JP2004311174A - Substrate for transparent electrode, and manufacturing method of the same - Google Patents

Substrate for transparent electrode, and manufacturing method of the same Download PDF

Info

Publication number
JP2004311174A
JP2004311174A JP2003101971A JP2003101971A JP2004311174A JP 2004311174 A JP2004311174 A JP 2004311174A JP 2003101971 A JP2003101971 A JP 2003101971A JP 2003101971 A JP2003101971 A JP 2003101971A JP 2004311174 A JP2004311174 A JP 2004311174A
Authority
JP
Japan
Prior art keywords
substrate
transparent
conductive film
film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003101971A
Other languages
Japanese (ja)
Inventor
Takuya Kawashima
卓也 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003101971A priority Critical patent/JP2004311174A/en
Publication of JP2004311174A publication Critical patent/JP2004311174A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a transparent electrode excellent in conductivity and transparency, and a manufacturing method of the same. <P>SOLUTION: A transparent conductive film 2 composed of indium oxide and tin is formed on the transparent substrate 1, and the mean value of the roughness of the surface of the transparent conductive film is 120 nm or less. It is preferable for the transparent conductive film 2 that the transmissivity of the light with a wave length of 550 nm is 80% or higher, and the specific resistance after film formation is 3.0×10<SP>-4</SP>Ωcm or less. The temperature of the substrate for the transparent electrode during the formation of the transparent conductive film 2 is not lower than 280°C and not higher than 480°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子や太陽電池に代表される光電変換素子などの透明電極板等に使用される透明電極基材及びその製造方法に関し、透明電極基材を構成する透明導電膜が優れた電導性と透過性とを併せ持つようにしたものである。
【0002】
【従来の技術】
液晶表示素子や太陽電池などの透明電極板としては、ガラス板などの透明基材表面上に、酸化インジウムに数%のスズを添加してなる薄膜;酸化インジウム・スズ膜[以下、ITO(Indium−Tin−Oxide)膜と呼称する]を、例えば50〜1000nm程度の厚さで設けたものが広く使用されている。
【0003】
このようなITO膜では、3価のインジウム(In3+)席に置換した4価のスズ(Sn4+)がキャリア電子を発生するため、ITO膜は電気をよく通す性質を備えている。また、ITO膜は、エネルギーギャップが紫外域に対応するため可視光をほとんど吸収しないので、太陽光を構成する可視光スペクトルの大部分を透過させる能力も備えている。
【0004】
従来、このような優れた導電性と透過性とを併せ持つITO膜は、減圧雰囲気を要する真空成膜法、例えばスパッタ法や蒸着法、CVD法等に代表される方法によって形成されている。
【0005】
このような方法を用いれば、透明性に優れ、かつ高い導電性を備えた膜が得られる反面、減圧雰囲気で薄膜形成を行う装置は、導入コストが高く、その後の運転コストも高くなる傾向が強く、さらには広い面積に渡って均一な膜を得ることも難しいという課題があった。
【0006】
後者を具体的に述べると、成膜するバッチ毎に、あるいは大面積に成膜した際には局所的に、透明導電膜の透過率及び/又は比抵抗が増大してしまう傾向があった。この理由は、ITO膜を構成する結晶粒子の成長にバラツキが生じた結果、透明導電膜の性状が変動するためと考えられている。
【0007】
このようなITO膜が形成された透明電極板を用いて、例えば色素増感太陽電池を構成する場合には、この透明電極板のITO膜上に、光電変換層として機能する酸化チタンなどの酸化物半導体の微粉末からなるペーストを塗布し、次いで焼成することにより、多孔質の酸化物半導体膜を形成する。
【0008】
しかしながら、ITO膜を構成する結晶粒子の成長のバラツキは、当然にその表面性状のバラツキも招くことになる。その結果、例えば太陽光の入射により光電変換層で生じた電子あるいはホールがITO膜側へ伝導するのを阻害する要因となってしまい、ひいては得られた色素増感太陽電池の光電変換効率の低下を引き起こしてしまう恐れがあった。
これは、太陽電池等における初期特性の不安定性や長期信頼性の低下に繋がるので、その対応策の開発が期待されていた。
【0009】
このような透明電極用基材に関する先行技術文献としては、以下のようなものが知られている。
【0010】
【特許文献1】
特開平10−53418号公報
【特許文献2】
特開2000−212514号公報
【0011】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、優れた電導性と透過性とを併せ持つ透明電極用基材及びその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明に係る透明電極用基材は、透明基材上にインジウム・スズ・オキサイドからなる透明導電膜が設けてなり、前記透明導電膜はその表面をなす凹部と凸部との差分の平均値が120nm以下であることを特徴としている。
【0013】
透明基材上に、その表面をなす凹部と凸部との差分の平均値が120nm以下である透明導電膜を載置してなる透明電極用基材は、優れた導電性すなわち一桁台のシート抵抗および3x10−4Ω・cm以下の極めて低い比抵抗と、優れた透過性すなわち80%以上の透過率とを、兼ね備えた透明導電膜を具備することができる。
【0014】
換言すると、上記構成からなる透明電極用基材であれば、例えば光電変換層と接する透明導電膜が極めて平坦な形態を備えているので、光電変換層と透明導電膜との界面の乱れを極めて小さく抑えられる。
【0015】
また、この透明導電膜は優れた透過性を有することから、透明電極用基材を通して光電変換層へ入射する太陽光は殆ど遮られることなく光電変換層へ到達するので、入射光は十分に活用される。
【0016】
さらに、この透明導電膜は優れた導電性も有することから、上記入射した太陽光により光電変換層で生じた電子あるいはホールは透明導電膜側へ向かって進む際に、光電変換層と透明導電膜との界面において阻害されにくくなる。
【0017】
したがって、上記構成を備えてなる透明電極用基材は、その上に配した光電変換層で生じた電子あるいはホールを透明導電膜中へ容易に移動させることができるので、発電効率の高い太陽電池をもたらす。また、光電変換層に変えて液晶部材等を透明導電膜上に配した場合には、例えば動画表示等で要求される高速応答性に優れた液晶表示素子をもたらす。
【0018】
かかる構成の透明電極用基材において、透明導電膜は波長550nmの光に対する透過率が80%以上であることが好ましい。
【0019】
また、かかる構成の透明電極用基材において、透明導電膜は成膜後における比抵抗が3.0×10−4Ω・cm以下であることが望ましい。
【0020】
本発明に係る透明電極用基材の製造方法は、透明基材上にインジウム・スズ・オキサイドからなる透明導電膜を設けてなる透明電極用基材の製造方法であり、前記透明導電膜を成膜する際の前記透明基材の温度が、280℃以上480℃以下であることを特徴としている。
【0021】
上記製造方法によれば、透明導電膜を成膜する際の前記透明基材の温度を280℃以上480℃以下に限定したことにより、成膜後における比抵抗が3.0×10−4Ω・cm以下という透明導電膜が安定して得られる。また、この成膜条件を満たせば、同時に、波長550nmの光に対する透過率を80%以上にすることも可能となる。
【0022】
上記の形成方法としては、例えば塗布法や蒸着法、スパッタ法、CVD法等、公知の如何なる成膜法を用いても構わないが、低コストを図るためには減圧環境の不要であり、大面積な薄膜を低コストで簡便に形成できる塗布法が好ましく、中でも透明基材の被成膜面の形状に依存せず、大面積で、均一かつ均質な透明導電膜を容易に形成できるという特長をさらに備えているスプレー熱分解堆積法がより好ましい。
【0023】
【発明の実施の形態】
以下、実施の形態に基づいて本発明を詳しく説明する。
図1は、本発明に係る透明電極用基材の一例を示す模式的な断面図であり、図中符号1は透明基材を示す。この透明基材1は、例えば、ソーダガラス、耐熱ガラス、石英ガラスなどのガラスからなる厚さが0.3〜5mm程度のガラス板である。
【0024】
この透明基材1のガラス板の一方の表面には、透明導電膜2として酸化インジウム・スズ膜(ITO膜)が形成されている。このITO膜は、スパッタ法、CVD法、スプレー熱分解堆積法(SPD法)などの薄膜形成手段により形成された薄膜である。
【0025】
この透明導電膜2をなすITO膜は、導電性、光透過性がほぼ良好であり、膜厚が厚くなれば透明導電膜としての導電性が高くなり好ましいが、光透過性が低下してくる傾向を示すことから、その好ましい膜厚の範囲は100nm以上1000nm以下である。
【0026】
本発明者は、スプレー熱分解堆積法(SPD法)を用いて透明基材1の上に透明導電膜2を形成する際に、透明基材1の温度(以下、成膜温度と呼ぶ)を220℃から500℃の範囲で変えて作製した。表1には、透明導電膜2の作製条件を示した。
【0027】
【表1】

Figure 2004311174
【0028】
このSPD法とは、原料化合物溶液を加熱された基材上に噴霧し、基材上で熱分解反応を生起せしめて酸化物微粒子を生成し、この酸化物微粒子を基材表面に堆積してゆく薄膜形成手段の1種である。かかるSPD法によって、ITO膜を形成するには、InCl及びSnClからなる出発原料と、エタノールからなる溶媒とを混合した溶液を原料化合物溶液として用いることにより可能となる。
【0029】
その際、ITO膜を形成するために使用した原料化合物溶液の調製は、次の通りとした。塩化インジウム(III)四水和物(InCl・4HO,Fw:293.24)3.33gと、塩化スズ(II)2水和物(SnCl・2HO,Fw:225.65)0.135gとを、エタノール60mlに溶解し、さらにこの混合物を超音波洗浄機に約20分間かけ、完全に溶解して、ITO膜用原料化合物溶液とした。
【0030】
ついで、透明基材1をなす厚さ1.1mmのガラス板(コーニング社製、#7059)の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した。このヒータ加熱により透明基材1が所定の温度になったところで、ITO膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ノズルからガラス板(透明基材1)までの距離を400mmとして、5〜50分間噴霧した。これにより、透明基材1をなすガラス板上に一定の厚さ(400nm、800nm)のITO膜が形成され、本発明による透明電極用基材が得られた。その際、塗布時間を適宜制御することにより、上記所定の厚さをもつITO膜を形成した。
【0031】
換言すると、透明基材1上に透明導電膜2をなすITO膜を形成する場合は、大気圧下において、所定の温度に加熱・保持された状態にある透明基材1の被成膜面に対して、前述したITO膜用原料化合物溶液をノズルを通して吹き付ける操作を行い、透明基材1の上に塗布することによって、図1に示すような透明基材1上に透明導電膜2が配された透明電極用基材が得られる。
【0032】
表2及び表3は、透明導電膜2を透明基材1上に形成する際の透明基材1の温度(基材温度とも呼ぶ)と、得られた透明導電膜2について電導特性(シート抵抗、比抵抗)と光学特性(透過率)と測定した結果である。表2はITO膜の厚さを400nmとした場合であり、表3は800nmとした場合を示す。なお、表2及び表3では、基材温度を220℃から500℃の所定の温度とした透明基材1上に、上述した一定の成膜条件によりITO膜を形成した。
【0033】
【表2】
Figure 2004311174
【0034】
【表3】
Figure 2004311174
【0035】
ここで、シート抵抗と比抵抗は四端子法により測定した数値である。また、透過率は波長550nmの光を用いた測定した数値であり、透明基材1の影響は取り除いた、透明導電膜2のみの性能である。なお、シート抵抗、比抵抗および透過率は全て、透明導電膜2を成膜した後に測定した数値である。
【0036】
表2及び表3から、以下の点が明らかとなった。
(1)成膜時の基材温度が280℃以上のとき、透明導電膜2のシート抵抗は一桁に抑えることができる。280℃より低温の場合、このシート抵抗は急増し、二桁台になることが確認された。
【0037】
(2)これに対して、透明導電膜2の透過率は基材温度が上昇するにつれて、徐々に減少する傾向を示し、480℃を越えると透過率は80%を大幅に下回ることが分かった。つまり、480℃以下であれば、透明導電膜2は80%以上の透過率を備えることができる。
【0038】
(3)また、基材温度が280℃〜480℃の範囲では、透明導電膜2の比抵抗は3x10−4Ω・cm以下の極めて低い数値が、安定して得られることが判明した。
【0039】
(4)透明導電膜2の厚さが少なくとも400nm〜800nmの範囲では、上記(1)〜(3)の傾向は同様に得られる。
【0040】
したがって、SPD法を用い、透明基材1の上に透明導電膜2としてITO膜を形成する場合には、透明基材1の温度管理が重要であり、特に透明基材1の温度を280℃以上480℃以下の範囲とすることで、透明導電膜2の厚さに依存することなく、優れた導電性と透過性を兼ね備えた透明導電膜2が製造できる。
【0041】
上記実験結果から、本発明によれば、前記透明導電膜として、波長550nmの光に対する透過率が80%以上であるITO膜が作製できるので、可視域の入射光を十分に利用可能なデバイス用途の透明電極用基材が提供できることが分かった。
【0042】
また上記実験結果から、本発明によれば、前記透明導電膜として、成膜後における比抵抗が3.0×10−4Ω・cm以下であるITO膜が作製できるので、エネルギー・ロスの極めて少ない電導性が確保できる透明電極用基材が得られることが明らかとなった。
【0043】
本発明におけるITO膜の表面をなす凹部と凸部との差分の平均値とは、FE−SEMを用いたITO膜の断面観察において、観測画面内の30点を測定し、各測定点における差分の合計を30で除した数値である。例えば、膜厚800nmのITO膜の場合は、表4に示すように、この差分の平均値が120nm以下であることが分かった。
【0044】
本発明に係る透明電極用基材の製造方法は、透明基材1上に酸化インジウム・スズからなる透明導電膜2を設けてなる透明電極用基材の製造方法において、透明導電膜2を成膜する際の透明基材1の温度を280℃以上480℃以下とすることにより、上述した優れた導電性と透過性とを併せ持つ透明導電膜2を透明基材1上に配してなる透明電極用基材の安定した製造に寄与する。
【0045】
かかる製造方法では、上述したように、透明導電膜2はスプレー熱分解堆積法により形成することが好ましい。この方法は、従来の真空プロセスを必須とした成膜法とは異なり、透明導電膜2が塗布される環境を減圧雰囲気にする必要がない。つまり、スプレー熱分解堆積法は、真空プロセスに要する付帯設備を用意するがいらず、またこの付帯設備を設置するスペースも不要となる。さらにはこの付帯設備を稼働させるために要する電力等も削減できる。
【0046】
また、スプレー熱分解堆積法では、ITO膜用原料化合物溶液をノズルを通して透明基材1に吹き付ける操作により、透明基材1に透明導電膜2を成膜する。その際に、このノズルを透明基材1の上空で、透明基材1の被成膜面内方向に2次元的に走査しさえすれば、いかなる大面積の膜でも自由に形成できる。さらには、透明基材1とノズルとの間隔も制御し、3次元的に走査すると透明基材1がいかなる曲面であっても、所定膜厚のITO膜が安定して得られる。
【0047】
よって、スプレー熱分解堆積法を採用して透明導電膜2を形成することにより、大幅なコストダウンが図れるとともに、優れた導電性と透過性を併せ持つ透明導電膜2を、様々な表面形状をもつ透明基材1上に均一な厚さで設けることが可能となるので好ましい。
【0048】
なお、本実施の形態では、透明基材の形状は平板状の用いた例を示したが、板状に限られるものではない。さらに、本発明の透明電極用基材は、その用途として上述の色素増感太陽電池の透明電極板以外に、液晶表示素子や他の光電変換素子などのデバイスにも使用できることは言うまでもない。
【0049】
図2は、本発明に係る透明電極用基材を適用した光電変換素子の具体例としての色素増感太陽電池の一例を示す模式的な断面図である。図2において、符号11は透明電極板を示す。この透明電極板11は、上述した透明電極用基材からなるものであり、例えばガラス板などの透明基材12上に透明導電膜として機能するITO膜13が設けられたものである。
【0050】
この透明電極板11を構成するITO膜13上には、酸化物半導体多孔質膜15が形成されている。この酸化物半導体多孔質膜15は、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化ニオジムなどの半導性を示す金属酸化物微粒子が結合されて構成され、内部に無数の微細な空孔を有し、表面に微細な凹凸を有する多孔質膜であり、その内部の微細な空孔に光増感色素が担持された厚さが1〜50μmのものである。
【0051】
この酸化物半導体多孔質膜15の形成は、上記金属酸化物の平均粒径5〜500nmの微粒子を分散したコロイド液、ペースト、分散液などを透明電極板11のFTO膜14上に、スクリーンプリント、インクジェットプリント、ロールコート、ドクターコート、スピンコート、スプレーコート、バーコートなどの塗布手段により塗布し、温度400〜600℃で焼成する方法などで行われる。
【0052】
前述した光増感色素としては、例えばビピリジン構造、ターピリジン構造などの配位子を含むルテニウム錯体、ポルフィリン、フタロシアニンなどの金属錯体、エオシン、ローダミン、メラシアニンなどの有機色素などが用いられる。そして、この光増感色素は、これら色素の水溶液、アルコール溶液などの溶液を酸化半導体多孔質膜14の微細孔に含浸し、乾燥することにより担持される。
【0053】
なお、本発明の色素増感太陽電池では、電解質層17をなすレドックス対を含む非水溶液からなる電解質液を固体のヨウ化銅、チオシアン銅などの無機p型半導体からなる電荷移送層に置き換えて、この電荷移送層をホール輸送層とすることもでき、この構成とすることにより、電解質液の揮発、漏液を防止することもできる。
【0054】
また、図中符号16は、対極である。この対極16は、金属板などの導電性基板、ガラス板などの非導電性基板上に白金、金、炭素などの導電膜を蒸着、スパッタなどのよって形成したものや基板上に塩化白金酸液を塗布、加熱して白金膜を形成したものが用いられる。
【0055】
また、酸化物半導体多孔質膜15と対極16との間の空隙には、ヨウ素/ヨウ素イオンなどのレドックス対を含む非水溶液からなる電解液が満たされ、電解質層17となっている。
【0056】
このような構成の色素増感太陽電池では、太陽光などの光が、透明電極板11側から透明電極板11すなわち透明基材12とITO膜13とを通して、光電変換層として働く酸化物半導体多孔質膜15へ入射される。すると、酸化物半導体多孔質膜15の中で電子−ホールのペアが生成され、この両者がそれぞれ透明電極板11か対極16の一方へ移動することにより、透明電極板11と対極16との間に起電力が生じる。そして、透明電極板11から対極16の方向へ電子が流れることで、発電が行われる。
【0057】
透明電極板11として本発明に係る透明電極用基材を用いているので、透明電極板11の被成膜面をなすITO膜13は表面粗さの極めて小さな表面形状を備えている。ゆえに、上記の色素増感太陽電池は、この小さな表面粗さを有するITO膜13の上に酸化物半導体多孔質膜15を形成したことになり、ひいてはITO膜13と酸化物半導体多孔質膜15との界面の乱れが抑制される。
【0058】
つまり、本発明に係る透明電極用基材を用いた太陽電池であれば、上述した透明電極板11から対極16の方向へ流れる電子に対する従来の阻害要因が著しく低減されることを意味する。したがって、本発明に係る透明電極用基材は、太陽電池の発電効率の向上に寄与する。
【0059】
ここでは、太陽電池の光電変換層として酸化物半導体多孔質膜15を採用した色素増感太陽電池を例として説明したが、光電変換層として、例えばシリコン系の材料やZnS系の材料等を用いても、本発明に係る透明電極用基材は有効に働くことは言うまでもない。
【0060】
また、図2において光電変換層として機能するに酸化物半導体多孔質膜15に代えて、例えば液晶材料を封入することにより液晶表示素子が得られる。このような表示素子にあっても、本発明に係る透明電極用基材の小さな表面粗さとした被成膜面は効果的であり、透明電極板11と液晶材料との間のスムーズな電子の移動に貢献するものである。
【0061】
したがって、透明電極板11とこの透明電極板11上に配された電導機能層との間で電子の移動を伴って動作するデバイスであれば、本発明に係る透明電極用基材はいかなるデバイスにおいても有効に機能するものである。
【0062】
【発明の効果】
以上説明したように、本発明に係る透明電極用基材は、透明基材上に、その表面をなす凹部と凸部との差分の平均値を120nm以下とした透明導電膜を配する構成を採用したことにより、優れた導電性と透過性とを併せ持つことができる。ゆえに、本発明は、透明電極用基材を通して光を入射あるいは出射させるとともに、高い電導性も要求される分野、すなわち液晶表示素子や太陽電池に代表される光電変換素子などの透明電極板等の用途に好適な透明電極用基材を提供できる。
【0063】
また、本発明に係る透明電極用基材の製造方法は、透明導電膜を成膜する際の前記透明基材の温度を280℃以上480℃以下に限定するものであり、この限定条件を満たすことによって、上述したところの優れた導電性と透過性とを併せ持つ透明電極用基材を安定して作製できるので、本発明に係る透明電極用基材を安価でかつ大量に製造する場合に必要となる製造工程の構築に寄与する。
【図面の簡単な説明】
【図1】本発明に係る透明電極用基材の一例を示す模式的な断面図である。
【図2】本発明に係る透明電極用基材を適用した光電変換素子の具体例としての色素増感太陽電池の一例を示す模式的な断面図である。
【符号の説明】
1 透明基材、2 透明導電膜(ITO膜)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent electrode substrate used for a transparent electrode plate or the like of a liquid crystal display element or a photoelectric conversion element typified by a solar cell and a method for producing the same, and the transparent conductive film constituting the transparent electrode substrate is excellent. It has both conductivity and transparency.
[0002]
[Prior art]
As a transparent electrode plate for a liquid crystal display element or a solar cell, a thin film obtained by adding a few percent of tin to indium oxide on a transparent substrate surface such as a glass plate; an indium tin oxide film [hereinafter, ITO (Indium) -Tin-Oxide) film] having a thickness of, for example, about 50 to 1000 nm is widely used.
[0003]
In such an ITO film, tetravalent tin (Sn 4+ ) substituted for a trivalent indium (In 3+ ) site generates carrier electrons, and thus the ITO film has a property of conducting electricity well. In addition, since the ITO film hardly absorbs visible light because the energy gap corresponds to the ultraviolet region, the ITO film also has the ability to transmit most of the visible light spectrum constituting sunlight.
[0004]
Conventionally, an ITO film having both such excellent conductivity and transparency is formed by a vacuum film formation method requiring a reduced-pressure atmosphere, for example, a method represented by a sputtering method, a vapor deposition method, a CVD method, or the like.
[0005]
By using such a method, a film having excellent transparency and high conductivity can be obtained, but an apparatus for forming a thin film in a reduced-pressure atmosphere tends to have a high introduction cost and a high operating cost thereafter. There is a problem that it is difficult to obtain a strong and uniform film over a wide area.
[0006]
More specifically, the transmittance and / or the specific resistance of the transparent conductive film tend to increase for each batch to be formed or locally when the film is formed over a large area. It is considered that the reason for this is that the properties of the transparent conductive film fluctuate as a result of variations in the growth of crystal grains constituting the ITO film.
[0007]
When, for example, a dye-sensitized solar cell is formed using the transparent electrode plate on which such an ITO film is formed, oxidation of titanium oxide or the like functioning as a photoelectric conversion layer is performed on the ITO film of the transparent electrode plate. A porous oxide semiconductor film is formed by applying a paste made of a fine powder of the semiconductor, followed by baking.
[0008]
However, the variation in the growth of the crystal grains constituting the ITO film naturally leads to the variation in the surface properties. As a result, for example, electrons or holes generated in the photoelectric conversion layer due to the incidence of sunlight become a factor that hinders conduction to the ITO film side, and as a result, the photoelectric conversion efficiency of the obtained dye-sensitized solar cell decreases. There was a risk of causing.
This leads to instability of initial characteristics and a decrease in long-term reliability of solar cells and the like, and therefore, development of a countermeasure has been expected.
[0009]
The following are known as prior art documents relating to such a transparent electrode substrate.
[0010]
[Patent Document 1]
JP-A-10-53418 [Patent Document 2]
JP 2000-212514 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transparent electrode base material having both excellent electrical conductivity and transparency and a method for producing the same.
[0012]
[Means for Solving the Problems]
The transparent electrode substrate according to the present invention is provided with a transparent conductive film made of indium tin oxide on the transparent substrate, and the transparent conductive film has an average value of a difference between a concave portion and a convex portion forming the surface. Is 120 nm or less.
[0013]
On a transparent substrate, a transparent electrode substrate formed by mounting a transparent conductive film having an average value of a difference between a concave portion and a convex portion forming a surface thereof of 120 nm or less has excellent conductivity, that is, a single digit order. A transparent conductive film having both a sheet resistance and an extremely low specific resistance of 3 × 10 −4 Ω · cm or less and excellent transmittance, that is, a transmittance of 80% or more can be provided.
[0014]
In other words, in the case of the transparent electrode substrate having the above configuration, for example, since the transparent conductive film in contact with the photoelectric conversion layer has an extremely flat form, disturbance of the interface between the photoelectric conversion layer and the transparent conductive film is extremely reduced. Can be kept small.
[0015]
In addition, since this transparent conductive film has excellent transparency, sunlight incident on the photoelectric conversion layer through the transparent electrode base material reaches the photoelectric conversion layer almost without being blocked, so that the incident light is fully utilized. Is done.
[0016]
Furthermore, since this transparent conductive film also has excellent conductivity, the electrons or holes generated in the photoelectric conversion layer by the incident sunlight as described above proceed toward the transparent conductive film side when the photoelectric conversion layer and the transparent conductive film At the interface with the substrate.
[0017]
Therefore, the transparent electrode substrate having the above configuration can easily transfer electrons or holes generated in the photoelectric conversion layer disposed thereon into the transparent conductive film, and thus have high power generation efficiency in a solar cell. Bring. Further, when a liquid crystal member or the like is disposed on the transparent conductive film instead of the photoelectric conversion layer, a liquid crystal display element having excellent high-speed response required for, for example, moving image display is provided.
[0018]
In the transparent electrode substrate having such a configuration, the transparent conductive film preferably has a transmittance of 80% or more for light having a wavelength of 550 nm.
[0019]
In the transparent electrode substrate having such a configuration, the transparent conductive film preferably has a specific resistance of 3.0 × 10 −4 Ω · cm or less after film formation.
[0020]
The method for producing a substrate for a transparent electrode according to the present invention is a method for producing a substrate for a transparent electrode in which a transparent conductive film made of indium / tin / oxide is provided on a transparent substrate. The temperature of the transparent substrate at the time of film formation is 280 ° C. or more and 480 ° C. or less.
[0021]
According to the above manufacturing method, the temperature of the transparent substrate when forming the transparent conductive film is limited to 280 ° C. or more and 480 ° C. or less, so that the specific resistance after the film formation is 3.0 × 10 −4 Ω. -A transparent conductive film of not more than cm can be stably obtained. Further, if these film forming conditions are satisfied, the transmittance for light having a wavelength of 550 nm can be simultaneously increased to 80% or more.
[0022]
As the above-described formation method, any known film formation method such as a coating method, a vapor deposition method, a sputtering method, and a CVD method may be used. A coating method that can easily form a thin film with a large area at a low cost is preferable. Among them, a feature is that a transparent conductive film having a large area and uniform and uniform can be easily formed without depending on the shape of the surface on which the transparent substrate is to be formed. The spray pyrolysis deposition method further comprising:
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
FIG. 1 is a schematic cross-sectional view showing an example of the transparent electrode base material according to the present invention, and reference numeral 1 in the figure denotes a transparent base material. The transparent substrate 1 is, for example, a glass plate having a thickness of about 0.3 to 5 mm made of glass such as soda glass, heat resistant glass, and quartz glass.
[0024]
An indium tin oxide film (ITO film) is formed as a transparent conductive film 2 on one surface of the glass plate of the transparent substrate 1. This ITO film is a thin film formed by a thin film forming means such as a sputtering method, a CVD method, and a spray pyrolysis deposition method (SPD method).
[0025]
The ITO film that forms the transparent conductive film 2 has substantially good conductivity and light transmittance. The larger the film thickness is, the higher the conductivity as the transparent conductive film is, which is preferable, but the light transmittance decreases. Because of the tendency, the preferable range of the film thickness is 100 nm or more and 1000 nm or less.
[0026]
When forming the transparent conductive film 2 on the transparent substrate 1 using the spray pyrolysis deposition method (SPD method), the inventor sets the temperature of the transparent substrate 1 (hereinafter, referred to as a film forming temperature). It was prepared by changing the temperature in the range of 220 ° C. to 500 ° C. Table 1 shows the conditions for forming the transparent conductive film 2.
[0027]
[Table 1]
Figure 2004311174
[0028]
In the SPD method, a raw material compound solution is sprayed on a heated substrate, a thermal decomposition reaction is caused on the substrate to generate oxide fine particles, and the oxide fine particles are deposited on the surface of the substrate. This is one type of thin film forming means. An ITO film can be formed by the SPD method by using a solution obtained by mixing a starting material composed of InCl 3 and SnCl 2 and a solvent composed of ethanol as a raw material compound solution.
[0029]
At that time, the preparation of the raw material compound solution used for forming the ITO film was as follows. 3.33 g of indium (III) chloride tetrahydrate (InCl 3 .4H 2 O, Fw: 293.24) and tin (II) chloride dihydrate (SnCl 2 .2H 2 O, Fw: 225.65) ) Was dissolved in 60 ml of ethanol, and the mixture was completely dissolved in an ultrasonic cleaner for about 20 minutes to obtain a raw material compound solution for an ITO film.
[0030]
Next, the surface of a 1.1 mm thick glass plate (Corning Co., # 7059) forming the transparent substrate 1 was chemically washed and dried, and then placed in a reactor and heated with a heater. When the transparent substrate 1 reaches a predetermined temperature by the heating of the heater, the raw material compound solution for the ITO film is applied from the nozzle having a diameter of 0.3 mm to the glass plate (transparent substrate 1) at a pressure of 0.06 MPa from the nozzle. Spraying was performed for 5 to 50 minutes at a distance of 400 mm. As a result, an ITO film having a constant thickness (400 nm, 800 nm) was formed on the glass plate constituting the transparent substrate 1, and the substrate for a transparent electrode according to the present invention was obtained. At this time, an ITO film having the above-mentioned predetermined thickness was formed by appropriately controlling the application time.
[0031]
In other words, when the ITO film forming the transparent conductive film 2 is formed on the transparent substrate 1, the film is formed on the surface of the transparent substrate 1, which is heated and held at a predetermined temperature under the atmospheric pressure. On the other hand, by performing the operation of spraying the above-described ITO film raw material compound solution through a nozzle and applying it on the transparent substrate 1, the transparent conductive film 2 is disposed on the transparent substrate 1 as shown in FIG. Thus, a transparent electrode substrate is obtained.
[0032]
Tables 2 and 3 show the temperature (also referred to as the substrate temperature) of the transparent substrate 1 when the transparent conductive film 2 is formed on the transparent substrate 1 and the electrical conductivity (sheet resistance) of the obtained transparent conductive film 2. , Specific resistance) and optical characteristics (transmittance). Table 2 shows the case where the thickness of the ITO film was 400 nm, and Table 3 shows the case where the thickness was 800 nm. In Tables 2 and 3, an ITO film was formed on the transparent substrate 1 at a predetermined substrate temperature of 220 ° C. to 500 ° C. under the above-described constant film forming conditions.
[0033]
[Table 2]
Figure 2004311174
[0034]
[Table 3]
Figure 2004311174
[0035]
Here, the sheet resistance and the specific resistance are numerical values measured by a four-terminal method. The transmittance is a numerical value measured using light having a wavelength of 550 nm, and is a performance of only the transparent conductive film 2 excluding the influence of the transparent substrate 1. The sheet resistance, specific resistance, and transmittance are all values measured after forming the transparent conductive film 2.
[0036]
From Tables 2 and 3, the following points became clear.
(1) When the substrate temperature during film formation is 280 ° C. or higher, the sheet resistance of the transparent conductive film 2 can be suppressed to one digit. When the temperature was lower than 280 ° C., it was confirmed that the sheet resistance increased sharply and reached double digits.
[0037]
(2) On the other hand, the transmittance of the transparent conductive film 2 tends to gradually decrease as the temperature of the base material increases, and it is found that the transmittance greatly drops below 80% when the temperature exceeds 480 ° C. . That is, when the temperature is 480 ° C. or less, the transparent conductive film 2 can have a transmittance of 80% or more.
[0038]
(3) It was also found that when the substrate temperature was in the range of 280 ° C. to 480 ° C., an extremely low specific resistance of 3 × 10 −4 Ω · cm or less was obtained stably.
[0039]
(4) When the thickness of the transparent conductive film 2 is at least in the range of 400 nm to 800 nm, the above-mentioned tendencies (1) to (3) are similarly obtained.
[0040]
Therefore, when an ITO film is formed as the transparent conductive film 2 on the transparent substrate 1 by using the SPD method, it is important to control the temperature of the transparent substrate 1, and in particular, the temperature of the transparent substrate 1 is set to 280 ° C. When the temperature is in the range of 480 ° C. or less, the transparent conductive film 2 having both excellent conductivity and transparency can be manufactured without depending on the thickness of the transparent conductive film 2.
[0041]
From the above experimental results, according to the present invention, an ITO film having a transmittance of 80% or more for light having a wavelength of 550 nm can be manufactured as the transparent conductive film, and therefore, a device application capable of sufficiently utilizing incident light in the visible region. It has been found that the substrate for transparent electrodes can be provided.
[0042]
Further, from the above experimental results, according to the present invention, an ITO film having a specific resistance of 3.0 × 10 −4 Ω · cm or less can be manufactured as the transparent conductive film. It has been clarified that a substrate for a transparent electrode which can secure a low conductivity can be obtained.
[0043]
In the present invention, the average value of the difference between the concave portion and the convex portion forming the surface of the ITO film is obtained by measuring 30 points in the observation screen in the cross-sectional observation of the ITO film using FE-SEM, and calculating the difference at each measurement point. Is divided by 30. For example, in the case of an ITO film having a thickness of 800 nm, as shown in Table 4, it was found that the average value of the difference was 120 nm or less.
[0044]
The method for producing a substrate for a transparent electrode according to the present invention is a method for producing a substrate for a transparent electrode, comprising the steps of: providing a transparent conductive film 2 made of indium tin oxide on a transparent substrate 1; By setting the temperature of the transparent substrate 1 at the time of forming the film to 280 ° C. or more and 480 ° C. or less, the transparent conductive film 2 having both the above-described excellent conductivity and transparency is disposed on the transparent substrate 1. Contributes to the stable production of electrode substrates.
[0045]
In this manufacturing method, as described above, it is preferable that the transparent conductive film 2 is formed by the spray pyrolysis deposition method. This method is different from the conventional film forming method that requires a vacuum process, and does not require that the environment in which the transparent conductive film 2 is applied be a reduced-pressure atmosphere. In other words, the spray pyrolysis deposition method does not require additional equipment required for the vacuum process, and does not require a space for installing the additional equipment. Further, the electric power required for operating the auxiliary equipment can be reduced.
[0046]
In the spray pyrolysis deposition method, a transparent conductive film 2 is formed on the transparent substrate 1 by an operation of spraying a raw material compound solution for an ITO film through a nozzle onto the transparent substrate 1. At this time, any large-area film can be freely formed as long as the nozzle is two-dimensionally scanned over the transparent substrate 1 in the direction of the film formation surface of the transparent substrate 1. Further, by controlling the distance between the transparent substrate 1 and the nozzle and scanning three-dimensionally, an ITO film having a predetermined thickness can be stably obtained even if the transparent substrate 1 has any curved surface.
[0047]
Therefore, by forming the transparent conductive film 2 by using the spray pyrolysis deposition method, the cost can be significantly reduced, and the transparent conductive film 2 having both excellent conductivity and transparency can be formed into various surface shapes. This is preferable because it can be provided on the transparent substrate 1 with a uniform thickness.
[0048]
In this embodiment, an example in which the shape of the transparent substrate is a flat plate is shown, but the shape is not limited to the plate. Furthermore, it goes without saying that the transparent electrode substrate of the present invention can be used for devices such as a liquid crystal display element and other photoelectric conversion elements in addition to the transparent electrode plate of the dye-sensitized solar cell described above.
[0049]
FIG. 2 is a schematic cross-sectional view showing an example of a dye-sensitized solar cell as a specific example of a photoelectric conversion element to which the substrate for a transparent electrode according to the present invention is applied. In FIG. 2, reference numeral 11 denotes a transparent electrode plate. The transparent electrode plate 11 is made of the above-described base material for a transparent electrode. For example, an ITO film 13 serving as a transparent conductive film is provided on a transparent base material 12 such as a glass plate.
[0050]
On the ITO film 13 constituting the transparent electrode plate 11, an oxide semiconductor porous film 15 is formed. The oxide semiconductor porous film 15 is formed by bonding metal oxide fine particles exhibiting semiconductivity, such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, and niobium oxide. It is a porous film having fine pores and having fine irregularities on the surface, and having a thickness of 1 to 50 μm in which the photosensitizing dye is carried in the fine pores inside.
[0051]
This porous oxide semiconductor film 15 is formed by screen-printing a colloid solution, paste, dispersion liquid or the like in which fine particles of the above-mentioned metal oxide having an average particle diameter of 5 to 500 nm are dispersed on the FTO film 14 of the transparent electrode plate 11. It is applied by a method of applying by an application means such as ink jet printing, roll coating, doctor coating, spin coating, spray coating, bar coating and baking at a temperature of 400 to 600 ° C.
[0052]
As the above-mentioned photosensitizing dye, for example, a ruthenium complex containing a ligand such as a bipyridine structure or a terpyridine structure, a metal complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine or melacyanine is used. The photosensitizing dye is supported by impregnating a solution such as an aqueous solution or an alcohol solution of the dye into the micropores of the porous oxide semiconductor film 14 and drying.
[0053]
In the dye-sensitized solar cell of the present invention, the electrolyte solution composed of a non-aqueous solution containing a redox pair forming the electrolyte layer 17 is replaced with a charge transfer layer composed of an inorganic p-type semiconductor such as solid copper iodide and copper thiocyanate. The charge transport layer may be a hole transport layer. With this configuration, volatilization and leakage of the electrolyte solution can be prevented.
[0054]
Reference numeral 16 in the figure is a counter electrode. The counter electrode 16 is formed by depositing a conductive film of platinum, gold, carbon, or the like on a conductive substrate such as a metal plate or a non-conductive substrate such as a glass plate by vapor deposition, sputtering, or the like. Is applied and heated to form a platinum film.
[0055]
The gap between the oxide semiconductor porous film 15 and the counter electrode 16 is filled with an electrolytic solution composed of a non-aqueous solution containing a redox pair such as iodine / iodine ions, and forms an electrolyte layer 17.
[0056]
In the dye-sensitized solar cell having such a configuration, light such as sunlight passes through the transparent electrode plate 11, that is, the transparent substrate 12 and the ITO film 13 from the side of the transparent electrode plate 11, and serves as a photoelectric conversion layer. Incident on the quality film 15. Then, electron-hole pairs are generated in the oxide semiconductor porous film 15, and both of them move to one of the transparent electrode plate 11 and the counter electrode 16, thereby causing a gap between the transparent electrode plate 11 and the counter electrode 16. Generates an electromotive force. Then, when electrons flow from the transparent electrode plate 11 in the direction of the counter electrode 16, power is generated.
[0057]
Since the substrate for a transparent electrode according to the present invention is used as the transparent electrode plate 11, the ITO film 13 forming the deposition surface of the transparent electrode plate 11 has a surface shape with extremely small surface roughness. Therefore, in the above-described dye-sensitized solar cell, the oxide semiconductor porous film 15 is formed on the ITO film 13 having the small surface roughness, and thus the ITO film 13 and the oxide semiconductor porous film 15 are formed. Of the interface with the substrate is suppressed.
[0058]
That is, in the case of the solar cell using the transparent electrode base material according to the present invention, the conventional obstruction factors for the electrons flowing from the transparent electrode plate 11 toward the counter electrode 16 are significantly reduced. Therefore, the base material for a transparent electrode according to the present invention contributes to improvement of the power generation efficiency of the solar cell.
[0059]
Here, the dye-sensitized solar cell employing the oxide semiconductor porous film 15 as the photoelectric conversion layer of the solar cell has been described as an example. However, for example, a silicon-based material or a ZnS-based material is used as the photoelectric conversion layer. However, it goes without saying that the substrate for a transparent electrode according to the present invention works effectively.
[0060]
In FIG. 2, a liquid crystal display element can be obtained by enclosing a liquid crystal material, for example, instead of the oxide semiconductor porous film 15 to function as a photoelectric conversion layer. Even in such a display element, the film-forming surface having a small surface roughness of the transparent electrode substrate according to the present invention is effective, and the smooth electron transfer between the transparent electrode plate 11 and the liquid crystal material is effective. It contributes to mobility.
[0061]
Therefore, as long as the device operates with the movement of electrons between the transparent electrode plate 11 and the conductive function layer disposed on the transparent electrode plate 11, the transparent electrode substrate according to the present invention is applicable to any device. Also works effectively.
[0062]
【The invention's effect】
As described above, the transparent electrode substrate according to the present invention has a configuration in which a transparent conductive film having an average value of a difference between a concave portion and a convex portion forming the surface thereof of 120 nm or less is disposed on the transparent substrate. By adopting it, it is possible to have both excellent conductivity and transparency. Therefore, the present invention is a field in which high conductivity is required while light is incident or emitted through the transparent electrode substrate, that is, such as a transparent electrode plate such as a liquid crystal display element or a photoelectric conversion element represented by a solar cell. A transparent electrode base material suitable for use can be provided.
[0063]
Further, the method for producing a transparent electrode substrate according to the present invention limits the temperature of the transparent substrate when forming a transparent conductive film to 280 ° C. or more and 480 ° C. or less, and satisfies this limitation condition. By doing so, it is possible to stably produce a transparent electrode substrate having both excellent conductivity and transparency as described above. Contribute to the construction of the manufacturing process.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a transparent electrode substrate according to the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of a dye-sensitized solar cell as a specific example of a photoelectric conversion element to which the substrate for a transparent electrode according to the present invention is applied.
[Explanation of symbols]
1 transparent substrate, 2 transparent conductive film (ITO film).

Claims (5)

透明基材上に酸化インジウム・スズからなる透明導電膜が設けてなり、前記透明導電膜はその表面をなす凹部と凸部との差分の平均値が120nm以下であることを特徴とする透明電極用基材。A transparent electrode, wherein a transparent conductive film made of indium tin oxide is provided on a transparent substrate, and the transparent conductive film has an average value of a difference between a concave portion and a convex portion which form the surface thereof is 120 nm or less. Substrate. 前記透明導電膜は、波長550nmの光に対する透過率が80%以上であることを特徴とする請求項1に記載の透明電極用基材。The transparent electrode substrate according to claim 1, wherein the transparent conductive film has a transmittance for light having a wavelength of 550 nm of 80% or more. 前記透明導電膜は、成膜後における比抵抗が3.0×10−4Ω・cm以下であることを特徴とする請求項1に記載の透明電極用基材。2. The transparent electrode substrate according to claim 1, wherein the transparent conductive film has a specific resistance of 3.0 × 10 −4 Ω · cm or less after film formation. 3. 透明基材上に酸化インジウム・スズからなる透明導電膜を設けてなる透明電極用基材の製造方法であり、前記透明導電膜を成膜する際の前記透明基材の温度が、280℃以上480℃以下であることを特徴とする透明電極用基材の製造方法。A method for producing a substrate for a transparent electrode, comprising providing a transparent conductive film made of indium tin oxide on a transparent substrate, wherein the temperature of the transparent substrate when forming the transparent conductive film is 280 ° C. or higher. A method for producing a substrate for a transparent electrode, wherein the temperature is 480 ° C. or lower. 前記透明導電膜は、スプレー熱分解堆積法により形成されることを特徴とする請求項4に記載の透明電極用基材の製造方法。The method according to claim 4, wherein the transparent conductive film is formed by a spray pyrolysis deposition method.
JP2003101971A 2003-04-04 2003-04-04 Substrate for transparent electrode, and manufacturing method of the same Pending JP2004311174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101971A JP2004311174A (en) 2003-04-04 2003-04-04 Substrate for transparent electrode, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101971A JP2004311174A (en) 2003-04-04 2003-04-04 Substrate for transparent electrode, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2004311174A true JP2004311174A (en) 2004-11-04

Family

ID=33465598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101971A Pending JP2004311174A (en) 2003-04-04 2003-04-04 Substrate for transparent electrode, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2004311174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell

Similar Documents

Publication Publication Date Title
JP4260494B2 (en) Manufacturing method of transparent electrode substrate, manufacturing method of photoelectric conversion element, and manufacturing method of dye-sensitized solar cell
Yamaguchi et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%
JP5101038B2 (en) Electrode substrate manufacturing method, electrode substrate evaluation method
Kim et al. Electrochemical properties of porous carbon black layer as an electron injector into iodide redox couple
Veerappan et al. Amorphous carbon as a flexible counter electrode for low cost and efficient dye sensitized solar cell
JP4446011B2 (en) Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
Fu et al. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells
JP5275346B2 (en) Dye-sensitized solar cell
JP2009021123A (en) Photoelectric conversion element and its manufacturing method
Kouhestanian et al. Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer
JP5127329B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4578786B2 (en) Method for producing dye-sensitized solar cell
KR100830786B1 (en) Titanium dioxide particle, photovoltaic device with the same and manufacturing method of the same
JP2004311176A (en) Substrate for transparent electrode, and manufacturing method of the same
JP2004311174A (en) Substrate for transparent electrode, and manufacturing method of the same
JP2004311354A (en) Manufacturing method of substrate for electrode
KR101727943B1 (en) Method of manufacturing meso-porous metal oxide layer via commercializable route and its application to highly efficient perovskite solar cell
KR101195761B1 (en) Manufacturing method of dye-sensitizes solar cell with cnt and pt counter electrodes
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
JP2004311175A (en) Substrate for transparent electrode, and manufacturing method of the same
US20090266417A1 (en) Dye sensitized solar cell
JP2013511135A (en) Dye-sensitized solar cell and method for producing the same
KR20140007112A (en) Fabrication of patterned metal counter electrode for dye-sensitized solar cells
TWI589051B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
JP5202431B2 (en) Low reflection type transparent conductive substrate and dye-sensitized solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902