JP2004311733A - Nanodevice material and nanodevice using the same - Google Patents

Nanodevice material and nanodevice using the same Download PDF

Info

Publication number
JP2004311733A
JP2004311733A JP2003103643A JP2003103643A JP2004311733A JP 2004311733 A JP2004311733 A JP 2004311733A JP 2003103643 A JP2003103643 A JP 2003103643A JP 2003103643 A JP2003103643 A JP 2003103643A JP 2004311733 A JP2004311733 A JP 2004311733A
Authority
JP
Japan
Prior art keywords
nanodevice
type semiconductor
carbon nanotube
charge transfer
tcnq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103643A
Other languages
Japanese (ja)
Other versions
JP3993126B2 (en
Inventor
Hiroshi Takenobu
大志 竹延
Yoshihiro Iwasa
義宏 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003103643A priority Critical patent/JP3993126B2/en
Publication of JP2004311733A publication Critical patent/JP2004311733A/en
Application granted granted Critical
Publication of JP3993126B2 publication Critical patent/JP3993126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanodevice material having a p-type semiconductor material / n-type semiconductor material and a metal material of a nano scale using a carbon nanotube, and a nanodevice using it. <P>SOLUTION: The nanodevice material contains a material 2 causing charge transfer inside the carbon nanotube 1. The material 2 which causes the charge transfer is an organic molecule such as TCNQ, TTF, TDAE, TMTSF, F<SB>4</SB>TCNQ, DNBN and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、デバイス材料及びそれを用いたデバイスに係り、特に、カーボンナノチューブを用いたナノスケールのデバイス材料及びそれを用いたデバイスに関するものである。
【0002】
【従来の技術】
近年、コンピューターの性能は飛躍的に向上しているが、更なる高性能化の為にはナノスケールでのデバイス作製が必要不可欠である。技術的には、現在のデバイス作製方法をナノスケールで行うには、ナノサイズのP型半導体材料・N型半導体材料およびそれらを連結する金属材料が必要不可欠である。
【0003】
【非特許文献1】
Dresselhaus,M.S.,Dresselhaus,G.&Avouris,P.(eds.)Carbon Nanotubes(Spring,Berlin,2001).
【非特許文献2】

Figure 2004311733
【非特許文献3】
Derycke,V.,Martel,R.,Appenzeller,J.&Avouris,P.Controlling doping and carrier injection in carbon nanotube transistors.Appl.Phys.Lett.80,2773−2774(2002).
【非特許文献4】
Kong,J.et al.Nanotube molecular wires as chemical sensors.Science 287,622−625(2000).
【非特許文献5】
Collins,P.,Bradley,K.,Ishigami,M.&Zettl.,A.Extreme oxygen sensitivity ofelectronic properties of carbon nanotubes.Science 287,1801−1804(2000).
【非特許文献6】
Martel,R.et al.Ambipolar electrical transport in semiconducting single−wall carbon nanotubes.Phys.Rev.Lett.87,106801(2001).
【非特許文献7】
Zhou,C.,Kong,J.,Yenilmez,E.&Dai,H.Modulated chemical doping of individual carbon nanotubes.Science 290,1552−1555(2000).
【非特許文献8】
Kazaoui,S.,Minami,N.,Jacquemin,R.,Kataura,H.&Achiba,Y.Amphoteric doping of single−wall carbon−nanotube thin films as probed by optical absorption spectroscopy.Phys.Rev.B60,13339−13342(1999).
【非特許文献9】
Kazaoui,S.,Minami,N.,Matsuda,N.,Kataura,H.&Achiba,Y.Electrochemical tuning of electronic states in single−wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance.Appl.Phys.Lett.78,3433−3435(2001).
【非特許文献10】
Jouguelet,E.,Mathis,C.&Petit,P.Controlling the electronic properties of single−wall carbon nanotubes by chemical doping.Chem.Phys.Lett.318,561−564(2000).
【非特許文献11】
Kong,J.&Dai,H.Full and modulated chemical gating of individual carbon nanotubes by organic amine.J.Phys.Chem.B105,2890−2893(2001).
【0004】
【発明が解決しようとする課題】
カーボンナノチューブは1991年に発見された炭素原子のみからなる筒状分子であり、それ自体がナノサイズのワイヤーであることから、ナノサイズデバイス材料として期待されている。カーボンナノチューブには、金属的伝導を示す物と真性半導体の物があり、通常得られる材料は1対2の比率でこれらが混ざり合った物である。近年、これら混ざり物の中から真性半導体の物だけを取り出す方法が確立されつつあるが、金属的伝導を示す物のみを取り出す方法は大きな課題である。
【0005】
また、P型半導体およびN型半導体を準備する技術も大きな課題である。全てのチューブをP型もしくはN型の半導体や金属的伝導を示す物にする方法として、アルカリ金属やハロゲン元素を反応させ電荷の移動を起こし、カーボンナノチューブの電子状態を制御する方法がある。しかしながら、この方法で得られるカーボンナノチューブは大気中で不安定であり、実用には大きな問題がある。それとは別に、カーボンナノチューブとの間に電荷の移動を生じる分子をカーボンナノチューブの外側に反応させる方法も示されているが、この場合も大気中での安定性が問題となる。
【0006】
また、多くの試料を一度に合成する方法も確立されていない。さらに、溶液プロセスを用いることが困難であるなど、実用には多くの課題を抱えている。
【0007】
本発明は、この問題を解決する方法として、半導体カーボンナノチューブ内に、カーボンナノチューブとの間に電荷の移動を生じる分子(例えば、TCNQやTTF)を内包させることによって、大気中でも安定なナノスケールのデバイス材料を見出した。
【0008】
本発明は、上記状況に鑑みて、カーボンナノチューブを用いたナノスケールのP型半導体材料・N型半導体材料および金属材料を有するナノデバイス材料及びそれを用いたナノデバイスを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明によれば、上記目的を達成するために、
〔1〕ナノデバイス材料において、カーボンナノチューブの内部に電荷移動を起こす材料が含有されていることを特徴とする。
【0010】
〔2〕上記〔1〕記載のナノデバイス材料において、前記電荷移動を起こす材料は、イオン化エネルギーが6.6eV以下のドナーか、電子親和力が2.6eV以上のアクセプターの有機分子であることを特徴とする。
【0011】
〔3〕上記〔2〕記載のナノデバイス材料において、前記有機分子がTCNQ、TTF、TDAE、TMTSF、FTCNQ、DNBNであることを特徴とする。
【0012】
〔4〕上記〔1〕記載のナノデバイス材料において、前記カーボンナノチューブと前記電荷移動を起こす材料の間で電荷のやりとりが行われる、P型もしくはN型の半導体を具備することを特徴とする。
【0013】
〔5〕上記〔1〕記載のナノデバイス材料において、前記カーボンナノチューブと2種類以上の電荷移動を起こす材料の間で電荷のやりとりが行われ、前記カーボンナノチューブの中にP型半導体とN型半導体の部分を同時に有することを特徴とする。
【0014】
〔6〕上記〔1〕記載のナノデバイス材料において、前記カーボンナノチューブと前記電荷移動を起こす材料の間で電荷のやりとりが行われ、この材料の密度を上げて、前記カーボンナノチューブの中に金属的伝導性を示す部分を有することを特徴とする。
【0015】
〔7〕上記〔1〕〜〔6〕記載の何れか1項に記載のナノデバイス材料を用いて作製されるナノデバイス。
【0016】
〔8〕上記〔7〕記載のナノデバイスが、P型半導体の材料とN型半導体の材料を組み合わせた電子デバイスであることを特徴とする。
【0017】
〔9〕上記〔8〕記載のナノデバイスにおいて、前記電子デバイスが、トランジスタ、ダイオード、発光素子、レーザー発振素子、又は論理回路であることを特徴とする。
【0018】
〔10〕上記〔9〕記載のナノデバイスにおいて、前記電子デバイスがP型半導体の材料またはN型半導体の材料を他の材料と組み合わせて作製されたものであることを特徴とする。
【0019】
〔11〕上記〔10〕記載のナノデバイスにおいて、前記電子デバイスがトランジスタ、ダイオード、発光素子、レーザー発振素子又は論理回路であることを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照しながら詳細に説明する。
【0021】
図1は本発明の第1実施例を示すカーボンナノチューブを用いたナノデバイス材料を示す模式図である。
【0022】
この図に示すように、第1実施例では、カーボンナノチューブ(CNT)1内部に、電荷移動を起こす材料として、TCNQ(Tetracyano−p−quinodimethane)2〔電子を受け取る性質を持つ分子(アクセプタ)を包含させている。
【0023】
図2は本発明の第1実施例を示すカーボンナノチューブ(CNT)の内部に包含させる材料となり得る各種の分子の化学式を示す図である。
【0024】
図1ではカーボンナノチューブ1の内部に包含させる材料としてTCNQ2が示されているが、かかる電荷移動を起こす材料としては、TCNQ2に代わって、TTF(Tetrathiafulvalene)やTDAE〔Tetrakis(dimethylamino)ethylene〕、TMTSF(Tetramethyl−tetraselenafulvalene)、FTCNQ(Tetrafluorotetracyano−p−quinodimethane)、DNBN(3,5−Dinitrobenzonitrile)などの分子を用いることができる。特に、イオン化エネルギーが6.6eV以下のドナーか、電子親和力が2.6eV以上のアクセプターになりえる有機分子であることが望ましい。
【0025】
このとき、例えば、TCNQなどのカーボンナノチューブ1から電子を受け取る性質を持つ分子(アクセプタ)を包含させるとP型半導体のデバイス材料を、例えば、TDAEなどの電子をカーボンチューブ1へ与える分子(ドナー)を包含させるとN型半導体のデバイス材料を作製することができる。
【0026】
図3は本発明の第1実施例にかかるカーボンナノチューブ内にカーボンナノチューブとの間で電荷移動を起こす分子を内包してカーボンナノチューブの電子状態を制御する様子を示す模式図である。
【0027】
図3(a)には、カーボンナノチューブ11内に複数のドナー12が包含されたN型半導体13が示され、図3(b)には、カーボンナノチューブ15内に複数のアクセプタ16が包含されたP型半導体17が示されている。
【0028】
図4は本発明の第1実施例にかかるカーボンナノチューブ内に電荷移動を起こす材料を内包させることによる利点を示す図である。
【0029】
図4(a)に示すように、電荷移動を起こす材料であるTCNQ21が単独で存在する場合には、大気中で酸素等の影響を強く受けるために、不安定であるが、図4(b)に示すように、電荷移動を起こす材料であるTCNQ21がカーボンナノチューブ22内に存在する場合には、カーボンナノチューブ22でガードされて酸素等の影響を受けることがなく、大気中でも安定である。
【0030】
図5は本発明の第1実施例にかかる電荷の移動を起こす分子の密度とその電気特性を示す模式図である。
【0031】
図5(a)に示すように、カーボンナノチューブ31内で電荷の移動を起こす分子32が疎らである場合には、半導体としての働きをし、図5(b)に示すように、カーボンナノチューブ35内で電荷の移動を起こす分子36の密度が高い場合には、電気抵抗が低くなり、金属としての働きをする。
【0032】
図6は本発明の第1実施例にかかるカーボンナノチューブと電荷移動を起こす材料間の電荷のやり取りによって得られた金属的伝導性を示すナノデバイス材料の電気伝導度特性図であり、横軸に温度(K)、縦軸に抵抗(Ω)を示している。
【0033】
この図から明らかなように、カーボンナノチューブにTCNQがドープされることにより、曲線aに示すように金属的伝導性を有するものになった(抵抗がほぼ0)ことがわかる。なお、曲線bは従来のカーボンナノチューブの温度−抵抗特性を示している。
【0034】
図7は本発明の第1実施例を示す、カーボンナノチューブと電荷移動を起こす材料との間の電荷のやり取りにより得られた、P型もしくはN型の半導体(ナノデバイス材料)の光吸収スペクトル特性図である。図7(a)はTCNQ(アクセプタ)を包含させた場合、図7(b)はTDAE(ドナー)を包含させた場合であり、aは本発明のナノデバイス材料、bは従来のナノデバイス材料、cはそれらの差分をそれぞれ示している、図7(a)および図7(b)は、それぞれ横軸に光子エネルギー(eV)、縦軸に吸光度(相対単位)を示している。
【0035】
このように、カーボンナノチューブと電荷移動を起こす材料の間で電荷のやり取りが行われ、P型〔図7(a)〕もしくはN型〔図7(b)〕の半導体となっていることが、図7の光吸収スペクトル特性から明らかである。
【0036】
図8は本発明の第2実施例を示すカーボンナノチューブと2種類以上の電荷移動を起こす材料との間の電荷のやりとりにより、1つのカーボンナノチューブの中にP型半導体とN型半導体の部分を同時に有するナノデバイス材料を示す模式図である。
【0037】
この図において、41はカーボンナノチューブ、42はアクセプタ、43はドナーを示している。
【0038】
このように、カーボンナノチューブ41内に2種類以上の電荷移動を起こす材料であるアクセプタ42とドナー43を包含させると、電荷のやりとりが行われ、カーボンナノチューブ41の中にP型半導体の部分44とN型半導体の部分45が同時に得られる。
【0039】
図9は本発明の第3実施例を示すカーボンナノチューブのナノデバイス材料を用いたナノデバイスの例を示す模式図である。
【0040】
この図において、51は第1の電極(ゲート電極)、52は絶縁膜(ゲート酸化膜)、53はその絶縁膜52上に形成される第2の電極(ソース電極)、54はその第2の電極53と対向する第3の電極(ドレイン電極)、55は第2の電極53と第3の電極54の間に配置されるカーボンナノチューブ、56はそのカーボンナノチューブ55の内部に包含される材料(例えば、TCNQからなるアクセプタ)である。
【0041】
この図から明らかなように、ゲート電極51、ゲート酸化膜52、ソース電極53、ドレイン電極54、カーボンナノチューブ55とその内部に包含されるアクセプタ56からなるP型チャネルを有する電界効果トランジスタ50を構成することができる。
【0042】
図10は本発明の第4実施例を示すカーボンナノチューブのナノデバイス材料を用いたナノデバイスと、N型半導体の材料を組み合わせた電子デバイスの例を示す模式図である。
【0043】
この図において、61は絶縁膜、62は第1の電極、63はカーボンナノチューブ64とその内部に包含されるアクセプタ65からなるP型半導体、66はN型半導体、67は第2の電極である。
【0044】
この図から明らかなように、P型半導体63と接合するN型半導体66を有するP−Nダイオード60を構成することができる。
【0045】
本発明によれば、上記したように、カーボンナノチューブ内にカーボンナノチューブとの間で電荷移動を起こす分子を内包させて、カーボンナノチューブの電子状態を制御することができる。つまり、電子を与える分子(ドナー)を内包させるとN型半導体が形成され、逆に電子を受け取る分子(アクセプタ)を内包させるとP型半導体が形成される。
【0046】
具体的には、カーボンナノチューブから電子を受け取る性質を持つ分子を用いるとP型半導体のデバイス材料を、電子をカーボンナノチューブに与える性質を持つ分子を用いるとN型半導体のデバイス材料を作製できる。
【0047】
このデバイスは、空気中でも安定であり、かつ溶液プロセスを用いることが可能な点が、従来用いられる化合物との最も大きな違いである。
【0048】
さらに、電荷移動を起こす分子を高密度にカーボンチューブ内に内包すると、全てのチューブに金属的伝導性を有するものとしての働きをさせることができる。つまり、この方法によると元々は金属的導電体と半導体の混ざり物であったカーボンナノチューブを、全て金属にすることができる。
【0049】
このように、別々に作製したP型半導体とN型半導体のチューブを接合して、ナノスケールのトランジスタやダイオードや発光素子などのデバイスの作製が可能である。
【0050】
また、同様の方法で1本のカーボンナノチューブ内にP型半導体の部分とN型半導体の部分を作製して、ダイオードや発光素子などのデバイスにすることも可能である。さらに、金属的伝導性を有するチューブを利用すれば、ナノデバイスにおける金属ワイヤーとしての利用価値はもちろん、カーボンナノチューブのみであらゆる回路を作製することもできる。
【0051】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0052】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏することができる。
【0053】
(A)空気中で安定な、P型・N型・金属(伝導体)カーボンナノチューブを作製することができる。
【0054】
(B)本発明の種々の型のカーボンナノチューブを有するナノデバイス材料を組み合わせることにより、ナノスケールで様々なデバイス、つまりトランジスタ、ダイオード、発光素子、レーザー発振素子、又は論理回路を作製することができる。
【0055】
(C)1本のカーボンナノチューブ内でもP−N接合を作製することができる。
【0056】
(D)本発明のナノデバイス材料を既存の材料と組み合わせても様々なデバイスを作製することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示すカーボンナノチューブを用いたナノデバイス材料を示す模式図である。
【図2】本発明の第1実施例を示すカーボンナノチューブ(CNT)の内部に包含させる材料となり得る各種の分子の化学式を示す図である。
【図3】本発明の第1実施例にかかるカーボンナノチューブ内にカーボンナノチューブとの間で電荷移動を起こす分子を内包してカーボンナノチューブの電子状態を制御する様子を示す模式図である。
【図4】本発明にかかるカーボンナノチューブ内に電荷移動を起こす材料を内包させることによる利点を示す図である。
【図5】本発明の第1実施例にかかる電荷の移動を起こす分子の密度とその電気特性を示す模式図である。
【図6】本発明の第1実施例にかかるカーボンナノチューブと電荷移動を起こす材料間の電荷のやり取りによって得た金属的伝導性を示すナノデバイス材料の電気伝導度特性を示す図である。
【図7】本発明の第1実施例を示すカーボンナノチューブと電荷移動を起こす材料との間の電荷のやり取りにより得られたP型もしくはN型の半導体(ナノデバイス材料)の光吸収スペクトル特性図である。
【図8】本発明の第2実施例を示すカーボンナノチューブと2種類以上の電荷移動を起こす材料との間の電荷のやりとりにより、1つのカーボンナノチューブの中に複数のP型半導体とN型半導体の部分を有するナノデバイス材料を示す模式図である。
【図9】本発明の第3実施例を示すカーボンナノチューブのナノデバイス材料を用いたナノデバイスの例を示す模式図である。
【図10】本発明の第4実施例を示すカーボンナノチューブのナノデバイス材料を用いたナノデバイスと、N型半導体の材料を組み合わせた電子デバイスの例を示す模式図である。
【符号の説明】1,11,15,22,31,35,41,55,64 カーボンナノチューブ(CNT)
2,21 TCNQ
12,43 ドナー
13 N型半導体
16,42 アクセプタ
17 P型半導体
32,36 電荷の移動を起こす分子
44 P型半導体の部分
45 N型半導体の部分
50 電界効果トランジスタ
51 第1の電極(ゲート電極)
52 絶縁膜(ゲート酸化膜)
53 第2の電極(ソース電極)
54 第3の電極(ドレイン電極)
56 カーボンナノチューブの内部に包含される材料
61 絶縁膜
62 第1の電極
63 P型半導体
65 アクセプタ
66 N型半導体
67 第2の電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device material and a device using the same, and more particularly, to a nanoscale device material using a carbon nanotube and a device using the same.
[0002]
[Prior art]
In recent years, the performance of computers has been dramatically improved, but in order to achieve higher performance, it is essential to manufacture devices on a nanoscale. Technically, nano-sized P-type and N-type semiconductor materials and a metal material connecting them are indispensable for performing the current device manufacturing method on a nano-scale.
[0003]
[Non-patent document 1]
Dresselhaus, M .; S. , Dresselhaus, G .; & Avouris, P .; (Eds.) Carbon Nanotubes (Spring, Berlin, 2001).
[Non-patent document 2]
Figure 2004311733
[Non-Patent Document 3]
Derycke, V .; , Martel, R .; , Appenzeller, J. et al. & Avouris, P .; Controlling doping and carrier injection in carbon nanotube transformers. Appl. Phys. Lett. 80, 2773-2774 (2002).
[Non-patent document 4]
Kong, J .; et al. Nanotube molecular wires as chemical sensors. Science 287, 622-625 (2000).
[Non-Patent Document 5]
Collins, P.C. , Bradley, K .; , Ishigami, M .; & Zettle. , A. Extreme oxygen sensibility of properties properties of carbon nanotubes. Science 287, 1801-1804 (2000).
[Non-Patent Document 6]
Martel, R .; et al. Abipolar electrical transport in semiconductive single-wall carbon nanotubes. Phys. Rev .. Lett. 87, 106801 (2001).
[Non-Patent Document 7]
Zhou, C .; , Kong, J. et al. , Yenilmez, E .; & Dai, H .; Modulated chemical doping of indi- vidual carbon nanotubes. Science 290, 1552-1555 (2000).
[Non-Patent Document 8]
Kazaoui, S .; , Minami, N .; Jacquemin, R .; , Kataura, H .; & Achiba, Y .; Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy. Phys. Rev .. B60, 13339-13342 (1999).
[Non-Patent Document 9]
Kazaoui, S .; , Minami, N .; , Matsuda, N .; , Kataura, H .; & Achiba, Y .; Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and action. Appl. Phys. Lett. 78, 3433-3435 (2001).
[Non-Patent Document 10]
Jouguelet, E .; Mathis, C .; & Petit, P.M. Controlling the electronic properties of single-wall carbon nanotubes by chemical doping. Chem. Phys. Lett. 318, 561-564 (2000).
[Non-Patent Document 11]
Kong, J .; & Dai, H .; Full and modified chemical gating of individual carbon nanotubes by organic amine. J. Phys. Chem. B105, 2890-2893 (2001).
[0004]
[Problems to be solved by the invention]
Carbon nanotubes are cylindrical molecules consisting of only carbon atoms discovered in 1991 and are themselves expected to be nano-sized device materials because they are nano-sized wires. Carbon nanotubes include those exhibiting metallic conduction and those of intrinsic semiconductors. Generally, the material obtained is a mixture of these at a ratio of 1: 2. In recent years, a method of extracting only an intrinsic semiconductor from these mixed substances has been established, but a method of extracting only an object exhibiting metallic conduction is a major problem.
[0005]
A technique for preparing a P-type semiconductor and an N-type semiconductor is also a major issue. As a method for converting all tubes into a P-type or N-type semiconductor or a material exhibiting metallic conduction, there is a method of causing an alkali metal or a halogen element to react to cause charge transfer to control the electronic state of the carbon nanotube. However, carbon nanotubes obtained by this method are unstable in the air, and have a serious problem in practical use. Separately, a method of reacting a molecule that causes charge transfer between the carbon nanotube and the carbon nanotube to the outside of the carbon nanotube has been described, but in this case, stability in the air is a problem.
[0006]
Also, a method for synthesizing many samples at once has not been established. Furthermore, there are many problems in practical use, for example, it is difficult to use a solution process.
[0007]
The present invention solves this problem by encapsulating molecules (e.g., TCNQ and TTF) that cause charge transfer between the carbon nanotubes in the semiconductor carbon nanotubes, thereby providing a nanoscale that is stable even in the atmosphere. Device materials found.
[0008]
The present invention has been made in view of the above circumstances, and has as its object to provide a nanodevice material having a nanoscale P-type semiconductor material / N-type semiconductor material using a carbon nanotube and a metal material, and a nanodevice using the same. Things.
[0009]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above object,
[1] The nanodevice material is characterized in that a material that causes charge transfer is contained inside the carbon nanotube.
[0010]
[2] The nanodevice material according to [1], wherein the material causing the charge transfer is an organic molecule of a donor having an ionization energy of 6.6 eV or less or an acceptor having an electron affinity of 2.6 eV or more. And
[0011]
[3] The nanodevice material according to [2], wherein the organic molecule is TCNQ, TTF, TDAE, TMTSF, F 4 TCNQ, or DNBN.
[0012]
[4] The nanodevice material according to [1], further comprising a P-type or N-type semiconductor in which electric charge is exchanged between the carbon nanotube and the material that causes the charge transfer.
[0013]
[5] In the nanodevice material according to [1], charges are exchanged between the carbon nanotube and two or more kinds of materials that cause charge transfer, and a P-type semiconductor and an N-type semiconductor are contained in the carbon nanotube. Are simultaneously provided.
[0014]
[6] In the nanodevice material according to the above [1], charges are exchanged between the carbon nanotube and the material causing the charge transfer, and the density of the material is increased so that metallic material is contained in the carbon nanotube. It has a portion exhibiting conductivity.
[0015]
[7] A nanodevice manufactured using the nanodevice material according to any one of [1] to [6].
[0016]
[8] The nanodevice according to [7] is an electronic device in which a P-type semiconductor material and an N-type semiconductor material are combined.
[0017]
[9] The nanodevice according to the above [8], wherein the electronic device is a transistor, a diode, a light emitting element, a laser oscillation element, or a logic circuit.
[0018]
[10] The nanodevice according to [9], wherein the electronic device is manufactured by combining a P-type semiconductor material or an N-type semiconductor material with another material.
[0019]
[11] The nanodevice according to [10], wherein the electronic device is a transistor, a diode, a light emitting element, a laser oscillation element, or a logic circuit.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 is a schematic diagram showing a nanodevice material using carbon nanotubes according to a first embodiment of the present invention.
[0022]
As shown in this figure, in the first embodiment, as a material that causes charge transfer, a carbon nanotube (CNT) 1 is made of TCNQ (Tetracyano-p-quinodimethane) 2 [a molecule (acceptor) having a property of receiving an electron. Is included.
[0023]
FIG. 2 is a diagram showing the chemical formulas of various molecules that can be a material to be included in the carbon nanotube (CNT) according to the first embodiment of the present invention.
[0024]
In FIG. 1, TCNQ2 is shown as a material included in the carbon nanotube 1. However, as a material causing such charge transfer, TTF (Tetrathiafulvalene), TDAE (Tetrakis (dimethylamino) ethylene), or TMTSF is used instead of TCNQ2. Molecules such as (tetramethyl-tetraselenafulvalene), F 4 TCNQ (tetrafluorotetracyano-p-quinodidimethane), and DNBN (3,5-Dinitrobenzontrile) can be used. In particular, an organic molecule that can be a donor having an ionization energy of 6.6 eV or less or an acceptor having an electron affinity of 2.6 eV or more is preferable.
[0025]
At this time, for example, if a molecule (acceptor) having a property of receiving electrons from the carbon nanotube 1 such as TCNQ is included, a device material of a P-type semiconductor, for example, a molecule (donor) for giving electrons such as TDAE to the carbon tube 1 is provided. Is included, an N-type semiconductor device material can be produced.
[0026]
FIG. 3 is a schematic view showing a state in which the carbon nanotube according to the first embodiment of the present invention contains molecules that cause charge transfer with the carbon nanotube to control the electronic state of the carbon nanotube.
[0027]
FIG. 3A shows an N-type semiconductor 13 in which a plurality of donors 12 are contained in a carbon nanotube 11, and FIG. 3B shows a plurality of acceptors 16 in a carbon nanotube 15. A P-type semiconductor 17 is shown.
[0028]
FIG. 4 is a diagram showing an advantage obtained by including a material causing charge transfer in the carbon nanotube according to the first embodiment of the present invention.
[0029]
As shown in FIG. 4A, when TCNQ21, which is a material causing charge transfer, exists alone, it is unstable because it is strongly affected by oxygen and the like in the atmosphere. As shown in ()), when TCNQ21, which is a material that causes charge transfer, exists in the carbon nanotube 22, it is protected by the carbon nanotube 22 and is not affected by oxygen or the like, and is stable in the air.
[0030]
FIG. 5 is a schematic diagram showing the density of molecules causing charge transfer and their electrical characteristics according to the first embodiment of the present invention.
[0031]
As shown in FIG. 5A, when the molecules 32 that cause the transfer of charges in the carbon nanotube 31 are sparse, they function as a semiconductor, and as shown in FIG. When the density of the molecules 36 that cause the transfer of electric charges therein is high, the electric resistance is low, and functions as a metal.
[0032]
FIG. 6 is an electrical conductivity characteristic diagram of a nanodevice material showing metallic conductivity obtained by exchanging charges between the carbon nanotube and the material causing charge transfer according to the first embodiment of the present invention. Temperature (K) and resistance (Ω) are shown on the vertical axis.
[0033]
As is apparent from this figure, the carbon nanotubes were doped with TCNQ to have metallic conductivity as shown by curve a (resistance was almost 0). The curve b shows the temperature-resistance characteristics of the conventional carbon nanotube.
[0034]
FIG. 7 shows a first embodiment of the present invention. The light absorption spectrum characteristics of a P-type or N-type semiconductor (nanodevice material) obtained by exchanging charges between a carbon nanotube and a material causing charge transfer. FIG. FIG. 7 (a) shows the case where TCNQ (acceptor) is included, and FIG. 7 (b) shows the case where TDAE (donor) is included, where a is the nanodevice material of the present invention, and b is the conventional nanodevice material. , C show the difference between them. FIGS. 7A and 7B show the photon energy (eV) on the horizontal axis and the absorbance (relative unit) on the vertical axis, respectively.
[0035]
As described above, the exchange of charge between the carbon nanotube and the material that causes charge transfer is performed, and a P-type (FIG. 7A) or N-type (FIG. 7B) semiconductor is obtained. This is apparent from the light absorption spectrum characteristics of FIG.
[0036]
FIG. 8 shows a second embodiment of the present invention, in which a P-type semiconductor portion and an N-type semiconductor portion are formed in one carbon nanotube by exchanging charges between the carbon nanotube and a material causing two or more kinds of charge transfer. It is a schematic diagram which shows the nano device material which has simultaneously.
[0037]
In this figure, 41 indicates a carbon nanotube, 42 indicates an acceptor, and 43 indicates a donor.
[0038]
As described above, when the acceptor 42 and the donor 43, which are the materials that cause two or more kinds of charge transfer, are included in the carbon nanotube 41, the charge exchange is performed, and the carbon nanotube 41 includes the P-type semiconductor portion 44. An N-type semiconductor portion 45 is obtained at the same time.
[0039]
FIG. 9 is a schematic view showing an example of a nanodevice using a carbon nanotube nanodevice material according to the third embodiment of the present invention.
[0040]
In this figure, 51 is a first electrode (gate electrode), 52 is an insulating film (gate oxide film), 53 is a second electrode (source electrode) formed on the insulating film 52, and 54 is the second electrode A third electrode (drain electrode) facing the electrode 53, a carbon nanotube 55 disposed between the second electrode 53 and the third electrode 54, and a material 56 contained in the carbon nanotube 55 (For example, an acceptor made of TCNQ).
[0041]
As is apparent from this figure, a field effect transistor 50 having a P-type channel comprising a gate electrode 51, a gate oxide film 52, a source electrode 53, a drain electrode 54, a carbon nanotube 55 and an acceptor 56 contained therein is formed. can do.
[0042]
FIG. 10 is a schematic diagram showing an example of an electronic device in which a nanodevice using a carbon nanotube nanodevice material according to the fourth embodiment of the present invention and an N-type semiconductor material are combined.
[0043]
In this figure, 61 is an insulating film, 62 is a first electrode, 63 is a P-type semiconductor comprising a carbon nanotube 64 and an acceptor 65 contained therein, 66 is an N-type semiconductor, and 67 is a second electrode. .
[0044]
As is clear from this figure, the PN diode 60 having the N-type semiconductor 66 joined to the P-type semiconductor 63 can be configured.
[0045]
According to the present invention, as described above, it is possible to control the electronic state of a carbon nanotube by including a molecule that causes charge transfer between the carbon nanotube and the carbon nanotube. That is, an N-type semiconductor is formed when a molecule (donor) that gives an electron is included, and a P-type semiconductor is formed when a molecule (acceptor) that receives an electron is included.
[0046]
Specifically, a device material of a P-type semiconductor can be manufactured by using a molecule having a property of receiving electrons from the carbon nanotube, and an N-type semiconductor device material can be manufactured by using a molecule having a property of giving an electron to the carbon nanotube.
[0047]
The most significant difference from the conventionally used compounds is that this device is stable even in air and can use a solution process.
[0048]
Furthermore, if molecules that cause charge transfer are included in the carbon tube at a high density, all the tubes can function as having metallic conductivity. That is, according to this method, the carbon nanotubes, which were originally a mixture of a metallic conductor and a semiconductor, can be entirely made of metal.
[0049]
In this manner, by joining tubes of a P-type semiconductor and an N-type semiconductor which are separately manufactured, a device such as a nanoscale transistor, a diode, or a light emitting element can be manufactured.
[0050]
Further, a P-type semiconductor portion and an N-type semiconductor portion can be formed in a single carbon nanotube by a similar method to make a device such as a diode or a light emitting element. Furthermore, if a tube having metallic conductivity is used, not only can it be used as a metal wire in a nanodevice, but also any circuit can be made using only carbon nanotubes.
[0051]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0052]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0053]
(A) P-type / N-type / metal (conductor) carbon nanotubes that are stable in air can be produced.
[0054]
(B) By combining nanodevice materials having various types of carbon nanotubes of the present invention, various devices can be manufactured on a nanoscale, that is, transistors, diodes, light-emitting elements, laser oscillation elements, or logic circuits. .
[0055]
(C) A PN junction can be produced even within one carbon nanotube.
[0056]
(D) Various devices can be manufactured by combining the nanodevice material of the present invention with an existing material.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a nanodevice material using carbon nanotubes according to a first embodiment of the present invention.
FIG. 2 is a view showing chemical formulas of various molecules which can be a material included in carbon nanotubes (CNT) according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram illustrating a state in which a molecule causing charge transfer between the carbon nanotube and the carbon nanotube is included in the carbon nanotube according to the first embodiment of the present invention to control the electronic state of the carbon nanotube.
FIG. 4 is a diagram showing advantages obtained by including a material that causes charge transfer in the carbon nanotube according to the present invention.
FIG. 5 is a schematic diagram showing the density of molecules causing charge transfer and their electrical characteristics according to the first embodiment of the present invention.
FIG. 6 is a diagram showing the electrical conductivity characteristics of a nanodevice material having metallic conductivity obtained by exchanging charges between the carbon nanotube and the material causing charge transfer according to the first embodiment of the present invention.
FIG. 7 is a light absorption spectrum characteristic diagram of a P-type or N-type semiconductor (nanodevice material) obtained by exchanging charges between a carbon nanotube and a material causing charge transfer, showing the first embodiment of the present invention. It is.
FIG. 8 shows a second embodiment of the present invention, in which a plurality of P-type semiconductors and N-type semiconductors are contained in one carbon nanotube by exchanging charges between the carbon nanotube and a material causing two or more kinds of charge transfer. FIG. 3 is a schematic view showing a nanodevice material having a portion of FIG.
FIG. 9 is a schematic diagram illustrating an example of a nanodevice using a carbon nanotube nanodevice material according to a third embodiment of the present invention.
FIG. 10 is a schematic diagram showing an example of an electronic device in which a nanodevice using a carbon nanotube nanodevice material and a N-type semiconductor material are combined according to a fourth embodiment of the present invention.
[Description of Signs] 1,11,15,22,31,35,41,55,64 Carbon nanotube (CNT)
2,21 TCNQ
12, 43 Donor 13 N-type semiconductor 16, 42 Acceptor 17 P-type semiconductor 32, 36 Molecule 44 causing charge transfer 44 Part of P-type semiconductor 45 Part of N-type semiconductor 50 Field-effect transistor 51 First electrode (gate electrode)
52 Insulating film (gate oxide film)
53 Second electrode (source electrode)
54 Third electrode (drain electrode)
56 Material included in carbon nanotube 61 Insulating film 62 First electrode 63 P-type semiconductor 65 Acceptor 66 N-type semiconductor 67 Second electrode

Claims (11)

カーボンナノチューブの内部に電荷移動を起こす材料が含有されていることを特徴とするナノデバイス材料。A nanodevice material, characterized in that a material causing charge transfer is contained inside the carbon nanotube. 請求項1記載のナノデバイス材料において、前記電荷移動を起こす材料は、イオン化エネルギーが6.6eV以下のドナーか、電子親和力が2.6eV以上のアクセプターの有機分子であることを特徴とするナノデバイス材料。2. The nanodevice material according to claim 1, wherein the material causing the charge transfer is a donor having an ionization energy of 6.6 eV or less or an acceptor organic molecule having an electron affinity of 2.6 eV or more. material. 請求項2記載のナノデバイス材料において、前記有機分子がTCNQ、TTF、TDAE、TMTSF、FTCNQ、DNBNであることを特徴とするナノデバイス材料。3. The nanodevice material according to claim 2, wherein the organic molecule is TCNQ, TTF, TDAE, TMTSF, F 4 TCNQ, or DNBN. 請求項1記載のナノデバイス材料において、前記カーボンナノチューブと前記電荷移動を起こす材料の間で電荷のやりとりが行われる、P型もしくはN型の半導体を具備することを特徴とするナノデバイス材料。The nanodevice material according to claim 1, further comprising a P-type or N-type semiconductor in which electric charge is exchanged between the carbon nanotube and the material that causes the charge transfer. 請求項1記載のナノデバイス材料において、前記カーボンナノチューブと2種類以上の電荷移動を起こす材料の間で電荷のやりとりが行われ、前記カーボンナノチューブの中にP型半導体とN型半導体の部分を同時に有することを特徴とするナノデバイス材料。2. The nanodevice material according to claim 1, wherein charges are exchanged between the carbon nanotube and two or more kinds of materials that cause charge transfer, and a P-type semiconductor and an N-type semiconductor are simultaneously placed in the carbon nanotube. A nanodevice material comprising: 請求項1記載のナノデバイス材料において、前記カーボンナノチューブと前記電荷移動を起こす材料の間で電荷のやりとりが行われ、該材料の密度を上げて、前記カーボンナノチューブの中に金属的伝導性を示す部分を有することを特徴とするナノデバイス材料。2. The nanodevice material according to claim 1, wherein charges are exchanged between the carbon nanotubes and the charge-transferring material, and the density of the materials is increased to exhibit metallic conductivity in the carbon nanotubes. A nanodevice material having a portion. 請求項1〜6記載の何れか1項に記載のナノデバイス材料を用いて作製されたナノデバイス。A nanodevice manufactured using the nanodevice material according to claim 1. 請求項7記載のナノデバイスが、P型半導体の材料とN型半導体の材料を組み合わせた電子デバイスであることを特徴とするナノデバイス。8. The nanodevice according to claim 7, wherein the nanodevice is a combination of a P-type semiconductor material and an N-type semiconductor material. 請求項8記載のナノデバイスにおいて、前記電子デバイスが、トランジスタ、ダイオード、発光素子、レーザー発振素子、又は論理回路であることを特徴とするナノデバイス。9. The nano device according to claim 8, wherein the electronic device is a transistor, a diode, a light emitting element, a laser oscillation element, or a logic circuit. 請求項9記載のナノデバイスにおいて、前記電子デバイスがP型半導体の材料またはN型半導体の材料を他の材料と組み合わせて作製されたものであることを特徴とするナノデバイス。10. The nanodevice according to claim 9, wherein the electronic device is manufactured by combining a P-type semiconductor material or an N-type semiconductor material with another material. 請求項10記載のナノデバイスにおいて、前記電子デバイスがトランジスタ、ダイオード、発光素子、レーザー発振素子又は論理回路であることを特徴とするナノデバイス。11. The nano device according to claim 10, wherein the electronic device is a transistor, a diode, a light emitting element, a laser oscillation element, or a logic circuit.
JP2003103643A 2003-04-08 2003-04-08 Nanodevice material and nanodevice using the same Expired - Fee Related JP3993126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103643A JP3993126B2 (en) 2003-04-08 2003-04-08 Nanodevice material and nanodevice using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103643A JP3993126B2 (en) 2003-04-08 2003-04-08 Nanodevice material and nanodevice using the same

Publications (2)

Publication Number Publication Date
JP2004311733A true JP2004311733A (en) 2004-11-04
JP3993126B2 JP3993126B2 (en) 2007-10-17

Family

ID=33466680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103643A Expired - Fee Related JP3993126B2 (en) 2003-04-08 2003-04-08 Nanodevice material and nanodevice using the same

Country Status (1)

Country Link
JP (1) JP3993126B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070155A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Capsuled body and method and apparatus for manufacturing it
JP2007184566A (en) * 2005-12-06 2007-07-19 Canon Inc Semiconductor element using semiconductor nanowire, and display device and imaging device employing same
US7253431B2 (en) 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
JP2007217273A (en) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd Unipolar carbon nanotube containing carrier-trapping material and unipolar field effect transistor
WO2008062642A1 (en) * 2006-11-22 2008-05-29 Nec Corporation Semiconductor device and method for fabricating the same
KR100857542B1 (en) 2007-07-19 2008-09-08 삼성전자주식회사 Carbon nano-tube(cnt) light emitting device and a manufacturing method thereof
JP2008266111A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for separating metallic carbon nanotube containing organic molecule and semiconductor carbon nanotube containing organic molecule from carbon nanotube containing organic molecule
JP2009033126A (en) * 2007-07-04 2009-02-12 Toray Ind Inc Organic transistor material and organic field effect transistor
US7687801B2 (en) 2005-01-06 2010-03-30 National Institute Of Advanced Industrial Science And Technology Dopant material, dopant material manufacturing method, and semiconductor device using the same
JP2012122864A (en) * 2010-12-09 2012-06-28 Institute Of Physical & Chemical Research Thermal measurement apparatus using single-layer carbon nanotubes
KR101285004B1 (en) * 2009-10-21 2013-07-10 주식회사 엘지화학 Diode comprising carbon nanotube doped with organic molecules
JP2018016811A (en) * 2012-03-30 2018-02-01 国立研究開発法人産業技術総合研究所 Actuator element using carbon electrode
CN109119528A (en) * 2018-08-17 2019-01-01 深圳大学 A kind of carbon nanotube and the preparation method and application thereof of charge-transfer complex modification

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253431B2 (en) 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
US7687801B2 (en) 2005-01-06 2010-03-30 National Institute Of Advanced Industrial Science And Technology Dopant material, dopant material manufacturing method, and semiconductor device using the same
JP2007070155A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Capsuled body and method and apparatus for manufacturing it
JP2007184566A (en) * 2005-12-06 2007-07-19 Canon Inc Semiconductor element using semiconductor nanowire, and display device and imaging device employing same
JP2007217273A (en) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd Unipolar carbon nanotube containing carrier-trapping material and unipolar field effect transistor
WO2008062642A1 (en) * 2006-11-22 2008-05-29 Nec Corporation Semiconductor device and method for fabricating the same
US8093580B2 (en) 2006-11-22 2012-01-10 Nec Corporation Semiconductor device and method of manufacturing the same
JP2008266111A (en) * 2007-03-27 2008-11-06 National Institute Of Advanced Industrial & Technology Method for separating metallic carbon nanotube containing organic molecule and semiconductor carbon nanotube containing organic molecule from carbon nanotube containing organic molecule
JP2009033126A (en) * 2007-07-04 2009-02-12 Toray Ind Inc Organic transistor material and organic field effect transistor
KR100857542B1 (en) 2007-07-19 2008-09-08 삼성전자주식회사 Carbon nano-tube(cnt) light emitting device and a manufacturing method thereof
US8373157B2 (en) 2007-07-19 2013-02-12 Samsung Electronics Co., Ltd. Carbon nano-tube (CNT) light emitting device and method of manufacturing the same
KR101285004B1 (en) * 2009-10-21 2013-07-10 주식회사 엘지화학 Diode comprising carbon nanotube doped with organic molecules
JP2012122864A (en) * 2010-12-09 2012-06-28 Institute Of Physical & Chemical Research Thermal measurement apparatus using single-layer carbon nanotubes
JP2018016811A (en) * 2012-03-30 2018-02-01 国立研究開発法人産業技術総合研究所 Actuator element using carbon electrode
US10367429B2 (en) 2012-03-30 2019-07-30 National Institute Of Advanced Industrial Science And Technology Actuator element using carbon electrode
US11121646B2 (en) 2012-03-30 2021-09-14 National Institute Of Advanced Industrial Science & Technology Actuator element using carbon electrode
CN109119528A (en) * 2018-08-17 2019-01-01 深圳大学 A kind of carbon nanotube and the preparation method and application thereof of charge-transfer complex modification

Also Published As

Publication number Publication date
JP3993126B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
Javey et al. Electrical properties and devices of large-diameter single-walled carbon nanotubes
Zhang et al. ReS2‐based field‐effect transistors and photodetectors
Brohmann et al. Temperature-dependent charge transport in polymer-sorted semiconducting carbon nanotube networks with different diameter distributions
Wang et al. Organic heterostructures in organic field-effect transistors
Shimada et al. Ambipolar field-effect transistor behavior of Gd@ C 82 metallofullerene peapods
Star et al. Nanotube optoelectronic memory devices
Rother et al. Understanding charge transport in mixed networks of semiconducting carbon nanotubes
Zhang et al. Flexible CMOS‐like circuits based on printed P‐type and N‐type carbon nanotube thin‐film transistors
JP3993126B2 (en) Nanodevice material and nanodevice using the same
Biswas et al. Chemically doped random network carbon nanotube p–n junction diode for rectifier
Liu et al. A fully tunable single-walled carbon nanotube diode
US20070158642A1 (en) Active electronic devices with nanowire composite components
JP3963393B2 (en) Carbon nanotube field effect transistor and method of manufacturing the same
Lee et al. Effect of polymer gate dielectrics on charge transport in carbon nanotube network transistors: low-k insulator for favorable active interface
Wang et al. Graphene/metal contacts: bistable states and novel memory devices
Cho et al. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors
Li et al. Ultrahigh Mobility of p‐Type CdS Nanowires: Surface Charge Transfer Doping and Photovoltaic Devices
Peng et al. A doping-free approach to carbon nanotube electronics and optoelectronics
Zhang et al. Carbon‐nanotube‐confined vertical heterostructures with asymmetric contacts
Wang et al. Understanding the solvent effects on polarity switching and thermoelectric properties changing of solution-processable n-type single-walled carbon nanotube films
Kumar et al. Black phosphorus unipolar transistor, memory, and photodetector
Zou et al. High‐performance solution‐processed 2D p‐type WSe2 transistors and circuits through molecular doping
KR100668355B1 (en) Unipolar nanotube transistor having carrier-trapping material and field effect transistor having the same
Gotthardt et al. Molecular n-doping of large-and small-diameter carbon nanotube field-effect transistors with tetrakis (tetramethylguanidino) benzene
Chai et al. Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees