JP2004309173A - Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device - Google Patents

Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device Download PDF

Info

Publication number
JP2004309173A
JP2004309173A JP2003099372A JP2003099372A JP2004309173A JP 2004309173 A JP2004309173 A JP 2004309173A JP 2003099372 A JP2003099372 A JP 2003099372A JP 2003099372 A JP2003099372 A JP 2003099372A JP 2004309173 A JP2004309173 A JP 2004309173A
Authority
JP
Japan
Prior art keywords
distance
light
light receiving
distance measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099372A
Other languages
Japanese (ja)
Inventor
Takashi Otake
高 大竹
Nobuo Tsuda
信雄 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003099372A priority Critical patent/JP2004309173A/en
Publication of JP2004309173A publication Critical patent/JP2004309173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent malfunction due to ranging error caused by reflected light from a specular reflective object with respect to a distance measuring instrument for measuring a distance to an object to be measured by emitting light toward the object and receiving reflected light from the object. <P>SOLUTION: This distance measuring instrument 10 is equipped with a light emitting part 11 for emitting light toward the object to be measured, a plurality of light receiving parts 13a to 13b for receiving reflected light from the object to be measured to perform outputting to show the distance to the object to be measured correspondently to the incident angle of the reflected light, and a detection means 2 for detecting the object to be measured when output values of at least two light receiving parts among these light receiving parts show a prescribed distance or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人や食器類などを検知して自動で吐水、止水する自動水栓装置に関するものである。
【0002】
【従来の技術】
近年、洗面台やキッチンには利用者の利便性向上のために、人や食器類などを検知して自動で吐水、止水する自動水栓装置が設けられている(例えば特許文献1)。
図12は、特許文献1に開示される自動水栓装置を示す図である。自動水栓装置152は、台所のシンク167の水洗163に設けられたバルブ161、制御器151等から構成されている。
【0003】
水洗163には、湯水供給装置169からの湯水が流通する給水流路171が接続されており、先端部に吐水口165、先端部または付根部には、人体や物等の対象物との距離を測定する測定手段としての距離測定センサ(以下、測距センサと記す)150が設けられている。
【0004】
図13(a)に測距センサ150の構成図を示す。図示するように、測距センサ150は、赤外発光素子31、発光側レンズ21、受光側レンズ23、位置検出素子(PSDセンサ)33からなる周知のものである。測距センサ150は、略水平方向に測定エリアを有しており、赤外発光素子31から発光される光が、発光側レンズ21を通って被測距対象物5によって反射され、その光が受光側レンズ23を通して位置検出素子33に集光される位置Xに応じて対象物5との測定距離Lを捉えるようにしたものである。
【0005】
発光側レンズ21と受光側レンズ23との距離をP、受光側レンズ23と位置検出素子33との距離をdとなるように設定する。したがって幾何学的には測定距離Lは、L=P×d/Xとして得られる。
図13(b)は、測距センサ150に使用される位置検出素子23を示す図である。位置検出素子23は、受光側レンズにより集光するスポット光のセンサ中心位置からの変位yに応じてそれぞれ発生する信号としての電流i1、i2を後述する制御器151に出力するようにしている。
【0006】
図13(c)は、制御器151の概略構成図である。制御器151は、測距センサ150を作動させ、上記信号電流i1,i2に基づいてバルブ161を開閉制御する。
【0007】
制御器151内部にはアンプ511および512、A/D変換器(ADC)531および532、ならびに演算部45が設けられており、上述したように測距センサ150から入力された電流i1、i2をもとに測定距離Lに相当する距離データを演算する。
すなわち、演算部45は、アンプ511および512により電流i1、i2を電圧変換して、それぞれv1、v2を求め、これらをA/D変換器531、532によってそれぞれデジタル信号に変換し、位置検出素子33の中心からのスポット光の変位yを、y=(v2−v1)/(v1+v2)により算出する。
そして算出された変位yと受光側レンズ23の中心と測距センサ中心との変位から集光位置Xを求め、測定距離L=P×d/Xを演算する。
制御器151は、前記測定距離が所定の作動距離内であるか否かを判断し、所定の作動距離内であるときはバルブ161を開閉制御する。
【0008】
【特許文献1】
特開2002−194783号公報(段落〔0019〕〜〔0027〕)
【0009】
【発明が解決しようとする課題】
図14に示すように、対象物5(人間の手など)が測距センサ150の検知範囲にない場合、赤外発光素子31から発光される光は、シンク167の底面または内壁に反射して位置検出素子33に検出される。しかし、シンク167内壁は所定の検知範囲外の位置に設けられるため、制御器151は、位置検出素子33がシンク167内壁からの反射光を受光しても、バルブ161を開閉制御することはない。
【0010】
しかし、従来の自動水栓装置152においては、シンク167の壁面との測定距離を誤って算出し、バルブ開閉制御を行う場合があった。その理由は以下の通りである。
【0011】
図15は、人間の手のような拡散反射物とシンク167の壁面のような鏡面反射物との反射光による集光位置の相違を説明する図である。
図15(a)に示すように、赤外発光素子31から発光される光が、拡散反射物である対象物5に反射する場合、その反射光は受光側レンズ23全体に受光される。したがって位置検出素子33には、受光側レンズ23への入射角に応じた位置に反射光が集光されて、その集光位置により対象物5との距離を正確に測定できる。
【0012】
しかし、赤外発光素子31から発光される光が、鏡面反射物167に反射する場合その反射光はスポット的な反射光となる。したがって図15(b)および(c)に示すように、受光側レンズ23と鏡面反射物167との距離が一定に保っても、赤外発光素子31からの発光光軸と鏡面反射物167とがなす角度が変化することにより、位置検出素子33上に集光される位置が変化することになる。
この集光位置の変動により、信号電流i1、i2が変化し演算部45により算出される測定距離に変動を生じ、鏡面反射物であるシンク167との距離を誤って算出する。図16に、発光光軸と鏡面反射物167とがなす角度の変化と測定距離の関係を示す。グラフは、測距センサ150と鏡面反射物167との距離を一定に保ち、発光光軸と鏡面反射物167との角度を変化させた場合に得られた測定距離Lの結果である。
【0013】
したがって、従来の自動水栓装置152では、シンク167等との距離が誤って計測し誤動作することがないように、測距センサ150の設置位置等に配慮をしなければならず、これが洗面台やキッチンのデザイン上の制約になる不都合があった。
【0014】
本発明の目的は、対象物に向けて発光し、対象物からの反射光を受光して前記被測定物体との距離を測定するための測距センサ、距離測定装置および自動水栓装置において、上述の鏡面反射物からの反射光によって生ずる測距誤差による誤作動を防止することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る距離測定装置は、対象物である被測定物体からの反射光を受光する受光素子を複数設け、そのうち少なくとも2つの前記受光素子の出力値が所定距離以下を示すとき、被測定物体を検知することとした。
【0016】
図1は、本発明の第1態様に係る距離測定装置の基本構成図である。
距離測定装置10は、検知手段たる制御部2、および距離測定センサ3(以下、測距センサ3と記す)からなり、測距センサ3は、被測定物体たる対象物5に向けて発光する発光部11と、対象物5からの反射光を受光し、その入射角に応じて対象物との距離を示す出力を行う複数の受光部13aおよび13bとを備え、制御部2は、受光部13aおよび13bからの出力値に基づいて対象物5との距離を算出する距離算出部43と、対象物5の検知を許可する検知可否判断部41とを備える。
【0017】
発光部11は、赤外発光素子31、発光側レンズ21からなり、受光部13aおよび13bは、それぞれ受光側レンズ23aおよび23b、ならびに位置検出素子(PSDセンサ)33aおよび33bからなる。受光部13aと13bとは、異なる位置に設けられている。
【0018】
検知可否判断部41は、前記2つの受光部13aおよび13bの出力値が、両方とも所定距離以下を示すとき、対象物5の検知を許可する許可信号を距離算出部43に出力する。許可信号を受信した距離算出部43は、受光部13aおよび13bからの出力値に基づいて対象物5との距離を算出する。
【0019】
図2を参照して、距離測定装置10の動作を説明する。
図2(a)に示すとおり、発光部11から発光した光が、拡散反射物である対象物5に反射する場合には、異なる位置に設けられた受光部13aと13bとは、発光光の光軸と対象物5との角度にかかわらず、受光側レンズ23a,23bの全体に反射光を受け、それぞれ測定距離Lに応じて測定結果信号を出力する。
【0020】
一方、発光部11から発光した光が鏡面反射物167に反射する場合には、図2(b)に示すように発光光の光軸と対象物5との角度によって、異なる位置に設けられる受光部13aと13bとで受光状態が相違することになる。
例えば、図2(b)に示す場合では、鏡面反射物167からの反射光を受光する受光部13aでは、測定距離Lが比較的短い距離であると測定する一方で、反射光をほとんど受光しない受光部13bでは測定距離Lが非常に長い距離であると測定する。この異なる位置に設けられた2つの受光状態の差は、鏡面反射物167と測距センサ3との距離が長くなるほど大きくなる。
したがって、距離測定装置10により検知する対象物の検知範囲外にあるシンク167の内面のような鏡面反射物による反射光を測距センサ3が受信すると、一方の受光部の測定結果信号が測定距離Lを近距離として示す一方、他方の受光部の測定結果信号が測定距離Lを遠距離として示すことになる。
よって、検知可否判断部41が、受光部13aおよび13bの検出信号が両者とも所定の距離以下を示すときにのみ、対象物5を検知する可否判断を行うことにより、本基本構成による距離測定装置10は、鏡面反射物167からの反射光による誤検知を防止することが可能となる。
【0021】
しかし、前記基本構成によれば、従来の距離測定装置に比べて受光素子の数を増やす必要が生じる。受光素子からの信号をマイコンなどにより構成される検知手段が読み取るためには、アンプ素子、A/D変換器などの変換回路を備える必要があるため、受光素子の数を増大させると付随して変換回路の数も増大し、回路サイズと消費電流の増大を招くことになる。
【0022】
したがって、本発明の第2態様に係る距離測定装置は、複数の受光部の出力を選択して、検知手段に入力するスイッチング手段を備えることとする。これにより回路の小型化、低コスト化と低消費電力化を可能とする。
【0023】
また、本発明の第3態様に係る距離測定センサは、被測定物体に向けて発光する発光部と、被測定物体からの反射光を受光し、その入射角に応じて前記被測定物体との距離を示す出力を行う受光部を複数個備えており、少なくとも1つの受光部は、発光部について、他の何れかの受光部の反対位置に設けることとする。
【0024】
さらに、本発明の第4態様に係る自動水栓装置は、前記第1態様に係る距離測定装置を備えることとする。
【0025】
【発明の実施の形態】
図3は、本発明の第1実施例に係る距離測定装置のブロック構成図である。
距離測定装置10は、前記基本構成と同様に、制御部2および測距センサ3からなり、測距センサ3は、発光部11と受光部13aおよび13bとを備え、制御部2は、距離算出部43と検知可否判断部41とを備える。
【0026】
発光部11は、赤外発光素子31および発光側レンズ21からなり、受光部13aおよび13bは、受光側レンズ23aおよび23b、位置検出素子(PSDセンサ)33aおよび33bからなる周知のものである。ここでは簡単のため、受光部13aおよび13bは、発光部11をはさんで反対方向に等距離に配置されているものとする。位置検出素子33aの発光光軸に近い端子から出力される電流をi1、遠い端子から出力される電流をi2とし、位置検出素子33bの発光光軸に近い端子から出力される電流をi3、遠い端子から出力される電流をi4とする。これにより、対象物5が近距離にあるほど出力比i2/i1およびi4/i3が大きくなる。
【0027】
制御部2内部には、アンプ511〜514、A/D変換器(ADC)531〜534、検知可否判断部41および距離算出部43が設けられており、アンプ511〜514およびA/D変換器(ADC)531〜534は、電流i1〜i4をそれぞれ電圧変換/アナログディジタル変換して電圧信号v1〜v4とし、検知可否判断部41および距離算出部43に出力する。
距離算出部43は、A/D変換器(ADC)531〜534から入力された電圧信号v1〜電圧v4により、各位置検出素子33aおよび33bにおける素子の中心からの集光位置の変位y1、y2を
y1=(v2−v1)/(v1+v2)
y2=(v4−v3)/(v3+v4)
により算出する。
ここで発光側レンズ21と受光側レンズ23との距離をP、受光側レンズ23と位置検出素子33との距離をd、集光位置をXとするとき、測定距離Lは、上述の通りL=P×d/Xで定められる。また、集光位置Xは受光側レンズ中心と位置検出素子33の中心位置との、発光光軸直交方向における変位をzとすると、X=z+yで定めることができる。したがって、距離算出部43は、それぞれの位置検出素子33について算出された変位y1、y2に対して測定距離L1およびL2を、
L1=P×d/(z+y1)
L2=P×d/(z+y2)
により算出することができる。
【0028】
上述の通り、発光部11からの光が拡散反射物により反射する場合には、受光部13aおよび13bによる電圧信号v1〜v4は、それぞれの同じ測定距離L1およびL2を示す信号となる。しかし鏡面反射物により反射する場合には、発光光軸と鏡面反射物のなす角度によって位置検出素子33aおよび33bにおける集光位置が変化し、電圧信号v1〜v4が変化する。図4に、測距センサ3の検知範囲外の一定位置にある鏡面反射物を、発光光軸となす角度を変えて測距した場合の電圧信号v1〜v4のグラフを示す。
【0029】
鏡面反射物からの反射光がスポット光であることにより、図示するとおり、位置検出素子33aからの出力がv1≦v2となる範囲と、位置検出素子33bからの出力がv3≦v4となる範囲(すなわち測定距離L≦P×d/zと測定される範囲)とは、重複しないことが分かる。
【0030】
したがって、検知可否判断部41は、A/D変換器(ADC)531〜534から入力された電圧信号v1〜v4を比較し、v1≦v2でありかつv3≦v4となるときにのみ、すなわち、受光部13aおよび33bからの出力値である、位置検出素子33aからの出力がv1〜v4が、それぞれ所定の測定距離であるL=P×d/z以下を示すときにのみ、距離算出部43に検知許可を示す許可信号を出力する。このように検知可否判断部41が、検知可否を判断することにより、検知範囲外の一定位置にある鏡面反射物が発光光軸とどのような角度をなしていても、誤検知を防止することが可能となる。
距離算出部43は、検知可否判断部41からの許可信号を受信したとき、前記測定した測定距離L1、L2のうち何れか一方、またはその平均値から対象物5との距離を決定し、所定の検知範囲内にあるときに対象物5を検知する。
【0031】
図5に、距離測定装置10の動作フローチャートを示す。距離測定装置10は、発光素子13を発光させ(S61)、対象物5による反射光を受光した位置検出素子33aおよび33bから出力される電圧信号v1〜v4を読み込んだ後(S63)、発光素子13の発光を中止する(S65)、そしてv1≦v2でありかつv3≦v4となるときにのみ対象物5との距離を測定して、および/または対象物5を検知して(S67、S69、S71)、それ以外の場合は対象物5を検知しない(S73)。
【0032】
検知可否判断部41は、電圧v1〜v4を比較する代わりに、受光部13aおよび13bの出力される電圧v1〜v4から、位置検出素子における集光位置の変位y1もしくはy2、または測定距離L1、L2をそれぞれ算出し、これに基づき対象物5の検知可否を判断してもよい。図6に、測距センサ3の検知範囲外の一定位置にある鏡面反射物を、発光光軸となす角度を変えて測距した場合のy1、y2のグラフを示す。
【0033】
図示するように、y1およびy2がそれぞれ所定のしきい値以上となる角度範囲が相互に重複しないしきい値ythを設定できることが分かる。したがって、検知可否判断部41は、算出したy1、y2がともに所定のしきい値yth以上となるときにのみ、距離算出部43に検知許可を示す許可信号を出力することとしてよい。このように検知可否を判断することによっても、検知範囲外の一定位置にある鏡面反射物の誤検知防止が可能となる。
また、上述の通り測定距離L1=P×d/(z+y1)、L2=P×d/(z+y2)は、y1、y2の増加量に反比例することから、L1およびL2がともに所定距離Lth以下となるときのみ前記許可信号を出力することとしても、検知範囲外の一定位置にある鏡面反射物の誤検知防止が可能となる。
図5のフローチャートの検知可否判断ステップであるS67およびS69を、集光位置の変位y1もしくはy2による判断ステップS75およびS77に変更したフローチャートを図7に示す。
【0034】
距離測定センサ3の発光部11および受光部13a、13bには、様々な配置を採用することができる。図8は、距離測定センサ3の発光部11および受光部13a、13bの配置の一例を示す図である。鏡面反射光による受光の差を効果的に検出するには、図8(a)に示すように、受光部13a、13bを発光部11を挟んで反対側に、すなわち受光部13aと発光部11、発光部11と受光部13bとを結ぶ線が180°となるよう設けることが好適であるが、鏡面反射光による受光の差を検出できる限り、図8(b)に示すように、180°より狭くなるように設けてもよい。
また、受光部13bと発光部11との間隔は、発光部11と受光部13aと同じ間隔(a)に設ける必要はなく、図8(c)に示すように障害物15のために、発光部11と受光部13aとの同じ間隔(a)に設けられない場合は、aとは異なる間隔(b)に設けることとしてもよい。
【0035】
図9に本発明の第2実施例に係る距離測定装置の検出手段2のブロック構成図を示す。
第2実施例に係る距離測定装置の検出手段2は、複数の受光部13a、13bの出力を選択して、検知手段に入力するスイッチング手段であるマルチプレクサ91を備えることとする。
図10に第2実施例に係る距離測定装置のフローチャートを示す。
距離算出部43は、受光部からの出力電流i1〜i4を変換した電圧信号v1〜v4を読み込む際に、マルチプレクサ91内のスイッチ931〜934を順次1つづつONにして出力電流i1〜i4を1つづつ選択する(S101、S109、S117、S125)。そして選択された各出力電流i1〜i4を、アンプ51、A/D変換器53にそれぞれ入力し、各電圧信号v1〜v4に変換して読み込むこととする(S105、S113、S121、S129)。
これにより、第1実施例において4つ必要であったアンプ素子511〜514、A/D変換器531〜534の数を減少させて回路の小型化、低コスト化と低消費電力化を可能とする。
なお、第2実施例では、一度の対象物検知に必要な発光回数が増加するが、1回当たりの発光時間は数μ秒〜数十μ秒程度であるため、アンプ素子51、A/D変換器53の数を減らす方が低消費電力化に資する。
【0036】
図11に本発明の第3実施例に係る自動水栓装置を示す図である。自動水栓装置152は、台所のシンク167の水洗163に設けられた、本発明に係る検知手段2、バルブ161から構成されている。
水洗163には、湯水供給装置169からの湯水が流通する給水流路171が接続されており、先端部に吐水口165、先端部または付根部には、人体や物等の対象物との距離を測定する測定手段としての本発明に係る測距センサ3が設けられている。
このように自動水栓装置152を構成することにより、対象物が検知範囲にない場合に測距センサ3から発光される光を鏡面反射するシンク167の反射光により、検知手段2が誤ってバルブを開閉して吐水することを防止することができる。
【図面の簡単な説明】
【図1】本発明に係る距離測定装置の基本構成図である。
【図2】本発明に係る距離測定装置の動作説明図である。
【図3】本発明の第1実施例に係る距離測定装置のブロック構成図である。
【図4】一定位置にある鏡面反射物を発光光軸となす角度を変えて測距した場合の、電圧信号の変化を示すグラフである。
【図5】距離測定装置10の動作フローチャート(その1)である。
【図6】一定位置にある鏡面反射物を発光光軸となす角度を変えて測距した場合の、集光位置の変位を示すグラフである。
【図7】距離測定装置10の動作フローチャート(その2)である。
【図8】距離測定センサ3の発光部11および受光部13a、13bの配置の一例を示す図である。
【図9】本発明の第2実施例に係る距離測定装置の検出手段2のブロック構成図である。
【図10】本発明の第2実施例に係る距離測定装置のフローチャートを示す。
【図11】本発明に係る自動水栓装置を示す図である。
【図12】従来の自動水栓装置を示す図である。
【図13】(a)は従来の測距センサの構成図であり、(b)は位置検出素子23を示す図であり、(c)は制御器151の概略構成図である。
【図14】従来の自動水栓装置を示す図(その2)である。
【図15】拡散反射物と鏡面反射物との反射光による集光位置の相違を説明する図である。
【図16】発光光軸と鏡面反射物167とがなす角度の変化と測定距離の関係を示す。
【符号の説明】
2…検出手段(制御部)
3…距離測定センサ(測距センサ)
5…被測定対象物
10…距離測定装置
11…発光部
13a、13b…受光部
21…発光側レンズ
23a、23b…受光側レンズ
31…発光素子
33a、33b…位置検出素子
41…検知可否判断部
43…距離算出部
91…スイッチング手段
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an automatic faucet device that automatically detects and discharges water by stopping a person or tableware.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a wash basin or a kitchen has been provided with an automatic faucet device that detects a person, tableware, and the like to automatically discharge and stop water (for example, Patent Document 1).
FIG. 12 is a diagram showing an automatic faucet device disclosed in Patent Document 1. The automatic faucet device 152 includes a valve 161, a controller 151, and the like provided in the flush 163 of the kitchen sink 167.
[0003]
A water supply channel 171 through which hot and cold water from a hot and cold water supply device 169 flows is connected to the water washing 163, and a water outlet 165 is provided at a distal end, and a distance from an object such as a human body or an object is provided at a distal end or a base. A distance measuring sensor (hereinafter, referred to as a distance measuring sensor) 150 is provided as measuring means for measuring the distance.
[0004]
FIG. 13A shows a configuration diagram of the distance measuring sensor 150. As shown in the drawing, the distance measuring sensor 150 is a known sensor including an infrared light emitting element 31, a light emitting side lens 21, a light receiving side lens 23, and a position detecting element (PSD sensor) 33. The distance measurement sensor 150 has a measurement area in a substantially horizontal direction, and light emitted from the infrared light emitting element 31 is reflected by the object to be measured 5 through the light emitting side lens 21, and the light is The measurement distance L from the object 5 is captured according to the position X condensed on the position detection element 33 through the light receiving side lens 23.
[0005]
The distance between the light emitting side lens 21 and the light receiving side lens 23 is set to P, and the distance between the light receiving side lens 23 and the position detecting element 33 is set to d. Therefore, geometrically, the measurement distance L is obtained as L = P × d / X.
FIG. 13B is a diagram illustrating the position detecting element 23 used in the distance measuring sensor 150. The position detection element 23 outputs currents i1 and i2 as signals generated according to the displacement y of the spot light condensed by the light receiving side lens from the sensor center position to a controller 151 described later.
[0006]
FIG. 13C is a schematic configuration diagram of the controller 151. The controller 151 activates the distance measuring sensor 150 and controls opening and closing of the valve 161 based on the signal currents i1 and i2.
[0007]
Inside the controller 151, amplifiers 511 and 512, A / D converters (ADCs) 531 and 532, and an operation unit 45 are provided. As described above, the currents i1 and i2 input from the distance measurement sensor 150 are output. Then, distance data corresponding to the measured distance L is calculated.
That is, the arithmetic unit 45 converts the currents i1 and i2 into voltages by the amplifiers 511 and 512 to obtain v1 and v2, respectively, and converts these to digital signals by the A / D converters 531 and 532, respectively. The displacement y of the spot light from the center of 33 is calculated by y = (v2−v1) / (v1 + v2).
Then, based on the calculated displacement y and the displacement between the center of the light receiving side lens 23 and the center of the distance measuring sensor, the light condensing position X is obtained, and the measured distance L = P × d / X is calculated.
The controller 151 determines whether or not the measured distance is within a predetermined working distance, and controls the opening and closing of the valve 161 when the measured distance is within the predetermined working distance.
[0008]
[Patent Document 1]
JP-A-2002-194873 (paragraphs [0019] to [0027])
[0009]
[Problems to be solved by the invention]
As shown in FIG. 14, when the target object 5 (such as a human hand) is not in the detection range of the distance measuring sensor 150, the light emitted from the infrared light emitting element 31 is reflected on the bottom surface or the inner wall of the sink 167. The position is detected by the position detecting element 33. However, since the inner wall of the sink 167 is provided at a position outside the predetermined detection range, the controller 151 does not control the opening and closing of the valve 161 even when the position detection element 33 receives the reflected light from the inner wall of the sink 167. .
[0010]
However, in the conventional automatic faucet device 152, there is a case where the measurement distance to the wall surface of the sink 167 is incorrectly calculated and the valve opening / closing control is performed. The reason is as follows.
[0011]
FIG. 15 is a diagram illustrating the difference in the light collection position due to the reflected light between the diffuse reflector such as a human hand and the specular reflector such as the wall surface of the sink 167.
As shown in FIG. 15A, when the light emitted from the infrared light emitting element 31 is reflected by the object 5 which is a diffuse reflector, the reflected light is received by the entire light receiving side lens 23. Therefore, the reflected light is condensed on the position detecting element 33 at a position corresponding to the angle of incidence on the light receiving side lens 23, and the distance to the object 5 can be accurately measured by the condensing position.
[0012]
However, when the light emitted from the infrared light emitting element 31 is reflected on the specular reflector 167, the reflected light becomes spot-like reflected light. Therefore, as shown in FIGS. 15B and 15C, even when the distance between the light receiving side lens 23 and the specular reflector 167 is kept constant, the light emitting optical axis from the infrared light emitting element 31 and the specular reflector 167 are As a result, the position of light condensed on the position detection element 33 changes.
Due to the change in the light condensing position, the signal currents i1 and i2 change, causing a change in the measurement distance calculated by the calculation unit 45, and erroneously calculating the distance to the sink 167, which is a specular reflection object. FIG. 16 shows the relationship between the change in the angle formed between the light emitting optical axis and the specular reflector 167 and the measurement distance. The graph is a result of the measured distance L obtained when the distance between the distance measuring sensor 150 and the specular reflector 167 is kept constant and the angle between the light emitting optical axis and the specular reflector 167 is changed.
[0013]
Therefore, in the conventional automatic faucet device 152, it is necessary to pay attention to the installation position of the distance measuring sensor 150 and the like so that the distance from the sink 167 or the like is not erroneously measured and malfunctioning. And the inconvenience of restricting the design of the kitchen.
[0014]
An object of the present invention is a distance measuring sensor for emitting light toward an object, receiving reflected light from the object and measuring the distance to the object to be measured, a distance measuring device and an automatic faucet device. An object of the present invention is to prevent a malfunction due to a distance measurement error caused by light reflected from the above-mentioned specular reflection object.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a distance measuring device according to the present invention is provided with a plurality of light receiving elements for receiving reflected light from an object to be measured, and an output value of at least two of the light receiving elements is a predetermined distance. When the following is shown, the object to be measured is detected.
[0016]
FIG. 1 is a basic configuration diagram of a distance measuring device according to a first embodiment of the present invention.
The distance measuring device 10 includes a control unit 2 serving as a detecting unit and a distance measuring sensor 3 (hereinafter, referred to as a distance measuring sensor 3). The distance measuring sensor 3 emits light toward a target object 5 which is an object to be measured. The control unit 2 includes a light receiving unit 13a and a plurality of light receiving units 13a and 13b that receive reflected light from the object 5 and output the distance to the object according to the incident angle. A distance calculation unit 43 for calculating a distance to the target object 5 based on the output values from the first and the third objects, and a detection possibility determination unit 41 for permitting detection of the target object 5.
[0017]
The light emitting section 11 includes an infrared light emitting element 31 and a light emitting side lens 21. The light receiving sections 13a and 13b include light receiving side lenses 23a and 23b and position detecting elements (PSD sensors) 33a and 33b, respectively. The light receiving units 13a and 13b are provided at different positions.
[0018]
When the output values of the two light receiving units 13a and 13b both indicate a predetermined distance or less, the detection possibility determination unit 41 outputs a permission signal for permitting detection of the target object 5 to the distance calculation unit 43. The distance calculation unit 43 that has received the permission signal calculates the distance to the object 5 based on the output values from the light receiving units 13a and 13b.
[0019]
The operation of the distance measuring device 10 will be described with reference to FIG.
As shown in FIG. 2A, when the light emitted from the light emitting unit 11 is reflected on the object 5 which is a diffuse reflector, the light receiving units 13 a and 13 b provided at different positions are different from each other. Irrespective of the angle between the optical axis and the object 5, reflected light is received by the entire light-receiving-side lenses 23 a and 23 b, and a measurement result signal is output according to the measurement distance L.
[0020]
On the other hand, when the light emitted from the light emitting unit 11 is reflected on the specular reflector 167, the light received at different positions depending on the angle between the optical axis of the emitted light and the object 5 as shown in FIG. The light receiving state is different between the portions 13a and 13b.
For example, in the case shown in FIG. 2B, the light receiving unit 13a that receives the reflected light from the specular reflector 167 measures the measurement distance L to be a relatively short distance, but hardly receives the reflected light. The light receiving unit 13b measures that the measurement distance L is a very long distance. The difference between the two light receiving states provided at different positions increases as the distance between the specular reflector 167 and the distance measurement sensor 3 increases.
Therefore, when the distance measurement sensor 3 receives the reflected light from the specular reflection object such as the inner surface of the sink 167 outside the detection range of the target object detected by the distance measurement device 10, the measurement result signal of one of the light receiving units indicates the measurement distance. While L is indicated as a short distance, the measurement result signal of the other light receiving unit indicates the measured distance L as a long distance.
Therefore, the detection possibility determination unit 41 determines whether or not to detect the target object 5 only when the detection signals of the light receiving units 13a and 13b both indicate a predetermined distance or less. 10 can prevent erroneous detection due to light reflected from the specular reflector 167.
[0021]
However, according to the basic configuration, it is necessary to increase the number of light receiving elements as compared with a conventional distance measuring device. In order for a detecting means constituted by a microcomputer or the like to read a signal from the light receiving element, it is necessary to provide a conversion circuit such as an amplifier element and an A / D converter. The number of conversion circuits also increases, resulting in an increase in circuit size and current consumption.
[0022]
Therefore, the distance measuring device according to the second aspect of the present invention includes switching means for selecting outputs from the plurality of light receiving units and inputting the outputs to the detecting means. This makes it possible to reduce the size, cost, and power consumption of the circuit.
[0023]
Further, the distance measuring sensor according to the third aspect of the present invention is a light emitting unit that emits light toward the measured object, receives light reflected from the measured object, and receives the reflected light from the measured object according to the incident angle. A plurality of light receiving units for outputting an indication of the distance are provided, and at least one light receiving unit is provided at a position opposite to any other light receiving unit with respect to the light emitting unit.
[0024]
Further, an automatic faucet device according to a fourth aspect of the present invention includes the distance measuring device according to the first aspect.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is a block diagram of the distance measuring device according to the first embodiment of the present invention.
The distance measuring device 10 includes a control unit 2 and a distance measuring sensor 3 as in the above-described basic configuration. The distance measuring sensor 3 includes a light emitting unit 11 and light receiving units 13a and 13b. It includes a unit 43 and a detection possibility determination unit 41.
[0026]
The light emitting section 11 is composed of an infrared light emitting element 31 and a light emitting side lens 21, and the light receiving sections 13a and 13b are well-known elements including light receiving side lenses 23a and 23b and position detecting elements (PSD sensors) 33a and 33b. Here, for the sake of simplicity, it is assumed that the light receiving units 13a and 13b are arranged at equal distances in opposite directions with respect to the light emitting unit 11. The current output from the terminal close to the light emitting optical axis of the position detecting element 33a is i1, the current output from the far terminal is i2, and the current output from the terminal close to the light emitting optical axis of the position detecting element 33b is i3, far. The current output from the terminal is i4. As a result, the output ratios i2 / i1 and i4 / i3 increase as the object 5 is closer.
[0027]
The control unit 2 includes amplifiers 511 to 514, A / D converters (ADCs) 531 to 534, a detection possibility determination unit 41, and a distance calculation unit 43. The amplifiers 511 to 514 and the A / D converter (ADC) 531 to 534 convert the currents i1 to i4 into voltage signals v1 to v4 by voltage / analog-to-digital conversion, respectively, and output them to the detection possibility determination unit 41 and the distance calculation unit 43.
The distance calculation unit 43 uses the voltage signals v1 to v4 input from the A / D converters (ADC) 531 to 534 to calculate the displacements y1 and y2 of the condensing positions of the position detection elements 33a and 33b from the centers of the elements. To y1 = (v2−v1) / (v1 + v2)
y2 = (v4-v3) / (v3 + v4)
It is calculated by:
Here, when the distance between the light emitting side lens 21 and the light receiving side lens 23 is P, the distance between the light receiving side lens 23 and the position detecting element 33 is d, and the light condensing position is X, the measurement distance L is L as described above. = P × d / X. The light condensing position X can be determined by X = z + y, where z is a displacement between the center of the light receiving side lens and the center position of the position detecting element 33 in the direction orthogonal to the light emitting optical axis. Therefore, the distance calculation unit 43 calculates the measurement distances L1 and L2 for the displacements y1 and y2 calculated for each position detection element 33,
L1 = P × d / (z + y1)
L2 = P × d / (z + y2)
Can be calculated by
[0028]
As described above, when the light from the light emitting unit 11 is reflected by the diffuse reflector, the voltage signals v1 to v4 from the light receiving units 13a and 13b are signals indicating the same measurement distances L1 and L2, respectively. However, when the light is reflected by the specular reflector, the light condensing positions on the position detecting elements 33a and 33b change depending on the angle between the light emitting optical axis and the specular reflector, and the voltage signals v1 to v4 change. FIG. 4 shows a graph of voltage signals v1 to v4 when a mirror-reflected object located at a certain position outside the detection range of the distance measuring sensor 3 is measured at a different angle from the light emission optical axis.
[0029]
Since the reflected light from the specular reflection object is a spot light, as shown in the drawing, the range where the output from the position detection element 33a satisfies v1 ≦ v2 and the range where the output from the position detection element 33b satisfies v3 ≦ v4 ( That is, the measurement distance L ≦ P × d / z is not overlapped with the measurement range.
[0030]
Therefore, the detection possibility determination unit 41 compares the voltage signals v1 to v4 input from the A / D converters (ADC) 531 to 534, and only when v1 ≦ v2 and v3 ≦ v4, that is, Only when the output from the position detection element 33a, which is the output value from the light receiving units 13a and 33b, indicates the predetermined measurement distance L = P × d / z or less, the distance calculation unit 43. Outputs a permission signal indicating detection permission. In this way, the detection possibility determination unit 41 determines whether detection is possible, thereby preventing erroneous detection regardless of the angle of the specular reflection object at a certain position outside the detection range with the light emission optical axis. Becomes possible.
When receiving the permission signal from the detection possibility determination unit 41, the distance calculation unit 43 determines the distance to the object 5 from one of the measured distances L1 and L2 or an average thereof, and determines a predetermined distance. The object 5 is detected when it is within the detection range of.
[0031]
FIG. 5 shows an operation flowchart of the distance measuring device 10. The distance measuring device 10 causes the light emitting element 13 to emit light (S61), reads voltage signals v1 to v4 output from the position detecting elements 33a and 33b that have received the reflected light from the object 5 (S63), and then reads the light emitting element. The light emission of the object 13 is stopped (S65), and the distance from the object 5 is measured and / or the object 5 is detected only when v1 ≦ v2 and v3 ≦ v4 (S67, S69). , S71), otherwise the object 5 is not detected (S73).
[0032]
Instead of comparing the voltages v1 to v4, the detection possible / impossible judging unit 41 calculates the displacement y1 or y2 of the condensing position in the position detecting element, or the measurement distance L1, from the voltages v1 to v4 output from the light receiving units 13a and 13b. L2 may be calculated respectively, and based on this, it may be determined whether the object 5 can be detected. FIG. 6 shows graphs of y1 and y2 when the distance between a specular reflection object located at a certain position outside the detection range of the distance measurement sensor 3 and the light emission optical axis is changed.
[0033]
As shown in the figure, it can be seen that a threshold value yth can be set such that the angle ranges where y1 and y2 are each equal to or larger than a predetermined threshold value do not overlap each other. Therefore, the detection possibility determination section 41 may output a permission signal indicating detection permission to the distance calculation section 43 only when both the calculated y1 and y2 are equal to or larger than the predetermined threshold value yth. By thus determining whether or not detection is possible, it is possible to prevent erroneous detection of a specular reflection object at a fixed position outside the detection range.
Further, as described above, the measurement distances L1 = P × d / (z + y1) and L2 = P × d / (z + y2) are inversely proportional to the increments of y1 and y2, so that both L1 and L2 are equal to or less than the predetermined distance Lth. Even if the permission signal is output only when the mirror reflection object is detected, it is possible to prevent erroneous detection of a specular reflection object located at a certain position outside the detection range.
FIG. 7 shows a flowchart in which S67 and S69, which are the detection possibility determination steps in the flowchart of FIG. 5, are changed to determination steps S75 and S77 based on the displacement y1 or y2 of the focusing position.
[0034]
Various arrangements can be adopted for the light emitting unit 11 and the light receiving units 13a and 13b of the distance measuring sensor 3. FIG. 8 is a diagram illustrating an example of an arrangement of the light emitting unit 11 and the light receiving units 13a and 13b of the distance measuring sensor 3. In order to effectively detect the difference in light reception due to specular reflection light, as shown in FIG. 8A, the light receiving units 13a and 13b are placed on opposite sides of the light emitting unit 11, that is, the light receiving unit 13a and the light emitting unit 11 It is preferable that the line connecting the light emitting unit 11 and the light receiving unit 13b be provided at 180 °, but as long as a difference in light reception by specular reflected light can be detected, as shown in FIG. You may provide so that it may become narrower.
Further, the interval between the light receiving unit 13b and the light emitting unit 11 does not need to be provided at the same interval (a) as that between the light emitting unit 11 and the light receiving unit 13a, and as shown in FIG. When it is not provided at the same interval (a) between the unit 11 and the light receiving unit 13a, it may be provided at an interval (b) different from a.
[0035]
FIG. 9 shows a block diagram of the detecting means 2 of the distance measuring device according to the second embodiment of the present invention.
The detecting means 2 of the distance measuring device according to the second embodiment is provided with a multiplexer 91 which is a switching means for selecting the outputs of the plurality of light receiving sections 13a and 13b and inputting the outputs to the detecting means.
FIG. 10 shows a flowchart of the distance measuring device according to the second embodiment.
When reading the voltage signals v1 to v4 obtained by converting the output currents i1 to i4 from the light receiving unit, the distance calculation unit 43 sequentially turns on the switches 931 to 934 in the multiplexer 91 one by one to output the output currents i1 to i4. Selection is performed one by one (S101, S109, S117, S125). Then, the selected output currents i1 to i4 are input to the amplifier 51 and the A / D converter 53, respectively, converted into the voltage signals v1 to v4, and read (S105, S113, S121, S129).
As a result, the number of amplifier elements 511 to 514 and A / D converters 531 to 534 required in the first embodiment can be reduced, and the circuit can be reduced in size, cost and power consumption can be reduced. I do.
In the second embodiment, the number of times of light emission necessary for detecting an object at one time increases. However, since the light emission time per one time is about several μsec to several tens μsec, the amplifier element 51 and the A / D Reducing the number of converters 53 contributes to lower power consumption.
[0036]
FIG. 11 is a view showing an automatic faucet apparatus according to a third embodiment of the present invention. The automatic faucet device 152 includes the detecting means 2 and the valve 161 according to the present invention, which are provided in the flush 163 of the kitchen sink 167.
A water supply channel 171 through which hot and cold water from a hot and cold water supply device 169 flows is connected to the water washing 163, and a water outlet 165 is provided at a distal end, and a distance from an object such as a human body or an object is provided at a distal end or a base. The distance measuring sensor 3 according to the present invention is provided as measuring means for measuring the distance.
By configuring the automatic faucet device 152 in this manner, when the object is not within the detection range, the light emitted from the distance measurement sensor 3 is reflected by the sink 167 that specularly reflects the light, and the detection means 2 erroneously detects the valve. Can be opened and closed to prevent water spouting.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of a distance measuring device according to the present invention.
FIG. 2 is an explanatory diagram of an operation of the distance measuring device according to the present invention.
FIG. 3 is a block configuration diagram of a distance measuring device according to the first embodiment of the present invention.
FIG. 4 is a graph showing a change in a voltage signal when a distance between a specular reflection object at a fixed position and an emission optical axis is measured.
FIG. 5 is an operation flowchart (part 1) of the distance measuring device 10.
FIG. 6 is a graph showing a displacement of a light condensing position when a distance between a specular reflection object at a certain position and an emission optical axis is measured.
FIG. 7 is an operation flowchart (No. 2) of the distance measuring device 10.
FIG. 8 is a diagram illustrating an example of an arrangement of a light emitting unit 11 and light receiving units 13a and 13b of the distance measuring sensor 3.
FIG. 9 is a block diagram of a detecting unit 2 of the distance measuring device according to the second embodiment of the present invention.
FIG. 10 shows a flowchart of a distance measuring device according to a second embodiment of the present invention.
FIG. 11 is a view showing an automatic faucet apparatus according to the present invention.
FIG. 12 is a view showing a conventional automatic faucet apparatus.
13A is a configuration diagram of a conventional distance measuring sensor, FIG. 13B is a diagram illustrating a position detection element 23, and FIG. 13C is a schematic configuration diagram of a controller 151.
FIG. 14 is a diagram (part 2) showing a conventional automatic faucet apparatus.
FIG. 15 is a diagram for explaining a difference in a light condensing position due to reflected light between a diffuse reflector and a specular reflector.
FIG. 16 shows a relationship between a change in an angle formed by a light emitting optical axis and a specular reflector 167 and a measurement distance.
[Explanation of symbols]
2. Detecting means (control unit)
3. Distance measuring sensor (ranging sensor)
5 Target object 10 Distance measuring device 11 Light emitting units 13a and 13b Light receiving unit 21 Light emitting side lenses 23a and 23b Light receiving side lens 31 Light emitting elements 33a and 33b Position detecting element 41 Detection possibility determination unit 43: distance calculation unit 91: switching means

Claims (8)

被測定物体に向けて発光する発光部と、
前記被測定物体からの反射光を受光し、該反射光の入射角に応じて前記被測定物体との距離を示す出力を行う複数の受光部と、
少なくとも2つの前記受光部の出力値が所定距離以下を示すとき、前記被測定物体を検知する検知手段とを備える被測定物体の距離測定装置。
A light emitting unit that emits light toward the measured object;
A plurality of light receiving units that receive reflected light from the measured object and perform an output indicating a distance to the measured object according to an incident angle of the reflected light,
When the output values of at least two of the light receiving units are equal to or less than a predetermined distance, the distance measuring device for the object to be measured includes: a detection unit that detects the object to be measured.
少なくとも1つの前記受光部は、前記発光部に対して、他の何れかの前記受光部の反対位置に設けられることを特徴とする請求項1に記載の距離測定装置。The distance measuring device according to claim 1, wherein at least one of the light receiving units is provided at a position opposite to any of the other light receiving units with respect to the light emitting unit. 前記検知手段は、前記受光部の出力値から前記被測定物体との距離を算出する距離算出部を備えることを特徴とする請求項1に記載の距離測定装置。The distance measuring apparatus according to claim 1, wherein the detecting unit includes a distance calculating unit that calculates a distance to the measured object from an output value of the light receiving unit. 前記受光部は、PSDセンサを備えることを特徴とする請求項1に記載の距離測定装置。The distance measuring device according to claim 1, wherein the light receiving unit includes a PSD sensor. 前記複数の受光部の出力を選択するスイッチング手段を備えることを特徴とする請求項1から4のいずれか一項に記載の距離測定装置。The distance measuring apparatus according to any one of claims 1 to 4, further comprising switching means for selecting outputs of the plurality of light receiving units. 被測定物体に向けて発光する発光部と、
前記被測定物体からの反射光を受光し、該反射光の入射角に応じて前記被測定物体との距離を示す出力を行う複数の受光部を備え、
少なくとも1つの前記受光部は、前記発光部に対して、他の何れかの前記受光部の反対位置に設けられることを特徴とする距離測定センサ。
A light emitting unit that emits light toward the measured object;
A plurality of light receiving units that receive reflected light from the object to be measured and perform an output indicating a distance to the object to be measured according to an incident angle of the reflected light,
A distance measuring sensor, wherein at least one of the light receiving units is provided at a position opposite to any of the other light receiving units with respect to the light emitting unit.
前記受光部は、PSDセンサを備えることを特徴とする請求項6に記載の距離測定センサThe distance measuring sensor according to claim 6, wherein the light receiving unit includes a PSD sensor. 請求項1に記載の距離測定装置により検出された位置に基づいて、給水路の開閉を行うバルブ制御手段を備えることを特徴とする自動水栓装置。An automatic faucet device comprising a valve control means for opening and closing a water supply channel based on a position detected by the distance measuring device according to claim 1.
JP2003099372A 2003-04-02 2003-04-02 Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device Pending JP2004309173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099372A JP2004309173A (en) 2003-04-02 2003-04-02 Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099372A JP2004309173A (en) 2003-04-02 2003-04-02 Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device

Publications (1)

Publication Number Publication Date
JP2004309173A true JP2004309173A (en) 2004-11-04

Family

ID=33463855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099372A Pending JP2004309173A (en) 2003-04-02 2003-04-02 Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device

Country Status (1)

Country Link
JP (1) JP2004309173A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112124A (en) * 2010-11-22 2012-06-14 Panasonic Corp Automatic faucet device
JP2012145445A (en) * 2011-01-12 2012-08-02 Sharp Corp Distance measurement device
WO2013001896A1 (en) * 2011-06-30 2013-01-03 株式会社Lixil Detection distance setting device and automatic faucet apparatus provided with detection distance setting device
JP2013164910A (en) * 2012-02-09 2013-08-22 Panasonic Corp Detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112124A (en) * 2010-11-22 2012-06-14 Panasonic Corp Automatic faucet device
JP2012145445A (en) * 2011-01-12 2012-08-02 Sharp Corp Distance measurement device
WO2013001896A1 (en) * 2011-06-30 2013-01-03 株式会社Lixil Detection distance setting device and automatic faucet apparatus provided with detection distance setting device
JP2013015335A (en) * 2011-06-30 2013-01-24 Lixil Corp Detection distance setting device and automatic faucet apparatus including detection distance setting device
JP2013164910A (en) * 2012-02-09 2013-08-22 Panasonic Corp Detector

Similar Documents

Publication Publication Date Title
US7472433B2 (en) Method and apparatus for determining when hands are under a faucet for lavatory applications
US8576384B2 (en) Distance detecting sensor and close range detecting method
KR100638220B1 (en) Position sensing device of mobile robot and robot cleaner equipped with it
CN1796674A (en) Dual detection sensor system for washroom device
US20120119091A1 (en) Infrared sensor module
US20150268342A1 (en) Time of flight proximity sensor
US9664791B2 (en) Person-detecting sensor and automatic water faucet
HU218052B (en) Electronic control apparatus and method, especially for contactless control of sanitary equipments
JP2007101238A (en) Optical ranging sensor and electrical apparatus
JP2684574B2 (en) Distance measuring device
JP2004309173A (en) Distance measuring instrument for object to be measured, distance measuring sensor, and automatic faucet device
JP5678318B2 (en) Automatic water supply device and distance measuring sensor
JP2009299431A (en) Automatic faucet device
KR20100011072U (en) Apparatus for controlling lamp
JP2004251776A (en) Optical range finder type sensor
JP2005168721A (en) Photoelectric distance measuring type sensor, and toilet seat device
JP5909170B2 (en) Human body detection sensor and automatic faucet
JP2003207578A (en) Sanitary device
JP2004286678A (en) Human body detecting device
JP2004190445A (en) Automatic faucet device
JPH06120795A (en) Distance measuring photoelectric sensor
JP2019173489A (en) Faucet device
JP5635882B2 (en) Automatic faucet device
JP4074828B2 (en) Ranging sensor
JP2021130916A (en) Water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A02