in the rotor attitude angle calculation device 10 are input from the first and second laser distance measuring sensors 5 and 6, respectively. Based on the first and second distance measurement values and the third distance measurement value input from the third laser distance measurement sensor 7, a function for calculating intersection coordinates in the displacement geometric plane assembly 4 is provided. , The first and second intersection coordinates in the first finite plane on the first plane member 41 are calculated, and the third intersection coordinates in the second finite plane on the second plane member 42 are calculated (ST2). ).
[0068]
Next, the first normal vector calculation unit 101 in the rotor posture angle calculation device 10 calculates the first plane in the displacement geometric plane aggregate 4 based on the first and second intersection coordinates calculated as described above. The first normal vector for the first finite plane on the member 41 is calculated (ST3), and the second normal vector calculation unit 102 in the rotor attitude angle calculation device 10 calculates the third normal vector. Then, a second normal vector for a second finite plane on the second plane member 42 is calculated based on the coordinates of the intersection of and the first normal vector calculated by the first normal vector calculation unit 101 (ST4).
[0069]
The rotor posture angle calculation unit 103 in the rotor posture angle calculation device 10 calculates the first normal vector calculated by the first normal vector calculation unit 101 and the second normal vector calculation unit 102. The inclination angle of the rotation center axis of the rotor 3 with respect to the installation center axis of the stator 2 and the rotation center axis of the rotor 3 as the posture angle of the rotor 3 to be calculated based on the obtained second normal vector. (ST5), and thereafter, the rotor attitude angle measuring device α measures the attitude angle displacement of the rotor 3 constantly and permanently over a long period of time. As described above, the series of processing from ST1 to ST5 described above is repeatedly executed.
[0070]
As described above, the embodiment of the present invention has been described with reference to the example of the apparatus and the example of the method corresponding thereto. However, the present invention is not necessarily limited to only the above-described means and methods, and the effects to be described later can be obtained. Changes can be made as appropriate within the scope of the above.
[0071]
【The invention's effect】
As described above in detail, according to the present invention, while ensuring a wide movable range of the rotor, the required rotation angle measurement can be performed in a high frequency region for a long time without causing any noise. It can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a front view showing a mechanical configuration of a rotor attitude angle measuring apparatus according to an example of the present invention, together with an application form to a multi-degree-of-freedom ultrasonic motor.
FIG. 2 is a right side view showing a mechanical configuration of a rotor posture angle measuring device according to an example of the present invention, together with an application form to a multi-degree-of-freedom ultrasonic motor.
FIG. 3 is a view showing an arrangement of first to third laser distance measuring sensors with respect to the displacement geometric plane assembly shown in FIGS. 1 and 2;
FIG. 4 is a view showing an arrangement of first and second laser distance measuring sensors with respect to a first plane member of the displaced geometric plane assembly shown in FIGS. 1 to 3;
FIG. 5 is a diagram showing laser irradiation points on a second plane member of the displaced geometric plane assembly shown in FIGS. 1 to 3;
FIG. 6 is a block diagram showing a configuration of a rotor attitude angle calculation device which is information processing means applied together with a mechanical configuration of the rotor attitude angle measurement device shown in FIGS. 1 to 3;
FIG. 7 is a flowchart for explaining the operation of the rotor posture angle measuring device according to one device example of the present invention.
[Explanation of symbols]
α ... Rotor posture angle measuring device (of multi-degree-of-freedom ultrasonic motor)
β ... Multi-degree-of-freedom ultrasonic motor
S: Motor installation surface
1. Piezoelectric element
2. Stator
2a ... Stator suspension holding member
2b ... stator installation leg
3 ... rotor
4: Displacement geometric plane aggregate
41 (41a, 41b): first planar member
42 (42a, 42b, 42c) ... second plane member
5. First laser distance measuring sensor
6 Second laser distance measuring sensor
7. Third laser distance measuring sensor
8 Laser reflector
9 ... Reflector support member
10. Rotor attitude angle calculation device
101: first normal vector calculation unit
102: second normal vector calculation unit
103 ... rotor attitude angle calculation unit

Claims (20)

複数の圧電素子が重層構成された円筒形の固定子と、この固定子の設置中心軸上にその回動中心点及び回転中心軸を含むよう当該固定子上に載置構成された球形の回転子とを有して構成される多自由度超音波モータにおいて、前記複数の圧電素子への交流電圧の印加に伴う前記回転子の姿勢角の変位を随時計測するための回転子姿勢角計測方法であって、
前記回転子の前記姿勢角を、前記固定子の前記設置中心軸を基準とした固定子座標系における、当該回転子の前記回動中心点を面内に含んで同回転子の前記回転中心軸と直交する第1有限平面の座標と、当該回転中心軸を面内に含む第2有限平面の座標とにより表現可能に構成された、前記回転子と一体動する変位幾何平面集合体を採用し、
光学的距離計測手段により、
前記固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ前記変位幾何平面集合体における前記第1有限平面と交差する2点の交点及び前記第2有限平面と交差する1点の交点との間の各距離をそれぞれ計測する過程を実施した後に、
情報処理手段により、
前記3箇所の計測基準点と前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点及び前記第2有限平面内の前記1点の交点との間の前記各距離に基づき、対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する過程と、
前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標及び前記第2有限平面内の前記1点の交点座標に基づき、前記回転子の前記姿勢角を演算する過程と、を順次実施する、
ことを特徴とする多自由度超音波モータの回転子姿勢角計測方法。
A cylindrical stator in which a plurality of piezoelectric elements are layered, and a spherical rotating member mounted on the stator so as to include a rotation center point and a rotation center axis on an installation center axis of the stator. In a multi-degree-of-freedom ultrasonic motor comprising a rotor, a rotor attitude angle measuring method for measuring displacement of the attitude angle of the rotor at any time due to application of an AC voltage to the plurality of piezoelectric elements And
The attitude angle of the rotor, in the stator coordinate system with respect to the installation center axis of the stator, including the rotation center point of the rotor in the plane, the rotation center axis of the rotor A set of displaceable geometric planes integrally movable with the rotor, which can be expressed by the coordinates of a first finite plane orthogonal to the axis and the coordinates of a second finite plane including the rotation center axis in the plane. ,
By means of optical distance measurement,
Three measurement reference points set in the stator coordinate system, and a straight line generated from these three measurement reference points intersects the two points that intersect the first finite plane in the displacement geometric plane aggregate, respectively. After performing the process of measuring each distance between the second finite plane and the intersection of one point that intersects,
By information processing means,
Based on the distance between the three measurement reference points and the intersection of the two points in the first finite plane and the intersection of the one point in the second finite plane in the displacement geometric plane assembly, Calculating the corresponding coordinates of the intersection of two points in the first finite plane and the coordinates of the intersection of one point in the second finite plane,
Calculating the attitude angle of the rotor based on the coordinates of the intersection of the two points in the first finite plane and the coordinates of the intersection of the one point in the second finite plane in the displacement geometric plane aggregate; Sequentially,
A method for measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor, comprising:
前記情報処理手段による前記回転子の姿勢角演算の過程は、
前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標に基づき、当該第1有限平面についての第1法線ベクトルを算出する過程と、
前記変位幾何平面集合体における前記第2有限平面内の前記1点の交点座標及び前記第1法線ベクトルに基づき、当該第2有限平面についての第2法線ベクトルを算出する過程と、
前記第1法線ベクトル及び前記第2法線ベクトルに基づき、前記回転子の前記姿勢角を算出する過程と、を順次実施する、
ことを特徴とする請求項1に記載の多自由度超音波モータの回転子姿勢角計測方法。
The process of calculating the attitude angle of the rotor by the information processing means,
Calculating a first normal vector for the first finite plane based on intersection coordinates of the two points in the first finite plane in the displaced geometric plane aggregate;
Calculating a second normal vector for the second finite plane based on the intersection coordinates of the one point in the second finite plane and the first normal vector in the displacement finite plane aggregate;
Calculating the attitude angle of the rotor based on the first normal vector and the second normal vector.
2. The method for measuring the attitude of a rotor of a multi-degree-of-freedom ultrasonic motor according to claim 1, wherein:
前記情報処理手段による前記回転子の姿勢角算出の過程は、
前記回転子の前記姿勢角として、前記固定子の前記設置中心軸に対する当該回転子の回転中心軸の傾斜角成分を算出する過程を実施する、
ことを特徴とする請求項2に記載の多自由度超音波モータの回転子姿勢角計測方法。
The process of calculating the attitude angle of the rotor by the information processing means,
As the posture angle of the rotor, performing a process of calculating a tilt angle component of the rotation center axis of the rotor with respect to the installation center axis of the stator,
3. The method for measuring the attitude of a rotor of a multi-degree-of-freedom ultrasonic motor according to claim 2, wherein:
前記情報処理手段による前記回転子の姿勢角算出の過程は、
前記回転子の前記姿勢角として、当該回転子の前記回転中心軸に沿う回転角成分を算出する過程を実施する、
ことを特徴とする請求項2又は3に記載の多自由度超音波モータの回転子姿勢角計測方法。
The process of calculating the attitude angle of the rotor by the information processing means,
As the posture angle of the rotor, performing a process of calculating a rotation angle component along the rotation center axis of the rotor,
4. The method of measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor according to claim 2, wherein
前記光学的距離計測手段による距離計測の過程は、
前記3箇所の計測基準点から発する前記直線をそれぞれレーザ光軸線により得る過程を実施する、
ことを特徴とする請求項1、2、3又は4に記載の多自由度超音波モータの回転子姿勢角計測方法。
The process of distance measurement by the optical distance measurement means,
Performing a process of obtaining the straight lines emanating from the three measurement reference points by the respective laser optical axes,
The method of measuring a rotor attitude angle of a multi-degree-of-freedom ultrasonic motor according to claim 1, 2, 3, or 4.
複数の圧電素子が重層構成された円筒形の固定子と、この固定子の設置中心軸上にその回動中心点及び回転中心軸を含むよう当該固定子上に載置構成された球形の回転子とを有して構成される多自由度超音波モータにおいて、前記複数の圧電素子への交流電圧の印加に伴う前記回転子の姿勢角の変位を随時計測するための回転子姿勢角計測装置であって、
前記回転子の前記姿勢角を、前記固定子の前記設置中心軸を基準とした固定子座標系における、当該回転子の前記回動中心点を面内に含んで同回転子の前記回転中心軸と直交する第1有限平面の座標と、当該回転中心軸を面内に含む第2有限平面の座標とにより表現可能に構成された、前記回転子と一体動する変位幾何平面集合体と、
前記固定子座標系に設定された3箇所の計測基準点と、これら3箇所の計測基準点から発する直線が、それぞれ前記変位幾何平面集合体における前記第1有限平面と交差する2点の交点及び前記第2有限平面と交差する1点の交点との間の各距離をそれぞれ光学的に計測する光学的距離計測手段と、
この光学的距離計測手段により計測された、前記3箇所の計測基準点と前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点及び前記第2有限平面内の前記1点の交点との間の前記各距離に基づき、変位対応する当該第1有限平面内の2点の交点座標及び当該第2有限平面内の1点の交点座標をそれぞれ算出する集合体交点座標算出手段と、
この集合体交点座標算出手段により算出された、前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標及び前記第2有限平面内の前記1点の変位交点座標に基づき、前記回転子の前記姿勢角を演算する回転子姿勢角演算手段と、を有して構成される、
ことを特徴とする多自由度超音波モータの回転子姿勢角計測装置。
A cylindrical stator in which a plurality of piezoelectric elements are layered, and a spherical rotating member mounted on the stator so as to include a rotation center point and a rotation center axis on an installation center axis of the stator. In a multi-degree-of-freedom ultrasonic motor including a rotor, a rotor attitude angle measuring device for measuring displacement of the attitude angle of the rotor at any time due to application of an AC voltage to the plurality of piezoelectric elements And
The attitude angle of the rotor, in the stator coordinate system with respect to the installation center axis of the stator, including the rotation center point of the rotor in the plane, the rotation center axis of the rotor A set of displaceable geometric planes that move integrally with the rotor, which are configured to be able to be represented by coordinates of a first finite plane orthogonal to and the coordinates of a second finite plane including the rotation center axis in the plane;
Three measurement reference points set in the stator coordinate system, and a straight line generated from these three measurement reference points intersects the two points that intersect the first finite plane in the displacement geometric plane aggregate, respectively. Optical distance measuring means for optically measuring each distance between the second finite plane and an intersection of one point intersecting,
The intersection of the three measurement reference points and the two points in the first finite plane in the displacement geometric plane aggregate and the one point in the second finite plane measured by the optical distance measuring means. An assembly intersection coordinate calculating means for calculating, based on each of the distances to the intersection, the intersection coordinates of two points in the first finite plane and the intersection coordinates of one point in the second finite plane corresponding to the displacement; ,
Based on the coordinates of the intersection of the two points in the first finite plane and the coordinates of the displacement of the one point in the second finite plane in the set of displacement geometric planes, A rotor attitude angle calculating means for calculating the attitude angle of the rotor,
A rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor, characterized in that:
前記回転子姿勢角演算手段は、
前記集合体交点座標算出手段により算出された前記変位幾何平面集合体における前記第1有限平面内の前記2点の交点座標に基づき、当該第1有限平面についての第1法線ベクトルを算出する第1法線ベクトル算出手段と、
前記集合体交点座標算出手段により算出された前記変位幾何平面集合体における前記第2有限平面内の前記1点の交点座標、及び前記第1法線ベクトル算出手段により算出された前記第1法線ベクトルに基づき、当該第2有限平面についての第2法線ベクトルを算出する第2法線ベクトル算出手段と、
前記第1法線ベクトル算出手段により算出された前記第1法線ベクトル、及び前記第2法線ベクトル算出手段により算出された前記第2法線ベクトルに基づき、前記回転子の前記姿勢角を算出する回転子姿勢角算出手段と、を有して構成される、
ことを特徴とする請求項6に記載の多自由度超音波モータの回転子姿勢角計測装置。
The rotor attitude angle calculating means includes:
Calculating a first normal vector for the first finite plane based on the intersection coordinates of the two points in the first finite plane in the displacement geometric plane aggregate calculated by the aggregate intersection coordinate calculating means; 1 normal vector calculating means,
The intersection coordinates of the one point in the second finite plane in the displacement geometric plane aggregate calculated by the assembly intersection coordinate calculation unit, and the first normal line calculated by the first normal vector calculation unit A second normal vector calculating means for calculating a second normal vector for the second finite plane based on the vector,
The attitude angle of the rotor is calculated based on the first normal vector calculated by the first normal vector calculation means and the second normal vector calculated by the second normal vector calculation means. Rotor attitude angle calculating means,
The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 6, characterized in that:
前記回転子姿勢角算出手段は、
前記回転子の前記姿勢角として、前記固定子の前記設置中心軸に対する当該回転子の回転中心軸の傾斜角成分を算出する機能手段を具備する、
ことを特徴とする請求項7に記載の多自由度超音波モータの回転子姿勢角計測装置。
The rotor posture angle calculation means,
As the attitude angle of the rotor, a functional unit that calculates a tilt angle component of a rotation center axis of the rotor with respect to the installation center axis of the stator,
The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 7, wherein:
前記回転子姿勢角算出手段は、
前記回転子の前記姿勢角として、当該回転子の前記回転中心軸に沿う回転角成分を算出する機能手段を具備する、
ことを特徴とする請求項7又は8に記載の多自由度超音波モータの回転子姿勢角計測装置。
The rotor posture angle calculation means,
As the attitude angle of the rotor, comprises a functional means for calculating a rotation angle component along the rotation center axis of the rotor,
The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 7 or 8, wherein:
前記光学的距離計測手段は、
前記3箇所の計測基準点から発する前記直線をそれぞれレーザ光軸線により得る機能手段を具備する、
ことを特徴とする請求項6、7、8又は9に記載の多自由度超音波モータの回転子姿勢角計測装置。
The optical distance measuring means,
Comprising a functional unit for obtaining the straight lines emitted from the three measurement reference points by the laser optical axis,
10. The apparatus according to claim 6, 7, 8 or 9, wherein the rotor attitude angle of the multi-degree-of-freedom ultrasonic motor is measured.
前記光学的距離計測手段は、
前記固定子の前記設置中心軸と平行する2つの直線上にそれぞれ前記レーザ光軸線による第1及び第2の計測基準点をもつ第1及び第2のレーザ式測距センサと、
当該設置中心軸の前後左右方向直交仮想面と平行する1つの一次直線上に前記レーザ光軸線による第3の計測基準点をもつ第3のレーザ式測距センサと、を有して構成される、
ことを特徴とする請求項10に記載の多自由度超音波モータの回転子姿勢角計測装置。
The optical distance measuring means,
First and second laser distance measuring sensors having first and second measurement reference points by the laser optical axis on two straight lines parallel to the installation center axis of the stator, respectively;
And a third laser-type distance measuring sensor having a third measurement reference point based on the laser optical axis on one primary straight line parallel to the virtual plane orthogonal to the front-rear and left-right directions of the installation center axis. ,
The apparatus for measuring the attitude of a rotor of a multi-degree-of-freedom ultrasonic motor according to claim 10.
前記第1及び第2のレーザ式測距センサにおける前記第1及び第2の計測基準点は、
それぞれ前記レーザ光軸線の発射点を構成する、
ことを特徴とする請求項11に記載の多自由度超音波モータの回転子姿勢角計測装置。
The first and second measurement reference points in the first and second laser distance measuring sensors are:
Each constituting a launch point of the laser optical axis,
The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 11, wherein:
前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点は、
当該第1及び第2の計測基準点の位置を定義する前記2つの直線を共に含む1つの仮想面が前記固定子の前記設置中心軸を含まない領域に設定される、
ことを特徴とする請求項12に記載の多自由度超音波モータの回転子姿勢角計測装置。
In the first and second laser distance measuring sensors, the first and second measurement reference points constituting the launch point of the laser optical axis are:
One virtual plane including both the two straight lines defining the positions of the first and second measurement reference points is set in an area not including the installation center axis of the stator.
13. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 12, wherein:
前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点は、
当該第1及び第2の計測基準点の位置を定義する前記2つの直線をそれぞれ含む前記設置中心軸を通る2つの仮想面の交差角が当該固定子の前記設置中心軸において約90°をなす領域に設定される、
ことを特徴とする請求項12又は13に記載の多自由度超音波モータの回転子姿勢角計測装置。
In the first and second laser distance measuring sensors, the first and second measurement reference points constituting the launch point of the laser optical axis are:
An intersection angle of two virtual planes passing through the installation center axis including the two straight lines respectively defining the positions of the first and second measurement reference points forms about 90 ° at the installation center axis of the stator. Set in the area,
14. The apparatus for measuring the attitude of a rotor of a multi-degree-of-freedom ultrasonic motor according to claim 12, wherein:
前記第1及び第2のレーザ式測距センサにおいて前記レーザ光軸線の前記発射点を構成する前記第1及び第2の計測基準点は、
当該第1及び第2の計測基準点の位置を定義する前記2つの直線が前記変位幾何平面集合体における前記第1有限平面と常に交差する領域に設定される、
ことを特徴とする請求項12、13又は14に記載の多自由度超音波モータの回転子姿勢角計測装置。
In the first and second laser distance measuring sensors, the first and second measurement reference points constituting the launch point of the laser optical axis are:
The two straight lines that define the positions of the first and second measurement reference points are set in an area that always intersects with the first finite plane in the displacement geometric plane aggregate,
15. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 12, 13 or 14.
前記第3のレーザ式測距センサは、
前記固定子の前記設置中心軸と平行する1つの二次直線上に前記レーザ光軸線の発射点をもち、
前記第3の計測基準点は、
当該発射点から発射された前記レーザ光軸線の直角反射点を構成する、
ことを特徴とする請求項11、12、13、14又は15に記載の多自由度超音波モータの回転子姿勢角計測装置。
The third laser-type distance measuring sensor includes:
Having a launch point of the laser optical axis on one secondary straight line parallel to the installation center axis of the stator;
The third measurement reference point is:
Constituting a perpendicular reflection point of the laser optical axis emitted from the launch point,
The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 11, 12, 13, 14, or 15.
前記第3のレーザ式測距センサにおいて前記レーザ光軸線の前記直角反射点を構成する前記第3の計測基準点は、
当該第3の計測基準点の位置を定義する前記一次直線が前記変位幾何平面集合体における前記第1有限平面と常に交差しない領域に設定される、
ことを特徴とする請求項16に記載の多自由度超音波モータの回転子姿勢角計測装置。
In the third laser distance measuring sensor, the third measurement reference point that constitutes the perpendicular reflection point of the laser optical axis is
The primary straight line that defines the position of the third measurement reference point is set in an area that does not always intersect the first finite plane in the displacement geometric plane aggregate,
17. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 16, wherein:
前記第3のレーザ式測距センサにおいて前記レーザ光軸線の前記直角反射点を構成する前記第3の計測基準点は、
前記レーザ光軸線の前記発射点の位置を定義する前記二次直線が前記変位幾何平面集合体における前記第1有限平面と常に交差しない領域に設定される、
ことを特徴とする請求項16又は17に記載の多自由度超音波モータの回転子姿勢角計測装置。
In the third laser distance measuring sensor, the third measurement reference point that constitutes the perpendicular reflection point of the laser optical axis is
The quadratic line defining the position of the launch point of the laser optical axis is set in an area that does not always intersect with the first finite plane in the displacement geometric plane assembly,
18. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 16, wherein:
前記変位幾何平面集合体は、
前記第1及び第2のレーザ式測距センサにおける前記第1及び第2の計測基準点との対向面に前記第1有限平面を設定され、かつ前記レーザ光軸線を折り返し反射する第1平面部材と、
前記第3のレーザ式測距センサにおける前記第3の計測基準点との対向面に前記第2有限平面を設定され、かつ前記レーザ光軸線を折り返し反射する第2平面部材と、を有して構成される、
ことを特徴とする請求項11、12、13、14、15、16、17又は18に記載の多自由度超音波モータの回転子姿勢角計測装置。
The displacement geometric plane aggregate,
A first plane member having the first finite plane set on a surface of the first and second laser distance measuring sensors facing the first and second measurement reference points, and reflecting the laser optical axis back When,
A second plane member having the second finite plane set on a surface facing the third measurement reference point in the third laser distance measuring sensor, and reflecting the laser optical axis back and forth. Composed,
19. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 11, 12, 13, 14, 15, 16, 17, or 18.
前記変位幾何平面集合体における前記第1平面部材は、
前記回転子の前記回動中心点を中心にもつ同心円形に形成され、
当該変位幾何平面集合体における前記第2平面部材は、
前記回転子の前記回転中心軸を一辺にもつ直角扇形に形成される、
ことを特徴とする請求項19に記載の多自由度超音波モータの回転子姿勢角計測装置。
The first plane member in the displacement geometric plane assembly,
Formed in a concentric circle centered on the rotation center point of the rotor,
The second plane member in the displacement geometric plane assembly,
The rotor is formed in a right-angle fan shape having the rotation center axis on one side,
20. The rotor attitude angle measuring device for a multi-degree-of-freedom ultrasonic motor according to claim 19, wherein:
JP2003100029A 2003-04-03 2003-04-03 Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus Expired - Fee Related JP4162218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100029A JP4162218B2 (en) 2003-04-03 2003-04-03 Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100029A JP4162218B2 (en) 2003-04-03 2003-04-03 Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2004312811A true JP2004312811A (en) 2004-11-04
JP4162218B2 JP4162218B2 (en) 2008-10-08

Family

ID=33464277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100029A Expired - Fee Related JP4162218B2 (en) 2003-04-03 2003-04-03 Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4162218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225683A (en) * 2016-08-22 2016-12-14 国家电网公司 Vertical hydrogenerator stator silicon steel plate radial displacement detection method
CN106526539A (en) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 Positioning base station, positioning system and positioning method
CN108252221A (en) * 2018-01-04 2018-07-06 中交第公路工程局有限公司 A kind of spiral gradient formula optical ranging monitors movable formwork device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282774B (en) * 2018-08-31 2019-12-24 华中科技大学 Device and method for solving three-degree-of-freedom attitude of ball joint based on distance measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225683A (en) * 2016-08-22 2016-12-14 国家电网公司 Vertical hydrogenerator stator silicon steel plate radial displacement detection method
CN106526539A (en) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 Positioning base station, positioning system and positioning method
CN106526539B (en) * 2016-11-25 2023-12-08 北京凌宇智控科技有限公司 Positioning base station, positioning system and positioning method
CN108252221A (en) * 2018-01-04 2018-07-06 中交第公路工程局有限公司 A kind of spiral gradient formula optical ranging monitors movable formwork device

Also Published As

Publication number Publication date
JP4162218B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
TWI393340B (en) Spherical rotary piezoelectric motor
CA2229935C (en) High bandwith, dynamically rigid metrology system for the measurement and control of intelligent manufacturing processes
JP5913726B2 (en) Gimbal scanning mirror array
JP5442457B2 (en) Locating
CN110312944B (en) MEMS scanning module for optical scanner
JP2006301991A (en) Correction method of coordinate transformation function
JP2008298520A (en) Scanning distance measuring instrument
US20200225447A1 (en) Lever system for driving mirrors of a lidar transmitter
JP4162218B2 (en) Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus
Purwanto et al. Development of an ultrasonic motor as a fine-orienting stage
Ghazinouri et al. Crosstalk-free large aperture electromagnetic 2D micromirror for LiDAR application
JP5273091B2 (en) 3D shape measuring apparatus and 3D shape measuring method
JP2007225365A (en) Attitude angle detection method and detector
JPH11281925A (en) Laser pointing device
JP3918732B2 (en) Non-contact 3D relative displacement measuring device
JP4327620B2 (en) Multi-degree-of-freedom ultrasonic motor and preload device
US11693097B2 (en) Optical scanning device, optical measuring apparatus, and robot
WO2017038875A1 (en) Surface-shape measuring device and surface-shape measuring program
Otokawa et al. Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes
JP4196842B2 (en) Attitude angle detection method and attitude angle detection device
JP4162224B2 (en) Multi-degree-of-freedom ultrasonic motor rotor attitude angle measurement device
JP6369357B2 (en) Scanning device
WO2024018758A1 (en) Shape measurement device and shape measurement method
JP4209291B2 (en) Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor
JP7281018B2 (en) Ranging device, ranging method, and ranging program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4162218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees