JP2004311834A - Light receiving circuit, light quantity stabilizing circuit and image forming device - Google Patents

Light receiving circuit, light quantity stabilizing circuit and image forming device Download PDF

Info

Publication number
JP2004311834A
JP2004311834A JP2003105451A JP2003105451A JP2004311834A JP 2004311834 A JP2004311834 A JP 2004311834A JP 2003105451 A JP2003105451 A JP 2003105451A JP 2003105451 A JP2003105451 A JP 2003105451A JP 2004311834 A JP2004311834 A JP 2004311834A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
circuit
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105451A
Other languages
Japanese (ja)
Inventor
Yusuke Kimura
祐介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2003105451A priority Critical patent/JP2004311834A/en
Publication of JP2004311834A publication Critical patent/JP2004311834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly responsive light receiving circuit where the selection of light receiving elements is not limited and a highly responsive light quantity stabilizing circuit where the stability of light quantity is improved, the fluctuation of light outputs is prevented, and any special circuit or the like is not necessary; and to improve picture quality by improving the light quantity stability of light outputs and the responsiveness of the light receiving elements. <P>SOLUTION: This light receiving circuit is provided with a light receiving element 16, a light diffusing member 14 arranged on the optical path of the front face of the light receiving element for diffusing incident lights, and a member 15 arranged between the light receiving element and the light diffusing member for stopping lights from the light diffusing member to the light receiving face of the light receiving element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、応答性を向上させた受光回路、光量安定性及び応答性を向上させた光量安定化回路、及び画像形成装置に関する。
【0002】
【従来の技術】
医療・印刷分野の画像出力装置では画像形成等のために半導体レーザ(LD)等が用いられ、この光源からの光量を安定にするために光量安定化回路が使用されている。かかる光量安定化回路として、APC(Auto Power Control)回路を用いることが多い(下記特許文献1参照)。APC回路は、光量制御信号とフォトダイオード(PD)等の受光素子からの信号とを比較し光量を一定に保つように制御する方式であるが、このときフォトダイオードの応答性が悪いと、オーバーシュート・アンダーシュートが起こり半導体レーザの破損や画像への悪影響が考えられる。特に、光量に応じて画像の濃度を変化させる画像出力装置では画像への影響が発生し易く、ムラ等の原因になることがある。また、フォトダイオードの応答性が悪くなると、高速で光量を測定する場合は問題を生じ易くなる。
【0003】
また、APC回路では半導体レーザのモードホッピングに起因する光出力変動を防止することが要求される。このため、下記特許文献1にはフォトダイオードの受光面の前面に光拡散板を配置し、受光素子の検出光量が変動しないようにすることで半導体レーザの光出力を安定化することが記載されている。
【0004】
フォトダイオードに関し、半導体のPN接合面外(PN接合周辺の空乏層外)に光が入射したときに発生するキャリアに起因して応答速度が低下することが知られている(下記特許文献2及び非特許文献1参照)。
【0005】
フォトダイオードの応答速度の低下を抑えるために、下記特許文献2には、応答性低下の原因となる光電流に寄与する少数キャリアの寿命を短くする短寿命領域を設けることが記載されている。また、受光素子の受光面に遮光膜を形成し外部光の斜め入射を防止し電気的特性の経年変化や信頼性の低下を防止することが下記特許文献3に記載されている。
【0006】
上述の特許文献2または3による対策はいずれも受光素子自体の構成によるものであり、かかる構成を有しない受光素子に対しては別の対策が必要であり、このため受光素子の選定に際し制限を受けてしまう。
【0007】
下記特許文献4には、フォトダイオードの拡散電流の効果及び温度特性を補償し適切なパワー制御をするために、フィードバック部に周波数補償及び温度補償をする補償回路を設けたレーザ駆動装置が記載されている。しかし、特別の補償回路が必要となりAPC回路が複雑になってしまう。
【0008】
【特許文献1】
特開平5−145163号公報
【0009】
【特許文献2】
特開平5−13798号公報
【0010】
【特許文献3】
特開平6−310697号公報
【0011】
【特許文献4】
特開平5−121805号公報
【0012】
【非特許文献1】
浜松ホトニクス(株)によるフォトダイオードのカタログ
【0013】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題に鑑み、受光素子の選定に制限を受けずにかつ応答性を向上できる受光回路を提供することを目的とする。
【0014】
また、光量安定性を向上させて光出力の変動を防止しかつ特別な回路等が不要であるとともに応答性を向上できる光量安定化回路を提供することを目的とする。
【0015】
更に、光出力の光量安定性及び受光素子の応答性を向上させることで画質を改善できる画像形成装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するために、本発明による受光回路は、受光素子と、前記受光素子の前面の光路上に配置され入射する光を拡散する光拡散部材と、前記受光素子と前記光拡散部材との間に配置され前記受光素子の受光面に対し前記光拡散部材からの光を絞る部材と、を備えることを特徴とする。
【0017】
この受光回路によれば、受光素子の前面に光拡散部材を配置することで、光軸ずれに対する光量変動を少なくすることができるので、受光回路の組立性を向上できるとともに部品コストがかからずにコスト的に有利となる。また、光拡散部材を配置したため受光面に対し光が斜めに入射しようとしても光拡散部材と受光素子との間に光を絞る部材を配置することで、かかる光入射を制限できるので、受光素子の応答性を向上できる。従って、受光素子の選定に制限を受けずに応答性を向上できる。
【0018】
上記受光回路において前記受光素子と前記光を絞る部材とを一体的に構成するようにしてよい。これにより、受光回路をコンパクトに構成でき、受光回路の組立性を向上できる。
【0019】
また、前記光を絞る部材は集光レンズまたは開口を有する開口部材から構成することができる。
【0020】
また、前記受光素子が光照射により電流を発生する領域を有し、前記光を絞る部材が前記領域外への光入射を制限することで、受光素子の応答性を向上できる。
【0021】
なお、受光素子としてPINフォトダイオードまたはPNフォトダイオードを用いることが好ましいが、例えば、ショットキ型フォトダイオードやアバランシュフォトダイオードを用いてもよい。
【0022】
本発明による光量安定化回路は、上述の受光回路と、光源と、を備え、前記光源からの光量の少なくとも一部が前記受光回路の受光素子に入射するように構成したことを特徴とする。
【0023】
この光量安定化回路によれば、光源からの光を受光素子に入射させることで光源の光量を安定化することができ、受光素子の前面に光拡散部材を配置することで、受光回路の組立性及びコスト性を向上できるとともに、光源からの光出力変動を防止でき、例えば光源が半導体レーザの場合、モードホッピングに起因する光出力変動を防止できる。また、光拡散部材を配置したため受光面に対し光が斜めに入射しようとしても光を絞る部材によりかかる光入射を制限できるので、受光素子の応答性を向上でき、また、特別な回路等が必要ないので光量安定化回路が複雑化しない。
【0024】
上記光量安定化回路において前記光源からの光量の一部を前記受光素子に向けるためのビームスプリッタを備えるように構成できる。このビームスプリッタの表裏面での反射により干渉が生じる可能性があるが、かかる干渉による影響を光拡散部材の配置で防ぐことができる。
【0025】
また、外部から入力した光量指令信号と前記受光回路からの出力信号との差分に応じて前記光源を駆動する駆動回路を備えることが好ましい。
【0026】
なお、光源を半導体レーザから構成することで、上記光量安定化回路は半導体レーザの光量安定化回路として構成できる。
【0027】
本発明による画像形成装置は、上述の光量安定化回路を備え、前記光源からの光に基づいて記録媒体に画像を形成することを特徴とする。この画像形成装置によれば、上述の光量安定化回路により光出力の光量安定性及び受光素子の応答性を向上させることで画質を改善できる。
【0028】
本発明による別の画像形成装置は、光源と、前記光源からの光量の少なくとも一部が入射するように設けられた受光素子と、前記受光素子の前面に配置され前記受光素子の受光面に対し前記光源からの光を絞る部材と、を有する光量安定化回路を備え、前記光源からの光に基づいて記録媒体に画像を形成することを特徴とする。この画像形成装置によれば、受光素子の応答性を向上させることで画質を改善できる。
【0029】
上記各画像形成装置において前記光源からの光量に応じて前記画像の濃度を変化させるように構成できる。上述のように光量を安定にでき、また、応答性を向上できるので、光量変動に起因する画像濃度変動を防止できる。
【0030】
【発明の実施の形態】
以下、本発明による第1乃至第3の実施の形態について図面を用いて説明する。
【0031】
〈第1の実施の形態〉
【0032】
図1は本実施の形態による受光回路を概略的に示す図である。図2は本実施の形態による別の受光回路を概略的に示す図である。
【0033】
図1の受光回路は、半導体レーザ等の光源11からの光がコリメートレンズ12を通してビームスプリッタ13に入射し、その入射した光の一部がビームスプリッタ13で反射し、光拡散部材14に入射し、光拡散部材14で拡散した光が集光レンズ15で絞られてから受光素子16の受光面17に入射するように構成されている。
【0034】
光拡散部材14は、入射した光を拡散する光拡散板等であって、例えば摺りガラスや乳白色ガラスやアクリル樹脂等から構成できる。
【0035】
集光レンズ15は入射した光を受光面17に絞るような凸レンズ等から構成できる。また、集光レンズ15は受光素子16と一体的に構成してもよい。
【0036】
受光素子16はPNフォトダイオードまたはPINフォトダイオードから構成するのが好ましいが、ショットキ型フォトダイオードまたはアバランシュフォトダイオード等の各種のフォトダイオードから構成してもよい。なお、フォトダイオードとは、半導体のPN接合(またはPIN接合)部に入射した光により電流または電圧が発生する受光素子をいう。
【0037】
また、図2の受光回路は、半導体レーザ等の光源11からの光がコリメートレンズ12を通してビームスプリッタ13に入射し、その入射した光の一部がビームスプリッタ13で反射し、光拡散部材14に入射し、光拡散部材14で拡散した光が開口部材18の開口部18aで絞られてから受光素子16の受光面17に入射するように構成されている。
【0038】
開口部材18は光透過性のない部材に開口部18aを形成することで構成できる。また、開口部材18は受光素子16と一体的に構成してもよい。
【0039】
なお、図1及び図2においてビームスプリッタ13を透過した光は、例えば画像形成のために記録媒体等に入射するように構成できる。
【0040】
図1,図2の受光回路によれば、受光素子16の受光面17の前面の光路上に光拡散部材14を配置することで、次の効果を得ることができる。
【0041】
(1)光拡散部材の配置で光軸ずれに対する光量変動を少なくできる。即ち、光軸pが受光素子16の受光面17の中心からずれた場合でも、光拡散部材14により光量変動が非常に緩やかになるので、光軸ずれに対する光量変動を少なくすることができる。従って、受光回路の組み立て時の調整が簡単となり、受光回路の組立性を向上できる。
【0042】
(2)ビームスプリッタ13の表裏面での反射により干渉が生じる可能性があるのに対し、光拡散部材14を配置することで干渉による影響を防ぐことができる。
【0043】
(3)上記受光回路を例えば後述の図5のような半導体レーザの光量安定化回路(APC回路)に適用した場合、半導体レーザがモードホッピングを起こしたときの光出力変動を防止できる。
【0044】
(4)光量を適正値にまで低下させるにはNDフィルタ等でも可能であるが、光拡散板の方が安価であり、部品コストがかからずにコスト的に有利である。
【0045】
また、図1,図2において、光拡散部材14を配置したため受光面17に対し光が斜めに入射しようとしても光拡散部材14と受光素子16との間の光路上に光を絞る部材として集光レンズ15または開口部材18を配置することで、かかる光入射を制限でき、受光素子16の応答性を向上できる。従って、受光素子の内部構成に対策を施すものではないので、受光素子の選定に際しては特許文献2等のような受光素子を選択する必要がなく、制限を受けない。
【0046】
図3に受光素子16としてのPNフォトダイオードの層構成の例を示す。図3のPNフォトダイオードは、絶縁層21と、P型半導体層22と、N型半導体層23と、N型半導体層24とが順に形成されており、P型半導体層22とN型半導体層23との間にPN接合面25が形成され、受光面17から光が入射することでPN接合面25からの電流を電極20と27との間から取り出すことができる。
【0047】
フォトダイオードの受光面17に入射した光がPN接合面25に達すると、PN接合面25で即座に光(光子)から電流(電子と正孔)に変わるが、この現象はPN接合面25上でのみ起こり、図3において光31のようにPN接合面25に入射すると、光から電流への変換が速いのであるが、光32のようにPN接合面25(正確にはPN接合面周辺の空乏層26)を外れるように入射すると、応答速度を低下させてしまうと考えられる。
【0048】
次に、図3のようなフォトダイオードの応答性の低下及びその改善について説明する(上記非特許文献1参照)。フォトダイオードの応答速度とは、生成したキャリアをどれだけ速く外部回路ヘ電流として取り出し得るかを示す値で、通常、上昇時間(tr)または遮断周波数(fc)で表す。上昇時間(tr)は、出力信号が10%から90%に達する時間であり、主に次の要素(a)乃至(c)で決まる。
【0049】
(a)受光素子の端子間容量(Ct)と負荷抵抗(RL)の時定数(t1)
(b)空乏層外生成キャリアの拡散時間(t2)
(c)キャリアの空乏層走行時問(t3)
【0050】
上記(a)について、端子間容量(Ct)は、パッケージ容量とフォトダイオード接合容量Cjの和であり、時定数(t1)は次式(1)で表される。
【0051】
tl=2.2×Ct×RL ・・・(1)
【0052】
上記式(1)からt1を速めるにはCtまたはRLを小さくすればよいことが分かる。Cjは受光面積Aにほぼ比例し、空乏層幅dの2乗根から3乗根に逆比例する。空乏層幅dは逆電圧VRと基板材料の比抵抗ρとの積に比例するため、次式(2)が成立する。
【0053】
Cj∝A{(VR+0.5)×ρ}−1/2〜−1/3 ・・・(2)
【0054】
上記式(2)から、t1を速めるために、Aが小さくρの大きなフォトダイオードに逆電圧を印可して使用すればよいことが分かる。
【0055】
上記(b)について、空乏層外で生成するキャリアは、入射光がフォトダイオードのPN接合面から外れたチップ周辺や空乏層より更に深い基板部で吸収された場合に発生する。これらのキャリアが拡散するのに要する時間(t2)は、数μS以上の場合がある。
【0056】
上記(c)について、空乏層中をキャリアが走行する速度vdは、キャリアの移動度μと空乏層中の電界Eで表すと、vd=μEとなる。また、平均的な電界はE=VR/dである(d:空乏層幅)。このため、キャリアの空乏層走行時問(t3)は次式(3)で近似できる。
【0057】
t3=d/vd=d/(μVR) ・・・(3)
【0058】
上記式(3)からt3を速めるためには、キャリアの走行距離を短くするか、逆電圧を高める必要があることが分かる。
【0059】
以上の要素(a)、(b)、(c)がフォトダイオードの上昇時間(tr)を決定し、上昇時間(tr)は次式(4)で近似できる。
【0060】
tr≒√(t1+t2+t3) ・・・(4)
【0061】
また、遮断周波数(fc)は、半導体レーザからの正弦波入力に対する出力が相対的に100%を維持している出力より3dB減衰する周波数であり、上昇時間(tr)に対し次式(5)の関係で近似できる。
【0062】
tr≒0.35/fc ・・・(5)
【0063】
本発明者の実験・検討によれば、図1,図2のように入射光を絞ったときと、拡げたままで図3の光32のように入射したときでは、後者のように入射光を拡げたままでは図4(a)のように応答速度が遅くなり、前者のように入射光を絞った方が図4(b)のように応答速度が速くなることが確認された。この理由としては、図4(a)では、受光素子のチップ周辺のPN接合面近傍の空乏層以外の部分に光が入ったためであり、図4(b)ではPN接合面近傍の空乏層以外の部分への光入射を制限し、入射し難くしたためと考えられる。
【0064】
上述のように、図1,図2の受光回路において、光拡散部材14と受光素子16の受光面17との間の光路上に集光レンズ15または開口部材18を配置することで、図3において光32のようにPN接合面近傍の空乏層外に入射するような斜め光入射を制限できる。このため、上述の(1)乃至(4)の効果を得るために光拡散部材14を配置し光が拡散してしまい、そのままでは図3の光32のようにPN接合面近傍の空乏層外に入射してしまう場合でも、受光素子16の応答性を改善できる。これにより、受光素子16で高速で光量を測定することが可能となる。
【0065】
以上のように、受光素子の前面に光を絞る部材を設けることで受光素子16のPN接合面近傍の空乏層外に光を入射させないことで受光素子16の応答性を改善するとともに、光拡散部材14を設けることで、光量安定化を向上できる。
【0066】
〈第2の実施の形態〉
【0067】
図5は、図1または図2の受光回路を含む本実施の形態による半導体レーザの光量安定化回路(APC回路)の基本的な回路図である。
【0068】
図5に示すように、本実施の形態による半導体レーザの光量安定化回路40は、画像信号等に基づいて変調された光量指令信号(変調信号)Sと、図1または図2の受光素子16からフィードバックされた負の受光信号Mとが加減算器41に入力すると、加減算器41からそれらの偏差を示す偏差信号を出力し、駆動電流出力回路42に送る。駆動電流出力回路42は光量指令信号の増減に応じて半導体レーザ11に対し駆動電流Iを出力し、半導体レーザ11を駆動電流Iで駆動する。
【0069】
そして、半導体レーザ11から出射した光の一部が図1または図2のように受光素子16の受光面17に入射し、その受光信号Mが加減算器41に送られ、閉ループが完成する。
【0070】
上述のような半導体レーザの光量安定化回路(APC回路)によれば、半導体レーザ11で光出力変動が生じると、その変動した光量に応じて受光信号Mが増減し、光量が一定となるように加減算器41から偏差信号が駆動電流出力回路42に出力するので、自動的に半導体レーザ11から出力する光量を安定させることができる。
【0071】
以上のように、図5の半導体レーザの光量安定化回路40は、図1または図2の受光回路を含むので、半導体レーザ11からの光を受光素子16に入射させ、受光素子16からの受光信号をフィードバックすることで半導体レーザ11の光量を安定化することができるが、上述のように、受光素子16の前面に光拡散部材14を配置することで、受光回路の組立性及びコスト性を向上できるとともに光源からの光出力変動を防止できるので、光量の安定性を向上できる。
【0072】
また、集光レンズ15や開口部材18により受光面に対する光の斜め入射を制限できるので、受光素子の応答性を向上できる。このように、受光素子で高速で光量を測定することができるので、光量安定化回路(APC回路)40における受光素子からの受光信号によるフィードバック制御を安定して実行できる。
【0073】
また、上記特許文献4では、フィードバック部に周波数補償等の補償回路を設けているが、図5では、かかる特別な回路を用いなくとも応答性を向上できるので、光量安定化回路を非常に簡単な構成にすることが可能であり、コスト的にも有利である。
【0074】
〈第3の実施の形態〉
【0075】
図6に図5の半導体レーザの光量安定化回路(APC回路)を有する画像形成装置の露光部を概略的に示す。なお、図6では、図1の光拡散部材14及び集光レンズ15の図示を省略している。
【0076】
図6の画像形成装置の露光部120は、図5の半導体レーザのAPC回路40を備え、画像信号出力装置45から出力した光量指令信号(画像信号)Sに基づいて駆動された半導体レーザ11から出射した所定波長のレーザ光Lを、回転多面鏡113によって偏向して、シート状の記録媒体であるフィルムF上を主走査するとともに、フィルムFをレーザ光Lに対して主走査の方向Xと略直角な方向Yに相対移動させることにより副走査し、レーザ光Lを用いてフィルムFに潜像を形成するように構成されている。
【0077】
図6において、画像信号出力装置45から出力された光量指令信号(画像信号)Sが図5のAPC回路40に入力し、APC回路40からの駆動電流Iで半導体レーザ11を駆動し、半導体レーザ11から画像信号Sで変調されたレーザ光Lを照射させる。レーザ光Lは、コリメートレンズ12を通過した後、その一部がビームスプリッタ13で反射し受光素子16の受光面17に入射する一方、ビームスプリッタ13を透過し、シリンドリカルレンズ115により上下方向にのみ収束されて、図6の矢印A方向に回転する回転多面鏡113に対し、その駆動軸に垂直な線像として入射する。
【0078】
回転多面鏡113はレーザ光Lを主走査方向に反射偏向し、偏向されたレーザ光Lは、4枚のレンズを組み合わせてなるシリンドリカルレンズを含むfθレンズ114を通過した後、光路上に主走査方向に延在して設けられたミラー116で反射されて、副走査搬送部142により矢印Y方向に搬送され副走査されているフィルムFの被走査面117上を、矢印X方向に繰り返し主走査される。
【0079】
上述のようにして、レーザ光LがフィルムF上の被走査面117のほぼ全面にわたって走査することで、フィルムFに画像信号Sに基づく潜像が形成される。その後、フィルムFは熱現像処理や湿式現像処理が施されることで潜像が可視像化される。
【0080】
以上の画像形成装置によれば、上述の光量安定化回路(APC回路)40を含み、レーザ光Lの光出力の光量安定性及び受光素子の応答性を向上させることができるので、フィルムFに形成される画像の画質を改善できる。また、レーザ光の光量に応じて画像の濃度を変化させる画像形成の場合に、上述のように光量安定化を達成できかつ応答性を向上できるので、光量変動に起因する画像濃度変動を防止できる。
【0081】
特に、フォトダイオード等の受光素子の応答性が向上するので、オーバーシュート・アンダーシュートが起こり難くなり、半導体レーザの破損や画像への悪影響を未然に防止でき、画像への影響がなく濃度むらを防止できる。
【0082】
また、医療・印刷分野の画像形成装置では、数%以下の光量変動で画像に影響を及ぼしてしまい、光量が変わると画像濃度がかなり変動してしまうので光量の安定化が非常に重要であるところ、図6の画像形成装置によれば、かかる光量安定化を確実に達成できるので、医療・印刷分野の画像形成装置に適用することで画像濃度変動を防止できる。
【0083】
例えば、医療・印刷分野の感光材料(フィルム・印画紙等)は光量と濃度が比例関係にはなく、感光材料の露光特性である光量−濃度特性は、一般に、図8のように、線形でなく対数に近い特性を持っており、低光量域・高光量域では、光量と濃度とは光量を変化させてもあまり濃度が変わらない関係にあるが、中光量域では光量と濃度とはほぼ比例関係にあるので、中光量域では光量変動に対する濃度変動の感度が高くなる。このため、受光素子の応答性が遅い場合に発生するオーバーシュート・アンダーシュートが中光量域で発生すると、わずかな光量変動でもスジや画像のぼやけ等が発生してしまう。従って、図8のような露光特性を持つフィルムや印画紙等の感光材料(記録媒体)に画像を形成する場合、光量の安定化及び受光素子の応答速度の高速化が不可欠であり、図6の画像形成装置により安定した画像形成が可能となる。
【0084】
次に、図5,図6の画像形成装置の露光部の変形例を図7を参照して説明する。図7に示すように、本例では、図1の受光回路において光拡散部材を省略し、光を絞る部材として集光レンズ15を受光素子16の前面に配置し、受光素子16の受光面17に対し光源11からの光を絞っている。なお、集光レンズ15に変えて図2のような開口部材を配置してもよい。
【0085】
図7の受光回路を適用した図5の光量安定化回路(APC回路)40を図6の露光部に用いることで、受光素子の応答性が向上するので、画像形成装置においてオーバーシュート・アンダーシュートが起こり難くなり、半導体レーザの破損や画像への悪影響を未然に防止でき、画像への影響がなく濃度むらを防止できる。
【0086】
以上のように本発明を実施の形態により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図2において拡散部材と開口部材とを一体的に構成してもよい。
【0087】
また、図1,図2のような受光回路は、半導体レーザ等の光源の光量を高速で測光する光量測定回路に適用できることは勿論である。また、画像形成装置としては、フィルム以外の紙やシート等の記録媒体に画像を形成する装置にも適用できる。
【0088】
【発明の効果】
本発明によれば、受光素子の選定に制限を受けずにかつ応答性を向上できる受光回路を提供できる。
【0089】
また、光量安定性を向上させて光出力の変動を防止しかつ特別な回路等が不要であるとともに応答性を向上できる光量安定化回路を提供できる。
【0090】
更に、光出力の光量安定性及び受光素子の応答性を向上させることで画質を改善できる画像形成装置を提供できる。
【図面の簡単な説明】
【図1】第1の実施の形態による受光回路を概略的に示す図である。
【図2】第1の本実施の形態による別の受光回路を概略的に示す図である。
【図3】図1,図2の受光素子としてのPNフォトダイオードの層構成の例を示す図である。
【図4】入射光を拡げたままで図3のようなフォトダイオードに入射させた場合の応答性を示す図(a)であり、図1,図2のように入射光を絞って入射させた場合の応答性を示す図(b)である。
【図5】図1または図2の受光回路を含む第2の実施の形態による半導体レーザの光量安定化回路(APC回路)の基本的な回路図である。
【図6】図5の半導体レーザの光量安定化回路(APC回路)を有する画像形成装置の露光部を概略的に示す図である。
【図7】図6の画像形成装置の露光部の変形例を説明するための図である。
【図8】一般的な感光材料の露光特性である光量−濃度特性を概略的に示す図である。
【符号の説明】
11・・・光源、半導体レーザ
13・・・ビームスプリッタ
14・・・光拡散部材
15・・・集光レンズ(光を絞る部材)
16・・・受光素子、フォトダイオード
17・・・受光面
18・・・開口部材(光を絞る部材)
40・・・光量安定化回路、APC(Auto Power Control)回路
120・・・露光部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light receiving circuit having improved responsiveness, a light quantity stabilizing circuit having improved light quantity stability and responsiveness, and an image forming apparatus.
[0002]
[Prior art]
2. Description of the Related Art In an image output apparatus in the medical and printing fields, a semiconductor laser (LD) or the like is used for image formation or the like, and a light amount stabilizing circuit is used to stabilize the light amount from this light source. An APC (Auto Power Control) circuit is often used as such a light amount stabilizing circuit (see Patent Document 1 below). The APC circuit is a method in which a light amount control signal is compared with a signal from a light receiving element such as a photodiode (PD) to control the light amount to be constant. Shooting and undershoot occur, which may cause damage to the semiconductor laser and adverse effects on images. In particular, an image output device that changes the density of an image according to the amount of light easily affects the image and may cause unevenness or the like. In addition, when the response of the photodiode deteriorates, a problem is likely to occur when measuring the amount of light at high speed.
[0003]
Further, in the APC circuit, it is required to prevent the optical output fluctuation caused by the mode hopping of the semiconductor laser. For this reason, Patent Document 1 described below discloses that a light diffusion plate is disposed in front of a light receiving surface of a photodiode to stabilize the light output of a semiconductor laser by preventing the detected light amount of a light receiving element from fluctuating. ing.
[0004]
Regarding photodiodes, it is known that the response speed is reduced due to carriers generated when light enters outside the PN junction plane of the semiconductor (outside the depletion layer around the PN junction) (see Patent Document 2 and Non-Patent Document 1).
[0005]
In order to suppress a decrease in the response speed of the photodiode, Patent Literature 2 below discloses that a short life region is provided in which the life of minority carriers contributing to a photocurrent causing a decrease in the response is shortened. Patent Document 3 discloses that a light-shielding film is formed on a light-receiving surface of a light-receiving element to prevent oblique incidence of external light and to prevent aging of electrical characteristics and a decrease in reliability.
[0006]
The countermeasures described in Patent Documents 2 and 3 are all based on the configuration of the light receiving element itself. For the light receiving element having no such configuration, another countermeasure is required. I will receive it.
[0007]
Patent Document 4 listed below discloses a laser driving device provided with a compensation circuit for performing frequency compensation and temperature compensation in a feedback unit in order to compensate for the effect of diffusion current of a photodiode and temperature characteristics and perform appropriate power control. ing. However, a special compensation circuit is required, and the APC circuit becomes complicated.
[0008]
[Patent Document 1]
JP-A-5-145163
[0009]
[Patent Document 2]
JP-A-5-13798
[0010]
[Patent Document 3]
JP-A-6-310697
[0011]
[Patent Document 4]
JP-A-5-121805
[0012]
[Non-patent document 1]
Catalog of photodiodes by Hamamatsu Photonics Co., Ltd.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide a light receiving circuit capable of improving the responsiveness without being limited by the selection of the light receiving element in view of the above-mentioned problems of the related art.
[0014]
It is another object of the present invention to provide a light quantity stabilizing circuit that can improve the light quantity stability to prevent fluctuations in the light output, does not require a special circuit, and can improve the response.
[0015]
It is still another object of the present invention to provide an image forming apparatus capable of improving image quality by improving the stability of light quantity of light output and the response of light receiving elements.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a light receiving circuit according to the present invention includes a light receiving element, a light diffusing member disposed on an optical path in front of the light receiving element and diffusing incident light, the light receiving element and the light diffusing member. And a member disposed between the light-diffusing member and the light-diffusing member to restrict light from the light-diffusing member to a light-receiving surface of the light-receiving element.
[0017]
According to this light receiving circuit, by arranging the light diffusing member on the front surface of the light receiving element, it is possible to reduce the fluctuation in the amount of light due to the optical axis shift, thereby improving the assemblability of the light receiving circuit and reducing component costs. This is advantageous in cost. In addition, since the light diffusing member is arranged, even if light is obliquely incident on the light receiving surface, such a light incident can be limited by disposing a member for restricting the light between the light diffusing member and the light receiving element. Responsiveness can be improved. Therefore, the response can be improved without being limited by the selection of the light receiving element.
[0018]
In the light receiving circuit, the light receiving element and the member for stopping down the light may be integrally formed. Thus, the light receiving circuit can be made compact and the assemblability of the light receiving circuit can be improved.
[0019]
Further, the member for restricting the light can be constituted by a condenser lens or an aperture member having an aperture.
[0020]
In addition, the light receiving element has a region where current is generated by light irradiation, and the member that restricts the light restricts the incidence of light outside the region, so that the response of the light receiving element can be improved.
[0021]
It is preferable to use a PIN photodiode or a PN photodiode as the light receiving element. For example, a Schottky photodiode or an avalanche photodiode may be used.
[0022]
A light amount stabilizing circuit according to the present invention includes the light receiving circuit described above and a light source, wherein at least a part of the light amount from the light source is incident on a light receiving element of the light receiving circuit.
[0023]
According to this light amount stabilizing circuit, the light amount of the light source can be stabilized by making the light from the light source incident on the light receiving element, and the light diffusing member is arranged on the front surface of the light receiving element to assemble the light receiving circuit. In addition to improving the performance and cost, it is possible to prevent the light output from the light source from fluctuating. For example, when the light source is a semiconductor laser, it is possible to prevent the light output from fluctuating due to mode hopping. In addition, since the light diffusing member is arranged, even if the light tries to enter the light receiving surface obliquely, the light incident can be restricted by the member that restricts the light, so that the response of the light receiving element can be improved, and a special circuit is required. Since there is no light quantity stabilization circuit, the circuit does not become complicated.
[0024]
The light amount stabilizing circuit may include a beam splitter for directing a part of the light amount from the light source to the light receiving element. Although there is a possibility that interference occurs due to reflection on the front and back surfaces of the beam splitter, the influence of such interference can be prevented by disposing the light diffusing member.
[0025]
Further, it is preferable that a driving circuit for driving the light source is provided in accordance with a difference between an externally input light intensity command signal and an output signal from the light receiving circuit.
[0026]
By configuring the light source from a semiconductor laser, the light amount stabilizing circuit can be configured as a light amount stabilizing circuit of the semiconductor laser.
[0027]
An image forming apparatus according to the present invention includes the above-described light amount stabilizing circuit, and forms an image on a recording medium based on light from the light source. According to this image forming apparatus, the image quality can be improved by improving the light amount stability of the light output and the responsiveness of the light receiving element by the light amount stabilizing circuit described above.
[0028]
Another image forming apparatus according to the present invention has a light source, a light receiving element provided so that at least a part of the light amount from the light source is incident, and a light receiving surface of the light receiving element disposed on a front surface of the light receiving element. A light amount stabilizing circuit having a member for restricting light from the light source; and forming an image on a recording medium based on the light from the light source. According to this image forming apparatus, the image quality can be improved by improving the responsiveness of the light receiving element.
[0029]
In each of the above image forming apparatuses, the image density can be changed according to the amount of light from the light source. As described above, the light amount can be stabilized and the responsiveness can be improved, so that a change in image density due to a change in light amount can be prevented.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings.
[0031]
<First Embodiment>
[0032]
FIG. 1 is a diagram schematically showing a light receiving circuit according to the present embodiment. FIG. 2 is a diagram schematically showing another light receiving circuit according to the present embodiment.
[0033]
In the light receiving circuit of FIG. 1, light from a light source 11 such as a semiconductor laser enters a beam splitter 13 through a collimator lens 12, and a part of the incident light is reflected by the beam splitter 13 and enters a light diffusion member 14. The light diffused by the light diffusion member 14 is converged by the condenser lens 15 and then enters the light receiving surface 17 of the light receiving element 16.
[0034]
The light diffusing member 14 is a light diffusing plate or the like that diffuses incident light, and can be made of, for example, frosted glass, milky white glass, acrylic resin, or the like.
[0035]
The condenser lens 15 can be constituted by a convex lens or the like that focuses the incident light on the light receiving surface 17. Further, the condenser lens 15 may be formed integrally with the light receiving element 16.
[0036]
The light receiving element 16 is preferably composed of a PN photodiode or a PIN photodiode, but may be composed of various photodiodes such as a Schottky photodiode or an avalanche photodiode. Note that a photodiode is a light-receiving element in which current or voltage is generated by light incident on a PN junction (or PIN junction) of a semiconductor.
[0037]
In the light receiving circuit of FIG. 2, light from a light source 11 such as a semiconductor laser enters a beam splitter 13 through a collimating lens 12, and a part of the incident light is reflected by the beam splitter 13 and The light that is incident and diffused by the light diffusion member 14 is configured to be narrowed by the opening 18 a of the opening member 18 and then incident on the light receiving surface 17 of the light receiving element 16.
[0038]
The opening member 18 can be configured by forming an opening 18a in a member having no light transmission. Further, the opening member 18 may be formed integrally with the light receiving element 16.
[0039]
1 and 2, the light transmitted through the beam splitter 13 can be configured to be incident on a recording medium or the like for image formation, for example.
[0040]
According to the light receiving circuits of FIGS. 1 and 2, the following effects can be obtained by disposing the light diffusing member 14 on the optical path in front of the light receiving surface 17 of the light receiving element 16.
[0041]
(1) By arranging the light diffusing member, it is possible to reduce the fluctuation of the light amount with respect to the deviation of the optical axis. That is, even when the optical axis p is deviated from the center of the light receiving surface 17 of the light receiving element 16, the light amount fluctuation becomes very gentle by the light diffusing member 14, so that the light amount fluctuation due to the optical axis deviation can be reduced. Therefore, the adjustment at the time of assembling the light receiving circuit is simplified, and the assemblability of the light receiving circuit can be improved.
[0042]
(2) While interference may occur due to reflection on the front and back surfaces of the beam splitter 13, the arrangement of the light diffusing member 14 can prevent the influence of the interference.
[0043]
(3) When the light receiving circuit is applied to, for example, a light quantity stabilizing circuit (APC circuit) of a semiconductor laser as shown in FIG. 5 described later, it is possible to prevent a light output fluctuation when the semiconductor laser causes mode hopping.
[0044]
(4) An ND filter or the like can be used to reduce the light amount to an appropriate value. However, the light diffusion plate is cheaper and has a cost advantage because it does not require component costs.
[0045]
1 and 2, since the light diffusing member 14 is disposed, even if light is obliquely incident on the light receiving surface 17, the light diffusing member 14 is gathered as a member that restricts the light on the optical path between the light diffusing member 14 and the light receiving element 16. By arranging the optical lens 15 or the aperture member 18, such light incidence can be restricted, and the responsiveness of the light receiving element 16 can be improved. Therefore, since no countermeasures are taken for the internal configuration of the light receiving element, there is no need to select the light receiving element as in Patent Document 2 and the like when selecting the light receiving element, and there is no restriction.
[0046]
FIG. 3 shows an example of a layer configuration of a PN photodiode as the light receiving element 16. The PN photodiode shown in FIG. 3 includes an insulating layer 21, a P-type semiconductor layer 22, an N-type semiconductor layer 23, + The semiconductor layer 24 is formed in order, a PN junction surface 25 is formed between the P-type semiconductor layer 22 and the N-type semiconductor layer 23, and light enters from the light receiving surface 17 so that the PN junction surface 25 Can be taken out between the electrodes 20 and 27.
[0047]
When the light incident on the light receiving surface 17 of the photodiode reaches the PN junction surface 25, the light (photons) is immediately changed to a current (electrons and holes) at the PN junction surface 25. In FIG. 3, when light enters the PN junction surface 25 like light 31 in FIG. 3, the conversion from light to current is fast, but as shown in light 32, the PN junction surface 25 (exactly around the PN junction surface). It is considered that the response speed is reduced if the light is incident outside the depletion layer 26).
[0048]
Next, a description will be given of a decrease in the response of the photodiode as shown in FIG. 3 and an improvement thereof (see Non-Patent Document 1). The response speed of a photodiode is a value indicating how quickly generated carriers can be taken out as a current to an external circuit, and is usually expressed by a rise time (tr) or a cutoff frequency (fc). The rise time (tr) is a time when the output signal reaches 10% to 90%, and is determined mainly by the following elements (a) to (c).
[0049]
(A) Time constant (t1) of capacitance (Ct) between terminals of light receiving element and load resistance (RL)
(B) Diffusion time of carriers generated outside the depletion layer (t2)
(C) Carrier depletion layer running time (t3)
[0050]
Regarding the above (a), the inter-terminal capacitance (Ct) is the sum of the package capacitance and the photodiode junction capacitance Cj, and the time constant (t1) is expressed by the following equation (1).
[0051]
tl = 2.2 × Ct × RL (1)
[0052]
From the above equation (1), it can be seen that Ct or RL may be reduced to speed up t1. Cj is substantially proportional to the light receiving area A and inversely proportional to the square root to the cube root of the depletion layer width d. Since the depletion layer width d is proportional to the product of the reverse voltage VR and the specific resistance ρ of the substrate material, the following equation (2) holds.
[0053]
Cj {A} (VR + 0.5) × ρ} −1/2 to − / ... (2)
[0054]
From the above equation (2), it can be seen that it is sufficient to apply a reverse voltage to a photodiode having a small A and a large ρ in order to speed up t1.
[0055]
Regarding the above (b), carriers generated outside the depletion layer are generated when incident light is absorbed around the chip deviating from the PN junction surface of the photodiode or at a substrate portion deeper than the depletion layer. The time (t2) required for these carriers to diffuse may be several μS or more.
[0056]
Regarding the above (c), the velocity vd at which the carrier travels in the depletion layer is expressed as vd = μE when represented by the mobility μ of the carrier and the electric field E in the depletion layer. The average electric field is E = VR / d (d: depletion layer width). Therefore, the time (t3) at which the carrier travels in the depletion layer can be approximated by the following equation (3).
[0057]
t3 = d / vd = d 2 / (ΜVR) (3)
[0058]
From the above equation (3), it can be seen that it is necessary to shorten the traveling distance of the carrier or increase the reverse voltage in order to increase t3.
[0059]
The above elements (a), (b) and (c) determine the rise time (tr) of the photodiode, and the rise time (tr) can be approximated by the following equation (4).
[0060]
tr ≒ √ (t1 2 + T2 2 + T3 2 ) ・ ・ ・ (4)
[0061]
Further, the cut-off frequency (fc) is a frequency at which the output for a sine wave input from the semiconductor laser is attenuated by 3 dB from the output maintaining relatively 100%, and the rising time (tr) is expressed by the following equation (5). Can be approximated by
[0062]
tr ≒ 0.35 / fc (5)
[0063]
According to experiments and studies by the present inventor, when the incident light is narrowed down as shown in FIGS. 1 and 2 and when the incident light is incident as shown in FIG. It was confirmed that the response speed was reduced as shown in FIG. 4A when the light was expanded, and that the response speed was increased as shown in FIG. 4B when the incident light was narrowed as in the former case. The reason for this is that in FIG. 4A, light enters a portion other than the depletion layer near the PN junction surface around the chip of the light receiving element, and FIG. It is considered that the light incidence on the portion was restricted to make it difficult to enter.
[0064]
As described above, in the light receiving circuits of FIGS. 1 and 2, by disposing the condenser lens 15 or the aperture member 18 on the optical path between the light diffusing member 14 and the light receiving surface 17 of the light receiving element 16, FIG. In this case, it is possible to limit the oblique light incidence such as the light 32 that enters the outside of the depletion layer near the PN junction surface. For this reason, the light diffusion member 14 is arranged to obtain the above-described effects (1) to (4), and the light is diffused. , The response of the light receiving element 16 can be improved. Thus, the light amount can be measured at high speed by the light receiving element 16.
[0065]
As described above, by providing a member for focusing light on the front surface of the light receiving element, light is prevented from being incident on the outside of the depletion layer near the PN junction surface of the light receiving element 16, thereby improving the responsiveness of the light receiving element 16 and improving light diffusion. Providing the member 14 can improve light quantity stabilization.
[0066]
<Second embodiment>
[0067]
FIG. 5 is a basic circuit diagram of a light amount stabilizing circuit (APC circuit) of the semiconductor laser according to the present embodiment including the light receiving circuit of FIG. 1 or FIG.
[0068]
As shown in FIG. 5, the light quantity stabilizing circuit 40 of the semiconductor laser according to the present embodiment includes a light quantity command signal (modulation signal) S modulated based on an image signal and the like, and the light receiving element 16 of FIG. When the negative light receiving signal M fed back from is input to the adder / subtractor 41, the adder / subtracter 41 outputs a deviation signal indicating the deviation between them, and sends it to the drive current output circuit 42. The drive current output circuit 42 outputs a drive current I to the semiconductor laser 11 according to the increase or decrease of the light amount command signal, and drives the semiconductor laser 11 with the drive current I.
[0069]
Then, a part of the light emitted from the semiconductor laser 11 is incident on the light receiving surface 17 of the light receiving element 16 as shown in FIG. 1 or FIG. 2, and the received light signal M is sent to the adder / subtractor 41 to complete the closed loop.
[0070]
According to the semiconductor laser light quantity stabilizing circuit (APC circuit) as described above, when the light output of the semiconductor laser 11 fluctuates, the light receiving signal M increases or decreases according to the fluctuated light quantity, and the light quantity becomes constant. Since the deviation signal is output from the adder / subtractor 41 to the drive current output circuit 42, the amount of light output from the semiconductor laser 11 can be automatically stabilized.
[0071]
As described above, since the light quantity stabilizing circuit 40 of the semiconductor laser of FIG. 5 includes the light receiving circuit of FIG. 1 or 2, the light from the semiconductor laser 11 is made to enter the light receiving element 16 and the light from the light receiving element 16 is received. By feeding back the signal, the light amount of the semiconductor laser 11 can be stabilized. However, as described above, by disposing the light diffusing member 14 on the front surface of the light receiving element 16, the assemblability and cost of the light receiving circuit can be reduced. Since the light output from the light source can be prevented from fluctuating, the stability of the light amount can be improved.
[0072]
Further, since the oblique incidence of light on the light receiving surface can be restricted by the condenser lens 15 and the aperture member 18, the response of the light receiving element can be improved. As described above, since the light amount can be measured at high speed by the light receiving element, the feedback control based on the light receiving signal from the light receiving element in the light amount stabilizing circuit (APC circuit) 40 can be stably executed.
[0073]
Further, in Patent Document 4 described above, a compensation circuit such as frequency compensation is provided in the feedback unit. However, in FIG. 5, since the response can be improved without using such a special circuit, the light amount stabilization circuit is very simple. It is possible to adopt a simple configuration, and it is advantageous in terms of cost.
[0074]
<Third embodiment>
[0075]
FIG. 6 schematically shows an exposure unit of the image forming apparatus having the light quantity stabilizing circuit (APC circuit) of the semiconductor laser of FIG. 6, illustration of the light diffusion member 14 and the condenser lens 15 of FIG. 1 is omitted.
[0076]
The exposure unit 120 of the image forming apparatus shown in FIG. 6 includes the APC circuit 40 of the semiconductor laser shown in FIG. 5, and is provided with a semiconductor laser 11 driven based on a light amount command signal (image signal) S output from an image signal output device 45. The emitted laser light L of a predetermined wavelength is deflected by the rotating polygon mirror 113 to perform main scanning on the film F which is a sheet-shaped recording medium, and the film F is moved in the main scanning direction X with respect to the laser light L. The laser beam L is used to perform sub-scanning by relatively moving in a substantially perpendicular direction Y, and a latent image is formed on the film F using the laser beam L.
[0077]
6, a light amount command signal (image signal) S output from an image signal output device 45 is input to the APC circuit 40 in FIG. 5, and the semiconductor laser 11 is driven by a drive current I from the APC circuit 40. The laser beam L modulated by the image signal S from 11 is emitted. After passing through the collimating lens 12, a part of the laser light L is reflected by the beam splitter 13 and is incident on the light receiving surface 17 of the light receiving element 16, while passing through the beam splitter 13, and is only vertically transmitted by the cylindrical lens 115. The light is converged and is incident on the rotating polygon mirror 113 rotating in the direction of arrow A in FIG. 6 as a line image perpendicular to the drive shaft.
[0078]
The rotary polygon mirror 113 reflects and deflects the laser light L in the main scanning direction. After the deflected laser light L passes through an fθ lens 114 including a cylindrical lens formed by combining four lenses, the laser light L is focused on the optical path. The main scanning is repeated in the arrow X direction on the surface 117 to be scanned of the film F, which is reflected by the mirror 116 provided in the direction extending in the direction and conveyed in the arrow Y direction by the sub-scanning conveyance section 142 and is sub-scanned. Is done.
[0079]
As described above, the latent image based on the image signal S is formed on the film F by scanning the laser light L over substantially the entire surface to be scanned 117 on the film F. Thereafter, the latent image is visualized by subjecting the film F to a heat development process or a wet development process.
[0080]
According to the above-described image forming apparatus, since the light amount stabilizing circuit (APC circuit) 40 described above is included and the light amount stability of the light output of the laser light L and the responsiveness of the light receiving element can be improved, the film F The image quality of the formed image can be improved. Further, in the case of image formation in which the density of an image is changed in accordance with the amount of laser light, stabilization of the amount of light can be achieved and responsiveness can be improved as described above. .
[0081]
In particular, the responsiveness of light receiving elements such as photodiodes is improved, so that overshoot and undershoot are unlikely to occur, damage to the semiconductor laser and adverse effects on images can be prevented beforehand, and there is no effect on images and density unevenness. Can be prevented.
[0082]
Further, in an image forming apparatus in the field of medical and printing, a light amount fluctuation of several percent or less affects an image, and when the light amount changes, the image density fluctuates considerably. Therefore, stabilization of the light amount is very important. However, according to the image forming apparatus of FIG. 6, since the stabilization of the light amount can be reliably achieved, the image density fluctuation can be prevented by applying the image forming apparatus to the image forming apparatus in the medical and printing fields.
[0083]
For example, in the case of photosensitive materials (films, photographic papers, and the like) in the medical and printing fields, the light amount and the density are not proportional, and the light amount-density characteristic, which is the exposure characteristic of the photosensitive material, is generally linear as shown in FIG. It has a characteristic close to logarithm, and in the low light area and the high light area, the light quantity and the density have a relationship that the density does not change much even if the light quantity is changed, but in the medium light quantity area, the light quantity and the density are almost the same. Since there is a proportional relationship, the sensitivity of the density fluctuation to the light quantity fluctuation is high in the medium light quantity range. For this reason, if overshoot / undershoot that occurs when the response of the light receiving element is slow occurs in the medium light amount region, even a slight change in the light amount may cause a streak, image blur, or the like. Therefore, when forming an image on a photosensitive material (recording medium) such as a film or photographic paper having the exposure characteristics as shown in FIG. 8, it is essential to stabilize the amount of light and increase the response speed of the light receiving element. With this image forming apparatus, stable image formation is possible.
[0084]
Next, a modified example of the exposure unit of the image forming apparatus shown in FIGS. 5 and 6 will be described with reference to FIG. As shown in FIG. 7, in this example, the light diffusing member is omitted in the light receiving circuit of FIG. 1, and a condensing lens 15 is disposed in front of the light receiving element 16 as a member for restricting light. The light from the light source 11 is restricted. Note that an aperture member as shown in FIG. 2 may be provided instead of the condenser lens 15.
[0085]
By using the light amount stabilizing circuit (APC circuit) 40 of FIG. 5 to which the light receiving circuit of FIG. 7 is applied in the exposure unit of FIG. 6, the response of the light receiving element is improved. Is less likely to occur, and damage to the semiconductor laser and adverse effects on images can be prevented beforehand, and density unevenness can be prevented without affecting images.
[0086]
As described above, the present invention has been described with the embodiments, but the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention. For example, in FIG. 2, the diffusion member and the opening member may be integrally formed.
[0087]
Also, the light receiving circuit as shown in FIGS. 1 and 2 can be applied to a light quantity measuring circuit for measuring the light quantity of a light source such as a semiconductor laser at a high speed. The image forming apparatus can also be applied to an apparatus that forms an image on a recording medium other than a film, such as paper or a sheet.
[0088]
【The invention's effect】
According to the present invention, it is possible to provide a light receiving circuit capable of improving responsiveness without being limited by selection of a light receiving element.
[0089]
In addition, it is possible to provide a light quantity stabilizing circuit that improves light quantity stability, prevents fluctuations in light output, does not require a special circuit, and can improve responsiveness.
[0090]
Further, it is possible to provide an image forming apparatus capable of improving the image quality by improving the stability of the light amount of the light output and the response of the light receiving element.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a light receiving circuit according to a first embodiment.
FIG. 2 is a diagram schematically showing another light receiving circuit according to the first embodiment.
FIG. 3 is a diagram illustrating an example of a layer configuration of a PN photodiode as a light receiving element in FIGS. 1 and 2;
FIG. 4A is a diagram showing the response when the incident light is made incident on the photodiode as shown in FIG. 3 while being expanded, and the incident light is narrowed and made incident as shown in FIGS. 1 and 2; FIG. 7B is a diagram showing the response in the case.
FIG. 5 is a basic circuit diagram of a light quantity stabilizing circuit (APC circuit) of a semiconductor laser according to a second embodiment including the light receiving circuit of FIG. 1 or FIG.
6 is a diagram schematically showing an exposure unit of the image forming apparatus having the light quantity stabilizing circuit (APC circuit) of the semiconductor laser of FIG. 5;
FIG. 7 is a view for explaining a modification of the exposure unit of the image forming apparatus of FIG. 6;
FIG. 8 is a diagram schematically showing a light amount-density characteristic which is an exposure characteristic of a general photosensitive material.
[Explanation of symbols]
11 Light source, semiconductor laser
13 ... Beam splitter
14 ... light diffusion member
15 ... Condensing lens (member for restricting light)
16 ・ ・ ・ Light receiving element, photodiode
17 ... Light receiving surface
18 ··· Opening member (member for restricting light)
40: Light intensity stabilization circuit, APC (Auto Power Control) circuit
120 ・ ・ ・ Exposure unit

Claims (11)

受光素子と、前記受光素子の前面の光路上に配置され入射する光を拡散する光拡散部材と、前記受光素子と前記光拡散部材との間に配置され前記受光素子の受光面に対し前記光拡散部材からの光を絞る部材と、を備えることを特徴とする受光回路。A light receiving element, a light diffusing member disposed on an optical path in front of the light receiving element to diffuse incident light, and a light diffusing member disposed between the light receiving element and the light diffusing member with respect to a light receiving surface of the light receiving element. A light-receiving circuit, comprising: a member that restricts light from the diffusion member. 前記受光素子と前記光を絞る部材とが一体的に構成されていることを特徴とする請求項1に記載の受光回路。The light receiving circuit according to claim 1, wherein the light receiving element and a member that restricts the light are integrally formed. 前記光を絞る部材が集光レンズであることを特徴とする請求項1または2に記載の受光回路。The light receiving circuit according to claim 1, wherein the member that stops the light is a condenser lens. 前記光を絞る部材が開口を有する開口部材であることを特徴とする請求項1または2に記載の受光回路。The light receiving circuit according to claim 1, wherein the member that restricts the light is an opening member having an opening. 前記受光素子が光照射により電流を発生する領域を有し、前記光を絞る部材が前記領域外への光入射を制限することを特徴とする請求項1乃至4のいずれか1項に記載の受光回路。5. The light-receiving element according to claim 1, wherein the light-receiving element has a region that generates a current by light irradiation, and the member that restricts the light restricts light incident outside the region. 6. Light receiving circuit. 請求項1乃至5のいずれか1項に記載の受光回路と、光源と、を備え、前記光源からの光量の少なくとも一部が前記受光回路の受光素子に入射するように構成したことを特徴とする光量安定化回路。A light source, comprising: the light receiving circuit according to claim 1; and a light source, wherein at least a part of a light amount from the light source is incident on a light receiving element of the light receiving circuit. Light stabilization circuit. 前記光源からの光量の一部を前記受光素子に向けるためのビームスプリッタを備えることを特徴とする請求項6に記載の光量安定化回路。The light quantity stabilizing circuit according to claim 6, further comprising a beam splitter for directing a part of the light quantity from the light source to the light receiving element. 外部から入力した光量指令信号と前記受光回路からの出力信号との差分に応じて前記光源を駆動する駆動回路を備えることを特徴とする請求項6または7に記載の光量安定化回路。8. The light amount stabilizing circuit according to claim 6, further comprising a driving circuit that drives the light source in accordance with a difference between an externally input light amount command signal and an output signal from the light receiving circuit. 請求項6,7または8に記載の光量安定化回路を備え、前記光源からの光に基づいて記録媒体に画像を形成することを特徴とする画像形成装置。An image forming apparatus comprising the light amount stabilizing circuit according to claim 6, wherein an image is formed on a recording medium based on light from the light source. 光源と、前記光源からの光量の少なくとも一部が入射するように設けられた受光素子と、前記受光素子の前面に配置され前記受光素子の受光面に対し前記光源からの光を絞る部材と、を有する光量安定化回路を備え、
前記光源からの光に基づいて記録媒体に画像を形成することを特徴とする画像形成装置。
A light source, a light receiving element provided so that at least a part of the light amount from the light source is incident thereon, and a member arranged on the front surface of the light receiving element and for narrowing light from the light source to a light receiving surface of the light receiving element, A light amount stabilizing circuit having
An image forming apparatus for forming an image on a recording medium based on light from the light source.
前記光源からの光量に応じて前記画像の濃度を変化させることを特徴とする請求項9または10に記載の画像形成装置。The image forming apparatus according to claim 9, wherein a density of the image is changed according to a light amount from the light source.
JP2003105451A 2003-04-09 2003-04-09 Light receiving circuit, light quantity stabilizing circuit and image forming device Pending JP2004311834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105451A JP2004311834A (en) 2003-04-09 2003-04-09 Light receiving circuit, light quantity stabilizing circuit and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105451A JP2004311834A (en) 2003-04-09 2003-04-09 Light receiving circuit, light quantity stabilizing circuit and image forming device

Publications (1)

Publication Number Publication Date
JP2004311834A true JP2004311834A (en) 2004-11-04

Family

ID=33467958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105451A Pending JP2004311834A (en) 2003-04-09 2003-04-09 Light receiving circuit, light quantity stabilizing circuit and image forming device

Country Status (1)

Country Link
JP (1) JP2004311834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153320A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Light source system
US8891571B2 (en) 2008-05-02 2014-11-18 Ricoh Company, Ltd. Vertical cavity surface emitting laser device, vertical cavity surface emitting laser array, optical scanning apparatus, image forming apparatus, optical transmission module and optical transmission system
JP2015141239A (en) * 2014-01-27 2015-08-03 株式会社リコー Light source device and image projection apparatus using light source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153320A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Light source system
US8891571B2 (en) 2008-05-02 2014-11-18 Ricoh Company, Ltd. Vertical cavity surface emitting laser device, vertical cavity surface emitting laser array, optical scanning apparatus, image forming apparatus, optical transmission module and optical transmission system
US9570887B2 (en) 2008-05-02 2017-02-14 Ricoh Company, Ltd. Vertical cavity surface emitting laser device, vertical cavity surface emitting laser array, optical scanning apparatus, image forming apparatus, optical transmission module and optical transmission system
JP2015141239A (en) * 2014-01-27 2015-08-03 株式会社リコー Light source device and image projection apparatus using light source device

Similar Documents

Publication Publication Date Title
US4737798A (en) Laser diode mode hopping sensing and control system
US8767783B2 (en) Light source device, lighting device and image display device
US4733253A (en) Apparatus and method for detecting and eliminating diode laser mode hopping
JP2534656B2 (en) Electrostatic latent image forming apparatus using semiconductor laser
US7269193B2 (en) Semiconductor laser driving circuit and image recording apparatus
JP2007165658A (en) Pin photodiode and optical receiving device
JPH098390A (en) Method and equipment for back face facet control of laser diode power output
JP2004311834A (en) Light receiving circuit, light quantity stabilizing circuit and image forming device
JP2715206B2 (en) Laser recording device
JP3313237B2 (en) Image reading device and image recording device
US5025449A (en) Optical pumping-type solid-state laser apparatus with a semiconductor laser device
JPH04355986A (en) Light source drive device and device provided therewith
US6208371B1 (en) Laser beam image recording apparatus
JP5853473B2 (en) Optical scanning apparatus and image forming apparatus
US5051788A (en) Light-emitting apparatus
US7286156B2 (en) Light source device for scanning-exposure and method and apparatus for scanning-exposure
JPH01237614A (en) Converging position detecting device
US5543611A (en) Method and apparatus for back facet monitoring of laser diode power output
JPS6179286A (en) Laser diode and mode hopping prevention therefor
JP2006256063A (en) Image forming apparatus
JPH0588026B2 (en)
JP2007147688A (en) Wavelength conversion element, laser apparatus, and photographic processor
JPH0447829B2 (en)
JPH0350470B2 (en)
JPH07198476A (en) Light quantity detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603