JP2004308950A - Air conditioner heat source apparatus - Google Patents

Air conditioner heat source apparatus Download PDF

Info

Publication number
JP2004308950A
JP2004308950A JP2003099849A JP2003099849A JP2004308950A JP 2004308950 A JP2004308950 A JP 2004308950A JP 2003099849 A JP2003099849 A JP 2003099849A JP 2003099849 A JP2003099849 A JP 2003099849A JP 2004308950 A JP2004308950 A JP 2004308950A
Authority
JP
Japan
Prior art keywords
heat source
temperature
water
pumps
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099849A
Other languages
Japanese (ja)
Inventor
Kyohei Suzuki
恊平 鈴木
Fumiaki Daikyo
史明 大饗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANIHON KUCHO SERVICE KK
Toyota Tsusho Corp
Original Assignee
NAKANIHON KUCHO SERVICE KK
Toyota Tsusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANIHON KUCHO SERVICE KK, Toyota Tsusho Corp filed Critical NAKANIHON KUCHO SERVICE KK
Priority to JP2003099849A priority Critical patent/JP2004308950A/en
Publication of JP2004308950A publication Critical patent/JP2004308950A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner heat source apparatus manufacturable at low cost and capable of accurately controlling the number of heat source devices. <P>SOLUTION: This air conditioner heat source apparatus comprises the plurality of heat source devices 1a, 1b, and 1c producing cool or hot temperature-controlled water, a plurality of pumps 3a, 3b, and 3c installed correspondingly to the heat source devices and circulating the temperature-controlled water between the heat source devices 1a, 1b, and 1c and an air conditioner 2, a plurality of heat load detection means 4a, 4b, and 4c installed correspondingly to the pumps and detecting the temperature of the temperature-controlled water returning to the heat source devices 1a, 1b, and 1c to detect the heat load state of the air conditioner 2, and a plurality of pump flow controllers 5a, 5b, and 5c controlling the operating state of the pumps 3a, 3b, and 3c based on the detected results to control the flow of the temperature-controlled water. The apparatus also comprises a quantity control device 6 receiving operation control information on the pumps 3a, 3b, and 3c from the pump flow controllers 5a, 5b, and 5c and, based on the control information, controlling the plurality of heat source devices 1a, 1b, and 1c in an operating or stop state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
空調機の熱負荷の変動に応じて熱源装置の最適な運転台数制御を行なう空調熱源設備に関する。
【0002】
【従来の技術】
一般に、ビル等の建築物の空調熱源設備は、空調機と熱源装置との間で冷水または温水からなる温調水を循環させ空調機で熱交換させるようにしている。この種の空調熱源設備は、温調水を発生する複数台の熱源装置を備え、空調機の熱負荷の変動に応じて上記複数台の熱源装置を運転状態または停止状態に制御する熱源装置の台数制御が行われている。図3は従来の代表的な熱源装置の台数制御を行なう空調熱源設備を示す。空調熱源設備は並列に設けた複数台の熱源装置1a,1b,1cと空調機2との間で上記温調水を循環させる循環路10を形成している。循環路10には、空調機2から温調水を各熱源装置1a,1b,1cへ戻す還水管12側に、各熱源装置1a,1b,1cに対応して温調水を圧送する複数の一次ポンプ3a,3b,3cを備えている。
【0003】
各ポンプ3a,3b,3cはそれぞれ、上記熱交換後に空調機2から戻る温調水の水温を水温センサ40および温度調節器4a,4b,4cで検出し、検出した水温に基づいて、各ポンプ3a,3b,3cに設けられたポンプ流量制御装置5a,5b,5cにより各ポンプ3a,3b,3cの回転数を制御してそれらの流量を調整するようにしている。図の13,14は送水ヘッダおよび還水ヘッダであり、3dは空調機2側の二次ポンプ、15は送水ヘッダ13と還水ヘッダ14間をつないだバイパス管でバルブ16により開閉される。
【0004】
また、空調熱源設備は、空調機2から戻る温調水の水温を検出する水温センサ41と温度調節器4d、およびこれらで検出した水温に基づいて各熱源装置1a,1b,1cの運転停止を制御する台数制御装置6Aを備えている。台数制御装置6Aは、空調機2で熱交換された温調水の水温を温度調節器4dで検出し、検出した水温と予め設定された設定水温との差によって空調機2の熱負荷状態を判定し、熱源装置1a,1b,1cの運転停止制御をおこなうようにしている。台数制御装置6Aは空調機2の熱負荷が大きいときに熱源装置1a,1b,1cの運転台数を増加し、熱負荷が小さいときに運転台数を減少させる。しかしながら、熱交換後の温調水の水温変化のみで熱源装置1a,1b,1cの台数制御を行っているので、台数制御の精度が低い。
【0005】
そこで、他の従来の空調熱源設備として、熱交換後の負荷熱量を算出し、該負荷熱量により複数台の熱源装置の台数制御を行っているものがある。図4に示すように、台数制御装置6Bは、循環路10の送水管11側に各熱源装置1a,1b,1cから空調機2へ送られる温調水の水温を検出する水温センサ41aを備え、還水管12側に流量計7と熱交換後の水温を検出する水温センサ41bを備えている。台数制御装置6Bは、空調機2へ送られる温調水の水温および熱交換後の水温との差と、温調水の流量から負荷熱量を算出する。空調機2の熱負荷が大きいと上記負荷熱量が大きくなるので熱源装置1a,1b,1cの運転台数を増加し、熱負荷が小さいと負荷熱量が小さくなるので運転台数を減少させる。
【0006】
更に、負荷熱量に基づいて熱源装置の台数制御を行う従来の他の空調熱源設備として、負荷熱量、ポンプ制御出力の回帰、ポンプ制御出力の予測、およびバイパス管9流量の情報に基づいて、より精度の高い熱源装置の台数制御を行うものがある(特許文献1参照。)。
【0007】
【特許文献1】
特開2000−257938号公報
【0008】
【発明が解決しようとする課題】
従来の熱交換後の温調水の水温変化のみに基づいて台数制御を行なう設備では空調機の熱負荷の変動に応じて熱源装置の台数制御を精度よくできない。また、従来の水温の変化と流量との負荷熱量に基づいて台数制御を行う設備では、いずれも水温センサ41a,41bや流量計7等を増設しなければならず設備が複雑化してコストが高くなるうえ、制御も複雑になる。そこで本発明は、空調機による熱交換後の温調水の温度変化と流量の変化とに基づいて精度のよい熱源装置の台数制御を実現でき、簡素かつ低コストの設備ですむ空調熱源設備を提供することを課題としてなされたものである。
【0009】
【課題を解決するための手段】
本発明は、冷水または温水たる温調水を熱媒体とする空調熱源設備であって、上記温調水を発生する複数台の熱源装置と、上記各熱源装置に対応して設けられ、上記温調水を空調機へ送るとともに、上記空調機から上記各熱源装置へ戻す複数台のポンプと、上記各ポンプに対応して設けられ、上記各熱源装置へ戻る温調水の水温を検出して上記空調機の熱負荷状態を検出する複数の熱負荷検出手段と、各熱負荷検出手段の検出結果に基づいて上記各ポンプの稼働状態を制御して温調水の流量を調整する複数台のポンプ流量制御装置を備えた空調熱源設備において、上記各ポンプ流量制御装置から上記各ポンプの稼働制御情報を受信し、該制御情報に基づいて上記複数台の熱源装置を運転状態または停止状態に制御せしめる台数制御装置を設ける(請求項1)。
【0010】
上記台数制御装置は、上記空調機の熱負荷が大きく、上記各冷温水ポンプによる上記冷水または温水の流量が多くなったとき、運転状態にする上記熱源装置の台数を増やし、空調機の熱負荷が小さく、上記各冷温水ポンプによる冷水または温水の流量が少なくなったとき、停止状態とする熱源装置の台数を増やすようになす(請求項2)。また、上記台数制御装置が上記各ポンプ流量制御装置から受信する上記各ポンプの稼働制御情報を、上記各ポンプが所定の稼働状態に上がったときに上記各ポンプ流量制御装置から発信されるON信号と、上記各ポンプが所定の稼働状態に下がったときに各ポンプ流量制御装置から発信されるOFF信号との2種類の信号とする(請求項3)。
【0011】
ポンプ流量制御装置は熱負荷検出手段による温調水の水温に基づいてポンプによる温調水の流量を制御するので、ポンプ流量制御装置からポンプの稼働制御情報を受ける台数制御装置は実質的に、温調水の水温と流量に基づいて熱源装置の台数制御を行なうこととなるので、精度の高い熱源装置の台数制御を行なうことができる。また台数制御装置は独自に温調水の水温や流量を計測する装置が不要で、空調熱源設備の設備が簡素化でき、コスト低減がはかれる。かつ台数制御装置は2種類の信号からなるポンプの稼働制御情報に基づいて制御するので簡単な制御ですむ。
【0012】
【発明の実施の形態】
図1に示すように、空調熱源装置は、複数台の熱源装置1a,1b,1cから空調機2へ冷水または温水の温調水を送るとともに、空調機2から各熱源装置1a,1b,1cへ上記温調水を戻す循環路10が構成してある。各熱源装置1a,1b,1cは循環路10に並列に設けてあり、各熱源装置1a,1b,1cから空調機2へ温調水を送る送水管11には各熱源装置1a,1b,1cで発生した温調水を混ぜる送水側ヘッダ13が設けてあり、かつ送水側ヘッダ13と空調機2との間には二次ポンプ3dが設けてある。
【0013】
循環路10の還水管12には空調機2から戻る温調水を還水側ヘッダ14で各熱源装置1a,1b,1cへ振り分けて戻すようにしてある。還水側ヘッダ14と各熱源装置1a,1b,1cとの間には、各熱源装置1a,1b,1cに対応する複数台の一次ポンプ3a,3b,3cが設けてある。
【0014】
各一次ポンプ3a,3b,3cは、電動モーターにより駆動するポンプである。各一次ポンプ3a,3b,3cにはそれぞれ、上記各モーターへの供給電源の周波数を可変してモーターの回転速度を制御するインバーター装置たるポンプ流量制御装置5a,5b,5cが電気的に接続してあり、各一次ポンプ3a,3b,3cはそれぞれ、各ポンプ流量制御装置5a,5b,5cからの制御指令により温調水の流量を可変するようにしてある。
【0015】
還水側ヘッダ14から各一次ポンプ3a,3b,3cへ至る還水管12にはそれぞれ、温調水の水温を検知する熱負荷検出手段として、水温センサ40と各水温センサ40の検出値を読み取る温度調節器4a,4b,4cが設けてある。各温度調節器4a,4b,4cは各ポンプ流量制御装置5a,5b,5cと電気的に接続してあり、温度調節器4a,4b,4cは、上記読み取った温調水の水温情報に基づいて各ポンプ流量制御装置5a,5b,5cへ制御信号を送信する。
【0016】
各熱源装置1a,1b,1cの運転台数を制御する台数制御装置6は、各熱源装置1a,1b,1cと電気的に接続してあり、各熱源装置1a,1b,1cへこれらを運転させるか否かの制御指令を送るようにしてある。また、台数制御装置6は、各ポンプ流量制御装置5a,5b,5cと電気的に接続してあり、各ポンプ流量制御装置5a,5b,5cから各一次ポンプ3a,3b,3cの稼働制御情報を受信するようにしている。
【0017】
空調熱源装置は、各熱源装置1a,1b,1cによって作られた温調水が、各一次ポンプ3a,3b,3cおよび二次ポンプ3dにより送水側ヘッダ13を経由して空調機2へ圧送される。空調機2へ送られた温調水は、空調機2で熱交換された後、還水側ヘッダ14を経由して再び各熱源装置1a,1b,1cに戻ってくる。熱交換された温調水はその水温が変化する。この時、各熱源装置1a,1b,1cへ戻る温調水の水温を各水温センサ40および各温度調節器4a,4b,4cで検知し、各温度調節器4a,4b,4cは、検知した水温と予め設定された設置水温とを比較し、これらの偏差に基づいて各ポンプ流量制御装置5a,5b,5cを制御して各一次ポンプ3a,3b,3cの流量を増減変化させる。例えば冷房の場合、空調機2の熱負荷が大きい場合、熱交換後の温調水の水温が高くなり、設置水温との偏差が大きくなるので各一次ポンプ3a,3b,3cの流量を増加する。逆に、空調機2の熱負荷が小さいと、熱交換後の温調水の水温と上記設定水温との偏差が小さくなるので流量を減少させる。
【0018】
そして、空調機2の熱負荷が小さく温調水の流量が減少したとき、台数制御装置6により複数台の熱源装置1a,1b,1cの運転台数を減らして省エネ運転をはかる。台数制御装置6は、各ポンプ流量制御装置5a,5b,5cから受信した上記稼働制御情報に基づいて各熱源装置1a,1b,1cを運転または停止させる制御を行なう。以下、図2に基づいて台数制御装置6の制御内容の詳細を説明する。
【0019】
例えば、空調熱源設備は、冷房時に、各一次ポンプ3a,3b,3cの稼働周波数がそれぞれ56Hzのときに各熱源装置1a,1b,1cの冷房能力がそれぞれ約100%となるように設定してあり、空調機2の最大熱負荷時に3台の熱源装置1a,1b,1cを合わせた約300%の冷房能力が発揮される。尚、各熱源装置1a,1b,1cは各一次ポンプ3a,3b,3cの稼働周波数がそれぞれ32Hzのとき冷房能力が約53%となるようにしてある。
【0020】
各ポンプ流量制御装置5a,5b,5cから台数制御装置6へ送信する上記稼働制御情報は2種類の信号からなり、一方は、各一次ポンプ3a,3b,3cの稼働周波数が54Hzに上がったときに発信するON信号、他方は、各一次ポンプ3a,3b,3cの稼働周波数が32Hzに下がったときに発信するOFF信号である。
【0021】
図2に示すように、空調機2の熱負荷が上記全体の冷房能力の約240%に相当するとき、各熱源装置1a,1b,1cの1台当りの冷房能力は約80%必要で、各一次ポンプ3a,3b,3cは約48Hzで稼働している。冷房している室温が下がり空調機2の熱負荷が小さくなって約160%に低下すると(図のA位置)、一台当りの各熱源装置1a,1b,1cの冷房能力が約53%ですみ、一次ポンプ3a,3b,3cの稼働周波数がそれぞれ温調水の水温変化に基づいて約32Hzに下がる。このとき、各ポンプ流量制御装置5a,5b,5cの上記稼働制御情報はOFF信号を発する。尚、各一次ポンプ3a,3b,3cの稼働周波数は、必ずしも同時に下がらず、各一次ポンプ3a,3b,3cに対応する水温センサ40や温度調節器4a,4b,4cおよび各ポンプ流量制御装置5a,5b,5cの精度によりずれが生じる。図では、最初に一次ポンプ3aの稼働周波数が下がるものとする。
【0022】
一次ポンプ3aの稼働周波数が低下して台数制御装置6が最初のOFF信号を受信すると(図のB位置)、台数制御装置6は各熱源装置1a,1b,1cのうちのいずれか一台を停止させる(図では熱源装置1aを止めるものとする)。即ち、空調機2の熱負荷が約160%のとき、熱源装置1aを1台停止しても他の2台の熱源装置1b,1cをそれぞれ冷房能力約80%以上で運転すれば、2台の熱源装置1b,1cで必要な冷房能力を充分に確保できる。また、停止させる熱源装置1aは必ずしも最初に稼働周波数が下がったものに限定せず、各熱源装置1a,1b,1cが順に停止するように台数制御装置6により選択制御させるようにする。台数制御装置6は熱源装置1aを止めるとともに、これに対応する一次ポンプ3aも止める。
【0023】
熱源装置1aを止めると、他の熱源装置1b,1cの一台当りの冷房能力を約80%に上げるため、各一次ポンプ3b,3cの稼働周波数がそれぞれ温調水の水温変化に基づいて約48Hzに上がる。
【0024】
更に、空調機2の熱負荷が小さくなって約80%に低下すると(図のC位置)、各熱源装置1b,1cの一台当りの冷房能力が約40%となり、各一次ポンプ3b,3cの稼働周波数がそれぞれ約32Hz以下に下がる。このとき、各ポンプ流量制御装置5b,5cの上記稼働制御情報はOFF信号を発する。
【0025】
各一次ポンプ3b,3cの稼働周波数が約32Hz以下にさがって台数制御装置6が最初のOFF信号を受信すると、台数制御装置6は各熱源装置1b,1cのうちのいずれか一台(熱源装置1b)を停止させ、これに対応する一次ポンプ3bを停止させる。空調機2の熱負荷が約80%となると、熱源装置1bを停止しても他の熱源装置1cを冷房能力約80%以上で運転すれば、必要な冷房能力を確保できる。熱源装置1bを止めると、他の熱源装置1cの冷房能力を約80%に上げるため、一次ポンプ3cの稼働周波数が約48Hzに上がる。
【0026】
更に、冷房する室内の室温が下がって空調機2の熱負荷が下がると一次ポンプ3cの稼働周波数を下げ、熱源装置1cの冷房能力を下げる。空調機2の熱負荷が約15〜20%となると、熱源装置1cは、その本体内に組込まれた温度調節機能により自動的に停止する(図のD位置)。尚、台数制御装置6は、一次ポンプ3cの稼働周波数が32Hz以下に下がるときにポンプ流量制御装置5cのOFF信号を受信しても、これに基づく熱源装置1cへの停止指令を発信しないようにしている。熱源装置1cが停止しても、一次ポンプ3cは最低稼働周波数(30Hz)で継続稼働している。
【0027】
次に、上記室温が上昇して空調機2の熱負荷が大きくなり、温調水の水温が上がると上記温度調節機能により自動的に停止した熱源装置1cが再度、運転を開始する(図のE位置)。空調機2の熱負荷が約80%となると、これに応じて、一次ポンプ3cの稼働周波数が約48Hzに上昇し、熱源装置1cの冷房能力が約80%となる。
【0028】
更に、空調機2の熱負荷が大きくなり空調熱源設備全体の冷房能力の約120%に相当するとき、これに応じて、一次ポンプ3cの稼働周波数が上がり、熱源装置1cの冷房能力が約90%程度まで増加すると、一次ポンプ3cの稼働周波数が約54Hzとなって、ポンプ流量制御装置5cから台数制御装置6へ上記稼働制御情報のON信号が発信される(図のF位置)。上記ON信号を受信した台数制御装置6は、停止状態の熱源装置1a,1bのいずれか一台を運転させる(図は熱源装置1bを運転させる)。これにより、各熱源装置1b,1cの冷房能力は一台当り約60%ですみ、各一次ポンプ3b,3cの稼働周波数が約37Hzとなる。
【0029】
更に、空調機2の熱負荷が約210%に増加すると、各熱源装置1b,1cの1台当りの冷房能力が100%以上となり、これに追従して、各一次ポンプ3b,3cの稼働周波数が上がり、各熱源装置1b,1cの冷房能力が約90%程度まで増加すると、各一次ポンプ3b,3cの稼働周波数が約54Hzとなって、各ポンプ流量制御装置5b,5cから台数制御装置6へ上記稼働制御情報のON信号が発信される(図のG位置)。これらのいずれか早い信号を受けた台数制御装置6は、停止状態の熱源装置1aへ運転指令を発信して熱源装置1aを運転させる。熱源装置1a,1b,1cが運転することにより、一台当りの冷房能力は約70%ですみ、各一次ポンプ3a,3b,3cの稼働周波数が約43Hzとなる。
【0030】
このように、本発明の空調熱源設備は、台数制御装置6により、空調機2の熱負荷が下がると、熱源装置1a,1b,1cの運転台数を減らすとともに、空調機2の熱負荷が上がったときに運転台数を増やす制御が行われ省エネ運転が実施される。熱源装置1a,1b,1cの台数制御を実施するに当たって、台数制御装置6は、従来のように、独自に温調水の水温や流量を検知する水温センサや温度調節器および流量計が不要で低コストですむ。また、各ポンプ流量制御装置5a,5b,5cは温調水の水温変動に基づいて各一次ポンプ3a,3b,3cの流量を制御しており、ポンプ流量制御装置5a,5b,5cからポンプ稼働制御情報を受信する台数制御装置6は、実質的に温調水の水温変動と流量とに基づいて台数制御することとなり、空調機2の熱負荷の変動に追従する台数制御の精度が高い。しかもポンプ流量制御装置5a,5b,5cから台数制御装置6が受信するポンプ稼働制御情報がON信号とOFF信号の2種類のみとし、空調機2の負荷熱量等を算出する必要がないので単純な制御ですむ。
【0031】
【発明の効果】
本発明の空調熱源設備によれば、空調機の熱負荷の変動に応じて、熱交換後の温調水の温度変化と、流量の変化とに基づいた精度の高い熱源装置の台数制御を実施することができ、かつ空調熱源設備自体を低コストにできる。
【図面の簡単な説明】
【図1】本発明の空調熱源設備の温調水の循環路および電気的な接続を示す概略ブロック図である。
【図2】本発明の空調熱源設備の台数制御のタイミングチャートを示す図である。
【図3】従来の空調熱源設備の温調水の循環路および電気的な接続を示す概略ブロック図である。
【図4】従来の他の空調熱源設備の温調水の循環路および電気的な接続を示す概略ブロック図である。
【符号の説明】
1a,1b,1c 熱源装置
2 空調機
3a,3b,3c ポンプ(一次ポンプ)
4a,4b,4c 熱負荷検出装置(温度調節器)
40 水温センサ
5a,5b,5c ポンプ流量制御装置
6 台数制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air-conditioning heat source facility that performs optimal control of the number of operating heat source devices according to a change in a heat load of an air conditioner.
[0002]
[Prior art]
Generally, in an air-conditioning heat source facility of a building such as a building, temperature-regulated water composed of cold water or hot water is circulated between an air conditioner and a heat source device to exchange heat with the air conditioner. This type of air conditioning heat source equipment includes a plurality of heat source devices that generate temperature control water, and a heat source device that controls the plurality of heat source devices to an operating state or a stopped state according to a change in the heat load of the air conditioner. Number control is being performed. FIG. 3 shows an air conditioning heat source facility for controlling the number of typical conventional heat source devices. The air-conditioning heat source equipment forms a circulation path 10 for circulating the temperature-regulated water between the air conditioner 2 and a plurality of heat source devices 1a, 1b, 1c provided in parallel. In the circulation path 10, a plurality of pressure-controlled water corresponding to each of the heat source devices 1 a, 1 b, and 1 c is sent to the return pipe 12 that returns temperature-controlled water from the air conditioner 2 to each of the heat source devices 1 a, 1 b, and 1 c. Primary pumps 3a, 3b, 3c are provided.
[0003]
Each of the pumps 3a, 3b, and 3c detects the temperature of the temperature-regulated water returning from the air conditioner 2 after the heat exchange by the water temperature sensor 40 and the temperature controllers 4a, 4b, and 4c. The pumps 3a, 3b, and 3c are provided with pump flow controllers 5a, 5b, and 5c to control the rotation speeds of the pumps 3a, 3b, and 3c to adjust their flow rates. 13 and 14 are a water supply header and a return water header, 3d is a secondary pump on the side of the air conditioner 2, and 15 is a bypass pipe connecting the water supply header 13 and the return water header 14 and is opened and closed by a valve 16.
[0004]
Further, the air conditioning heat source equipment stops the operation of each heat source device 1a, 1b, 1c based on the water temperature sensor 41 and the temperature controller 4d for detecting the temperature of the temperature-regulated water returning from the air conditioner 2, and the water temperature detected by these. It is provided with a number control device 6A for controlling. The number control device 6A detects the temperature of the temperature-regulated water heat-exchanged by the air conditioner 2 with the temperature controller 4d, and determines the heat load state of the air conditioner 2 based on a difference between the detected water temperature and a preset set water temperature. The determination is made, and the operation stop control of the heat source devices 1a, 1b, 1c is performed. The number control device 6A increases the number of operating heat source devices 1a, 1b, and 1c when the heat load of the air conditioner 2 is large, and decreases the number of operating heat sources when the heat load is small. However, since the number control of the heat source devices 1a, 1b, and 1c is performed only by the change in the temperature of the temperature-regulated water after the heat exchange, the accuracy of the number control is low.
[0005]
Therefore, as another conventional air conditioning heat source equipment, there is one in which a load heat amount after heat exchange is calculated and the number of heat source devices is controlled based on the load heat amount. As shown in FIG. 4, the number control device 6 </ b> B includes a water temperature sensor 41 a on the water pipe 11 side of the circulation path 10 for detecting the temperature of the temperature-regulated water sent from each of the heat source devices 1 a, 1 b, 1 c to the air conditioner 2. A water temperature sensor 41b for detecting the water temperature after heat exchange with the flow meter 7 is provided on the side of the return water pipe 12. The number control device 6B calculates the load calorific value from the difference between the temperature of the temperature-regulated water sent to the air conditioner 2 and the temperature of the water after the heat exchange, and the flow rate of the temperature-regulated water. If the heat load of the air conditioner 2 is large, the load heat quantity increases, so the number of operating heat source devices 1a, 1b, 1c is increased. If the heat load is small, the load heat quantity decreases, and the number of operating heat source apparatuses is reduced.
[0006]
Further, as another conventional air-conditioning heat source equipment that controls the number of heat source devices based on the load heat amount, based on information on load heat amount, regression of pump control output, prediction of pump control output, and flow rate of bypass pipe 9, There is an apparatus that controls the number of heat source devices with high accuracy (see Patent Document 1).
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-257938
[Problems to be solved by the invention]
Conventional equipment that controls the number of units based only on the change in the temperature of the temperature-regulated water after heat exchange cannot accurately control the number of heat source devices according to the change in the heat load of the air conditioner. Further, in the conventional equipment for controlling the number of units based on the change in water temperature and the load calorie of the flow rate, the water temperature sensors 41a and 41b, the flow meter 7, and the like must be additionally provided, which complicates the equipment and increases the cost. In addition, control becomes complicated. Therefore, the present invention provides an air-conditioning heat source facility that can realize accurate control of the number of heat source devices based on the temperature change and the flow rate change of the temperature-regulated water after the heat exchange by the air conditioner, and requires only simple and low-cost equipment. It was made to provide.
[0009]
[Means for Solving the Problems]
The present invention is an air conditioning heat source facility using cold water or hot water as temperature control water as a heat medium, and a plurality of heat source devices for generating the temperature control water, provided in correspondence with each of the heat source devices, A plurality of pumps that return the water to the air conditioner and return from the air conditioner to each of the heat source devices, and are provided corresponding to the respective pumps, and detect the temperature of the temperature regulating water that returns to each of the heat source devices. A plurality of heat load detecting means for detecting the heat load state of the air conditioner, and a plurality of heat load detecting means for controlling the operation state of each pump based on the detection result of each heat load detecting means to adjust the flow rate of the temperature regulating water. In an air-conditioning heat source facility equipped with a pump flow control device, operation control information of each pump is received from each pump flow control device, and the plurality of heat source devices are controlled to an operation state or a stop state based on the control information. Provision of a number control device (Claim 1).
[0010]
When the heat load of the air conditioner is large and the flow rate of the cold or hot water by each of the cold / hot water pumps is large, the number control device increases the number of the heat source devices to be put into an operation state, and increases the heat load of the air conditioner. When the flow rate of the cold water or the hot water by each of the cold / hot water pumps becomes small, the number of heat source devices to be stopped is increased (claim 2). Further, the operation control information of each of the pumps received by the number control device from each of the pump flow control devices is an ON signal transmitted from each of the pump flow control devices when each of the pumps rises to a predetermined operation state. And an OFF signal transmitted from each pump flow control device when each of the pumps is lowered to a predetermined operating state (claim 3).
[0011]
Since the pump flow control device controls the flow rate of the temperature-regulated water by the pump based on the temperature of the temperature-regulated water by the heat load detection means, the number control device that receives the operation control information of the pump from the pump flow control device is substantially: Since the number of heat source devices is controlled based on the temperature and flow rate of the temperature control water, the number of heat source devices can be controlled with high accuracy. Also, the unit control device does not require a device for independently measuring the temperature and flow rate of the temperature control water, so that the equipment of the air conditioning heat source equipment can be simplified and the cost can be reduced. In addition, since the number control device performs control based on pump operation control information including two types of signals, simple control is sufficient.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the air conditioning heat source device sends cold water or hot water from a plurality of heat source devices 1 a, 1 b, 1 c to the air conditioner 2 and controls the heat source devices 1 a, 1 b, 1 c from the air conditioner 2. A circulation path 10 for returning the temperature-regulated water is formed. Each heat source device 1a, 1b, 1c is provided in parallel with the circulation path 10, and each heat source device 1a, 1b, 1c is connected to a water pipe 11 for sending temperature-regulated water from each heat source device 1a, 1b, 1c to the air conditioner 2. A water supply side header 13 for mixing the temperature-regulated water generated in the above is provided, and a secondary pump 3 d is provided between the water supply side header 13 and the air conditioner 2.
[0013]
The temperature-regulated water returned from the air conditioner 2 is distributed to the heat source devices 1a, 1b, and 1c by the return water header 14 and returned to the return water pipe 12 of the circulation path 10. A plurality of primary pumps 3a, 3b, 3c corresponding to the respective heat source devices 1a, 1b, 1c are provided between the return water header 14 and the respective heat source devices 1a, 1b, 1c.
[0014]
Each of the primary pumps 3a, 3b, 3c is a pump driven by an electric motor. Each of the primary pumps 3a, 3b, 3c is electrically connected to a pump flow control device 5a, 5b, 5c as an inverter device for controlling the rotation speed of the motor by varying the frequency of the power supply to each motor. Each of the primary pumps 3a, 3b, 3c is configured to vary the flow rate of the temperature regulating water according to a control command from each of the pump flow control devices 5a, 5b, 5c.
[0015]
The return water pipe 12 from the return water header 14 to each of the primary pumps 3a, 3b, 3c reads the water temperature sensor 40 and the detection value of each water temperature sensor 40 as heat load detecting means for detecting the temperature of the temperature-regulated water. Temperature controllers 4a, 4b, 4c are provided. Each of the temperature controllers 4a, 4b, 4c is electrically connected to each of the pump flow controllers 5a, 5b, 5c, and the temperature controllers 4a, 4b, 4c are based on the read temperature information of the temperature control water. Control signals to the respective pump flow control devices 5a, 5b, 5c.
[0016]
The number control device 6, which controls the number of operating the heat source devices 1a, 1b, 1c, is electrically connected to the heat source devices 1a, 1b, 1c, and causes the heat source devices 1a, 1b, 1c to operate them. Control command is sent. The number control device 6 is electrically connected to each of the pump flow control devices 5a, 5b, 5c. The operation control information of each of the primary pumps 3a, 3b, 3c is transmitted from each of the pump flow control devices 5a, 5b, 5c. Is to receive.
[0017]
In the air-conditioning heat source device, the temperature-regulated water produced by each of the heat source devices 1a, 1b, 1c is pressure-fed to the air conditioner 2 via the water supply header 13 by each of the primary pumps 3a, 3b, 3c and the secondary pump 3d. You. The temperature-regulated water sent to the air conditioner 2 is heat-exchanged by the air conditioner 2, and then returns to the heat source devices 1a, 1b, and 1c again via the return water header 14. The temperature of the heat-exchanged temperature-controlled water changes. At this time, the temperature of the temperature-regulated water returning to each heat source device 1a, 1b, 1c is detected by each water temperature sensor 40 and each temperature controller 4a, 4b, 4c, and each temperature controller 4a, 4b, 4c detects it. The water temperature is compared with a preset installation water temperature, and the pump flow controllers 5a, 5b, 5c are controlled based on these deviations to increase or decrease the flow rates of the primary pumps 3a, 3b, 3c. For example, in the case of cooling, when the heat load of the air conditioner 2 is large, the temperature of the temperature-regulated water after the heat exchange becomes high, and the deviation from the installed water temperature becomes large, so that the flow rate of each of the primary pumps 3a, 3b, 3c is increased. . Conversely, when the heat load of the air conditioner 2 is small, the deviation between the temperature of the temperature-regulated water after the heat exchange and the above-mentioned set water temperature is reduced, so that the flow rate is reduced.
[0018]
Then, when the heat load of the air conditioner 2 is small and the flow rate of the temperature control water is reduced, the number control device 6 reduces the number of operating the plurality of heat source devices 1a, 1b, 1c to perform energy saving operation. The number control device 6 performs control for operating or stopping each heat source device 1a, 1b, 1c based on the operation control information received from each pump flow control device 5a, 5b, 5c. Hereinafter, details of the control of the number control device 6 will be described with reference to FIG.
[0019]
For example, the air-conditioning heat source equipment is set such that the cooling capacity of each of the heat source devices 1a, 1b, 1c is about 100% when the operating frequency of each of the primary pumps 3a, 3b, 3c is 56 Hz during cooling. With the maximum heat load of the air conditioner 2, about 300% of the cooling capacity of the three heat source devices 1a, 1b, 1c is exhibited. The cooling capacity of each of the heat source devices 1a, 1b, 1c is about 53% when the operating frequency of each of the primary pumps 3a, 3b, 3c is 32 Hz.
[0020]
The operation control information transmitted from each pump flow control device 5a, 5b, 5c to the number control device 6 consists of two types of signals. One is when the operation frequency of each primary pump 3a, 3b, 3c rises to 54 Hz. The other is an OFF signal transmitted when the operating frequency of each of the primary pumps 3a, 3b, 3c drops to 32 Hz.
[0021]
As shown in FIG. 2, when the heat load of the air conditioner 2 corresponds to about 240% of the overall cooling capacity, the cooling capacity per one heat source device 1a, 1b, 1c is required to be about 80%. Each primary pump 3a, 3b, 3c operates at about 48 Hz. When the cooling room temperature decreases and the heat load of the air conditioner 2 decreases to about 160% (position A in the figure), the cooling capacity of each heat source device 1a, 1b, 1c is about 53%. However, the operating frequency of the primary pumps 3a, 3b, 3c drops to about 32 Hz based on the temperature change of the temperature control water. At this time, the operation control information of each pump flow control device 5a, 5b, 5c issues an OFF signal. The operating frequency of each of the primary pumps 3a, 3b, 3c does not necessarily decrease at the same time, and the water temperature sensor 40, the temperature controllers 4a, 4b, 4c and the pump flow control devices 5a corresponding to the primary pumps 3a, 3b, 3c, respectively. , 5b, 5c cause a shift. In the figure, it is assumed that the operating frequency of the primary pump 3a first decreases.
[0022]
When the operating frequency of the primary pump 3a decreases and the number control device 6 receives the first OFF signal (position B in the figure), the number control device 6 controls any one of the heat source devices 1a, 1b, and 1c. The operation is stopped (in the figure, the heat source device 1a is stopped). That is, when the heat load of the air conditioner 2 is about 160%, if one heat source device 1a is stopped and the other two heat source devices 1b and 1c are each operated with a cooling capacity of about 80% or more, two heat source devices 1b and 1c are operated. The cooling capacity required by the heat source devices 1b and 1c can be sufficiently ensured. Further, the heat source device 1a to be stopped is not necessarily limited to the one whose operating frequency is lowered first, and is selectively controlled by the number control device 6 so that each of the heat source devices 1a, 1b, 1c is stopped in order. The number controller 6 stops the heat source device 1a and also stops the corresponding primary pump 3a.
[0023]
When the heat source device 1a is stopped, the operating frequency of each of the primary pumps 3b and 3c is set to about 80% based on the temperature change of the temperature control water in order to increase the cooling capacity per one of the other heat source devices 1b and 1c to about 80%. It goes up to 48Hz.
[0024]
Further, when the heat load of the air conditioner 2 is reduced to about 80% (position C in the figure), the cooling capacity per one heat source device 1b, 1c becomes about 40%, and each primary pump 3b, 3c The operating frequency of each of them falls to about 32 Hz or less. At this time, the operation control information of each of the pump flow control devices 5b and 5c issues an OFF signal.
[0025]
When the operating frequency of each of the primary pumps 3b and 3c falls to about 32 Hz or less and the number control device 6 receives the first OFF signal, the number control device 6 selects one of the heat source devices 1b and 1c (the heat source device). 1b) is stopped, and the corresponding primary pump 3b is stopped. When the heat load of the air conditioner 2 becomes about 80%, the necessary cooling capacity can be secured by operating the other heat source apparatus 1c with the cooling capacity of about 80% or more even if the heat source device 1b is stopped. When the heat source device 1b is stopped, the operating frequency of the primary pump 3c increases to approximately 48 Hz in order to increase the cooling capacity of the other heat source device 1c to approximately 80%.
[0026]
Further, when the room temperature of the room to be cooled decreases and the heat load of the air conditioner 2 decreases, the operating frequency of the primary pump 3c is reduced, and the cooling capacity of the heat source device 1c is reduced. When the heat load of the air conditioner 2 becomes about 15 to 20%, the heat source device 1c automatically stops due to the temperature control function incorporated in its main body (position D in the figure). In addition, even if the number control device 6 receives the OFF signal of the pump flow control device 5c when the operating frequency of the primary pump 3c falls to 32 Hz or less, it does not transmit a stop command to the heat source device 1c based on the signal. ing. Even if the heat source device 1c stops, the primary pump 3c continues to operate at the minimum operating frequency (30 Hz).
[0027]
Next, when the room temperature rises, the heat load of the air conditioner 2 increases, and when the temperature of the temperature-regulated water rises, the heat source device 1c automatically stopped by the temperature adjustment function starts operating again (see FIG. E position). When the heat load of the air conditioner 2 becomes about 80%, the operating frequency of the primary pump 3c increases accordingly to about 48 Hz, and the cooling capacity of the heat source device 1c becomes about 80%.
[0028]
Further, when the heat load of the air conditioner 2 increases and corresponds to about 120% of the cooling capacity of the entire air conditioning heat source equipment, the operating frequency of the primary pump 3c increases accordingly, and the cooling capacity of the heat source device 1c increases by about 90%. %, The operation frequency of the primary pump 3c becomes about 54 Hz, and the ON signal of the operation control information is transmitted from the pump flow control device 5c to the number control device 6 (position F in the figure). The number control device 6 that has received the ON signal operates one of the heat source devices 1a and 1b in the stopped state (the heat source device 1b is operated in the figure). Thereby, the cooling capacity of each heat source device 1b, 1c is only about 60% per one, and the operating frequency of each primary pump 3b, 3c is about 37 Hz.
[0029]
Further, when the heat load of the air conditioner 2 increases to about 210%, the cooling capacity of each heat source device 1b, 1c becomes 100% or more, and the operating frequency of each primary pump 3b, 3c follows. When the cooling capacity of each heat source device 1b, 1c increases to about 90%, the operating frequency of each primary pump 3b, 3c becomes about 54 Hz, and the pump flow control devices 5b, 5c to the number control device 6 Then, an ON signal of the operation control information is transmitted to (G position in the figure). Upon receiving any of these early signals, the number control device 6 transmits an operation command to the stopped heat source device 1a to operate the heat source device 1a. By operating the heat source devices 1a, 1b, 1c, the cooling capacity per unit is only about 70%, and the operating frequency of each primary pump 3a, 3b, 3c is about 43 Hz.
[0030]
As described above, in the air conditioning heat source equipment of the present invention, when the heat load of the air conditioner 2 is reduced by the number control device 6, the number of operating heat source devices 1a, 1b, 1c is reduced, and the heat load of the air conditioner 2 is increased. When this happens, control to increase the number of operating units is performed, and energy saving operation is performed. In controlling the number of the heat source devices 1a, 1b, and 1c, the number control device 6 does not need a water temperature sensor, a temperature controller, and a flow meter for independently detecting the temperature and flow rate of the temperature control water as in the related art. Low cost. Each of the pump flow controllers 5a, 5b, 5c controls the flow rate of each of the primary pumps 3a, 3b, 3c based on the water temperature fluctuation of the temperature control water, and operates the pumps from the pump flow controllers 5a, 5b, 5c. The number control device 6 that receives the control information substantially controls the number based on the water temperature fluctuation and the flow rate of the temperature control water, and the accuracy of the number control that follows the fluctuation of the heat load of the air conditioner 2 is high. Moreover, since the pump operation control information received by the unit number control device 6 from the pump flow control devices 5a, 5b, and 5c is only two types of the ON signal and the OFF signal, there is no need to calculate the load calorific value of the air conditioner 2 or the like. Only control is needed.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the air-conditioning heat source equipment of this invention, according to the fluctuation | variation of the heat load of an air conditioner, the number control of highly accurate heat source devices based on the temperature change of the temperature-regulated water after heat exchange, and the flow rate change is implemented. And the cost of the air conditioning heat source equipment itself can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing a circulation path and an electrical connection of a temperature regulating water of an air conditioning heat source equipment of the present invention.
FIG. 2 is a diagram showing a timing chart of controlling the number of air conditioning heat source equipment according to the present invention.
FIG. 3 is a schematic block diagram showing a circulation path and electric connection of a temperature control water of a conventional air conditioning heat source equipment.
FIG. 4 is a schematic block diagram showing a circulation path and electric connection of a temperature control water of another conventional air conditioning heat source equipment.
[Explanation of symbols]
1a, 1b, 1c Heat source device 2 Air conditioner 3a, 3b, 3c Pump (primary pump)
4a, 4b, 4c Thermal load detector (temperature controller)
40 water temperature sensors 5a, 5b, 5c pump flow rate control device 6 number control device

Claims (3)

冷水または温水たる温調水を熱媒体とする空調熱源設備であって、上記温調水を発生する複数台の熱源装置と、上記各熱源装置に対応して設けられ、上記温調水を空調機へ送るとともに、上記空調機から上記各熱源装置へ戻す複数台のポンプと、上記各ポンプに対応して設けられ、上記各熱源装置へ戻る温調水の水温を検出して上記空調機の熱負荷状態を検出する複数の熱負荷検出手段と、各熱負荷検出手段の検出結果に基づいて上記各ポンプの稼働状態を制御して温調水の流量を調整する複数台のポンプ流量制御装置を備えた空調熱源設備において、上記各ポンプ流量制御装置から上記各ポンプの稼働制御情報を受信し、該制御情報に基づいて上記複数台の熱源装置を運転状態または停止状態に制御せしめる台数制御装置を設けたことを特徴とする空調熱源設備。An air conditioning heat source facility using cold water or hot water as temperature control water as a heat medium, a plurality of heat source devices for generating the temperature control water, and provided in correspondence with each of the heat source devices, and air conditioning the temperature control water. And a plurality of pumps that return to the heat source devices from the air conditioner and are provided corresponding to the pumps, and detect the temperature of the temperature-regulated water returning to the heat source devices and detect the temperature of the air conditioner. A plurality of heat load detecting means for detecting a heat load state, and a plurality of pump flow control devices for controlling the operation state of each of the pumps based on the detection result of each heat load detecting means to adjust the flow rate of the temperature regulating water. In the air-conditioning heat source equipment comprising: a unit control device for receiving operation control information of each pump from each pump flow control device, and controlling the plurality of heat source devices to an operation state or a stop state based on the control information It is noted that Air conditioning heat source equipment to. 上記台数制御装置は、上記空調機の熱負荷が大きく、上記各冷温水ポンプによる上記冷水または温水の流量が多くなったとき、運転状態にする上記熱源装置の台数を増やし、空調機の熱負荷が小さく、上記各冷温水ポンプによる冷水または温水の流量が少なくなったとき、停止状態とする熱源装置の台数を増やすようになした請求項1に記載の空調熱源設備。When the heat load of the air conditioner is large and the flow rate of the cold or hot water by each of the cold / hot water pumps is large, the number control device increases the number of the heat source devices to be put into an operation state, and increases the heat load of the air conditioner. The air-conditioning heat source equipment according to claim 1, wherein the number of heat source devices to be stopped is increased when the flow rate of the cold water or the hot water by each of the cold / hot water pumps becomes small. 上記台数制御装置が上記各ポンプ流量制御装置から受信する上記各ポンプの稼働制御情報を、上記各ポンプが所定の稼働状態に上がったときに上記各ポンプ流量制御装置から発信されるON信号と、上記各ポンプが所定の稼働状態に下がったときに各ポンプ流量制御装置から発信されるOFF信号との2種類の信号とした請求項1または請求項2に記載の空調熱源設備。The operation control information of each of the pumps received by the number control device from each of the pump flow control devices, an ON signal transmitted from each of the pump flow control devices when each of the pumps rises to a predetermined operation state, The air-conditioning heat source equipment according to claim 1 or 2, wherein each of the pumps has two types of signals: an OFF signal transmitted from each pump flow control device when the respective pumps are lowered to a predetermined operating state.
JP2003099849A 2003-04-03 2003-04-03 Air conditioner heat source apparatus Pending JP2004308950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099849A JP2004308950A (en) 2003-04-03 2003-04-03 Air conditioner heat source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099849A JP2004308950A (en) 2003-04-03 2003-04-03 Air conditioner heat source apparatus

Publications (1)

Publication Number Publication Date
JP2004308950A true JP2004308950A (en) 2004-11-04

Family

ID=33464145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099849A Pending JP2004308950A (en) 2003-04-03 2003-04-03 Air conditioner heat source apparatus

Country Status (1)

Country Link
JP (1) JP2004308950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313048A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2007315717A (en) * 2006-05-29 2007-12-06 Hasegawa Electric Industry Co Operation control method for cold/hot water pump in air conditioning facility
US20130274948A1 (en) * 2011-03-30 2013-10-17 Mitsubishi Heavy Industries, Ltd. Heat source system and method for controlling the number of operated devices in heat source system
CN104748319A (en) * 2015-04-22 2015-07-01 珠海格力电器股份有限公司 Multi-set air-conditioning system control method and device and multi-set air-conditioning system
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313048A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2007315717A (en) * 2006-05-29 2007-12-06 Hasegawa Electric Industry Co Operation control method for cold/hot water pump in air conditioning facility
JP4699285B2 (en) * 2006-05-29 2011-06-08 株式会社 長谷川電気工業所 Operation control method of cold / hot water pump in air conditioning equipment
US8019480B2 (en) 2006-05-29 2011-09-13 Hasegawa Electric Industry Co., Ltd. Method for controlling cooled or heated water pump of air conditioning installation
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system
US20130274948A1 (en) * 2011-03-30 2013-10-17 Mitsubishi Heavy Industries, Ltd. Heat source system and method for controlling the number of operated devices in heat source system
CN103534534A (en) * 2011-03-30 2014-01-22 三菱重工业株式会社 Heat source system and number-of-machines control method for heat source system
EP2693133A1 (en) * 2011-03-30 2014-02-05 Mitsubishi Heavy Industries, Ltd. Heat source system and number-of-machines control method for heat source system
EP2693133A4 (en) * 2011-03-30 2014-10-22 Mitsubishi Heavy Ind Ltd Heat source system and number-of-machines control method for heat source system
CN104748319A (en) * 2015-04-22 2015-07-01 珠海格力电器股份有限公司 Multi-set air-conditioning system control method and device and multi-set air-conditioning system
CN104748319B (en) * 2015-04-22 2018-07-03 珠海格力电器股份有限公司 Multicomputer air conditioner system control method, device and multicomputer air-conditioning system

Similar Documents

Publication Publication Date Title
US6290142B1 (en) Cogeneration apparatus
US4611470A (en) Method primarily for performance control at heat pumps or refrigerating installations and arrangement for carrying out the method
RU2573378C2 (en) Device and method of valve opening control for hvac system
US20140219642A1 (en) Heater Interlock Control for Air Conditioning System
WO2017009955A1 (en) Refrigeration system
JP2004308950A (en) Air conditioner heat source apparatus
CN107143904B (en) Continuous water supply type room heat supply temperature control and heat metering device and method
JP2005127586A (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP2001241735A (en) Air conditioning system and its controlling method
KR20170039114A (en) Conveyance energy-saving control apparatus in HVAC equipment
EP3258185B1 (en) Heat supply system
JP3320631B2 (en) Cooling and heating equipment
JP2004132610A (en) Heating system and dwelling house with heating system
JP2000283527A (en) Cooling water variable flow controller
JP2009240084A (en) Power-generating and air-conditioning system
JP2009240085A (en) Power-generating and air-conditioning system
JP2002310442A (en) Floor heating system
JPS5878043A (en) Control system of air conditioning machine
JP2003207190A (en) Air conditioning system
JP2875306B2 (en) Thermal storage cooling and heating system
KR100858535B1 (en) Method for controlling fan for airconditioner
JP2000154931A (en) Unit for computing set value of supply air temperature for air conditioner
KR20100110115A (en) Heating apparatus with an automatic linkage controller between solar thermal system and boiler and the method thereof
JP3087998B2 (en) Control system for absorption type cold / hot water generator
US6241154B1 (en) Air conditioning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704