JP2004308882A - Shaft coupling - Google Patents

Shaft coupling Download PDF

Info

Publication number
JP2004308882A
JP2004308882A JP2003106750A JP2003106750A JP2004308882A JP 2004308882 A JP2004308882 A JP 2004308882A JP 2003106750 A JP2003106750 A JP 2003106750A JP 2003106750 A JP2003106750 A JP 2003106750A JP 2004308882 A JP2004308882 A JP 2004308882A
Authority
JP
Japan
Prior art keywords
shaft
extension piece
shaft fastening
extension
shafts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106750A
Other languages
Japanese (ja)
Inventor
Masanori Mochizuki
正典 望月
Kenji Mochizuki
健児 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISEL Co Ltd
Original Assignee
ISEL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISEL Co Ltd filed Critical ISEL Co Ltd
Priority to JP2003106750A priority Critical patent/JP2004308882A/en
Publication of JP2004308882A publication Critical patent/JP2004308882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft coupling having stable torque transmitting performance by smoothly absorbing an axial center difference even when existing between two shafts during rotation while sufficiently securing torsional rigidity against rotating force. <P>SOLUTION: A cylinder member 6 as an intermediate 2 mounted between shaft fasteners 1a, 1b is arranged at the center and flexible members 7 are arranged on both sides. The flexible members 7 have two plate spring annular bodies 71 arranged side by side in the axial direction with their planes opposed to each other and outer periphery portions 711 joined to each other to form a bent portion 70. The flexible members 7 and the cylinder member 6 are caulked and joined to each other. Thus, the axial center difference between two shafts J1, J2 from an axial line can be absorbed by the intermediate 2 using the flexible members 7 at both ends while the torsional rigidity is strengthened in the rotating direction by the cylinder member at the center to sufficiently endure a load with rotating force. As a result, the axial center difference between both shafts connected together is smoothly absorbed even during rotation and stable torque transmission is achieved by high torsional rigidity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、2つの軸締結体との間に可撓性を有した中間体を介装させて、連結する二軸間の偏心、偏角を吸収させる軸継手に関する。
【0002】
【従来の技術】
従来、この種の軸継手(たわみ軸継手)として、第1の軸締結体と第2の軸締結体との間に介装させる中間体には、ベローズや板バネなどの可撓性を有する部材が用いられている。
【0003】
例えば、図15に示す軸継手は、中間体として金属製のベローズ1509を採用し、このベローズ1509と各軸締結体1524,1525との合わせ面を溶接にて接合して構成されたものである(特許文献1、図1)。なお、各軸締結体1524,1525には、軸J1,J2がそれぞれ締結される。
【0004】
また、図16に示す軸継手は、中間体のベローズ1609と第1、第2の軸締結体1654,1655との間にプレス成形品のカラー1657,1658を配置させ、このカラー1657,1658に対してベローズ1609と各軸締結体1654,1655との合わせ面を溶接にて接合して構成されたものである(特許文献1、図3)。
【0005】
また、図17に示す軸継手は、中間体として板バネ1702の周縁部に軸線方向に延びた第1、第2の延長片1721a,1721bを設け、これら延長片1721a,172bを各軸締結体1701a,1701bの外周面における取付部1713にネジ止めして接合させた構成のものである(特許文献2、特許文献3)。
【0006】
これら軸継手は、可撓性を有した上記中間体(ベローズ1509,1609あるいは板バネ1702)によって、2つの軸締結体にそれぞれ締結する二軸J1,J2間の偏心や偏角といった軸芯ずれを吸収してトルク伝達させている。
【0007】
【特許文献1】
特開平7−27141号公報
【特許文献2】
特開平11−125265号公報
【特許文献3】
特開平11−125264号公報
【0008】
【発明が解決しようとする課題】
しかしながら、これら軸継手は、二軸J1,J2間に軸芯ずれがあると回転に伴うねじり力が大きく作用するが、この場合、中間体が可撓性を有するため、回転力に対するねじり剛性が十分確保されないおそれがあった。
【0009】
本発明は、上記事情に鑑みてなされたものであって、二軸間に軸芯ずれがある状態でも、回転時に軸芯ずれが円滑に吸収されると同時に回転力に対するねじり剛性が十分確保されて安定的にトルク伝達することができる軸継手を実現するものである。
【0010】
【課題を解決するための手段】
(1)請求項1に係る発明は、二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、剛性を有した筒部材を中央に配置し、この筒部材の両開口部にそれぞれ曲部を有する可撓性部材を接合する構成としたことを特徴とする。
これにより、中間体においては、両端の上記可撓性部材によって二軸間の軸線に対する軸芯ずれを吸収させることができる一方、中央の筒部材によって回転方向のねじり剛性が強化されて回転力による負荷にも十分耐えることができる。そして、筒部材を中央に配置することで、回転に伴う中間体の揺動をも効果的に抑制することができる。
【0011】
(2)請求項2に係る発明は、上記軸継手(請求項1)において、
上記可撓性部材は、二枚以上の板バネ環状体をその平面同士を対向させて互いの外周部または内周部を接合し、その板バネ環状体の平面を軸線との交差方向に配置して上記曲部を形成する構成としたことを特徴とする。
これにより、中間体においては、軸線との交差方向に対する可撓性が確実に確保される。
【0012】
(3)請求項3に係る発明は、上記軸継手(請求項2)において、
上記板バネ環状体と上記筒部材との間または上記板バネ環状体と上記軸締結体との間をカシメ接合構造とし、
上記カシメ接合構造は、上記板バネ環状体の周縁に多数の切欠を設け、該切欠を設けた周縁に上記筒部材または上記軸締結体における凸片を抱き込ませると共に上記切欠内に上記凸部の肉厚を食い込ませるようにしたことを特徴とする。
これにより、中間体自体または中間体と各軸締結体との接合が強化されるので、回転方向のねじり剛性が一層強化される。
【0013】
(4)請求項4に係る発明は、上記軸継手(請求項1)において、
上記可撓性部材は、上記筒部材よりも薄肉であって途中に上記曲部となる絞り部を設ける筒体で構成したことを特徴とする。
これにより、中間体においては、可撓性部材である筒体が筒部材よりも薄肉であること、その途中に曲部となる絞り部を設けることによって軸線との交差方向に対する可撓性が確保される一方、可撓性部材を筒体とすることで回転方向のねじり剛性が強化されて回転力による負荷にも十分耐えることができる。
【0014】
(5)請求項5に係る発明は、上記軸継手(請求項4)において、
上記筒体と上記筒部材との接合または上記筒体と上記軸締結体との接合を、リングを嵌め込ませると共にネジ止めする接合構造としたことを特徴とする。
これにより、中間体自体または中間体と各軸締結体との接合が強化されるので、回転方向のねじり剛性が一層強化される。
【0015】
(6)請求項6に係る発明は、上記軸継手(請求項4)において、
上記筒体と上記筒部材との接合または上記筒体と上記軸締結体との接合を、リングを嵌め込ませて圧接する接合構造としたことを特徴とする。
これにより、中間体自体または中間体と各軸締結体との接合が強化されるので、回転方向のねじり剛性が一層強化される。
【0016】
(7)請求項7に係る発明は、二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片は、その先端部全域を上記立壁部に溶接にて接合する構成としたことを特徴とする。
これにより、中間体においては、板状部と第1延長片と第2延長片とを備えた構造によって二軸間の軸線に対する軸芯ずれを吸収させることができる。
【0017】
また、第1延長片および第2延長片の各々が軸締結体の側壁部と立壁部とによって囲まれた状態となるので、二軸間の軸芯ずれにより第1延長片および第2延長片に作用するねじり力や揺動力が受け止められる。しかも、上記第1延長片および上記第2延長片の先端部全域を上記立壁部に溶接にて接合するので、上記第1延長片および上記第2延長片にねじり力や揺動力が作用しても、これら第1延長片および第2延長片の浮き上がりを防止できる。また、上記第1延長片および上記第2延長片を上記立壁部に溶接することで中間体と各軸締結体との接合が強化されて回転方向のねじり剛性が強化される。従って、回転力による負荷に十分耐えることができる。
【0018】
(8)請求項8に係る発明は、二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にピン孔と凸部を設けると共に上記取付部に上記ピン孔に対応するピン挿入孔と上記凸部に対応する凹部を設け、上記ピン孔と上記ピン挿入孔とにピン部材を圧入させると共に上記凹部に上記凸部を圧入させて接合する構成としたことを特徴とする。
これにより、中間体においては、板状部と第1延長片と第2延長片とを備えた構造によって二軸の軸線に対する軸芯ずれを吸収させることができる。
【0019】
また、第1延長片および第2延長片の各々が軸締結体の側壁部と立壁部とによって囲まれた状態となるので、二軸間の軸芯ずれにより第1延長片および第2延長片に作用するねじり力や揺動力が受け止められる。しかも、上記第1延長片および上記第2延長片にピン孔と凸部を設けると共に上記取付部に上記ピン孔に対応するピン挿入孔と上記凸部に対応する凹部を設け、上記ピン孔と上記ピン挿入孔とにピン部材を圧入させると共に上記凹部に上記凸部を圧入させて接合するので、中間体と各軸締結体との接合が強化されている。従って、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができる。
【0020】
(9)請求項9に係る発明は、二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にテーパバーリング孔を設けると共に上記取付部に上記テーパバーリング孔に対応するピン挿入孔を設け、上記テーパバーリング孔と上記ピン挿入孔とに皿ビスを取り付けて接合する構成としたことを特徴とする。
これにより、中間体においては、板状部と第1延長片と第2延長片とを備えた構造によって二軸の軸線に対する軸芯ずれを吸収させることができる。
【0021】
また、第1延長片および第2延長片の各々が軸締結体の側壁部と立壁部とによって囲まれた状態となるので、二軸間の軸芯ずれにより第1延長片および第2延長片に作用するねじり力や揺動力が受け止められる。しかも、上記第1延長片および上記第2延長片にテーパバーリング孔を設けると共に上記取付部に上記テーパバーリング孔に対応するピン挿入孔を設け、上記テーパバーリング孔と上記ピン挿入孔とに皿ビスをねじ込ませて接合するので、中間体と各軸締結体との接合が強化されている。従って、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができる。
【0022】
(10)請求項10に係る発明は、二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にピン孔を設けると共に上記取付部に上記ピン孔に対応するピン挿入孔を設け、上記第1延長片および上記第2延長片の上面にピン保持孔を設けた当て板を配置させて上記ピン保持孔と上記ピン孔と上記ピン挿入孔とに皿ビスを取り付けて接合する構成としたことを特徴とする。
これにより、中間体においては、板状部と第1延長片と第2延長片とを備えた構造によって二軸の軸線に対する軸芯ずれを吸収させることができる。
【0023】
また、第1延長片および第2延長片の各々が軸締結体の側壁部と立壁部とによって囲まれた状態となるので、二軸間の軸芯ずれにより第1延長片および第2延長片に作用するねじり力や揺動力が受け止められる。しかも、上記第1延長片および上記第2延長片の上面にピン保持孔を設けた当て板を配置させて上記ピン保持孔と上記ピン孔と上記ピン挿入孔とに皿ビスを取り付けて接合するので、この当て板によって中間体と各軸締結体との接合が強化されている。従って、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができる。
【0024】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面を参照しながら説明する。
<実施の形態1(請求項1〜4に対応)>
図1〜図4は、本発明の実施の形態1による軸継手の構成を示す。図1に示すように、この軸継手は、第1の軸J1(モータの駆動軸)の回転を第2の軸J2(従動軸)に伝達するものであって、第1の軸J1を接続する第1の軸締結体1aと、第2の軸J2を接続する第2の軸締結体1bと、これら軸締結体1a,1bを連結する中間体2とを備える。以下、各部の構成を説明する。
【0025】
〔軸締結体の構成〕
両側の第1の軸締結体1aと第2の軸締結体1bとは、同形のものであり、以下は適宜「軸締結体」と称して説明する。この軸締結体1a,1bは、中心部に軸孔10が設けられた円筒ブロック状の主体部11と、この主体部11の側面の一端側寄りに突設されたフランジ部12とを備える。この軸締結体1a,1bは、アルミ製、鉄製等の切削、鍛造、鋳造等で製作されている。
【0026】
主体部11の一端面には、軸孔10の周囲に沿って環状溝部13が形成されている。そして、主体部11において、この環状溝部13を境に内側を内輪部14とし、外側を外輪部15とする。なお、上記一端面が軸継手の内側面となる。
【0027】
環状溝部13における、内輪部14側の周壁と外輪部15側の周壁とは、テーパ面に形成されており、これにより、環状溝部13は、奥に入り込むに従って溝幅が狭くなるテーパ溝となっている。そして、この環状溝部13内にサイドリング3が嵌め込まれている。このサイドリング3は、環状溝部13のテーパ溝形状と略合致するように、内周面と外周面とがテーパ面に仕上げられている。
【0028】
また、環状溝部13の底部には、図2をも参照して、6本の締結ボルトB1を取り付けるための6つのボルト孔16が等間隔を空けて設けられている。また、サイドリング3には、上記環状溝部13のボルト孔16と対応してネジ溝を設けた6つのボルト挿入孔30が設けられている。そして、締結ボルトB1が上記主体部11の外側から各ボルト孔16に挿通され、上記サイドリング3の各ボルト挿入孔30に螺合される。これによって、サイドリング3が環状溝部13内に引き込まれるようにして保持される。なお、上記締結ボルトB1は、6本に限定されず複数本であればよい。
【0029】
一方、上記フランジ部12には、その内側に中間体2を接合したリング体5が取り付けられている。主体部11の内側面には、環状溝部13の外周に沿って上記リング体5を外嵌させるための環状の突部17が形成されている。リング体5は、中間体2を軸締結体1a,1bの主体部11に連結させるための部材であって、ステンレス製、鉄製等の切削、鍛造、鋳造等で製作されている。また、フランジ部12には、図2をも参照して、4本の固定ボルトB2を取り付けるための4つのボルト孔120が等間隔を空けて設けられている。また、リング体5には、上記フランジ部12のボルト孔120と対応してネジ溝を設けた4つのボルト挿入孔51が設けられている。そして、固定ボルトB2が上記フランジ部12の外側から各ボルト孔120に通され、上記リング体5の各ボルト挿入孔51に螺合される。これによって、リング体5がフランジ部12に固定される。なお、上記固定ボルトB2は、4本に限定されず複数本であればよい。
【0030】
〔中間体の構成〕
中間体2は、上記第1の軸締結体1aと上記第2の軸締結体1bとの間に介装されて第1の軸J1と第2の軸J2との偏心、偏角による軸芯ずれを吸収させる部材であって、円筒形をした筒部材6と、この筒部材6の両側の開口部61に接合された可撓性部材7とを備える。この中間体2を構成する筒部材6や可撓性部材7は、ステンレス製、鉄製等の金属で製作される。
【0031】
筒部材6それ自体は、軸線の周方向に対しねじり剛性の強いものであるが、その軸線が軸継手の軸線と合致するように配置される。これにより、板バネだけで中間体を構成する場合に比べて、この筒部材6を設けた上記中間体2は、周方向(軸継手の回転方向)に対するねじり剛性の強いものにすることができる。
【0032】
可撓性部材7は、図3、図4に示すように、二枚の板バネ環状体71をその平面同士を対向させて互いの外周部711を全域または部分的に溶接Mして接合し、一つの曲部70を形成したものである。また、各板バネ環状体71の内周部712には、切欠713が複数設けられている。なお、本発明において、可撓性部材7は、上記曲部70を複数形成するものでもよい。
【0033】
そして、中間体2において、この可撓性部材7は、その板バネ環状体71の平面を軸継手の軸線と交差する方向に配置される。すなわち、上記筒部材6の開口部61には、凸片62が設けてあり、図4(a)を参照して、この凸片62に上記可撓性部材7を構成する板バネ環状体71の内周部712を嵌め込み、次いで、図4(b)を参照して、治具等で凸片62を外側に塑性変形させる。すると、板バネ環状体71の内周部712が凸片62に抱き込まれると共に凸片62の肉厚が板バネ環状体71の内周部712の切欠713内に食い込むようにしてカシメられている。これによって、筒部材6と可撓性部材7との接合がガタ付くことなく強力となるから、中間体2自体の回転方向に対するねじり剛性が強化される。
【0034】
一方、上記中間体2は、更にその両端のそれぞれには軸締結体1a,1bの主体部11に固定ボルトB2で不動状態に固定される上記リング体5が取り付けられる。このリング体5は、中間体2の両側部の可撓性部材7にそれぞれ取り付けられるが、図4に示すように、リング体5の内周部には凸片52が設けてあり、図4(a)を参照して、この凸片52に外側に配置された板バネ環状体71の内周部712を嵌め込み、次いで、図4(b)を参照して、治具等で凸片52を外側に塑性変形させる。すると、板バネ環状体71の内周部712が凸片52に抱き込まれると共に凸片52の肉厚が板バネ環状体71の内周部712の切欠713内に食い込むようにしてカシメられる。これによって、中間体2(可撓性部材7の板バネ環状体)とリング体5との接合がガタ付くことなく強力となるから、中間体2とリング体5を固定した軸締結体1a,1bとの間でも回転方向に対するねじり剛性が強化される。
【0035】
また、中間体2と軸締結体1a,1bの主体部11との連結を上記リング体5を介して行うので、中間体2と軸締結体1a,1bの主体部11との材質を異なるものにすることができる。例えば、溶接等の都合上で中間体2とリング体5とをステンレス製とし、軸締結体1a,1bの主体部11をステンレスよりも軽いアルミ製とすることができ、ステンレスよりも軽量のアルミニウムを軸継手の一部にでも使うことで継手全体の慣性モーメントを小さくでき、これによって、回転時のモータへの負荷を低減させることができる。
【0036】
なお、筒部材6と可撓性部材7との接合や、中間体2とリング体5との接合は、上述のカシメによらず、溶接によって接合してもよい。また、可撓性部材7における板バネ環状体71の内周部712には切欠713を形成しないものでもよい。
【0037】
〔軸継手の組立〕
次に、上記第1の軸締結体1a、上記第2の軸締結体1b、上記中間体2による軸継手の組立て方として、まず、中間体2と接合させたリング体5を上記主体部11の内側面の突部17に外嵌させてフランジ部12の内側に配置させる。次いで、4本の固定ボルトB2をフランジ部12の外側から各ボルト孔120にそれぞれ挿通させてリング体5の各ボルト挿入孔51に螺合させる。そして、これら固定ボルトB2を締め付けることによってリング体5がフランジ部12に不動状態に固定される。以上の作業を両方の軸締結体1a,1bの主体部11について行うことで、第1の軸締結体1aと第2の軸締結体1bとが中間体2で連結された軸継手が組立てられる。
【0038】
〔動作〕
次に、この軸継手における第1の軸J1と第2の軸J2との締結方法として、例えば、第1の軸J1を第1の軸締結体1aの軸孔10に挿入し、次いで、主体部11の外側面から各締結ボルトB1を締め付けて行く。すると、上記サイドリング3が環状溝部13内に押し込まれ、このときのサイドリング3のくさび作用によって環状溝部13内側の内輪部14が縮径される。これによって、第1の軸J1が第1の軸締結体1aの軸孔10に摩擦嵌合により固定される。同様にして、第2の軸J2を第2の軸締結体1bの軸孔10に固定させると、この軸継手において二つの軸J1,J2の連結が行われる。
【0039】
このとき、主体部11における環状溝部13の外側部位にはフランジ部12が設けられていることとも相まって、環状溝部13の内側の内輪部14よりも外側の外輪部15が分厚くなっているので、内輪部14の縮径による軸J1,J2への締結力が外側に逃げ難い。従って、この内輪部14による軸J1,J2の締結力が強くなり、軸孔10での軸J1,J2の固定を強固にできる。
【0040】
そして、この軸締結状態で、駆動側の軸J1を回転させると、第1の軸締結体1a、中間体2、第2の軸締結体1bへと、回転力が加わって従動軸の軸J2に回転トルクが伝達される。
【0041】
このとき、二軸J1,J2間に偏心、偏角による軸芯ずれが生じていた場合でも、中間体2における両端に可撓性部材7(二枚の板バネ環状体71を接合して曲部70を形成した構成)が軸線との交差方向に対して可撓性を有するので、これによって、この軸芯ずれが吸収される。従って、回転時、各可撓性部材7がそれぞれ回転に追従して円滑に変位し、二軸J1,J2間の軸芯ずれを吸収した状態で軸J1,J2の回転を妨げることなく円滑に軸J1,J2を回転させることができる。
【0042】
しかも、中間体2の筒部材5は、回転方向でのねじり剛性が強い。また、可撓性部材7は、二枚の板バネ環状体71をその平面が軸線と交差する方向に配置されると共に筒部材6とは上記カシメによって強力に接合されているので、この可撓性部材7においても、回転方向でのねじり剛性が強化されている。従って、例え軸J1が高速回転する場合や高トルクで回転する場合等でも、可撓性部材7を設けた中間体2は、ねじり力の負荷に対して十分に耐えることができ、円滑にトルク伝達させることができる。
【0043】
このように、本実施の形態1による軸継手によれば、回転時においても連結する二軸J1,J2間の軸芯ずれを円滑に吸収し、安定的にトルク伝達させることができる。そして、軸芯ずれのある状態で軸J1,J2が高速回転する場合や高トルクで回転する場合等でも、安定的にトルク伝達させることができるという優れた効果を発揮する。例えば、1万rpmを超える高速回転時であっても、このものは、回転力に対するねじり剛性が強化されているため、安定的にトルク伝達させることができる。
【0044】
また、上記中間体2は、軸線を合致させた筒部材6を設けることによって、回転時における中間体2の外方への撓みが抑えられる。特に、遠心力によって最も外方へ撓む部位の中央位置に上記筒部材6が配置されているので、回転時に中間体2の外方への撓みによって生じる揺動を確実に抑えることができる。従って、軸継手の振動が抑制される結果、軸継手の振動によるモータへの負荷を抑制することができる。
【0045】
また、筒部材6は、その筒径が上記板バネ環状体71の内径程度の小径であるので、筒部材6の回転方向での慣性モーメントが小さく、回転時における中間体2の外方への撓みが一層抑制され、モータへの負荷をほとんど無くすことができる。
【0046】
また、上記中間体2の外径は、上記軸締結体1a,1bの外径よりも小さく形成されている。すなわち、中間体2の最大径となる可撓性部材7の外径が、軸締結体1a,1bの最大径となるフランジ部12の外径よりも小さく形成されている。従って、外的衝撃によって破損し易い上記可撓性部材7が上記フランジ部12よりも内方に配置されるので、軸J1,J2を締結させるとき等に軸継手を落としてしまった場合や他の物体が衝突した場合等でも、外的衝撃が可撓性部材7に直接加わる事態を防止でき、可撓性部材7が簡単に破損するのを防止することができる。
【0047】
また、この軸継手は、リング体5を介して中間体2と第1の軸締結体1aおよび第2の軸締結体1bとを接続するので、これらの接続作業が容易であり、且つ第1の軸締結体1aまたは第2の軸締結体1bの交換も簡易に行うことができ、例えば、連結する軸J1,J2の直径サイズに応じて種々のサイズの第1の軸締結体1aと第2の軸締結体1bとを組合せることも簡易に行うことができる。
【0048】
また、この中間体2には、筒部材6が設けられているので、第1の軸J1と第2の軸J2との軸間距離をある程度長くとることができ、これによって、二軸間の偏角による軸芯ずれを吸収させ易くすることができる。
【0049】
また、この軸継手は、その表面には軸線を中心に回転するような凸部分や凹部分がないので、高速回転時であっても風きり音が生じない。
【0050】
<実施の形態2(請求項1〜3に対応)>
図5は、本発明の実施の形態2による軸継手の構成を示す。この実施の形態2の軸継手は、中間体2としては、筒部材6が板バネ環状体71の外径程度の筒径とし、可撓性部材7が二枚の板バネ環状体71の内周部712同士を接合し、そして、筒部材6の両側の開口部61に可撓性部材7をその板バネ環状体71の外周部711を接合したものである。
【0051】
また、第1の軸締結体1aにおける主体部11は、その外径が中間体2の内径よりも小さく形成され、中間体2の内部側に潜り込むように配置される。これにより、主体部11が外方へ張り出すことがなく軸継手全体をコンパクトに構成できる。
【0052】
また、第2の軸締結体1bは、フランジ部12を設けない円形ブロック状の主体部11だけで構成し、且つその軸孔10の孔径が第1の軸締結体1aの孔径よりも大きく形成したものである。これにより、直径サイズの異なる二つの軸J1,J2の連結を可能とする。
【0053】
なお、この実施の形態2における軸締結体1a,1bは、環状溝部13、サイドリング3が主体部11の外側面から形成され、しかも、環状溝部13よりも奥のボルト孔16にはネジ溝が設けられている。また、この場合、サイドリング3のボルト挿入孔30にはネジ溝が設けられていなくてもよい。
【0054】
また、上記中間体2と上記第1の軸締結体1aおよび第2の軸締結体1bとは、上記リング体5を介在させることなく溶接によって直接接合させている。なお、中間体2における筒部材6と可撓性部材7との接合は、上記実施の形態1の場合と同じように板バネ環状体71の外周部711において筒部材6とカシメ接合されている。これにより、このものも、中間体2自体、中間体2と軸締結体1a,1bとの間でのねじり剛性が強化されている。
従って、この実施の形態2のものにおいても、回転時、連結する二軸J1,J2間の軸芯ずれを円滑に吸収し、安定的にトルク伝達させることができる。
【0055】
<実施の形態3(請求項4,5に対応)>
図6、図7は、本発明の実施の形態3による軸継手の構成を示す。この実施の形態3の軸継手は、中間体2’における可撓性部材7’が中央の筒部材6’よりも薄肉であって途中に曲部となる絞り部75を設ける筒体で構成したものである。
【0056】
すなわち、この筒体からなる可撓性部材(以下、適宜「筒型可撓性部材」という。)7’は、図7を参照して、平面が軸線と交差する方向に配置された板バネ環状体72と、板バネ環状体72の外周部に連設され軸線方向に延びる大筒部73と、板バネ環状体72の内周部に連設され大筒部73と反対の軸線方向に延びる小筒部74とを有する。上記板バネ環状体72と小筒部74との連設部分が上記絞り部75となり、この部位によって可撓性が発揮される。
【0057】
そして、筒部材6’の開口部61には、小径段部63が設けてあり、この小径段部63に筒型可撓性部材7’の上記小筒部74が外嵌され、さらにその外側に小径リングR1が圧接状態に外嵌される。これら小径段部63、小筒部74および小径リングR1には、それぞれが合致する6つ(複数)の孔部h1,h2,h3が設けてあり、これら孔部h1,h2,h3に外側からビスb1を通してネジ止めされて筒部材6’と筒型可撓性部材7’とが接合される。なお、筒部材6’の小径段部63における孔部h1には雌ネジが設けてある。
【0058】
また、軸締結体1a,1bにおけるフランジ部12の外周部には、小径段部12xが設けてあり、この小径段部12xに筒型可撓性部材7’の上記大筒部73が外嵌され、さらにその外側に大径リングR2が圧接状態に外嵌される。これら小径段部12x、大筒部73および大径リングR2には、それぞれが合致する8つ(複数)の孔部h4,h5,h6が設けてあり、これら孔部h4,h5,h6に外側からビスb2を通してネジ止めされて中間体2’と軸締結体1’a,1’bが連結される。なお、フランジ部12の小径段部12xにおける孔部h4には雌ネジが設けてある。
その他の構成は、上記実施の形態1と同様である。
【0059】
このように、実施の形態3による軸継手は、中間体2’においては、筒型可撓性部材7’が筒部材6’よりも薄肉であること、その途中に曲部となる絞り部75を設けることによって軸線との交差方向に対する可撓性が確保される。
【0060】
また、中間体2’は、中央の筒部材6’に加えて両側の筒型可撓性部材7’をも筒型に構成すること、上記筒型可撓性部材7’と上記筒部材6’との接合および上記中間体2’(筒型可撓性部材7’の部位)と軸締結体1’a,1’bとの接合をリングR1,R2で圧接状態とし且つネジ止めする上記接合構造とすることによって回転方向に対するねじり剛性が強化されている。
【0061】
従って、この実施の形態3のものにおいても、回転時、連結する二軸J1,J2間の軸芯ずれを円滑に吸収し、安定的にトルク伝達させることができる。
なお、本発明においては、上記リングR1,R2を外嵌させることなく、筒型可撓性部材7’と筒部材6’との間、筒型可撓性部材7’と軸締結体1’a,1’bとの間をネジ止めのみで固定するようにしてもよい。
【0062】
また、筒型可撓性部材7’に設けた各孔部h2,h5をバーリング孔としてもよい。この場合、小筒部74を筒部材6’の小径段部63に外嵌させた後、小筒部74の各孔部h3をポンチで殴打してバーリング孔とすればよい。同様に大筒部73もフランジ部12の小径段部12xに外嵌させた後、大筒部73の各孔部h5をポンチで殴打してバーリング孔とすればよい。
【0063】
<実施の形態4(請求項6に対応)>
図8は、本発明の実施の形態4による軸継手の構成を示す。この実施の形態4の軸継手は、中間体の可撓性部材として筒部材6’よりも薄肉であって途中に絞り部75’を設ける筒体からなる筒型可撓性部材7”であるが、曲部となる絞り部75’以外の部分は同径サイズの筒部73’,74’であって上記実施の形態3での筒型可撓性部材7’のような小径の小筒部74を設けていない。
【0064】
そして、筒部材6’と筒型可撓性部材7”との接合は、上記筒部材6’の開口部61の小径段部63に筒型可撓性部材7”の筒部74’を外嵌させ、上記実施の形態3におけるような小径リングR1をさらに外嵌させることなく、周方向の複数箇所に皿ビスb1を通してネジ止めすることによる。
【0065】
また、軸締結体1”aにおけるフランジ部12の内側面には、内周壁がテーパ面となった環状溝18が設けられ、この環状溝18に合致する形状のリングR3が嵌め込まれ、そして、このリングR3の外周面と環状溝18との間に筒型可撓性部材7’の一方の筒部73’を挿入させる。このリングR3とフランジ部12とにはそれぞれ合致した孔部h9,h10が設けてあり、上記リングR3の孔部h9には雌ネジが設けてある。そして、これら孔部h9,h19にフランジ部12の外側面からボルトb4を締め付けることで、リングR3が環状溝18内に押込まれて筒型可撓性部材7’が軸締結体1”aに圧入状態に連結される。
【0066】
その他の構成は、上記実施の形態1と同様である。なお、もう一つの軸締結体は図示していないが、上記軸締結体1”aと同様の構成を有するものとする。
【0067】
このように、この実施の形態4による軸継手においても、中間体2”における筒型可撓性部材7”の絞り部75’によって、連結する二軸J1,J2間の軸芯ずれを円滑に吸収するができる一方、中間体2”は、中央の筒部材6’に加えて両側の筒型可撓性部材7”をも筒型に構成すること、上記筒型可撓性部材7”と上記筒部材6’との接合を周方向に沿った複数のネジ止めとし、且つ上記中間体2”(筒型可撓性部材7”の部位)と軸締結体1”aとの接合をリングR3で圧入状態とした接合構造とすることによって回転方向に対するねじり剛性が強化されている。
【0068】
従って、この実施の形態4のものにおいても、回転時、連結する二軸J1,J2間の軸芯ずれを円滑に吸収し、安定的にトルク伝達させることができる。
なお、上記筒部材6’の小径段部63における複数の孔部h1には、入口をテーパにし筒型可撓性部材7”の筒部74’を皿ビスb1でネジ止めする際に、この筒部74’の孔部h2周囲を上記小径段部63の孔部h1入口のテーパに陥没させるように締め付けるようにしてもよい。この場合、筒部材6’と筒型可撓性部材7”との位置ずれ防止効果を発揮するのはもちろんのこと、筒部74’の孔部h2周囲の弾性復帰力によって皿ビスb1の緩み止めができる点で有益である。
【0069】
<実施の形態5(請求項7に対応)>
図9、図10は、本発明の実施の形態5による軸継手の構成を示す。この実施の形態5の軸継手は、図9に示すような、二つの軸J1,J2を接続するための軸締結体101A,101Bを両側に備え、これら軸締結体101A,101B間には接続する二軸J1,J2の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体102を設けたものである。以下に、各部の構成を説明する。
【0070】
〔中間体の構成〕
中間体102は、図10に示すような板バネからなり、中心部に中心孔120が設けられた正八角形の板状部121と、この板状部121の対向する一対の辺から軸方向に延びる矩形状の一対の第1延長片122Aと、この第1延長片122Aが延びる一対の辺から90度ずらした対向する一対の辺から上記第1延長片122Aの反対側に延びる矩形状の一対の第2延長片122Bとからなる(以下、この中間体を「板バネ中間体」という。)。
【0071】
そして、上記板状部121は軸継手の軸線に略直角な平面となり、上記第1延長片122Aは第1軸締結体101A側に延び、上記第2延長片122Bは第2軸締結体101B側に延びる。
また、上記第1延長片122Aは、上記軸締結体101Aの軸線方向の厚みよりも短く形成されている。これにより、回転方向のねじり剛性が強化される。
【0072】
また、この板バネ中間体102は、上記板状部121と上記第1延長片122Aおよび上記第2延長片122Bとを連設するコーナ部には、衝撃吸収用孔125が設けられている。なお、この衝撃吸収用孔125は、上記第1延長片122Aおよび上記第2延長片122Bに設けられてもよいし、特にこのような衝撃吸収用孔125を設けなくてもよい。
【0073】
〔軸締結体の構成〕
第1軸締結体101Aおよび第2軸締結体101Bの夫々は、その全体が円筒形のブロック体に形成され、中心部には、軸J1,J2を嵌入するための軸孔110が貫通形成されている。そして、これら第1軸締結体101Aおよび第2軸締結体101Bは、外周面に中心の軸孔110に達するすり割溝111が形成され、このすり割溝111の両端部を周方向に締め付ける締結ボルトBが取り付けられている。この締結ボルトBを締め付けることにより、軸締結体101A,101Bが縮径されて軸孔110に挿通する軸J1,J2を保持させる。なお、第1軸締結体101Aと第2軸締結体101Bとは、同様の構成を有するので、以下では、第1軸締結体101Aに着目して説明する。
【0074】
第1軸締結体101Aの外周面には、上記板バネ中間体102の一対の第1延長片122Aが配置される凹み部112が対応して一対形成されている。この一対の凹み部112には、第1延長片122Aの先端部が取付けられる取付部113と、その内側に取付部113よりも低くなった平面部114とが各々設けられている。
【0075】
また、上記凹み部112は、取付部113に固定される第1延長片122Aの両側辺部に対向する側壁部115と、この第1延長片122Aの先端部に対向する立壁部116とを形成している。
【0076】
〔軸継手の組立〕
次に、この軸継手の組付けを説明する。上記板バネ中間体102によって第1軸締結体101Aと第2軸締結体101Bとを連結するには、まず、一方の第1延長片122Aを第1軸締結体101Aの凹み部112の取付部113に配置させ、次いで、上記第1延長片の先端部全域を上記立壁部116に溶接Mにて接合する。なお、この立壁部116の幅(軸継手の軸線方向における幅)は、上記溶接Mの厚みと同程度とするのが、溶接作業を円滑に行ううえで有効である。他方の第2延長片122Bについても、同様にして、第2軸締結体101Bの取付部113に強固に固定させる。これにより、軸継手が完成する。
【0077】
このものでは、第1延長片122Aおよび第2延長片122Bの各々が側壁部115と立壁部116とによって囲まれた状態にあり、しかも、上記第1延長片122Aおよび上記第2延長片122Bの先端部全域を上記立壁116に溶接Mにて接合し板バネ中間体102と各軸締結体101A,101Bとの接合が強化されているので、取付部113に固定された第1延長片122A、第2延長片122Bのねじり剛性が強化される。また、上記第1延長片122Aおよび上記第2延長片122Bを上記軸締結体101A,101Bの軸線方向の厚みよりも短くすることでも回転方向のねじり剛性が強化される。従って、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができる。
【0078】
〔動作〕
次に、この軸継手の動作を説明する。この軸継手を用いて入力側と出力側の軸J1,J2相互を連結するには、第1軸締結体101Aおよび第2軸締結体101Bの締付ボルトBを緩めた状態で、各々の軸孔110に軸J1,J2の先端部を挿入し、その後、上記締付ボルトBを締め付ける。これにより、第1軸締結体101Aおよび第2軸締結体101Bが縮径されて軸J1,J2が強固に固定され、上記軸J1,J2が伝動状態に連結されたものとなる。
【0079】
このような軸継手によると、板バネ中間体102(板状部121、第1延長片122A、第2延長片122B)が撓むことができる。特に、凹み部112には、第1延長片122Aおよび第2延長片122Bを固定させた取付部113よりも低い平面部114が設けられているので、第1延長片122Aおよび第2延長片122Bの撓みが大きく許容される構造となっている。従って、連結する二軸間に軸芯ずれ(偏心、偏角)が生じても、板バネ中間体102が撓むことによって第1軸締結体101Aと第2軸締結体101Bとの間でトルク伝達を可能とする。
【0080】
そして、この軸継手によるトルク伝達状態では、第1軸締結体101Aと第2軸締結体101Bとの軸芯の偏心や偏角等によって第1延長片122Aおよび第2延長片122Bに大きなねじり力や揺動力が作用しても、板バネ中間体102のコーナ部に設けられた衝撃吸収用孔125によって上記ねじり力および上記揺動力を吸収することができる。これによって、第1延長片122Aおよび第2延長片122Bに直接作用する揺動が大幅に緩和される。
【0081】
また、第1延長片122Aおよび第2延長片122Bの各々が軸締結体101A,101Bの側壁部115と立壁部116とによって囲まれた状態となるので、二軸間の軸芯ずれにより第1延長片122Aおよび第2延長片122Bに作用するねじり力や揺動力が受け止められる。しかも、上記第1延長片122Aおよび上記第2延長片122Bの先端部全域を上記立壁部116に溶接Mにて接合するので、上記第1延長片122Aおよび上記第2延長片122Bにねじり力や揺動力が作用しても、これら第1延長片122Aおよび第2延長片122bの浮き上がりを防止できる。また、上記第1延長片122Aおよび上記第2延長片122Bを上記立壁部116に溶接Mすることで中間体102と各軸締結体101A,101Bとの接合が強化され、加えて上記第1延長片122Aおよび上記第2延長片122Bを上記軸締結体101A,101Bの軸線方向の厚みよりも短くすることで回転方向のねじり剛性が強化される。従って、回転力による負荷に十分耐えることができる。
【0082】
このように、この実施の形態5のものにおいても、連結する二軸J1,J2間の軸芯ずれを円滑に吸収し、且つ高いねじり剛性によって安定したトルク伝達を実現することができる。
【0083】
<実施の形態6(請求項8に対応)>
図11は、本発明の実施の形態6による軸継手の構成を示す。なお、図11中、右側の符号X,Yで指し示す断面部は、それぞれ左側の符号X,Yで示す線上での断面に相当する。
【0084】
この実施の形態6の軸継手は、上記実施の形態5のものと略同様の構成を有するものであるが、延長片122A,122Bは上記実施の形態5のものよりも長く形成され、また、延長片122A,122Bと軸締結体101A,101Bとの接合を溶接Mによるのではなく、以下に述べる接合がなされる点で相違する。
【0085】
板バネ中間体102における第1延長片122Aの先端部及び第2延長片122Bの先端部には、両側に横方向に突出した半円状突片123が形成され、これら半円状突片123には各1つずつピン孔124が設けられると共に、これらピン孔124の間にポンチで殴打して内側に突出させた凸部126が設けられている(図12を参照)。
【0086】
また、軸締結体101A,101Bにおける取付部113には、上記半円状突片123に対応する半円状窪み部117が設けられ、また、上記ピン孔124に対応するピン挿入孔118と上記凸部126に対応する凹部106が設けられている(図11中の右側下方の断面部Yを参照)。
【0087】
そして、延長片122A,122Bを軸締結体101A,101Bの取付部113に配置して、延長片122A,122Bの先端の半円状突片123を凹み部112の半円状窪み部117に係合させると共に、上記ピン孔124と上記ピン挿入孔118とにピン部材Pを圧入させ、上記凹部106に上記凸部126を圧入させて延長片122A,122Bを軸締結体101A,101Bの取付部113に接合する(図11中の右側の断面部X,Yを参照)。
【0088】
このように、実施の形態6のものでは、板バネ中間体102と軸締結体101A,101Bとを上記のような接合構成とするので、板バネ中間体102と各軸締結体101A,101Bとの接合が強固となり、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができるものとなる。
【0089】
従って、この実施の形態6のものにおいても、連結する二軸J1,J2間の軸芯ずれを円滑に吸収しつつ、高いねじり剛性によって安定したトルク伝達を実現することができる。
【0090】
<実施の形態7(請求項9に対応)>
図13は、本発明の実施の形態7による軸継手の構成を示す。この実施の形態7の軸継手は、上記実施の形態6のものと略同様の構成を有するものであるが、以下の構成を備える点で相違する。
【0091】
すなわち、この軸継手は、上記第1延長片122Aおよび上記第2延長片122Bに設けるピン孔124をテーパバーリング孔124Tとすると共に上記取付部113に上記テーパバーリング孔124T(ピン孔124に相当)に対応するピン挿入孔118の入口部をテーパTとし、上記テーパバーリング孔124Tと上記ピン挿入孔118とに皿ビスP1をねじ込ませ、延長片122A,122Bを軸締結体101A,101Bの取付部113に接合する構成としたものである。なお、このものでは、実施の形態6における、延長片122A,122Bの凸部126や取付部113の凹部106は設けていない。
【0092】
このように、実施の形態7のものでも、板バネ中間体102と軸締結体101A,101Bとを上記のようなテーパ(テーパバーリング孔124T、ピン挿入孔118のテーパ状T、皿ビスP1)による接合構成とするので、板バネ中間体102と各軸締結体101A,101Bとの接合が強固となり、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができるものとなる。また、上記テーパによる接合構成は、皿ビスP1を締め付けることで、ピン挿入孔118のテーパ状Tからの押圧により板バネ中間体102におけるテーパバーリング孔124Tのテーパ部が反発応力を受けることによって皿ビスP1の緩み止めができる点で有益である。
【0093】
従って、この実施の形態7のものにおいても、連結する二軸J1,J2間の軸芯ずれを円滑に吸収しつつ、高いねじり剛性によって安定したトルク伝達を実現することができる。
【0094】
<実施の形態8(請求項10に対応)>
図14は、本発明の実施の形態8による軸継手の構成を示す。この実施の形態8の軸継手は、上記実施の形態6のものと略同様の構成を有するものであるが、以下の構成を備える点で相違する。
【0095】
すなわち、この軸継手は、上記第1延長片122Aおよび上記第2延長片122Bの上面にピン保持孔131を設けた当て板130を配置させ、この当て板130のピン保持孔131、延長片122A,122Bのピン孔124、取付部113のピン挿入孔118に皿ビスP1をねじ込ませ、延長片122A,122Bを軸締結体101A,101Bの取付部113に接合する構成としたものである。なお、このものでは、実施の形態6における、延長片122A,122Bの凸部126や取付部113の凹部106は設けていない。
【0096】
このように、実施の形態8のものでも、板バネ中間体102と軸締結体101A,101Bとを上記のような当て板130を介在させて皿ビスP1をねじ込んだ接合構成とするので、板バネ中間体102と各軸締結体101A,101Bとの接合が強固となり、回転方向のねじり剛性が強化されて回転力による負荷に十分耐えることができるものとなる。
【0097】
従って、この実施の形態8のものにおいても、連結する二軸J1,J2間の軸芯ずれを円滑に吸収しつつ、高いねじり剛性によって安定したトルク伝達を実現することができる。
【0098】
<その他>
なお、本発明においては、上記実施の形態1〜8のものに限定されるものではない。
例えば、軸締結体1,101は、軸J1,J2の締結方法として、上記サイドリング3を用いた楔形式のもの(実施の形態1〜4)、すり割溝111を設けたC型の軸締結体101を締め付ける形式のもの(実施の形態5〜8)他に、公知の種々の軸締結方法を採用してもよい。
【0099】
また、軸締結体1,101の形状は、外側面の外周縁をテーパ状にカットして慣性モーメントの低減を図るなど、種々の形状を採用してもよい。
【0100】
一方、請求項1〜6に係る発明では、曲部70を有する可撓性部材7としては、図1(実施の形態1)、図5(実施の形態2)、図6(実施の形態3)、図8(実施の形態4)に示した形状のものに限らず、可撓性を発揮する曲部を有した種々の形状を採用してもよい。
【0101】
【発明の効果】
以上のように、本発明によれば、回転力に対するねじり剛性が強化されて回転力による大きな負荷にも十分耐えることができ、従って、連結する二軸間の軸芯ずれを円滑に吸収し、且つ高いねじり剛性によって安定したトルク伝達を実現することができる。特に、軸の高速回転時でも安定してトルク伝達させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による軸継手の構造を示す一部断面図である。
【図2】軸継手を軸方向から見た側面図である。
【図3】可撓性部材を構成する板バネ環状体を示す斜視図である。
【図4】中間体とリング体とのカシメ接合部分を示す拡大断面図である。
【図5】本発明の実施の形態2による軸継手の構造を示す一部断面図である。
【図6】本発明の実施の形態3による軸継手の構造を示す一部断面図である。
【図7】実施の形態3の軸継手の各構成部材を示す分解斜視図である。
【図8】本発明の実施の形態4による軸継手の構造を示す一部断面図である。
【図9】本発明の実施の形態5による軸継手の構造を示す一部断面図である。
【図10】実施の形態5の軸継手の中間体を示す斜視図である。
【図11】本発明の実施の形態6による軸継手の構造を示す一部断面図である。
【図12】実施の形態6の軸継手の中間体を示す斜視図である。
【図13】本発明の実施の形態7による軸継手の構成を示す拡大断面図である。
【図14】本発明の実施の形態8による軸継手の構成を示す拡大断面図である。
【図15】従来の軸継手の構造を示す一部断面図である。
【図16】従来の他の軸継手の構造を示す一部断面図である。
【図17】従来のさらに他の軸継手の構造を示す一部断面図である。
【符号の説明】
1a,1b,101A,101B 軸締結体
2 中間体
6 筒部材
7 可撓性部材
52 リング体の凸片
61 筒部材の開口部
62 筒部材の凸片
70 曲部
71 板バネ環状体
73 大筒部
74 小筒部
75 絞り部(曲部)
102 板バネ中間体
106 凹部
113 取付部
115 側壁部
116 立壁部
118 ピン挿入孔
121 板状部
122A 第1延長片
122B 第2延長片
124 ピン孔
124T テーパバーリング孔(ピン孔)
126 凸部
131 ピン保持孔
130 当て板
711 板バネ環状体の外周部
712 板バネ環状体の内周部
713 切欠
b1,b2 皿ビス
J1,J2 軸
M 溶接
P ピン
P1 皿ビス
R1,R2 リング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shaft joint that absorbs eccentricity and declination between two connected shafts by interposing a flexible intermediate body between two shaft fastening members.
[0002]
[Prior art]
Conventionally, as this type of shaft coupling (flexible shaft coupling), an intermediate member interposed between the first shaft fastening member and the second shaft fastening member has flexibility such as a bellows or a leaf spring. A member is used.
[0003]
For example, the shaft coupling shown in FIG. 15 employs a metal bellows 1509 as an intermediate body, and is formed by joining the mating surfaces of the bellows 1509 and the shaft fastening members 1524 and 1525 by welding. (Patent Document 1, FIG. 1). The shafts J1 and J2 are fastened to the shaft fastening bodies 1524 and 1525, respectively.
[0004]
In the shaft coupling shown in FIG. 16, collars 1657 and 1658 of a press-formed product are arranged between the intermediate bellows 1609 and the first and second shaft fasteners 1654 and 1655, and the collars 1657 and 1658 On the other hand, the mating surfaces of the bellows 1609 and the shaft fastening bodies 1654, 1655 are joined by welding (Patent Document 1, FIG. 3).
[0005]
The shaft coupling shown in FIG. 17 is provided with first and second extension pieces 1721a and 1721b extending in the axial direction on the periphery of the leaf spring 1702 as an intermediate body, and these extension pieces 1721a and 172b are connected to the respective shaft fastening members. This is a configuration in which screws 1701a and 1701b are attached to the mounting portion 1713 on the outer peripheral surface by screwing (Patent Documents 2 and 3).
[0006]
These shaft couplings are formed by the above-mentioned flexible intermediate body (bellows 1509, 1609 or leaf spring 1702), such as eccentricity or eccentricity between the two shafts J1 and J2 respectively fastened to the two shaft fasteners. To transmit torque.
[0007]
[Patent Document 1]
JP-A-7-27141
[Patent Document 2]
JP-A-11-125265
[Patent Document 3]
JP-A-11-125264
[0008]
[Problems to be solved by the invention]
However, in these shaft joints, when there is a misalignment between the two shafts J1 and J2, the torsional force accompanying rotation acts greatly. In this case, since the intermediate body has flexibility, the torsional rigidity with respect to the rotational force is low. There was a possibility that it was not secured enough.
[0009]
The present invention has been made in view of the above circumstances, and even in a state where there is a misalignment between the two shafts, the misalignment during the rotation is smoothly absorbed and the torsional rigidity against the rotational force is sufficiently secured. And a shaft coupling capable of transmitting torque stably.
[0010]
[Means for Solving the Problems]
(1) The invention according to claim 1 is provided with a shaft fastening body for connecting two shafts on both sides, and is provided between the shaft fastening bodies to absorb a deviation of the shaft center with respect to the axis of the two shafts to be connected. In a shaft coupling provided with an intermediate body having flexibility,
The intermediate body is characterized in that a rigid cylindrical member is arranged at the center, and flexible members each having a curved portion are joined to both openings of the cylindrical member.
Thereby, in the intermediate body, the above-mentioned flexible members at both ends can absorb the axial misalignment with respect to the axis between the two shafts, while the central tubular member enhances the torsional rigidity in the rotational direction, and the rotational force is increased. It can withstand loads. By arranging the cylindrical member at the center, the swing of the intermediate body due to the rotation can be effectively suppressed.
[0011]
(2) The invention according to claim 2 is characterized in that, in the shaft coupling (claim 1),
The flexible member is formed by joining two or more leaf spring annular bodies with their planes facing each other to join the outer peripheral part or the inner peripheral part, and disposing the planes of the leaf spring annular bodies in a direction intersecting with the axis. Thus, the curved portion is formed.
Thereby, in the intermediate body, flexibility in the direction intersecting with the axis is reliably ensured.
[0012]
(3) The invention according to claim 3 is characterized in that, in the shaft coupling (claim 2),
A caulking connection structure between the leaf spring annular body and the cylindrical member or between the leaf spring annular body and the shaft fastening body,
The caulking joint structure is provided with a number of notches on the peripheral edge of the leaf spring annular body, and embraces the convex piece of the cylindrical member or the shaft fastening body on the peripheral edge where the notch is provided, and includes the convex portion in the notch. It is characterized in that it is made to penetrate the wall thickness.
As a result, the intermediate body itself or the joint between the intermediate body and each of the shaft fastening bodies is strengthened, so that the torsional rigidity in the rotational direction is further enhanced.
[0013]
(4) The invention according to claim 4 is characterized in that, in the shaft coupling (claim 1),
The flexible member is characterized in that it is formed of a cylindrical body having a thickness smaller than that of the cylindrical member and provided with a throttle portion serving as the curved part in the middle.
Thereby, in the intermediate body, the flexibility of the tubular member, which is a flexible member, is thinner than that of the tubular member, and the flexibility in the direction crossing the axis is secured by providing a narrowed portion that becomes a curved portion in the middle. On the other hand, by using the flexible member as a cylindrical body, the torsional rigidity in the rotational direction is enhanced, and the load due to the rotational force can be sufficiently endured.
[0014]
(5) The invention according to claim 5 is characterized in that, in the shaft coupling (claim 4),
The joint between the tubular body and the tubular member or the joint between the tubular body and the shaft fastening body has a joint structure in which a ring is fitted and screwed.
As a result, the intermediate body itself or the joint between the intermediate body and each of the shaft fastening bodies is strengthened, so that the torsional rigidity in the rotational direction is further enhanced.
[0015]
(6) The invention according to claim 6 is characterized in that, in the shaft coupling (claim 4),
The joint between the cylindrical body and the cylindrical member or the joint between the cylindrical body and the shaft fastening body has a joint structure in which a ring is fitted and pressure-contacted.
As a result, the intermediate body itself or the joint between the intermediate body and each of the shaft fastening bodies is strengthened, so that the torsional rigidity in the rotational direction is further enhanced.
[0016]
(7) The invention according to claim 7 is provided with a shaft fastening body for connecting two shafts on both sides, and is provided between the shaft fastening bodies to absorb a deviation of the axis from the axis of the two shafts to be connected. In a shaft coupling provided with an intermediate body having flexibility,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
The first extension piece and the second extension piece are characterized in that the entire distal end portion thereof is joined to the upright wall portion by welding.
Thereby, in the intermediate body, the misalignment with respect to the axis between the two axes can be absorbed by the structure including the plate portion, the first extension piece, and the second extension piece.
[0017]
Further, since each of the first extension piece and the second extension piece is surrounded by the side wall portion and the upright wall portion of the shaft fastening body, the first extension piece and the second extension piece are displaced due to axis misalignment between the two shafts. Torsional and oscillating forces acting on the In addition, since the entire distal end portions of the first extension piece and the second extension piece are joined to the upright wall by welding, a torsional force and a oscillating force act on the first extension piece and the second extension piece. Also, the first extension piece and the second extension piece can be prevented from floating. Further, by welding the first extension piece and the second extension piece to the upright wall portion, the joining between the intermediate body and each of the shaft fastening bodies is strengthened, and the torsional rigidity in the rotational direction is strengthened. Therefore, it is possible to sufficiently withstand the load due to the rotational force.
[0018]
(8) The invention according to claim 8 is provided with a shaft fastening body for connecting two shafts on both sides, and between the shaft fastening bodies, there is a movable shaft for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In a shaft coupling provided with an intermediate body having flexibility,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
The first extension piece and the second extension piece are provided with a pin hole and a protrusion, and the mounting portion is provided with a pin insertion hole corresponding to the pin hole and a recess corresponding to the protrusion. The pin member is press-fitted into the insertion hole, and the convex portion is press-fitted into the concave portion so as to be joined.
Thereby, in the intermediate body, the misalignment with respect to the axes of the two axes can be absorbed by the structure including the plate portion, the first extension piece, and the second extension piece.
[0019]
Further, since each of the first extension piece and the second extension piece is surrounded by the side wall portion and the upright wall portion of the shaft fastening body, the first extension piece and the second extension piece due to the axial misalignment between the two shafts. Torsional and oscillating forces acting on the In addition, a pin hole and a projection are provided on the first extension piece and the second extension piece, and a pin insertion hole corresponding to the pin hole and a depression corresponding to the projection are provided on the mounting portion. Since the pin member is press-fitted into the pin insertion hole and the convex portion is press-fitted into the concave portion and joined, the joining between the intermediate body and each of the shaft fastening members is strengthened. Therefore, the torsional stiffness in the rotational direction is enhanced, and it is possible to sufficiently withstand the load due to the rotational force.
[0020]
(9) According to the ninth aspect of the present invention, a shaft fastening body for connecting two shafts is provided on both sides, and a gap between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected is provided. In a shaft coupling provided with an intermediate body having flexibility,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
A tapered burring hole is provided in the first extension piece and the second extension piece, a pin insertion hole corresponding to the tapered burring hole is provided in the mounting portion, and a countersunk screw is attached to the tapered burring hole and the pin insertion hole. It is characterized in that it is configured to be joined by joining.
Thereby, in the intermediate body, the misalignment with respect to the axes of the two axes can be absorbed by the structure including the plate portion, the first extension piece, and the second extension piece.
[0021]
Further, since each of the first extension piece and the second extension piece is surrounded by the side wall portion and the upright wall portion of the shaft fastening body, the first extension piece and the second extension piece are displaced due to axis misalignment between the two shafts. Torsional and oscillating forces acting on the Further, a tapered burring hole is provided in the first extension piece and the second extension piece, and a pin insertion hole corresponding to the tapered burring hole is provided in the mounting portion, and a countersunk screw is provided in the tapered burring hole and the pin insertion hole. Is screwed in and joined, so that the joint between the intermediate body and each shaft fastening body is strengthened. Therefore, the torsional stiffness in the rotational direction is enhanced, and it is possible to sufficiently withstand the load due to the rotational force.
[0022]
(10) According to a tenth aspect of the present invention, a shaft fastening body for connecting two shafts is provided on both sides, and between these shaft fastening bodies, there is a movable shaft for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In a shaft coupling provided with an intermediate body having flexibility,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
A pin hole is provided in the first extension piece and the second extension piece, and a pin insertion hole corresponding to the pin hole is provided in the mounting portion, and a pin holding hole is provided in an upper surface of the first extension piece and the second extension piece. A plate provided with a pin is disposed, and a countersunk screw is attached to the pin holding hole, the pin hole, and the pin insertion hole to be joined.
Thereby, in the intermediate body, the misalignment with respect to the axes of the two axes can be absorbed by the structure including the plate portion, the first extension piece, and the second extension piece.
[0023]
Further, since each of the first extension piece and the second extension piece is surrounded by the side wall portion and the upright wall portion of the shaft fastening body, the first extension piece and the second extension piece are displaced due to axis misalignment between the two shafts. Torsional and oscillating forces acting on the In addition, a patch plate having a pin holding hole is arranged on the upper surface of the first extension piece and the second extension piece, and a countersunk screw is attached to the pin holding hole, the pin hole, and the pin insertion hole and joined. Therefore, the joining between the intermediate body and each of the shaft fastening bodies is strengthened by this backing plate. Therefore, the torsional stiffness in the rotational direction is enhanced, and it is possible to sufficiently withstand the load due to the rotational force.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<First embodiment (corresponding to claims 1 to 4)>
1 to 4 show a configuration of a shaft coupling according to a first embodiment of the present invention. As shown in FIG. 1, this shaft coupling transmits rotation of a first shaft J1 (drive shaft of a motor) to a second shaft J2 (driven shaft), and connects the first shaft J1. A first shaft fastener 1a to be connected, a second shaft fastener 1b for connecting the second shaft J2, and an intermediate body 2 for connecting these shaft fasteners 1a and 1b. Hereinafter, the configuration of each unit will be described.
[0025]
(Structure of shaft fastening body)
The first shaft fastening body 1a and the second shaft fastening body 1b on both sides are of the same shape, and will be described as "shaft fastening body" as appropriate. Each of the shaft fastening bodies 1a and 1b includes a cylindrical block-shaped main body 11 having a shaft hole 10 provided in a central portion thereof, and a flange 12 protruding from one side of a side surface of the main body 11. The shaft fasteners 1a and 1b are manufactured by cutting, forging, casting, or the like made of aluminum, iron, or the like.
[0026]
An annular groove 13 is formed on one end surface of the main body 11 along the periphery of the shaft hole 10. In the main part 11, the inner ring part 14 is defined on the inner side of the annular groove 13, and the outer ring part 15 is defined on the outer side. In addition, the said one end surface becomes an inner surface of a shaft coupling.
[0027]
In the annular groove portion 13, the peripheral wall on the inner ring portion 14 side and the peripheral wall on the outer ring portion 15 side are formed in a tapered surface, whereby the annular groove portion 13 becomes a tapered groove whose groove width becomes narrower as it goes deeper. ing. The side ring 3 is fitted into the annular groove 13. The inner peripheral surface and the outer peripheral surface of the side ring 3 are finished to be tapered so as to substantially match the tapered groove shape of the annular groove 13.
[0028]
2, six bolt holes 16 for attaching six fastening bolts B1 are provided at equal intervals in the bottom of the annular groove portion 13. The side ring 3 is provided with six bolt insertion holes 30 provided with screw grooves corresponding to the bolt holes 16 of the annular groove portion 13. Then, the fastening bolt B <b> 1 is inserted into each of the bolt holes 16 from outside the main body 11, and screwed into each of the bolt insertion holes 30 of the side ring 3. Thereby, the side ring 3 is held so as to be drawn into the annular groove portion 13. The number of the fastening bolts B1 is not limited to six, and may be any number as long as it is plural.
[0029]
On the other hand, a ring body 5 having the intermediate body 2 joined thereto is attached to the flange portion 12. An annular projection 17 for externally fitting the ring body 5 is formed on the inner surface of the main body 11 along the outer periphery of the annular groove 13. The ring body 5 is a member for connecting the intermediate body 2 to the main body 11 of the shaft fastening bodies 1a and 1b, and is manufactured by cutting, forging, casting, or the like made of stainless steel, iron, or the like. 2, four bolt holes 120 for attaching four fixing bolts B2 are provided at regular intervals in the flange portion 12 as well. Further, the ring body 5 is provided with four bolt insertion holes 51 provided with screw grooves corresponding to the bolt holes 120 of the flange portion 12. Then, the fixing bolts B2 are passed through the bolt holes 120 from outside the flange portion 12 and screwed into the bolt insertion holes 51 of the ring body 5. Thus, the ring body 5 is fixed to the flange 12. The number of the fixing bolts B2 is not limited to four, and may be any number as long as it is plural.
[0030]
(Structure of intermediate)
The intermediate body 2 is interposed between the first shaft fastening body 1a and the second shaft fastening body 1b, and is formed by an eccentricity and an eccentric angle between the first shaft J1 and the second shaft J2. The cylindrical member 6 is a member that absorbs the displacement and has a cylindrical shape, and the flexible member 7 joined to the openings 61 on both sides of the cylindrical member 6. The cylindrical member 6 and the flexible member 7 constituting the intermediate body 2 are made of metal such as stainless steel and iron.
[0031]
The cylindrical member 6 itself has strong torsional rigidity in the circumferential direction of the axis, but is arranged such that the axis coincides with the axis of the shaft coupling. Thereby, compared with the case where the intermediate body is constituted only by the leaf spring, the intermediate body 2 provided with the tubular member 6 can have higher torsional rigidity in the circumferential direction (the rotation direction of the shaft coupling). .
[0032]
As shown in FIG. 3 and FIG. 4, the flexible member 7 is formed by joining two leaf spring annular bodies 71 by flattening their planes and welding the entire outer periphery 711 of the whole or part thereof by welding M. , One curved portion 70 is formed. Further, a plurality of notches 713 are provided in the inner peripheral portion 712 of each leaf spring annular body 71. In the present invention, the flexible member 7 may be formed by forming a plurality of the curved portions 70.
[0033]
In the intermediate body 2, the flexible member 7 is arranged in a direction intersecting the plane of the plate spring annular body 71 with the axis of the shaft joint. That is, a convex piece 62 is provided in the opening 61 of the cylindrical member 6, and with reference to FIG. 4A, a leaf spring annular body 71 forming the flexible member 7 on the convex piece 62. Then, with reference to FIG. 4B, the convex piece 62 is plastically deformed outward with a jig or the like. Then, the inner peripheral portion 712 of the leaf spring annular body 71 is held by the convex piece 62 and the thickness of the convex piece 62 is swaged so as to bite into the notch 713 of the inner peripheral portion 712 of the leaf spring annular body 71. I have. As a result, the joining between the tubular member 6 and the flexible member 7 becomes strong without rattling, and the torsional rigidity of the intermediate body 2 in the rotation direction is enhanced.
[0034]
On the other hand, the ring member 5 is fixed to the main body 11 of each of the shaft fastening members 1a and 1b so as to be immovably fixed by the fixing bolt B2 to each of both ends of the intermediate member 2. The ring members 5 are respectively attached to the flexible members 7 on both sides of the intermediate member 2. As shown in FIG. 4, a convex piece 52 is provided on the inner peripheral portion of the ring member 5. Referring to (a), the inner peripheral portion 712 of the leaf spring annular body 71 disposed outside is fitted into the convex piece 52, and then, with reference to FIG. Is plastically deformed outward. Then, the inner peripheral portion 712 of the leaf spring annular body 71 is held by the convex piece 52, and the thickness of the convex piece 52 is swaged so as to bite into the notch 713 of the inner peripheral portion 712 of the leaf spring annular body 71. As a result, the joining between the intermediate body 2 (the annular body of the leaf spring of the flexible member 7) and the ring body 5 becomes strong without rattling, so that the shaft fastening bodies 1a, 1a, 1b, the torsional rigidity in the rotational direction is enhanced.
[0035]
In addition, since the intermediate body 2 and the main body 11 of the shaft fasteners 1a and 1b are connected via the ring body 5, the intermediate 2 and the main body 11 of the shaft fasteners 1a and 1b are made of different materials. Can be For example, the intermediate body 2 and the ring body 5 can be made of stainless steel for the convenience of welding and the like, and the main body 11 of the shaft fastening bodies 1a and 1b can be made of aluminum lighter than stainless steel. By using a part of the shaft coupling, the moment of inertia of the entire coupling can be reduced, and thereby the load on the motor during rotation can be reduced.
[0036]
The joining between the tubular member 6 and the flexible member 7 and the joining between the intermediate body 2 and the ring body 5 may be performed by welding instead of the above-described caulking. Further, the notch 713 may not be formed in the inner peripheral portion 712 of the leaf spring ring 71 in the flexible member 7.
[0037]
[Assembly of shaft coupling]
Next, as a method of assembling the shaft coupling using the first shaft fastening body 1a, the second shaft fastening body 1b, and the intermediate body 2, first, the ring body 5 joined to the intermediate body 2 is attached to the main body 11 And is arranged inside the flange portion 12 by being externally fitted to the protrusion 17 on the inner side surface. Next, the four fixing bolts B <b> 2 are inserted into the respective bolt holes 120 from outside the flange portion 12 and screwed into the respective bolt insertion holes 51 of the ring body 5. Then, by tightening these fixing bolts B2, the ring body 5 is fixed to the flange portion 12 in an immovable state. By performing the above operations on the main portions 11 of both the shaft fastening bodies 1a and 1b, a shaft joint in which the first shaft fastening body 1a and the second shaft fastening body 1b are connected by the intermediate body 2 is assembled. .
[0038]
〔motion〕
Next, as a method of fastening the first shaft J1 and the second shaft J2 in this shaft coupling, for example, the first shaft J1 is inserted into the shaft hole 10 of the first shaft fastening body 1a, Each fastening bolt B1 is tightened from the outer surface of the part 11. Then, the side ring 3 is pushed into the annular groove portion 13, and the inner ring portion 14 inside the annular groove portion 13 is reduced in diameter by the wedge action of the side ring 3 at this time. Thereby, the first shaft J1 is fixed to the shaft hole 10 of the first shaft fastening body 1a by friction fitting. Similarly, when the second shaft J2 is fixed to the shaft hole 10 of the second shaft fastener 1b, the two shafts J1 and J2 are connected at this shaft joint.
[0039]
At this time, the outer ring portion 15 outside the inner ring portion 14 inside the annular groove portion 13 is thicker than the inner ring portion 14 because the flange portion 12 is provided on the outer portion of the annular groove portion 13 in the main body portion 11. The fastening force to the shafts J1 and J2 due to the reduced diameter of the inner ring portion 14 does not easily escape to the outside. Therefore, the fastening force of the shafts J1 and J2 by the inner ring portion 14 is increased, and the fixing of the shafts J1 and J2 in the shaft hole 10 can be strengthened.
[0040]
When the drive-side shaft J1 is rotated in this shaft fastened state, a rotational force is applied to the first shaft fastened body 1a, the intermediate body 2, and the second shaft fastened body 1b, and the driven shaft shaft J2 Is transmitted to the motor.
[0041]
At this time, even if there is an axis misalignment due to eccentricity and declination between the two axes J1 and J2, the flexible member 7 (the two leaf spring annular bodies 71 are joined and bent) at both ends of the intermediate body 2. The configuration in which the portion 70 is formed) has flexibility in the direction intersecting with the axis, so that the axial misalignment is absorbed. Therefore, at the time of rotation, each flexible member 7 is smoothly displaced following the rotation, and smoothly rotates without obstructing the rotation of the shafts J1 and J2 in a state where the axis misalignment between the two shafts J1 and J2 is absorbed. The axes J1 and J2 can be rotated.
[0042]
Moreover, the cylindrical member 5 of the intermediate body 2 has a high torsional rigidity in the rotation direction. Further, the flexible member 7 has the two leaf spring annular bodies 71 arranged in the direction in which the plane intersects the axis, and is strongly joined to the tubular member 6 by the above-described caulking. The torsional rigidity in the rotation direction is also enhanced in the sex member 7. Therefore, even when the shaft J1 rotates at a high speed or at a high torque, the intermediate member 2 provided with the flexible member 7 can sufficiently withstand the load of the torsional force, and the torque can be smoothly increased. Can be transmitted.
[0043]
As described above, according to the shaft coupling according to the first embodiment, even during rotation, the axial misalignment between the two connected shafts J1 and J2 can be smoothly absorbed, and torque can be stably transmitted. Also, even when the shafts J1 and J2 rotate at high speed or rotate with high torque in a state where there is an axis misalignment, an excellent effect that torque can be transmitted stably is exhibited. For example, even at the time of high-speed rotation exceeding 10,000 rpm, since the torsional rigidity with respect to the rotational force is enhanced, the torque can be stably transmitted.
[0044]
In addition, the intermediate body 2 is provided with the cylindrical member 6 whose axes are aligned with each other, whereby bending of the intermediate body 2 outward during rotation is suppressed. In particular, since the cylindrical member 6 is disposed at the center position of the portion that is most outwardly bent by the centrifugal force, it is possible to reliably suppress the swing caused by the outward bending of the intermediate body 2 during rotation. Therefore, as a result of suppressing the vibration of the shaft coupling, it is possible to suppress the load on the motor due to the vibration of the shaft coupling.
[0045]
Further, since the cylindrical member 6 has a small cylindrical diameter of about the inner diameter of the above-mentioned leaf spring annular body 71, the moment of inertia in the rotational direction of the cylindrical member 6 is small, and the intermediate member 2 moves outward during rotation. The bending is further suppressed, and the load on the motor can be almost eliminated.
[0046]
The outer diameter of the intermediate body 2 is smaller than the outer diameters of the shaft fasteners 1a and 1b. That is, the outer diameter of the flexible member 7 that is the maximum diameter of the intermediate body 2 is formed smaller than the outer diameter of the flange portion 12 that is the maximum diameter of the shaft fasteners 1a and 1b. Therefore, since the flexible member 7 which is easily damaged by an external impact is disposed inward of the flange portion 12, when the shafts J1 and J2 are fastened, the shaft joint is dropped, or the like. Even if the object collides, an external impact can be prevented from being directly applied to the flexible member 7, and the flexible member 7 can be prevented from being easily damaged.
[0047]
In addition, since this shaft coupling connects the intermediate body 2 to the first shaft fastening body 1a and the second shaft fastening body 1b via the ring body 5, the connecting work thereof is easy, and the first joint is connected to the first shaft fastening body 1a. The shaft fastener 1a or the second shaft fastener 1b can be easily exchanged. For example, the first shaft fastener 1a and the second shaft fastener 1a having various sizes according to the diameters of the shafts J1 and J2 to be connected can be easily replaced. The combination with the two shaft fastening bodies 1b can also be easily performed.
[0048]
Further, since the intermediate member 2 is provided with the cylindrical member 6, the distance between the first axis J1 and the second axis J2 can be increased to some extent. It is possible to make it easy to absorb the axial misalignment due to the deflection angle.
[0049]
In addition, since the surface of the shaft coupling does not have a convex portion or a concave portion that rotates around the axis, wind noise does not occur even during high-speed rotation.
[0050]
<Second embodiment (corresponding to claims 1 to 3)>
FIG. 5 shows a configuration of a shaft coupling according to a second embodiment of the present invention. In the shaft coupling according to the second embodiment, as the intermediate body 2, the tubular member 6 has a tubular diameter approximately equal to the outer diameter of the leaf spring annular body 71, and the flexible member 7 is formed of the two leaf spring annular bodies 71. The peripheral portions 712 are joined together, and the flexible member 7 is joined to the openings 61 on both sides of the tubular member 6 and the outer peripheral portion 711 of the leaf spring annular body 71 is joined.
[0051]
The main body 11 of the first shaft fastening body 1 a is formed such that its outer diameter is smaller than the inner diameter of the intermediate body 2, and is disposed so as to sunk inside the intermediate body 2. Thus, the entire shaft coupling can be made compact without the main body portion 11 protruding outward.
[0052]
Further, the second shaft fastener 1b is constituted only by the circular block-shaped main body 11 without the flange portion 12, and the hole diameter of the shaft hole 10 is formed larger than the hole diameter of the first shaft fastener 1a. It was done. This enables connection of two shafts J1 and J2 having different diameter sizes.
[0053]
In the shaft fasteners 1a and 1b according to the second embodiment, the annular groove 13 and the side ring 3 are formed from the outer surface of the main body 11, and the bolt hole 16 deeper than the annular groove 13 has a thread groove. Is provided. Further, in this case, the bolt insertion hole 30 of the side ring 3 may not be provided with a thread groove.
[0054]
Further, the intermediate body 2 and the first shaft fastening body 1a and the second shaft fastening body 1b are directly joined by welding without the ring body 5 interposed therebetween. The joining of the tubular member 6 and the flexible member 7 in the intermediate body 2 is caulked to the tubular member 6 at the outer peripheral portion 711 of the leaf spring annular body 71 in the same manner as in the first embodiment. . Thereby, also in this case, the torsional rigidity between the intermediate body 2 itself and the intermediate body 2 and the shaft fastening bodies 1a and 1b is enhanced.
Therefore, also in the second embodiment, during rotation, the axial misalignment between the two connected shafts J1 and J2 can be smoothly absorbed and torque can be stably transmitted.
[0055]
<Embodiment 3 (corresponding to claims 4 and 5)>
6 and 7 show a configuration of a shaft coupling according to Embodiment 3 of the present invention. The shaft coupling according to the third embodiment is constituted by a tubular body in which the flexible member 7 ′ in the intermediate body 2 ′ is thinner than the central tubular member 6 ′ and has a narrowed portion 75 that is curved in the middle. Things.
[0056]
That is, the flexible member (hereinafter, appropriately referred to as a “cylindrical flexible member”) 7 ′ made of a cylindrical body is a leaf spring whose plane is arranged in a direction intersecting the axis with reference to FIG. An annular body 72, a large cylindrical portion 73 connected to the outer peripheral portion of the plate spring annular member 72 and extending in the axial direction, and a small cylindrical member connected to the inner peripheral portion of the plate spring annular member 72 and extending in the axial direction opposite to the large cylindrical portion 73. And a cylindrical portion 74. A continuous portion between the leaf spring annular body 72 and the small cylindrical portion 74 serves as the throttle portion 75, and the portion exerts flexibility.
[0057]
A small-diameter stepped portion 63 is provided in the opening 61 of the cylindrical member 6 ′. The small-diameter stepped portion 74 of the cylindrical flexible member 7 ′ is externally fitted to the small-diameter stepped portion 63, and further outside thereof. The small-diameter ring R1 is fitted to the outside in a press-contact state. The small-diameter stepped portion 63, the small-diameter tube portion 74, and the small-diameter ring R1 are provided with six (plural) holes h1, h2, and h3 that match each other. The screw is screwed through the screw b1 to join the tubular member 6 'and the tubular flexible member 7'. Note that a female screw is provided in the hole h1 in the small-diameter stepped portion 63 of the cylindrical member 6 '.
[0058]
Further, a small-diameter step portion 12x is provided on the outer peripheral portion of the flange portion 12 of the shaft fastening bodies 1a and 1b, and the large-diameter tube portion 73 of the tubular flexible member 7 'is fitted to the small-diameter step portion 12x. Further, a large-diameter ring R2 is fitted to the outside in a press-contact state. Eight (plural) holes h4, h5, and h6 are provided in the small-diameter step portion 12x, the large-diameter tube portion 73, and the large-diameter ring R2. The screw is screwed through the screw b2 to connect the intermediate body 2 'to the shaft fastening bodies 1'a and 1'b. Note that a female screw is provided in the hole h4 of the small-diameter step portion 12x of the flange portion 12.
Other configurations are the same as those in the first embodiment.
[0059]
As described above, in the shaft coupling according to the third embodiment, in the intermediate body 2 ′, the tubular flexible member 7 ′ is thinner than the tubular member 6 ′, and the narrowed portion 75 which becomes a curved portion in the middle is used. Is provided, flexibility in the direction intersecting with the axis is ensured.
[0060]
In addition, the intermediate body 2 ′ is configured such that the cylindrical flexible members 7 ′ on both sides are cylindrical in addition to the central cylindrical member 6 ′, and the cylindrical flexible members 7 ′ and the cylindrical members 6 ′ are formed. And the intermediate body 2 '(the portion of the tubular flexible member 7') and the shaft fasteners 1'a and 1'b are pressed by rings R1 and R2 and screwed. The joint structure enhances the torsional rigidity in the rotation direction.
[0061]
Therefore, also in the third embodiment, during rotation, the axial misalignment between the two connected shafts J1 and J2 can be smoothly absorbed, and torque can be stably transmitted.
In the present invention, without fitting the rings R1 and R2 to the outside, the cylindrical flexible member 7 'and the shaft fastener 1' can be provided between the cylindrical flexible member 7 'and the cylindrical member 6'. a, 1'b may be fixed only by screwing.
[0062]
The holes h2 and h5 provided in the cylindrical flexible member 7 'may be burring holes. In this case, after the small cylinder portion 74 is externally fitted to the small-diameter stepped portion 63 of the cylinder member 6 ′, each hole h3 of the small cylinder portion 74 may be beaten with a punch to form a burring hole. Similarly, the large cylindrical portion 73 may be externally fitted to the small-diameter step portion 12x of the flange portion 12, and then each hole h5 of the large cylindrical portion 73 may be beaten with a punch to form a burring hole.
[0063]
<Embodiment 4 (corresponding to claim 6)>
FIG. 8 shows a configuration of a shaft coupling according to a fourth embodiment of the present invention. The shaft coupling according to the fourth embodiment is a tubular flexible member 7 ″ which is thinner than the tubular member 6 ′ and is a tubular member provided with a throttle part 75 ′ in the middle as an intermediate flexible member. However, the portions other than the narrowed portion 75 'that becomes the curved portion are the cylindrical portions 73' and 74 'having the same diameter, and are small-diameter small cylinders like the cylindrical flexible member 7' in the third embodiment. The part 74 is not provided.
[0064]
The cylindrical member 6 ′ and the cylindrical flexible member 7 ″ are joined by removing the cylindrical portion 74 ′ of the cylindrical flexible member 7 ″ from the small diameter step 63 of the opening 61 of the cylindrical member 6 ′. By screwing the small-diameter ring R1 through the countersunk screw b1 at a plurality of positions in the circumferential direction without further externally fitting the small-diameter ring R1 as in the third embodiment.
[0065]
Further, an annular groove 18 having an inner peripheral wall tapered is provided on the inner surface of the flange portion 12 of the shaft fastening body 1 ″ a, and a ring R3 having a shape matching the annular groove 18 is fitted. One cylindrical portion 73 'of the tubular flexible member 7' is inserted between the outer peripheral surface of the ring R3 and the annular groove 18. The holes R9 and the holes H9, h10 is provided, and a female screw is provided in the hole h9 of the ring R3, and by tightening a bolt b4 into the holes h9 and h19 from the outer surface of the flange portion 12, the ring R3 is formed into an annular groove. 18, the tubular flexible member 7 'is connected to the shaft fastening body 1 "a in a press-fit state.
[0066]
Other configurations are the same as those in the first embodiment. Note that another shaft fastening body is not shown, but has the same configuration as the shaft fastening body 1 ″ a.
[0067]
As described above, also in the shaft coupling according to the fourth embodiment, the axial center misalignment between the two connected shafts J1 and J2 can be smoothly performed by the narrowed portion 75 'of the tubular flexible member 7 "in the intermediate body 2". On the other hand, the intermediate body 2 "has a structure in which both the tubular flexible members 7" on both sides are formed into a tubular shape in addition to the central tubular member 6 '. The cylindrical member 6 ′ is joined with a plurality of screws along the circumferential direction, and the intermediate member 2 ″ (the portion of the cylindrical flexible member 7 ″) and the shaft fastener 1 ″ a are joined with a ring. The torsional rigidity in the rotational direction is strengthened by the joining structure in the press-fit state at R3.
[0068]
Therefore, also in the fourth embodiment, during rotation, the axial misalignment between the two connected shafts J1 and J2 can be smoothly absorbed and torque can be stably transmitted.
The plurality of holes h1 in the small-diameter stepped portion 63 of the cylindrical member 6 'are tapered at the entrance, and when the cylindrical portion 74' of the cylindrical flexible member 7 "is screwed with the countersunk screw b1, The circumference of the hole h2 of the cylindrical portion 74 'may be tightened so as to be depressed at the taper at the entrance of the hole h1 of the small-diameter stepped portion 63. In this case, the cylindrical member 6' and the cylindrical flexible member 7 " This is of course useful in that it can prevent the displacement of the countersunk screw b1 by the elastic restoring force around the hole h2 of the cylindrical portion 74 '.
[0069]
<Embodiment 5 (corresponding to claim 7)>
9 and 10 show a configuration of a shaft coupling according to a fifth embodiment of the present invention. The shaft coupling according to the fifth embodiment includes shaft fastening bodies 101A and 101B for connecting two shafts J1 and J2 on both sides as shown in FIG. 9, and a connection is made between these shaft fastening bodies 101A and 101B. A flexible intermediate body 102 is provided to absorb the axial misalignment with respect to the axes of the two axes J1 and J2. The configuration of each unit will be described below.
[0070]
(Structure of intermediate)
The intermediate body 102 is made of a plate spring as shown in FIG. 10, and has a regular octagonal plate-like portion 121 having a center hole 120 at a central portion, and a pair of opposing sides of the plate-like portion 121 in an axial direction. A pair of rectangular first extension pieces 122A extending from each other, and a pair of rectangular first extension pieces 122A extending from a pair of opposing sides shifted by 90 degrees to a side opposite to the first extension piece 122A from the pair of sides extending from the first extension piece 122A. (Hereinafter, this intermediate body is referred to as “leaf spring intermediate body”).
[0071]
The plate-like portion 121 is a plane substantially perpendicular to the axis of the shaft coupling, the first extension piece 122A extends toward the first shaft fastening body 101A, and the second extension piece 122B extends toward the second shaft fastening body 101B. Extend to.
The first extension piece 122A is formed to be shorter than the axial thickness of the shaft fastening body 101A. Thereby, the torsional rigidity in the rotation direction is enhanced.
[0072]
In the leaf spring intermediate body 102, a shock absorbing hole 125 is provided in a corner portion where the plate-shaped portion 121 is connected to the first extension piece 122A and the second extension piece 122B. The shock absorbing hole 125 may be provided in the first extension piece 122A and the second extension piece 122B, or the shock absorbing hole 125 may not be provided.
[0073]
(Structure of shaft fastening body)
Each of the first shaft fastening body 101A and the second shaft fastening body 101B is entirely formed in a cylindrical block body, and a shaft hole 110 for fitting the shafts J1 and J2 is formed through the center thereof. ing. The first shaft fastening body 101A and the second shaft fastening body 101B have a slit groove 111 formed on the outer peripheral surface to reach the center shaft hole 110, and fastening both ends of the slit groove 111 in the circumferential direction. Bolt B is attached. By tightening the fastening bolts B, the shaft fastening bodies 101A and 101B are reduced in diameter and hold the shafts J1 and J2 inserted into the shaft hole 110. Since the first shaft fastening body 101A and the second shaft fastening body 101B have the same configuration, the following description focuses on the first shaft fastening body 101A.
[0074]
On the outer peripheral surface of the first shaft fastening body 101A, a pair of recesses 112 in which the pair of first extension pieces 122A of the leaf spring intermediate body 102 are arranged are formed correspondingly. The pair of recesses 112 are provided with a mounting portion 113 to which the tip of the first extension piece 122A is mounted, and a flat portion 114 lower than the mounting portion 113 inside the mounting portion 113, respectively.
[0075]
In addition, the concave portion 112 forms a side wall portion 115 facing both side portions of the first extension piece 122A fixed to the mounting portion 113, and a standing wall portion 116 facing the tip end of the first extension piece 122A. are doing.
[0076]
[Assembly of shaft coupling]
Next, the assembly of the shaft coupling will be described. In order to connect the first shaft fastening body 101A and the second shaft fastening body 101B by the leaf spring intermediate body 102, first, one of the first extension pieces 122A is attached to the mounting portion of the recess 112 of the first shaft fastening body 101A. Then, the entire end of the first extension piece is joined to the upright wall portion 116 by welding M. The width of the standing wall portion 116 (the width in the axial direction of the shaft joint) is substantially equal to the thickness of the weld M, which is effective for performing a smooth welding operation. Similarly, the other second extension piece 122B is firmly fixed to the mounting portion 113 of the second shaft fastening body 101B. Thereby, the shaft coupling is completed.
[0077]
In this case, each of the first extension piece 122A and the second extension piece 122B is in a state surrounded by the side wall 115 and the upright wall 116, and the first extension piece 122A and the second extension piece 122B Since the entire distal end portion is joined to the upright wall 116 by welding M, and the joining between the leaf spring intermediate body 102 and each of the shaft fastening bodies 101A and 101B is strengthened, the first extension piece 122A fixed to the attaching portion 113 is provided. The torsional rigidity of the second extension piece 122B is enhanced. Further, by making the first extension piece 122A and the second extension piece 122B shorter than the axial thickness of the shaft fasteners 101A and 101B, the torsional rigidity in the rotational direction is also enhanced. Therefore, the torsional stiffness in the rotational direction is enhanced, and it is possible to sufficiently withstand the load due to the rotational force.
[0078]
〔motion〕
Next, the operation of the shaft coupling will be described. In order to connect the input and output shafts J1 and J2 to each other using this shaft coupling, each of the shafts is loosened with the tightening bolts B of the first shaft fastener 101A and the second shaft fastener 101B. The tips of the shafts J1 and J2 are inserted into the holes 110, and then the tightening bolts B are tightened. As a result, the first shaft fastening body 101A and the second shaft fastening body 101B are reduced in diameter, whereby the shafts J1 and J2 are firmly fixed, and the shafts J1 and J2 are connected in a transmission state.
[0079]
According to such a shaft joint, the leaf spring intermediate body 102 (the plate-like portion 121, the first extension piece 122A, and the second extension piece 122B) can be bent. In particular, since the concave portion 112 is provided with the flat portion 114 lower than the mounting portion 113 to which the first extension piece 122A and the second extension piece 122B are fixed, the first extension piece 122A and the second extension piece 122B are provided. Has a structure in which the bending of the sheet is greatly allowed. Therefore, even if an axial misalignment (eccentricity, declination) occurs between the two connected shafts, the leaf spring intermediate body 102 bends to cause a torque between the first shaft fastening body 101A and the second shaft fastening body 101B. Enable communication.
[0080]
In the torque transmission state by the shaft coupling, a large torsion force is applied to the first extension piece 122A and the second extension piece 122B due to the eccentricity and the eccentricity of the axis of the first shaft fastening body 101A and the second shaft fastening body 101B. Even when the oscillating force acts, the torsional force and the oscillating force can be absorbed by the shock absorbing hole 125 provided in the corner portion of the leaf spring intermediate body 102. Accordingly, the swing directly acting on the first extension piece 122A and the second extension piece 122B is greatly reduced.
[0081]
In addition, since each of the first extension piece 122A and the second extension piece 122B is surrounded by the side wall 115 and the upright wall 116 of the shaft fasteners 101A and 101B, the first center piece is displaced by the axis misalignment between the two axes. The torsional force and the oscillating force acting on the extension piece 122A and the second extension piece 122B are received. Moreover, since the entire distal end portions of the first extension piece 122A and the second extension piece 122B are joined to the upright wall portion 116 by welding M, the first extension piece 122A and the second extension piece 122B are subjected to a torsional force or the like. Even if the oscillating force acts, it is possible to prevent the first extension piece 122A and the second extension piece 122b from floating. Further, the first extension piece 122A and the second extension piece 122B are welded to the upright wall portion 116 by welding M, so that the joint between the intermediate body 102 and each of the shaft fastening bodies 101A and 101B is strengthened. By making the piece 122A and the second extension piece 122B shorter than the axial thickness of the shaft fastening bodies 101A and 101B, the torsional rigidity in the rotational direction is enhanced. Therefore, it is possible to sufficiently withstand the load due to the rotational force.
[0082]
As described above, also in the fifth embodiment, it is possible to smoothly absorb the axial misalignment between the two connected shafts J1 and J2, and realize stable torque transmission by high torsional rigidity.
[0083]
<Embodiment 6 (corresponding to claim 8)>
FIG. 11 shows a configuration of a shaft coupling according to Embodiment 6 of the present invention. In FIG. 11, the cross-sectional portions indicated by the reference numerals X and Y on the right side correspond to the cross-sections on the lines indicated by the reference numerals X and Y on the left side, respectively.
[0084]
The shaft coupling of the sixth embodiment has substantially the same configuration as that of the fifth embodiment, but the extension pieces 122A and 122B are formed longer than those of the fifth embodiment. The connection between the extension pieces 122A, 122B and the shaft fasteners 101A, 101B is not performed by welding M, but is different in that the connection described below is performed.
[0085]
At the distal end of the first extension piece 122A and the distal end of the second extension piece 122B in the leaf spring intermediate body 102, semicircular protrusions 123 projecting laterally from both sides are formed. Are provided with pin holes 124 one by one, and between these pin holes 124 are provided convex portions 126 which are punched with a punch and protruded inward (see FIG. 12).
[0086]
The mounting portion 113 of each of the shaft fastening bodies 101A and 101B is provided with a semicircular recess 117 corresponding to the semicircular protrusion 123, and a pin insertion hole 118 corresponding to the pin hole 124 and the pin insertion hole 118. A concave portion 106 corresponding to the convex portion 126 is provided (see a cross-sectional portion Y on the lower right side in FIG. 11).
[0087]
Then, the extension pieces 122A, 122B are arranged on the mounting portion 113 of the shaft fastening bodies 101A, 101B, and the semicircular protrusion 123 at the tip of the extension pieces 122A, 122B is engaged with the semicircular recess 117 of the recess 112. At the same time, the pin member P is press-fitted into the pin hole 124 and the pin insertion hole 118, and the protrusion 126 is press-fitted into the recess 106, and the extension pieces 122A, 122B are attached to the mounting portions of the shaft fastening bodies 101A, 101B. 113 (see the right-hand cross-sections X and Y in FIG. 11).
[0088]
As described above, in the sixth embodiment, since the leaf spring intermediate member 102 and the shaft fastening members 101A and 101B are joined as described above, the leaf spring intermediate member 102 and each of the shaft fastening members 101A and 101B are connected to each other. Is strengthened, the torsional rigidity in the rotational direction is strengthened, and it is possible to sufficiently withstand the load due to rotational force.
[0089]
Therefore, also in the sixth embodiment, it is possible to realize stable torque transmission by high torsional rigidity while smoothly absorbing the axial misalignment between the two connected shafts J1 and J2.
[0090]
<Embodiment 7 (corresponding to claim 9)>
FIG. 13 shows a configuration of a shaft coupling according to Embodiment 7 of the present invention. The shaft coupling of the seventh embodiment has substantially the same configuration as that of the sixth embodiment, but differs in that the following configuration is provided.
[0091]
That is, in this shaft coupling, the pin hole 124 provided in the first extension piece 122A and the second extension piece 122B is a tapered burring hole 124T, and the mounting portion 113 has the tapered burring hole 124T (corresponding to the pin hole 124). The tapered burring hole 124T and the pin insertion hole 118 are screwed with a countersunk screw P1, and the extension pieces 122A and 122B are attached to the shaft fastening bodies 101A and 101B. 113. In this embodiment, the protrusion 126 of the extension pieces 122A and 122B and the recess 106 of the attachment 113 in the sixth embodiment are not provided.
[0092]
Thus, also in the seventh embodiment, the leaf spring intermediate body 102 and the shaft fastening bodies 101A and 101B are tapered as described above (tapered burring hole 124T, tapered T of pin insertion hole 118, countersunk screw P1). , The connection between the leaf spring intermediate body 102 and each of the shaft fastening members 101A and 101B becomes strong, and the torsional rigidity in the rotational direction is strengthened, so that it is possible to sufficiently withstand the load due to the rotational force. In addition, the above-described tapered joint configuration is such that the countersunk screw P1 is tightened so that the tapered portion of the tapered burring hole 124T in the leaf spring intermediate body 102 receives repulsive stress by being pressed from the tapered shape T of the pin insertion hole 118. This is advantageous in that the screw P1 can be prevented from loosening.
[0093]
Therefore, also in the seventh embodiment, it is possible to realize stable torque transmission by high torsional rigidity while smoothly absorbing the axis misalignment between the two connected shafts J1 and J2.
[0094]
<Embodiment 8 (corresponding to claim 10)>
FIG. 14 shows a configuration of a shaft coupling according to Embodiment 8 of the present invention. The shaft coupling of the eighth embodiment has substantially the same configuration as that of the sixth embodiment, but differs in that it has the following configuration.
[0095]
That is, in this shaft coupling, a contact plate 130 provided with a pin holding hole 131 is disposed on the upper surface of the first extension piece 122A and the second extension piece 122B, and the pin holding hole 131 and the extension piece 122A of the contact plate 130 are arranged. , 122B and the pin insertion hole 118 of the mounting portion 113 are screwed with countersunk screws P1, and the extension pieces 122A, 122B are joined to the mounting portion 113 of the shaft fastening bodies 101A, 101B. In this embodiment, the protrusion 126 of the extension pieces 122A and 122B and the recess 106 of the attachment 113 in the sixth embodiment are not provided.
[0096]
As described above, also in the eighth embodiment, since the leaf spring intermediate body 102 and the shaft fastening bodies 101A and 101B have the joint configuration in which the countersunk screw 130 is interposed and the countersunk screw P1 is screwed into the leaf spring intermediate body 102. The joint between the spring intermediate body 102 and each of the shaft fastening bodies 101A and 101B is strengthened, and the torsional rigidity in the rotational direction is enhanced, so that the spring intermediate body 102 can sufficiently withstand the load due to the rotational force.
[0097]
Therefore, also in the eighth embodiment, it is possible to realize stable torque transmission by high torsional rigidity while smoothly absorbing the axial misalignment between the two connected shafts J1 and J2.
[0098]
<Others>
It should be noted that the present invention is not limited to the first to eighth embodiments.
For example, the shaft fastening bodies 1 and 101 are of a wedge type using the side ring 3 (Embodiments 1 to 4) as a fastening method of the shafts J1 and J2, and a C-shaped shaft provided with a slot groove 111. In addition to the type in which the fastening body 101 is fastened (Embodiments 5 to 8), various known shaft fastening methods may be employed.
[0099]
Further, the shape of the shaft fastening members 1 and 101 may be various shapes such as reducing the moment of inertia by cutting the outer peripheral edge of the outer surface into a tapered shape.
[0100]
On the other hand, in the inventions according to the first to sixth aspects, the flexible member 7 having the bent portion 70 includes the flexible member 7 shown in FIGS. 1 (first embodiment), 5 (second embodiment), and 6 (third embodiment). ), The shape is not limited to the shape shown in FIG. 8 (Embodiment 4), and various shapes having a curved portion exhibiting flexibility may be adopted.
[0101]
【The invention's effect】
As described above, according to the present invention, the torsional rigidity with respect to the rotational force is strengthened, so that it can sufficiently withstand a large load due to the rotational force, and therefore, smoothly absorbs the axial misalignment between the two connected shafts, In addition, stable torque transmission can be realized by high torsional rigidity. In particular, torque can be transmitted stably even during high-speed rotation of the shaft.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view illustrating a structure of a shaft coupling according to a first embodiment of the present invention.
FIG. 2 is a side view of the shaft coupling as viewed from an axial direction.
FIG. 3 is a perspective view showing an annular plate spring constituting a flexible member.
FIG. 4 is an enlarged cross-sectional view showing a swaged joint between the intermediate body and the ring body.
FIG. 5 is a partial cross-sectional view showing a structure of a shaft coupling according to a second embodiment of the present invention.
FIG. 6 is a partial sectional view showing a structure of a shaft coupling according to a third embodiment of the present invention.
FIG. 7 is an exploded perspective view showing each component of a shaft coupling according to a third embodiment.
FIG. 8 is a partial sectional view showing a structure of a shaft coupling according to a fourth embodiment of the present invention.
FIG. 9 is a partial sectional view showing a structure of a shaft coupling according to a fifth embodiment of the present invention.
FIG. 10 is a perspective view showing an intermediate body of a shaft coupling according to a fifth embodiment.
FIG. 11 is a partial cross-sectional view showing a structure of a shaft coupling according to a sixth embodiment of the present invention.
FIG. 12 is a perspective view showing an intermediate body of a shaft coupling according to a sixth embodiment.
FIG. 13 is an enlarged sectional view showing a configuration of a shaft coupling according to a seventh embodiment of the present invention.
FIG. 14 is an enlarged sectional view showing a configuration of a shaft coupling according to an eighth embodiment of the present invention.
FIG. 15 is a partial sectional view showing the structure of a conventional shaft coupling.
FIG. 16 is a partial sectional view showing the structure of another conventional shaft coupling.
FIG. 17 is a partial sectional view showing the structure of still another conventional shaft coupling.
[Explanation of symbols]
1a, 1b, 101A, 101B Shaft fastening body
2 Intermediate
6 Tube member
7 Flexible member
52 Convex piece of ring
61 Opening of cylindrical member
62 Convex piece of cylindrical member
70 songs
71 Leaf spring ring
73 Large cylinder
74 small cylinder
75 Aperture part (curved part)
102 Leaf spring intermediate
106 recess
113 Mounting part
115 Side wall
116 Standing wall
118 Pin insertion hole
121 plate-shaped part
122A first extension piece
122B 2nd extension piece
124 pin hole
124T Taper burring hole (pin hole)
126 convex
131 Pin holding hole
130 Patch plate
711 Outer circumference of leaf spring ring
712 Inner perimeter of leaf spring ring
713 Notch
b1, b2 countersunk screw
J1, J2 axis
M welding
P pin
P1 countersunk screw
R1, R2 ring

Claims (10)

二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、剛性を有した筒部材を中央に配置し、この筒部材の両開口部にそれぞれ曲部を有する可撓性部材を接合する構成としたことを特徴とする軸継手。
A shaft provided with a shaft fastening body for connecting two shafts on both sides, and a flexible intermediate body provided between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In fittings,
A shaft joint characterized in that the intermediate body has a configuration in which a rigid cylindrical member is arranged at the center, and flexible members each having a curved portion are joined to both openings of the cylindrical member.
請求項1に記載の軸継手において、
上記可撓性部材は、二枚以上の板バネ環状体をその平面同士を対向させて互いの外周部または内周部を接合し、その板バネ環状体の平面を軸線との交差方向に配置して上記曲部を形成する構成としたことを特徴とする軸継手。
The shaft coupling according to claim 1,
The flexible member is formed by joining two or more leaf spring annular bodies with their planes facing each other to join the outer peripheral part or the inner peripheral part, and disposing the planes of the leaf spring annular bodies in a direction intersecting with the axis. A shaft joint, wherein the curved portion is formed.
請求項2に記載の軸継手において、
上記板バネ環状体と上記筒部材との間または上記板バネ環状体と上記軸締結体との間をカシメ接合構造とし、
上記カシメ接合構造は、上記板バネ環状体の周縁に多数の切欠を設け、該切欠を設けた周縁に上記筒部材または上記軸締結体における凸片を抱き込ませると共に上記切欠内に上記凸部の肉厚を食い込ませるようにしたことを特徴とする軸継手。
The shaft coupling according to claim 2,
A caulking connection structure between the leaf spring annular body and the cylindrical member or between the leaf spring annular body and the shaft fastening body,
The caulking joint structure is provided with a number of notches on the peripheral edge of the leaf spring annular body, and embraces the convex piece of the cylindrical member or the shaft fastening body on the peripheral edge where the notch is provided, and includes the convex portion in the notch. A shaft coupling characterized by being made to penetrate the wall thickness of the shaft.
請求項1に記載の軸継手において、
上記可撓性部材は、上記筒部材よりも薄肉であって途中に上記曲部となる絞り部を設ける筒体で構成したことを特徴とする軸継手。
The shaft coupling according to claim 1,
The shaft coupling, wherein the flexible member is formed of a cylindrical body having a thickness smaller than that of the cylindrical member and provided with a throttle portion serving as the curved part in the middle.
請求項4に記載の軸継手において、
上記筒体と上記筒部材との接合または上記筒体と上記軸締結体との接合を、リングを嵌め込ませると共にネジ止めする接合構造としたことを特徴とする軸継手。
The shaft coupling according to claim 4,
A shaft joint, characterized in that the joint between the cylinder and the cylinder member or the joint between the cylinder and the shaft fastening body has a joint structure in which a ring is fitted and screwed.
請求項4に記載の軸継手において、
上記筒体と上記筒部材との接合または上記筒体と上記軸締結体との接合を、リングを嵌め込ませて圧接する接合構造としたことを特徴とする軸継手。
The shaft coupling according to claim 4,
A shaft joint, wherein a joining structure of joining the cylinder and the tubular member or joining the cylinder and the shaft fastening body is such that a ring is fitted and pressure-contacted.
二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片は、その先端部全域を上記立壁部に溶接にて接合する構成としたことを特徴とする軸継手。
A shaft provided with a shaft fastening body for connecting two shafts on both sides, and a flexible intermediate body provided between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In fittings,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
A shaft coupling, wherein the first extension piece and the second extension piece are configured so that the entire distal end portion thereof is joined to the upright wall portion by welding.
二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にピン孔と凸部を設けると共に上記取付部に上記ピン孔に対応するピン挿入孔と上記凸部に対応する凹部を設け、上記ピン孔と上記ピン挿入孔とにピン部材を圧入させると共に上記凹部に上記凸部を圧入させて接合する構成としたことを特徴とする軸継手。
A shaft provided with a shaft fastening body for connecting two shafts on both sides, and a flexible intermediate body provided between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In fittings,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
The first extension piece and the second extension piece are provided with a pin hole and a protrusion, and the mounting portion is provided with a pin insertion hole corresponding to the pin hole and a recess corresponding to the protrusion. A shaft coupling characterized in that a pin member is press-fitted into an insertion hole and the convex portion is press-fitted into the concave portion and joined.
二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にテーパバーリング孔を設けると共に上記取付部に上記テーパバーリング孔に対応するピン挿入孔を設け、上記テーパバーリング孔と上記ピン挿入孔とに皿ビスを取り付けて接合する構成としたことを特徴とする軸継手。
A shaft provided with a shaft fastening body for connecting two shafts on both sides, and a flexible intermediate body provided between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In fittings,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
A tapered burring hole is provided in the first extension piece and the second extension piece, a pin insertion hole corresponding to the tapered burring hole is provided in the mounting portion, and a countersunk screw is attached to the tapered burring hole and the pin insertion hole. A shaft coupling characterized in that the shaft joint is configured to be joined.
二つの軸を接続するための軸締結体を両側に備え、これら軸締結体間には接続する二軸の軸線に対する軸芯ずれを吸収させるための可撓性を有した中間体を設けた軸継手において、
上記中間体は、板バネからなるものであって、軸線に略直角な平面となる板状部と、上記板状部の周縁の対称位置から一方の軸締結体側に延びる一対の第1延長片と、上記軸線を中心に上記一対の第1延長片に対して上記板状部の周方向に略90度ずれた周縁の他の対称位置から他方の軸締結体側に延びる一対の第2延長片とを備え、
上記各軸締結体は、各々の外周部において、上記第1延長片または上記第2延長片を配置する取付部と、上記取付部に配置した第1延長片または第2延長片の両側辺部に対向する側壁部と、上記取付部に配置した第1延長片または第2延長片の先端部に対向する立壁部とを備え、
上記第1延長片および上記第2延長片にピン孔を設けると共に上記取付部に上記ピン孔に対応するピン挿入孔を設け、上記第1延長片および上記第2延長片の上面にピン保持孔を設けた当て板を配置させて上記ピン保持孔と上記ピン孔と上記ピン挿入孔とに皿ビスを取り付けて接合する構成としたことを特徴とする軸継手。
A shaft provided with a shaft fastening body for connecting two shafts on both sides, and a flexible intermediate body provided between these shaft fastening bodies for absorbing an axial misalignment with respect to the axis of the two shafts to be connected. In fittings,
The intermediate body is made of a leaf spring, and has a plate-like portion that is a plane substantially perpendicular to the axis, and a pair of first extension pieces extending from the symmetric position of the periphery of the plate-like portion to one of the shaft fastening bodies. A pair of second extension pieces extending from the other symmetrical position of the peripheral edge, which is displaced by about 90 degrees in the circumferential direction of the plate-like portion with respect to the pair of first extension pieces about the axis, toward the other shaft fastening body. With
In each of the shaft fastening members, at each outer peripheral portion, a mounting portion on which the first extension piece or the second extension piece is disposed, and both side portions of the first extension piece or the second extension piece disposed on the mounting portion And a standing wall facing the tip of the first extension piece or the second extension piece disposed on the mounting portion,
A pin hole is provided in the first extension piece and the second extension piece, and a pin insertion hole corresponding to the pin hole is provided in the mounting portion, and a pin holding hole is provided in an upper surface of the first extension piece and the second extension piece. A shaft coupling characterized in that a contact plate provided with is provided, and a countersunk screw is attached to and joined to the pin holding hole, the pin hole, and the pin insertion hole.
JP2003106750A 2003-04-10 2003-04-10 Shaft coupling Pending JP2004308882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106750A JP2004308882A (en) 2003-04-10 2003-04-10 Shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106750A JP2004308882A (en) 2003-04-10 2003-04-10 Shaft coupling

Publications (1)

Publication Number Publication Date
JP2004308882A true JP2004308882A (en) 2004-11-04

Family

ID=33468844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106750A Pending JP2004308882A (en) 2003-04-10 2003-04-10 Shaft coupling

Country Status (1)

Country Link
JP (1) JP2004308882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919533B1 (en) 2016-12-23 2018-11-16 주식회사 포스코 Apparatus for jointing shaft of decelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919533B1 (en) 2016-12-23 2018-11-16 주식회사 포스코 Apparatus for jointing shaft of decelerator

Similar Documents

Publication Publication Date Title
US5836821A (en) Elastic coupling for steering apparatus
JP3554828B2 (en) Shaft coupling
KR100681082B1 (en) Flexible shaft coupling
US5916026A (en) Elastic universal joint
JP3646556B2 (en) Elastic shaft coupling
JP5092913B2 (en) Universal joint yoke and universal joint
WO2020153408A1 (en) Torque transmission shaft
KR101726979B1 (en) Joint yoke for a universal joint and universal joint
JP2004308882A (en) Shaft coupling
JP2009281487A (en) Connection structure of crankshaft and rotary member
JP2002061665A (en) Power transmission shaft for vehicle
WO2021177281A1 (en) Connection structure for propeller shaft and propeller shaft having same
WO2017033571A1 (en) Power transmission device
JP4880328B2 (en) Shaft coupling
JP2009191973A (en) Yoke for universal coupling, and universal coupling
JP5093284B2 (en) Cross shaft type universal joint
JP2007046713A (en) Fixed constant velocity universal joint
JP2000249159A (en) Flexible shaft coupling
WO2016199807A1 (en) Yoke for universal joints
JPH10141385A (en) Shaft fastening structure of shaft coupling
JP2006084005A (en) Fixed type constant velocity universal joint
JP3389721B2 (en) Elastic universal joint
JPH10148215A (en) Connecting part between shaft and yoke of universal joint
JP2004162738A (en) Universal joint
JP2005226812A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02