JP2004312054A - "sunlight transformation power generator" or "photoelectric generation device" - Google Patents

"sunlight transformation power generator" or "photoelectric generation device" Download PDF

Info

Publication number
JP2004312054A
JP2004312054A JP2004234920A JP2004234920A JP2004312054A JP 2004312054 A JP2004312054 A JP 2004312054A JP 2004234920 A JP2004234920 A JP 2004234920A JP 2004234920 A JP2004234920 A JP 2004234920A JP 2004312054 A JP2004312054 A JP 2004312054A
Authority
JP
Japan
Prior art keywords
light
solar cell
power generation
lens
receives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234920A
Other languages
Japanese (ja)
Inventor
Kaoru Furusawa
薫 古澤
Masayuki Furusawa
昌之 古澤
Junichi Ueda
潤一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004234920A priority Critical patent/JP2004312054A/en
Publication of JP2004312054A publication Critical patent/JP2004312054A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunlight transformation power generator of high capability, in which lightening area is decreased by employing a plurality of small, light-weight lenses and an low-cost reflecting mirror condensing implement. <P>SOLUTION: High capability performance is contrived, in such a way that a group of lenses superimposed in multilayer by a plurality of lens is made to track the sunlight, and high-density light flux is received in the order by solar cells. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

太陽光発電素子通称「太陽電池」「ソーラーセル」は太陽直達光を平面容器に屋上等で受光発電が主体である。
「ソーラーセル」は多量な電力等を消費、近代高精製する技術と半導体P、N形結晶の粋とし、薄形加工等で生まれた近代物質のすぐれた変換作用は衆知の事実である。
その不充分活用感は、例えば「元高回収性」の低さである。本発明は一助として太陽光熱の集光密度光と熱エネルギーの総括活用とその良い冷却方策に関する発明。
Solar power generation elements, so-called "solar cells" and "solar cells", mainly receive and generate light from a solar cell on a rooftop or the like in a flat container.
The "solar cell" consumes a large amount of electric power and uses the technology of modern high-purification and semiconductor P and N-type crystals. It is a well-known fact that the excellent conversion of modern materials produced by thinning and the like is excellent.
The feeling of inadequate utilization is, for example, the low “high original recovery”. The present invention is an invention relating to the overall utilization of the condensed density light of solar heat and thermal energy and a good cooling method thereof as an aid.

軽量小形な多数レンズと薄膜技術等の軽量化、安価な反射鏡集光具による運行する太陽光を高放射密度光とし、採光面積の数十分の一に縮小した「ソーラーセル」に高密度光を投光・採光面積に近い高能力電力を得る発明。Lightweight with small and large number of lenses and thin-film technology, etc., and high-density sunlight is operated by an inexpensive reflector concentrator. Invention that obtains high-capacity power close to the light-projecting / lighting area.

前記Said

の多数レンズを更に多層重ねた水(液体)行列レンズ群を運行する太陽光に切換、合致追従を行い高率利得の高密度光束を順次「ソーラーセル」が受光し、高能力電力化を計る発明。A large number of lenses are further superimposed, and the water (liquid) matrix lens group is switched to the sunlight that operates, and following the match, the "solar cell" receives high-density luminous flux with a high rate gain in order to achieve higher power consumption. invention.

他のエネルギー無しに自然の「花びら」と向日性を真似た集光反射鏡を「バイメタル」の熱膨張力を利用し、運行する太陽光に追従その高密度光を「ソーラーセル」が受光し、高能力電力化を計る発明。Using the thermal expansion of bimetal, a condensing mirror that mimics the sunshine of natural petals without other energy follows the running sunlight, and the solar cell receives the high-density light. The invention that measures high power.

前記Said

の「バイメタル」膨張力を代替する二枚合せ間隙反射鏡と結合「ベローズ」に熱膨張気(液)体を充填その膨張増大(面積比倍)伸縮力を反射鏡に与え運行する太陽光追従に適用し、高密度集光束を「ソーラーセル」が受光し、高能力電力化を計る発明。Combined with a double-gap reflector that replaces the “bimetal” expansion force Filling the “bellows” with a thermal expansion gas (liquid) body Increases the expansion (area ratio times) of the expansion mirror and gives it a stretchable force Invention in which the "solar cell" receives a high-density condensed light beam to achieve high-capacity power.

球体発電ユニット又は「発電ユニット」第二反射鏡等具えた透明前面球と背面球は金属等で「ソーラーセル」と第一反射鏡及び放熱板とし結合した球体である。滑車「プリー」とし、「糸ベルト」をその大圏基定点に繋索、追従検出信号が、「方位・高度角」を可動する。球体は「糸ベルト」を二方向に無軸自由回転し、太陽光に追従受集光し、その高密度光束が反射鏡等を経て「ソーラーセル」が受光し、高能力電力化を計る「発電ユニット」である。又第一、第二反射鏡をレンズ集光策とする「凸レンズ式」図9は、殆んど同様運用出来る。The transparent front sphere and the rear sphere provided with the spherical power generation unit or the "power generation unit" second reflector are metal or the like and a sphere combined as a "solar cell", a first reflector and a heat sink. The pulley is a "pull", a "thread belt" is tied to the great circle base point, and the tracking detection signal moves the "azimuth and altitude angle". The sphere rotates the "thread belt" freely in two directions, follows and converges on sunlight, and the high-density light flux is received by a "solar cell" via a reflector, etc., to achieve higher power consumption. Power generation unit ". Also, the "convex lens type" in which the first and second reflecting mirrors are used as lens converging means can be operated almost in the same manner.

平面形は、前記「発電ユニット」複数を平面箱容器に将棋並べ行列に配置、各々の方位・高度角回転はその大圏基定点に「糸ベルト」を一括連係する。その二方向回転は、太陽光検出信号出力からモーター駆動により累積誤差を生ずることなく、太陽光に追従その高密度集光束を夫々の「ソーラーセル」が受光高能力電力化を計る発明。
他言すれば、多数夫々追従動形は、複雑高価に。一括大形は精度・重量及び設置上の難点・価格等が普及を阻害する。本平面箱形は多数化(小球体)は全体が薄型・軽量になる関係が有り、活用電力に適当な設置場所とその容量に対する選択・自由度が取れる発電装置の発明。
In the planar type, a plurality of the "power generation units" are arranged in a chess arrangement matrix in a flat box container, and the azimuth and altitude angle rotations collectively link the "thread belt" to the great circle base point. The two-way rotation follows the sunlight without causing a cumulative error due to the motor drive from the sunlight detection signal output, and each "solar cell" receives the high-density condensed light beam and achieves high power with high power.
In other words, each of the following types is complicated and expensive. The large-sized package prevents the spread of accuracy, weight, installation difficulties, and price. The invention of a power generation device in which the flat box shape is multiplied (small spheres) has a relation that the whole becomes thinner and lighter, and an installation place suitable for electric power to be used and a degree of freedom and freedom in its capacity can be obtained.

パンザー電柱透明形は、前記「0006」及び「0007」共通策で、複数「発電ユニット」をパンザー電柱容器上部より方位、高度角を追従「糸ベルト」を夫々球体に滑車としその基定点に連係懸垂する。他方運行する太陽光検知信号で二系統をモーター駆動から、前記「糸ベルト」を追従、夫々の「発電ユニット」が直達光を高密度光束とし「ソーラーセル」が受光し、高能力電力化を計る発明。パンザー電柱形は垂直自立形で、その形状は気(液)利用に最適であり、狭地立体利用の光熱発電装置である。
The Panzer utility pole transparent type is a common measure of the aforementioned "0006" and "0007", in which a plurality of "power generation units" follow the direction and altitude angle from the top of the panzer utility pole container, and "thread belts" are each a spherical pulley and linked to its base point. Hang up. On the other hand, the two systems are driven from the motor by the sunlight detection signal to operate and follow the "thread belt", and each "power generation unit" receives the direct light as a high-density light beam and the "solar cell" receives it to increase the power capacity. Invention to measure. The Panzer utility pole type is a vertical self-standing type, and its shape is most suitable for gas (liquid) use, and it is a photothermal power generation device for three-dimensional use in narrow terrain.

無線工学ポケットブック 株式会社オーム社
昭和39年11月15日 P463〜
Radio Engineering Pocket Book Ohmsha Co., Ltd. November 15, 1963 P463-

太陽エネルギー 日本放送出版協会 押田勇雄著
昭和56年12月20日 P15〜151〜209
Solar Energy Japan Broadcasting Publishing Association, Yuo Oshida December 20, 1981 P15-151-209

発明が解決しようとする課題Problems to be solved by the invention

「平面にレンズを並べた方式」は配置レンズ又は(箱容器蓋を一体成形レンズ)を運行する太陽光熱が順次高密度光とし補助集光板を経て「ソーラーセル」が受光し高能力電力を得る方策の発明。"The method of arranging lenses in a plane" is a method in which the solar heat that travels through the arrangement lens or (integrally molded lens of the container lid) is sequentially converted to high-density light and received by the "solar cell" through the auxiliary light collector to obtain high-capacity power Invention of strategy.

「液体レンズ式」は凸レンズ透明殻を多層重ね、屈折液体を太陽光に適合層を選択(圧力制御)充填し、レンズ効果の発生高密度光を「ソーラーセル」が受光し、高能力電力を得る発明。In the "liquid lens type", a convex lens transparent shell is layered in multiple layers, the refraction liquid is selected for the layer suitable for sunlight (pressure control), and the "solar cell" receives high-density light that generates the lens effect, and high power Invention to get.

「バイメタル式」は太陽光熱の「バイメタル」変形力で反射鏡が太陽光を追従、その結果より高密度光を補助反射板付「ソーラーセル」が受光し、高能力電力を得る発明。The "bimetal type" is an invention in which the reflector follows the sunlight by the "bimetallic" deformation force of solar heat, and as a result, the "solar cell" with the auxiliary reflector receives higher density light and obtains high power.

「ベローズ式」は"Bellows type"

同様太陽光熱で反射鏡と「ベローズ」に充填した気(液)体のボー張力で反射鏡等が太陽光に追従、正対から高密度光を補助反射板付「ソーラーセル」が受光し、高能力電力得る発明。Similarly, the reflecting mirror and the like follow the solar light by the bow tension of the gas (liquid) body filled in the reflecting mirror and the "bellows" due to the solar heat, and the "solar cell" with the auxiliary reflecting plate receives high-density light from directly facing, An invention that obtains power.

「球体発電ユニット」は球体特徴を充分(無軸回転、広冷却面積)に生かし多数・小径(外箱等薄形になる)「発電ユニット」を機械生産し、採光角の数十分の一「ソーラーセル」を搭載する。前面レンズ又は背面反射鏡から追従高密度光を矮小「ソーラーセル」が受光し、高能力電力を得る発明。"Spherical power generation unit" makes full use of spherical features (non-axial rotation, wide cooling area) and mechanically produces a large number of small and small diameter (outer box and other thin) "power generation units" with several tenths of the lighting angle. Equipped with a "solar cell". An invention in which dwarf "solar cells" receive high-density tracking light from a front lens or a rear reflector to obtain high-capacity power.

「平面箱発電ユニット式」は、平面箱に多数「発電ユニット」を滑車(桟)状外周基定点の方位・高度角に「糸ベルト」を携留。その「糸ベルト」を追従検出信号とその駆動モーターで一斉同期回転し、運行する太陽光に追従する。その光束を夫々「発電ユニット」内「ソラーセル」が受光し、高能力電力を得る。一方集光熱による温度上昇は「発電ユニット」背面反射鏡等から平面箱底を経て良い冷却する発明。In the "flat box power generation unit type", a large number of "power generation units" are carried in a flat box and a "thread belt" is carried at the azimuth and altitude angle of the pulley-shaped (base) -shaped outer peripheral base point. The "thread belt" is synchronously rotated by the follow-up detection signal and its drive motor, and follows the running sunlight. The “solar cell” in the “power generation unit” receives the light flux, and obtains high-capacity power. On the other hand, the temperature rise due to the heat of the condensing is an invention in which the "power generation unit" can be cooled from the rear reflector etc. through the bottom of the flat box.

「パンザー電柱形」式は「発電ユニット」を電柱形内に多数梯子状に上部より二系統「糸ベルト」で懸垂する。方位・高度角面を一斉(前記0016)同じ同期・同角で運行する太陽光を追従(0016)に同じ光路を経て高密度光から「ソーラーセル」が夫々高能力電力を得る。この電柱形は空冷気化熱に最適。又上部より「懸垂ベルト」少量伝い水が順次発電ユニットを液冷する。給湯機手洗い等の生活水に活用する。細長い形状は狭地・庭先の立体配置に適当。小電力用の移動と臨時等の活用品の発明。In the "Panzer utility pole type" type, the "power generation unit" is suspended in the utility pole shape in a ladder-like manner from above by two systems "thread belts". The “solar cells” each obtain high-capacity power from high-density light through the same optical path to follow (0016) the sunlight that travels in the same azimuth / altitude plane at the same time (0016) at the same synchronization and the same angle. This pole type is ideal for air-cooled vaporization heat. Also, a small amount of water from the upper part of the "suspension belt" sequentially cools the power generation unit. It is used for living water such as handwashing of water heaters. The slender shape is suitable for three-dimensional arrangements in narrow lands and gardens. Invention of goods for small power movement and temporary use.

課題を解決する手段Means to solve the problem

「平面にレンズを並べた方式」は、軽量の成型レンズ板(箱容器蓋一体成形レンズ)が運行する太陽光に順次追従し、その高密度光を彩光面の桁違い小さな補助反射板付「ソーラーセル」が受光し高能力電力を他エネルギー支援なく電力を得る発明。"The method of arranging lenses on a flat surface" is based on a light-weight molded lens plate (a lens integrally molded with a box and a lid) that sequentially follows the sunlight that is being operated, and the high-density light with an auxiliary reflector that is smaller than the illuminated surface by orders of magnitude. An invention in which a "solar cell" receives light and obtains high-capacity power without any other energy support.

「液体レンズ式」は液体を入れる透明間隙ある平面凸レンズを重ね、その重ね層に運行する太陽光に適する層に液体を入出し、レンズ機能を切換圧力制御そのレンズから高密度光を補助集光板等付き採光面より遥かに小形「ソーラーセル」が受光し高能力電力を得る。レンズ切換液体は「ソーラーセル」冷却及び生活用水に利用する効率よい発明。The "liquid lens type" is a stack of planar convex lenses with a transparent gap for liquid in, the liquid in and out of a layer suitable for sunlight running on the layer, switching the lens function, pressure control, and high density light from the lens. The "solar cell", which is much smaller than the flat lighting surface, receives light and obtains high-capacity power. An efficient invention in which the lens switching liquid is used for "solar cell" cooling and domestic water.

「バイメタル」方式は、熱変形する「バイメタル」を熱絶縁した四分割第一反射鏡底面の方位、高度角面に配し、熱反曲力差分から第一反射鏡が運行する太陽光を追従その高密度光が第二反射鏡等を経て「ソーラーセル」が受光し、高能力電力を他エネルギー無しに得る発明。The “bimetal” method is to arrange the thermally deformed “bimetal” on the azimuth and altitude planes of the bottom surface of the four-split first reflector that is thermally insulated, and to follow the sunlight that the first reflector travels based on the difference in heat reflexion force. An invention in which the "solar cell" receives the high-density light via a second reflecting mirror or the like, and obtains high-capacity power without other energy.

「ベローズ式」は、熱遮断四分割第一反射鏡の二枚合せ間隔に熱膨張気(液)体を結合した「ベローズ」共に充填する。四分割(方位・高度角)面より夫々が太陽光熱膨張力を「ベローズ」面積差分の増強圧力を第一反射鏡の差分稼動から太陽光に追従し、前記「0020」同様の稼動追従受光し、「ソーラーセル」から高能力電力を得る。「ソーラーセル」受光熱冷却は第一反射鏡の気(液)放熱を利用する。In the "bellows type", a "bellows" in which a thermal expansion gas (liquid) body is connected to a gap between two heat-shielding first split mirrors is filled together. Each of the quadrants (azimuth and altitude angle) follows the solar thermal expansion force and the "bellows" area differential pressure to follow the sunlight from the differential operation of the first reflector, and receives the operation follow light similar to the aforementioned "0020". , Get high capacity power from "solar cells". "Solar cell" light receiving heat cooling utilizes gas (liquid) heat radiation of the first reflecting mirror.

「球体発電ユニット」は反射集光とレンズ集光に二式がある。反射式は、前面透明・背面金属等の球体外周に「糸ベルト」を連結する基定点を具え、その「糸ベルト」により方位・高度角に回転、太陽光に追従する。球体間第一・第二反射鏡等「ソーラーセル」を配置し、追従光路に従った高密度光を「ソーラーセル」が受光し、高能力電力を得る。即ち球体は無軸に「糸ベルト」の伸縮追従制御、その方向に回転。その基定点間長を多数連結同期・累積誤差なく、夫々の間隔を保ち太陽光を追従高密度光より「ソーラーセル」が最高能力電力する発明。レンズ集光式は、前半球凸レンズであり、背半球は放熱板と反射鏡、集光板付「ソーラーセル」である。他は反射集光式と殆んど同じである。追従光よりレンズ集光高密度光を「ソーラーセル」が受光し、高能力電力を得る発明である。There are two types of "spherical power generation unit": reflection focusing and lens focusing. The reflection type has a base point that connects a "thread belt" to the outer periphery of a sphere such as a transparent metal on the front and a back metal. The "thread belt" rotates the azimuth and altitude angle and follows the sunlight. A "solar cell" such as an inter-sphere first and second reflecting mirror is arranged, and the "solar cell" receives high-density light following the following optical path, thereby obtaining high-capacity power. In other words, the sphere is controlled to follow the expansion and contraction of the "thread belt" in an axisless manner, and rotates in that direction. The invention that the "solar cell" has the highest power than the high-density light, keeping the distance between each of the base points without any synchronization and accumulated errors and keeping the distance between them. The lens converging type is a front hemispherical convex lens, and the dorsal hemisphere is a “solar cell” with a heat radiating plate, a reflecting mirror, and a light collecting plate. Others are almost the same as the reflection condensing type. This is an invention in which the "solar cell" receives the lens-condensed high-density light from the following light and obtains high-performance power.

平面箱「発電ユニット」式は、平面箱X・Y面に多数「発電ユニット」を滑車状とし、二系統を「糸ベルト」で夫々の基定点に係留する。太陽光検知信号から「糸ベルト」を伸縮し、全「発電ユニット」を一斉同期追従する。夫々「発電ユニット」間に於いて高密度光を「ソーラーセル」が受光し、高能力電力を得る。平箱底面の高伝導冷却活用と特種二軸ベアリング等無使用で多数「発電ユニット」を滑車と「糸ベルト」を用い、簡易・軽量に太陽光追従する特徴の有る発明。In the flat box "power generation unit" type, a large number of "power generation units" are pulley-shaped on the plane box XY plane, and the two systems are moored at their respective base points by "thread belts". The "thread belt" is expanded and contracted from the sunlight detection signal, and all "power generation units" are synchronously followed. The "solar cells" receive high-density light between the "power generation units" and obtain high-capacity power. An invention that features simple and lightweight sunlight tracking using a large number of "power generation units" using pulleys and "thread belts" without the use of highly conductive cooling on the bottom of a flat box and the use of special two-axis bearings.

パンザー電柱形「発電ユニット」式は、「パンザー」電柱間に多数「発電ユニット」外周の基定点に「糸ベルト」を連結、縄梯子(桟)とする。方位・高度角の「糸ベルト」を太陽光検知信号と駆動モータが上下動し、全数一斉同期追従する。その「発電ユニット」間「ソーラーセル」が高密度光を受光し、高能力電力を得る。この形状から効率よく狭地、立体利用と気化熱対流冷却に適した発明。In the Panzer utility pole type "power generation unit" type, a "thread belt" is connected between a number of "Panza" utility poles at a base point on the outer periphery of the "power generation unit" to form a rope ladder (bar). The sunlight detection signal and the drive motor move up and down the "thread belt" of the azimuth and altitude angles, and all of them follow synchronously. The “solar cells” between the “power generation units” receive high-density light and obtain high-capacity power. An invention suitable for narrow space, three-dimensional use, and evaporative heat convection cooling efficiently from this shape.

「平面レンズ式」は太陽光運行を多数平面に並べたレンズが順次送りに反射、集光を行い、追従し高密度光を「ソーラーセル」が受光し、高能力電力を得る。一方受光熱を反射鏡・放熱板と協調よく「ソーラーセル」過熱防止する発明。In the "planar lens type", a lens in which a large number of solar operations are arranged on a plane sequentially reflects and condenses the light, and the "solar cell" receives the high-density light, thereby obtaining high-capacity power. On the other hand, the invention prevents overheating of the "solar cell" by coordinating with the reflector and the radiator plate.

「液体レンズ式」はレンズ形透明容器(多数多層連結又は箱外蓋一連成形)に屈折液体を入出し、受光最適層を別設追従信号がレンズ層を選択入液そのレンズ高密度光を「ソーラーセル」が受光し高能力電力を得る発明。In the "liquid lens type", refraction liquid is put into and out of a lens-shaped transparent container (multiple layers connected or a series of outer lids are formed), a light-receiving optimal layer is separately set, and a tracking signal selects a lens layer. An invention in which a "solar cell" receives light and obtains high-capacity power.

「バイメタル式」は太陽光熱を枝葉の方策向日性を真似その受光を積極運用「バイメタル」等の熱変形反面差力より反射鏡を運行する太陽光に熱量差変化追従し高密度光を「ソーラーセル」が受光し高能力電力を得る発明。The "bi-metal type" simulates the sunshine of the branches and leaves by actively mimicking the sunshine. An invention in which a "solar cell" receives light and obtains high-capacity power.

「ベローズ式」は太陽光熱を反射鏡及び「ベローズ」内に封入気(液)体膨張力から「ベローズ」を伸縮、その相互伸縮差から反射鏡が方向変化し、運行する太陽光熱反射鏡が追従その高密度光を「ソーラーセル」が受光し、高能力電力を得る発明。The "bellows type" encloses solar heat in the reflector and the "bellows". The "bellows" expands and contracts from the expansion force of the gas (liquid) body, and the direction of the mirror changes due to the difference in expansion and contraction of the bellows. The invention that the "solar cell" receives the high-density light and obtains high-capacity power.

「発電ユニット」は半球金属背面と透明前面を結合した球体。背半球に補助反射放熱板付「ソーラーセル」更に第一反射鏡・放熱板が密着する。透明前半面中心に第二反射鏡を付属。前面から直達光(レンズ集光型を含む)が第一、第二反射鏡を経て「ソーラーセル」が高密度光を受光し高能力電力を得る。又、外周大圏ルートに「糸ベルト」結合基定点を付属する発明。The "power generation unit" is a sphere that combines a hemispherical metal back and a transparent front. The "solar cell" with an auxiliary reflective heat sink is attached to the back hemisphere, and the first reflector and heat sink are in close contact. A second reflector is attached to the center of the transparent front half. The “solar cell” receives high-density light through the first and second reflecting mirrors of the direct light (including the lens condensing type) from the front surface and obtains high-capacity power. In addition, the invention in which the "thread belt" connection base point is attached to the outer circumferential great circle route.

前記「発電ユニット」の集光策は主体が反射鏡で、本「レンズ集光式」は前面が集光凸レンズ(フリネルレンズを含む)代替以外は殆んど同じ形容光路ルートの構成である。補助集光板付「ソーラーセル」は前面レンズ高密度光を受け、前記「0029」同様の高能力電力を得る発明。The light collecting unit of the “power generation unit” is mainly a reflecting mirror, and the “lens condensing type” has almost the same configuration of the optical path route except that the front surface is replaced by a converging convex lens (including a Fresnel lens). The invention in which the "solar cell" with the auxiliary light collector receives the high-density light of the front lens and obtains the same high-performance power as in the above-mentioned "0029".

平面箱底のX・Y面に多数(単数)の「発電ユニット」を携留、更に別設追従検出信号出力を追従モーター軸に結合、その回転より運行する太陽光から「発電ユニット」内反射鏡等を経て「ソーラーセル」が高密度光を受け高能力電力を得る発明。更に平面箱底面の放熱良伝導(液体入出)と「発電ユニット」底面との重量密着が「ソーラーセル」温度上昇を消去運用する。多数「発電ユニット」一斉同期(シンクロナス・インターロック)を「糸ベルト」球体形(無軸・軸受)利用の回転追従「平面箱形発電ユニット」の発明。Many (single) "power generation units" are carried on the X and Y planes at the bottom of the flat box, and a separate tracking detection signal output is connected to the tracking motor shaft. An invention in which a "solar cell" receives high-density light and obtains high-capacity power through such processes. In addition, good heat dissipation (liquid in / out) on the bottom surface of the flat box and the close contact of the weight with the bottom surface of the "power generation unit" eliminate the temperature rise of the "solar cell". The invention of the "flat box-type power generation unit" that uses a number of "power generation units" simultaneously synchronized (synchronous and interlock) and a "fiber belt" and a spherical shape (no shaft / bearing).

「パンザー電柱発電ユニット」式は透明カバー上面板に方位用ベルトホルダーと高度用滑車の回転モーターが連結する。「ベルトホルダ」と「滑車」より夫々「糸ベルト」を懸垂、「糸ベルト」は、「発電ユニット」基定点に結着集積誤差を生じなく運行する太陽光に別設の追従信号からモーター駆動回転する。回転から「糸ベルト」を経て全「発電ユニット」が前記内部反射鏡(凸レンズ)等光路ルートを経て直達光より高密度光を「ソーラーセル」が受光し、高能力電力を得る発明。「糸ベルト」下端は二系統共上端同様モーター、ベルトホルダを滑車で回転保持する。In the "Panzer utility pole power generation unit" type, the azimuth belt holder and the rotation motor of the altitude pulley are connected to the top plate of the transparent cover. The "thread belt" is suspended from the "belt holder" and the "pulley", respectively. The "thread belt" is connected to the "power generation unit" base point with no accumulation error. Rotate. The invention in which all the "power generation units" from the rotation through the "thread belt", through the optical path route such as the internal reflecting mirror (convex lens), the "solar cells" receive higher-density light than direct light, thereby obtaining high-capacity power. The lower end of the "yarn belt", like the upper end of the two systems, rotates and holds the motor and belt holder by pulleys.

本発明実施例を図1〜図14に基づいて説明する。図1「平面にレンズを並べた式」は、平面X・Yに凸レンズ(又は一体成形レンズ板を並べたレンズ配列の一部分図(形状は限定しない)。An embodiment of the present invention will be described with reference to FIGS. FIG. 1 “Expression in which lenses are arranged on a plane” is a partial view (a shape is not limited) of a lens array in which convex lenses (or integrally formed lens plates are arranged) on planes X and Y.

図2、図1の側面と光路、その受光「ソーラーセル」と補助反射板の模擬配置図である。図中▲1▼は太陽光の早朝、▲2▼▲3▼は午前中、▲7▼は正中の受光光路想定図である。FIG. 2 is a schematic layout view of a side surface and an optical path of FIG. 2 and FIG. 1, a light receiving “solar cell” and an auxiliary reflector. In the drawing, (1) is an assumed light receiving optical path in the early morning of sunlight, (2) and (3) are in the morning, and (7) is a median light receiving path.

図3、液体レンズ式は図1、2に類似である。透明凸レンズ容器(殻)に屈折率のある媒体液を入出即ち凸レンズ作用の有無制御を行い、別設の運行する太陽光追従信号が最適凸レンズを制御検出その制御レンズから直達光の高密度光を「ソーラーセル」が受光し、高能力電力を得る。図3は凸レンズ表裏二層二分の一重ねである。(重ね方、層数は限定しない。)見掛上太陽光運行(又はソーラーセル)が二分の一になる無動力の経済性の高い方策である。図3は重ね制御凸レンズと光路(光路番号は図2に同じ。)の想定図、図14は上面配置部分図である。FIG. 3, the liquid lens system is similar to FIGS. A liquid medium with a refractive index enters and exits the transparent convex lens container (shell), that is, the presence / absence control of the convex lens function is performed, and a separately-operated sunlight tracking signal controls the optimal convex lens and detects the high-density light of direct light from the control lens. The "solar cell" receives light and obtains high-capacity power. FIG. 3 is a diagram showing a two-layer stack of the front and back surfaces of the convex lens. (The number of layers and the number of layers are not limited.) This is a non-powered and highly economical measure that apparently reduces the number of solar operations (or solar cells) to half. FIG. 3 is an imaginary view of an overlapping control convex lens and an optical path (optical path numbers are the same as in FIG. 2), and FIG.

図4は花弁類似反射鏡の側面図である。図5はその上面図である。一例である四分割反射鏡が運行する太陽光熱を受けその方向に反面変形する「バイメタル」式、その膨張力を利用する「ベローズ」は伸縮式である。その応力が反射鏡を運行する太陽光に追従制御する。その反面鏡から高密度光を補助集光板付「ソーラーセル」が受光し、高能力電力を得る発明。即ち、四分割熱絶縁反射鏡裏に結着したバイメタルの熱反面応力差直接、又はベローズと四分割内面に充填した膨張気(液)体の圧力差から反射鏡を稼動する。FIG. 4 is a side view of a petal-like reflector. FIG. 5 is a top view thereof. As an example, a “bimetal” type that receives solar heat from a four-piece reflecting mirror and deforms in the opposite direction while receiving solar heat, and a “bellows” that uses its expansion force is a telescopic type. The stress controls to follow the sunlight operating the reflecting mirror. On the other hand, the "solar cell" with an auxiliary light collector receives high-density light from the mirror and obtains high-performance power. That is, the reflecting mirror is operated based on the heat-induced stress difference of the bimetal bonded to the back of the four-piece heat insulating reflecting mirror directly or from the pressure difference between the bellows and the inflated gas (liquid) filled in the inner surface of the four-piece.

図6は、図4の第一反射鏡と太陽光方位角追従稼動の側面模型図であり、第二反射鏡方向が太陽光である。花弁形四分割反射鏡と密着「バイメタル板」が太陽光熱から反面力の差により、反射鏡全体が太陽光追従する。即ち反射鏡の支持は夫々の「バイメタル」のみで行う。例えば周囲温度のみでは反射鏡取付台(太陽光)に対して傾斜なく、平行稼動である。太陽光熱四方向受光熱の差のみに傾斜追従する特徴ある支持方付きの発明。又図4に於ける「ソーラーセル」の補助反射板を図6のバイメタル支持反面力追従が併用する出力増加型である。FIG. 6 is a side view of the first reflector and the azimuth tracking operation of sunlight shown in FIG. 4, and the direction of the second reflector is sunlight. The petal-shaped four-piece reflector and the close contact "bimetal plate" follow the sunlight due to the difference in the heat from the solar heat. That is, the reflection mirror is supported only by each "bimetal". For example, when the ambient temperature is used only, the operation is parallel to the reflector mount (sunlight) without any inclination. An invention with a characteristic supporting method that obliquely follows only the difference between the four directions of solar heat received by sunlight. Also, the auxiliary reflector of the "solar cell" shown in FIG. 4 is used in combination with the bimetal support shown in FIG.

図7は、図6熱反面力追従を「ベローズ」伸縮力とした追従時図6と同様側面模型図である。熱絶縁四分割第一反射鏡を二枚合せ板と「ベローズ」を夫々の空隙に熱膨張気(液)体を充填する。夫々四分割の受光熱膨張力の差による「バイメタル」式と同様稼動に於いて太陽光を追従、光の高密度光を「ソーラーセル」が受光し、高能力電力を得る。ベローズ式に於いて抽出した単少数(別設置圧力式から運用含む)の太陽光熱から膨張圧力を多数「ベローズ」式に分配、一斉同期追従する特徴ある発明。FIG. 7 is a side view model diagram similar to FIG. 6 at the time of following in FIG. A thermally insulated gas (liquid) body is filled in each gap between a two-ply plate and a "bellows" of the first quadrant reflector having thermal insulation. In the same operation as the "bimetal" type, which is based on the difference in the thermal expansion force of the four divided light receiving sections, the solar cells follow the sunlight in the operation, and the "solar cells" receive the high-density light of the light to obtain high-capacity power. A characteristic invention in which the expansion pressure is distributed to a large number of "bellows" types from the solar heat of a small number extracted from the bellows type (including the operation from the separate installation pressure type), and the synchronous follow-up is performed simultaneously.

図8は図6、図7の日照経過時に於ける第一反射鏡の太陽光追従傾斜(方位角)模型側面図である。FIG. 8 is a side view of a model (tilt angle) following the sunlight of the first reflecting mirror when the sunshine shown in FIGS. 6 and 7 has elapsed.

図9は「球体発電ユニット」レンズ式の側面断面図である。前半球を凸レンズ又は一体成型フリネルレンズとする。後半球は反射鏡・放熱板を併用した椀形鏡が結合、その中心に補助集光板付「ソーラーセル」を具備する。前面よりの太陽光がレンズ反射鏡等で高密度光とし、後面の「ソーラーセル」が受光し高能力電力を得る。「球体発電ユニット」を滑車とし、「糸ベルト」二系列を伸縮し方位・高度角回転する球体の特徴がある。FIG. 9 is a side sectional view of a “spherical power generation unit” lens type. The front hemisphere is a convex lens or an integrally molded fresnel lens. The latter half sphere is combined with a bowl-shaped mirror combining a reflector and a heat sink, and has a "solar cell" with an auxiliary light collector at the center. The sunlight from the front is made into high-density light by a lens reflector or the like, and the “solar cell” on the rear receives light to obtain high-capacity power. The "sphere power generation unit" is a pulley, and the "thread belt" has two spheres that expand and contract and rotate in azimuth and altitude.

図10は「球体発電ユニット」反射鏡式側面断面図である。図9に類似構成の透明容器前半球にカスグレン第二反射鏡を付帯、裏半球には第一反射鏡と間隙ある放熱板をその中心には補助反射板付「ソーラーセル」を具備する。前面から太陽直達光は第一・第二反射鏡を経た高密度光を補助集光板付き「ソーラーセル」が受光、高能力電力を得る。又球体外周には図9同様「糸ベルト」を連携基定点・通風冷却孔を有する「発電ユニット」の発明。FIG. 10 is a side view of a “spherical power generation unit” reflecting mirror type. A Cassgrain second reflector is attached to the front hemisphere of the transparent container having a similar configuration to that of FIG. 9, and a heat sink having a gap with the first reflector is provided in the back hemisphere and a "solar cell" with an auxiliary reflector is provided at the center thereof. The "solar cell" with the auxiliary light collector receives high-density light that has passed through the first and second mirrors from the front, and obtains high-performance power. The invention of the "power generation unit" having a "thread belt" on the outer periphery of the sphere as in FIG.

図11は、平面箱形「発電ユニット」上面模擬図である。縦横平面に図9・10多数の「発電ユニット」を「糸ベルト」二系列四点(方位・高度角)基定点に懸索その「系ベルト」を伸縮稼動し、運行する太陽光検出信号とモーター駆動が「全発電ユニット」二系統を同期・同角度(シンクロナス・インターロック)追従する。全発電ユニットが捕捉直達・増大光を「ソーラーセル」が受光し、高能力電力を得る発明。FIG. 11 is a schematic top view of a flat box-shaped “power generation unit”. In Fig. 9 and Fig. 10, a large number of "power generation units" are laid on two vertical lines (azimuth and altitude angle) at four points (azimuth and altitude angle) on the vertical and horizontal planes. The motor drive follows the two systems of "all power generation units" synchronously and at the same angle (synchronous interlock). An invention in which all power generation units receive captured direct / increased light by "solar cells" to obtain high-capacity power.

図12は「パンザー電柱形」「発電ユニット」側面模擬図である。図11収納が箱形から「パンザー電柱」形に変る。その内部に多数の「発電ユニット」を梯子懸垂夫々「糸ベルト」を連携・無軸二系統が自由方向転換し、太陽光を追従、その直達光を高密度光とし「ソーラーセル」が受光し、高能力電力を得る発明である。垂直形態は空冷却に、上部より「糸ベルト」伝い流し水冷却に好適である。又細身高木形の移動出来る立体活用品である。FIG. 12 is a schematic side view of a “panzer utility pole” and a “power generation unit”. The storage in FIG. 11 changes from a box shape to a “panzer utility pole” shape. A number of "power generation units" are linked to each other, and "thread belts" are linked with "ladder belts" .The two axisless systems change the free direction, follow the sunlight, and make the direct light a high-density light and the "solar cell" receives it. This is an invention for obtaining high-capacity power. The vertical configuration is suitable for air cooling and for cooling water flowing down the "thread belt" from above. In addition, it is a three-dimensional utilizable product that can be moved in the form of a slender tree.

図13は、図12に於ける「パンザー電柱形」の実装上面図である。又図14はFIG. 13 is a mounting top view of the “panzer utility pole type” in FIG. FIG.

に於ける図3の上面配置部分図である。FIG. 4 is a partial top view of FIG.

発明の効果The invention's effect

発明の効果は各々記述、図示した。即ち資源より極限まで精製が多量のエネルギー(電力等)の消費を最高精密加工技術による太陽電池をその能力不充分活用、従って「経済的な元高回収」の低さを云々する情勢下、他方僅少でも多方面に活動する例えば待機電力の推計が原発電力量に相当する現代その僅少電力から広く安易に利用、活用(各家庭発電所)発電出来る数10倍の高密度方式利得を保有する「太陽光変換電力発生装置」の発明。The effects of the invention have been described and illustrated, respectively. In other words, refining to the utmost from resources consumes a large amount of energy (electric power, etc.). Under the circumstances that the solar cell by the highest precision processing technology is underutilized, the "economic recovery of the original value" is low. For example, the estimation of standby power, which is active in a small number of areas, is equivalent to the amount of power generated by the power plant. Invention of "Solar Conversion Power Generation Device".

平面箱X・Yに多数凸レンズ(成形レンズ又は箱容器蓋レンズ)配列設置した上面部分図。FIG. 5 is a partial top view in which a number of convex lenses (molded lenses or box container lid lenses) are arranged and arranged in flat boxes XY. 図1の側面部分図。太陽光早朝から正中時まで時間経過「ソーラーセル」受光路(▲1▼〜▲7▼)(午後逆光省略)図。FIG. 2 is a partial side view of FIG. 1. FIG. 9 is a diagram showing light-receiving paths of solar cells ((1) to (7)) (early afternoon backlighting omitted) from early morning to midnight sunlight. 図2凸レンズを半径分位相を変えた二枚重ね切換制御レンズの午前中方位角光路想像側面図。FIG. 2 is a side view of an azimuth optical path in the morning of a two-lens switching control lens in which the phase of a convex lens is changed by a radius. 花弁類似の「光電発生装置」の第一反射鏡、第二反射鏡とその付属放熱板等と「ソーラーセル」の模擬側面断面図。FIG. 3 is a simulated side sectional view of a “solar cell” and first and second reflectors of a “photoelectric generator” similar to a petal and a heat sink attached thereto. 図4「光電発生装置」上面略図。FIG. 4 is a schematic top view of the “photoelectric generator”. 図4、図5バイメタル式の第一反射鏡と熱反面午前、正中、午後の太陽光路との想像側面図。4 and 5 are imaginary side views of the first bimetallic reflector and the solar paths in the morning, midway, and afternoon on the other hand. 前記のバイメタル式を熱膨張ベローズと第一反射鏡との追従想像側面図。The imagination side view following the bimetal type of a thermal expansion bellows and a first reflecting mirror. 図6、図7の太陽光追従形態(方向角)の第一反射鏡のみ側面想像図。FIG. 8 is a side imaginary view of only the first reflecting mirror in the sunlight-following mode (direction angle) in FIGS. 6 and 7. 「球体発電ユニット」レンズ集光式高度面断面図。"Spherical power generation unit" lens condensing type altitude sectional view. 前図同様反射鏡式高度面断面図。FIG. 3 is a sectional view of an altitude surface of a reflecting mirror type similar to the previous figure. 「球体発電ユニット」の平面X・Y方向に多数を配設置・稼動滑車「糸ベルト」及び駆動モーターとの一例配置部分平面図。FIG. 4 is a partial plan view of an example of a “spherical power generation unit” in which a large number are arranged and operated in a plane XY direction and a pulley “thread belt” and a drive motor are arranged. 「球体発電ユニット」のパンザー電柱式に於ける「糸ベルト」で懸垂した「球体発電ユニット」二系列駆動モーターの東(西)面配置一例断面図。FIG. 3 is a cross-sectional view of an example of the east (west) plane arrangement of a “sphere power generation unit” two-line drive motor suspended by a “thread belt” in a panzer utility pole type of the “sphere power generation unit”. 前図「球体発電ユニット」上面一部断面図。Partial cross-sectional view of the top view of the previous figure “Spherical power generation unit”. 図3凸レンズ側面図の上面部分図。3 is a partial top view of the side view of the convex lens.

符号の説明Explanation of reference numerals

1. 成形凸レンズ板
2. 凸レンズ
3. 光路(▲1▼〜▲7▼午前中、午後はその逆光)
4. 補助反射板及び放熱板
5. 太陽電池「ソーラーセル」
6. 反射鏡(花びら形)
7. バイメタル
8. 反射鏡・放熱板
9. ベローズ
10. 凸レンズ(含フリネル形)
11. 透明球体容器(大圏ルートベルト基定点付)
12. 放熱板
13. 補助集光反射板
14. 第一反射鏡
15. カスグレン形第二反射鏡
16. 滑車(プリー)
17. 追従モーターEL(高度角)
18. 追従モーターAZ(方位角)
19. 連結軸
20. 発電ユニット
21. 糸ベルトAZ(方位角)
22. 平箱併用冷却底板
23. ベルトホルダー
24. 糸ベルトEL(高度角)
25. 冷却孔
26. 支持板
27. 透明カバー(パンザー外装)
28. 追従の日回りコース
29. 架台
30. 平面軸(スラスト)
31. 基定点又は取付点
32. 液体入出口
33. 収納箱(平面)
34. 熱絶縁
35. 反り長溝孔
101.凸レンズ前
102.凸レンズ後
1. 1. Molded convex lens plate 2. convex lens Light path ((1)-(7) Morning, afternoon backlight)
4. 4. Auxiliary reflector and heat sink Solar cell "Solar cell"
6. Reflector (petal shape)
7. Bimetal8. Reflector / heat sink 9. Bellows10. Convex lens (including fresnel type)
11. Transparent spherical container (with great circle route belt base point)
12. Heat sink 13. Auxiliary condensing reflector 14. First reflector 15. Cassgrain type second reflector 16. Pulley
17. Tracking motor EL (altitude angle)
18. Tracking motor AZ (azimuth)
19. Connecting shaft 20. Power generation unit 21. Thread belt AZ (azimuth)
22. 23. Flat bottom combined cooling bottom plate Belt holder 24. Thread belt EL (altitude angle)
25. Cooling holes 26. Support plate 27. Transparent cover (panzer exterior)
28. Daily course of following 29. Stand 30. Plane axis (thrust)
31. Base point or attachment point 32. Liquid inlet / outlet 33. Storage box (flat)
34. Thermal insulation 35. Warped slot 101. Before the convex lens 102. After convex lens

Claims (7)

太陽光変換電力発生装置又は「光電発生装置」、太陽電池又は「ソーラーセル」の能力一杯の変換電力発生装置である。平面箱(X・Y・斜)複数レンズを並べ(一連成形品・及び箱ぶたレンズ)を配置、太陽光運行に無動力追従し、直達光がその方向多数凸レンズを順次送り経由してその増大集光を「ソーラーセル」が受光し、高能力電力する発明。
集光は収斂等の損失があり、断面が半円、筒洞の反射鏡・補助集光板で再集光を「ソーラーセル」が受光する。又、高密度光から温度上昇を反射鏡、補助集光板等を好放熱板とし、気(液)冷し「ソーラーセル」の温度上昇出力低下を抑制する。冷却水は水中発電利用。給湯き又、手洗水を支壊する光熱利用を計る「光電発生装置」である。
It is a conversion power generation device that has the full capacity of a solar conversion power generation device or “photoelectric generation device”, a solar cell or a “solar cell”. Plain box (X, Y, oblique) multiple lenses are arranged (a series of molded products and box lid lens), follow the solar operation without power, and increase the direct light through the convex lens sequentially in the direction. The invention that the "solar cell" receives the condensed light and has high power.
The condensed light has a loss such as convergence, and the cross section is semicircular, and the “solar cell” receives the re-condensed light by the reflector / auxiliary light collector of the cylindrical cavity. Also, the temperature rise from the high-density light is used as a reflection mirror, an auxiliary light collector and the like as a good heat radiating plate to cool the gas (liquid) and suppress the temperature rise and the output decrease of the "solar cell". Cooling water uses underwater power generation. It is a "photoelectric generator" that measures the use of light and heat to break hot water supply and hand washing water.
レンズ重ね方式は凸レンズ形の透明合せ板の間隙に屈折率ある液体を充填・排除又は圧力制御し、その機能を持つ制御レンズ(段階・連続制御・形状・数に限定しない。)である。制御凸レンズをX・Y面に多数(単数・一連成形レンズ)並べ又多層重ね、例えばレンズ半径分「ずらす」位相を付け二枚合せ層に液体を順送りに切換へ(入出制御)運行する太陽光を二分の一枚毎に追従検出信号により液体制御弁を可動太陽光を該当レンズより高密度光を「ソーラーセル」が受光し高能力電力する発明である。
換言すれば直達光と高密度光比の利得分が「ソーラーセル」の縮小出来る。又制御レンズ水は「ソーラーセル」水中発電及び冷却水に好適である。
The lens overlapping method is a control lens (a step, a continuous control, a shape, and a number are not limited) in which a liquid having a refractive index is filled / removed or pressure-controlled in a gap between the convex lens-shaped transparent laminated plates, and has a function. A large number of control convex lenses (single and series molded lenses) are arranged on the X and Y planes, or multilayers are superposed. For example, the phase is shifted by the radius of the lens, and the liquid is sequentially switched to the two-layered layer (in / out control). The invention is an invention in which a "solar cell" receives movable sunlight of a liquid control valve from a corresponding lens and receives high-density light from a corresponding lens by a follow-up detection signal for every one-half sheet.
In other words, the gain of the ratio between the direct light and the high density light can be reduced in the "solar cell". Control lens water is also suitable for "solar cell" underwater power generation and cooling water.
バイメタル式は枝葉(花びら)と向日性を真似た四分割(熱絶縁)した反射鏡とその裏面に異膨張係数(金属・非金属)合せ板又は「バイメタル」板(単数・多数連結又は重ね)を放熱板間に配置更に据付具を経て機台(箱底)に固定する。即ち「バイメタル」板は反射鏡、「ソーラーセル」等から直達光・反射集光を受け反屈曲その熱反力から反射鏡が太陽光に正対その高密度光を補助反射板を経て「ソーラーセル」が受光し高能力電力する。他言反射鏡追従回転は周囲温度に関係なく各々の受熱差で追従する優れた光電発生装置である。熱効果策とし「バイメタル」には枝葉脈に似た長溝孔が付帯し「バイメタル」反面増強を計っている。  The bimetal type is a four-divided (thermally insulated) reflecting mirror that imitates sunflowers with branches and leaves (petals), and a different expansion coefficient (metal / non-metal) laminated plate or "bimetal" plate (single, multiple connected or stacked) ) Is placed between the heat sinks and fixed to the machine base (box bottom) via the fixture. In other words, the “bimetal” plate receives direct light and reflected light from a reflector, “solar cell”, etc., and is anti-bending. The "cell" receives light and has high capacity power. In other words, the mirror-following rotation is an excellent photoelectric generating device that follows with each heat difference regardless of the ambient temperature. As a thermal effect measure, the "bimetal" has a long slot similar to the branch and leaf vein to enhance the "bimetal". 「ベローズ」式は「請求項3」の反射鏡と間隙のある二枚合せで熱絶縁四分割鏡と伸縮ベローズを結着夫々に独立した熱膨張気(液)体を充填する。その四分割反射鏡が太陽直達光・反射光等を受け、その膨張力を「ベローズ」が受け伸縮する。即ち「請求項3」のバイメタル熱反力と同じ可動で反射鏡が太陽光を追従し、直達光から、高密度光を得て「ソーラーセル」が受光し、高能力電力を得る。又ベローズ式は多数から抽出した数台の追従圧力を「ベローズ」のみの多数台に分配全数一斉同期追従する簡易形の特徴を具えた発明である。In the "bellows" type, a heat-insulating quadrant mirror and a telescopic bellows are connected to each other by filling a reflecting mirror of claim 3 with a gap and filling an independent thermal expansion gas (liquid) body. The four-piece reflecting mirror receives the direct light of the sun, reflected light, and the like, and the "bellows" receives the expansion force and expands and contracts. That is, the movable mirror is the same as the bimetallic thermal reaction force of claim 3, and the reflecting mirror follows the sunlight. The solar cell receives high-density light from the direct light and receives high power. Further, the bellows type is an invention having a simple type feature in which the following pressures of several units extracted from a large number are distributed to a large number of "bellows" only and all the units are synchronously followed. 「球体集光ユニット」又は「発電ユニット」はレンズ集光式と反射集光式に大別。レンズ集光式は前面凸レンズ(プラスチックス・フレネル等)又は前面半球容器一体成形品とし、後半球は補助集光板に「ソーラーセル」を装架、空冷却間隙を介して外部冷却板に結合更に後面半球に連結その大圏ルートに「糸ベルト」を基定点に付帯その追従伸縮動で方位、高度角に累積誤差を生じなく全ユニット回転する。追従直達光より凸レンズが高密度集光し、補助集光板を経て「ソーラーセル」が受光し、高能力電力する凸レンズ集光式「発電ユニット」である。更に集光熱から「ソーラーセル」温特出力低下を防ぐ合せ冷却板を経て液水を含んだスポンジゴム等に浸し、外箱に効果良く熱放散(空液冷却など)を行い温度上昇を防ぐ発明である。
他方反射集光式は第一反射鏡と「ソーラーセル」とその補助反射板及び内部放熱板と間隙付帯・外部放熱板後面半球に装架する。
又透明前面半球には補助集光板付カスグレン第二反射鏡を配置、それ等前、後半球を合せ球体を構成、その大圏ルートに「糸ベルト」を連携する基定点が有る。
即ち前面半球から追従直達光を第一反射鏡が高密度集光し、第二反射鏡(補助集光板付)を経て「ソーラーセル」が受光し、高能力電力する反射集光式「発電ユニット」である。又冷却方式に於いてはレンズ式と大差ない。
"Spherical focusing unit" or "power generation unit" is roughly classified into a lens focusing type and a reflection focusing type. The lens condensing type is a front convex lens (plastics, Fresnel, etc.) or a front hemispherical container integrally molded product, and the latter half sphere is mounted with an auxiliary condensing plate with a "solar cell" and connected to an external cooling plate via an air cooling gap. Connected to the rear hemisphere. The "circle belt" is attached to the great circle route. A convex lens condensing type “power generation unit” that condenses a high-density convex lens from the following light that has passed, passes through an auxiliary light condensing plate, and receives light from a “solar cell” to provide high-performance power. In addition, the "solar cell" is immersed in sponge rubber or the like containing liquid water through a combined cooling plate to prevent the temperature from dropping from the heat of condensing, and effectively dissipates heat (air-liquid cooling, etc.) to the outer box to prevent temperature rise. It is.
On the other hand, the reflection condensing type mounts the first reflecting mirror, the "solar cell", its auxiliary reflecting plate, the internal heat radiating plate and the gap / external heat radiating plate on the rear hemisphere.
On the transparent front hemisphere, a Kasgrain second reflecting mirror with an auxiliary light collector is arranged. The front and rear half spheres are combined to form a sphere, and there is a base point for linking a "thread belt" to the great circle route.
That is, the first reflecting mirror condenses the following light directly from the front hemisphere through the second reflecting mirror (with an auxiliary light collector), and the "solar cell" receives the reflected light. ". The cooling system is not much different from the lens system.
「発電ユニット」収納容器には「箱形式」と「バンザー電柱式」がある。「箱形式」は「請求項5」の「発電ユニット」を滑車状に多数縦、横、斜、平面箱に配設置、夫々「発電ユニット」を滑車とし方位、高度角二軸大圏ルート基定点に「糸ベルト」を緊縛、同期角度を保持し各々が滑車とベルト間の「小スベり」「スリップ」が誤差累積し全体が追従不能になる事象を避ける。球体が軸、軸受等を代替し低廉に太陽二軸方向の検知信号出力から回転追従する。即ち各々の「発電ユニット」内「ソーラーセル」が太陽光に追従各々が高能力電力する発明。  The "power generation unit" storage container includes a "box type" and a "banza pole type". "Box type" means that a large number of "power generation units" of "Claim 5" are arranged in the form of pulleys in vertical, horizontal, oblique, and flat boxes. The "thread belt" is tied to the fixed point and the synchronization angle is maintained to prevent the "small slip" and "slip" between the pulley and the belt from accumulating errors and making it impossible to follow the whole. The sphere replaces the shaft, bearing, etc., and follows the rotation from the detection signal output in the biaxial direction of the sun at low cost. That is, the invention in which each "solar cell" in each "power generation unit" follows the sunlight and each has a high-capacity power. パンザー電柱式は「請求項5」の「発電ユニット」複数を透明パンザー電柱式容器内の「糸ベルトホルダ」に梯子横木状に「発電ユニット」を「糸ベルト」で基定点に連携、そのベルトホルダーは太陽光方位角を追従回転する。又「発電ユニット」高度角基定点に「糸ベルト」で(方位角同様)連携懸垂し、太陽光高度角を追従回転する。
即ちベルトホルダー回転は収容器上部端の追従モーターから方位角、又、90°位相を置いて「ベルトホルダー」下部追従モーターが高度角を、運行する太陽光検知信号出力により二系統夫々が追従する最下部はモーター無し、滑車軸が垂下「糸ベルト」を保持回転する。換言すれば追従光を夫々の「発電ユニット」に於いて凸レンズ(反射鏡)等の高密度集光を「ソーラセル」が受光その高能力電力を得る。
言わば太陽光発電に不適合な狭地・軒先等の立体空間を活用する逸品である。因に電柱形は「ソーラーセル」対流空冷に適し、又液冷却は上部より「糸ベルト」伝い水が気化熱冷却を併用高率よい「光電発生装置」である。
In the panzer utility pole type, a plurality of "power generation units" in "Claim 5" are linked to a "thread belt holder" in a transparent panzer utility pole type container in a ladder-like shape, and the "power generation unit" is linked to a base point by a "thread belt". The holder rotates following the solar azimuth. In addition, a "thread belt" (similar to the azimuth angle) cooperates with the "power generation unit" altitude angle base point and follows the sunlight altitude angle.
That is, the rotation of the belt holder follows the azimuth from the follower motor at the upper end of the container, and the 90 ° phase, the “belt holder” lower follower motor follows the altitude angle, and each of the two systems follows the running sunlight detection signal output. There is no motor at the bottom, and the pulley shaft rotates while holding the hanging "thread belt". In other words, the "solar cell" receives the following light in each "power generation unit" of high-density condensed light such as a convex lens (reflecting mirror) and obtains the high-capacity power.
In other words, it is a gem that utilizes three-dimensional space such as narrow lands and eaves that are not suitable for solar power generation. By the way, the electric pole type is suitable for "solar cell" convection air cooling, and the liquid cooling is a "photovoltaic generator" in which water runs along the "yarn belt" from above and uses water vaporization and heat cooling at a high rate.
JP2004234920A 2004-07-15 2004-07-15 "sunlight transformation power generator" or "photoelectric generation device" Pending JP2004312054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234920A JP2004312054A (en) 2004-07-15 2004-07-15 "sunlight transformation power generator" or "photoelectric generation device"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234920A JP2004312054A (en) 2004-07-15 2004-07-15 "sunlight transformation power generator" or "photoelectric generation device"

Publications (1)

Publication Number Publication Date
JP2004312054A true JP2004312054A (en) 2004-11-04

Family

ID=33475899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234920A Pending JP2004312054A (en) 2004-07-15 2004-07-15 "sunlight transformation power generator" or "photoelectric generation device"

Country Status (1)

Country Link
JP (1) JP2004312054A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229581B2 (en) 2008-07-03 2012-07-24 Mh Solar Co., Ltd. Placement of a solar collector
US8253086B2 (en) 2008-07-03 2012-08-28 Mh Solar Co., Ltd. Polar mounting arrangement for a solar concentrator
US8345255B2 (en) 2008-07-03 2013-01-01 Mh Solar Co., Ltd. Solar concentrator testing
US8450597B2 (en) 2008-07-03 2013-05-28 Mh Solar Co., Ltd. Light beam pattern and photovoltaic elements layout
US8646227B2 (en) 2008-07-03 2014-02-11 Mh Solar Co., Ltd. Mass producible solar collector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229581B2 (en) 2008-07-03 2012-07-24 Mh Solar Co., Ltd. Placement of a solar collector
US8253086B2 (en) 2008-07-03 2012-08-28 Mh Solar Co., Ltd. Polar mounting arrangement for a solar concentrator
US8345255B2 (en) 2008-07-03 2013-01-01 Mh Solar Co., Ltd. Solar concentrator testing
US8450597B2 (en) 2008-07-03 2013-05-28 Mh Solar Co., Ltd. Light beam pattern and photovoltaic elements layout
US8646227B2 (en) 2008-07-03 2014-02-11 Mh Solar Co., Ltd. Mass producible solar collector

Similar Documents

Publication Publication Date Title
Stine et al. A compendium of solar dish/Stirling technology
US20120080161A1 (en) Thermal storage system
US8430090B2 (en) Solar concentrator apparatus with large, multiple, co-axial dish reflectors
US20100269817A1 (en) Concentrating Solar Energy System
US9989278B1 (en) Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same
US8397505B2 (en) Apparatus for collecting solar energy for conversion to electrical energy
US7185493B1 (en) Solar energy power plant and method of producing electricity
US20100154866A1 (en) Hybrid solar power system
US20110232631A1 (en) Mosaic solar collector
WO1996011364A1 (en) Wavelength separating and light condensing type generating and heating apparatus
US20120255540A1 (en) Sun tracking solar concentrator
US20100043778A1 (en) Modular and inflatable solar collector
US20080236569A1 (en) System and Method for Concentrating Sunlight
US20100319680A1 (en) Concentrating Solar Energy System for Multiple Uses
CN101872063A (en) Conical concentrating system
JP2014511472A (en) Energy conversion / heat collection system
JP2004312054A (en) &#34;sunlight transformation power generator&#34; or &#34;photoelectric generation device&#34;
US20090114212A1 (en) Hybrid solar panel
KR20170054229A (en) Rigidly mounted tracking solar panel and method
Jaffe Dish concentrators for solar thermal energy
JPS61165702A (en) Solar generator
CN202419964U (en) Solar cluster light-gathering control system
RU2763386C1 (en) Solar photoelectric module
US20110090710A1 (en) High Efficiency Light Pipe
CN201689211U (en) Conical concentrating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309