JP2004308786A - Vibration/noise reducing method using piezoelectric element - Google Patents

Vibration/noise reducing method using piezoelectric element Download PDF

Info

Publication number
JP2004308786A
JP2004308786A JP2003103067A JP2003103067A JP2004308786A JP 2004308786 A JP2004308786 A JP 2004308786A JP 2003103067 A JP2003103067 A JP 2003103067A JP 2003103067 A JP2003103067 A JP 2003103067A JP 2004308786 A JP2004308786 A JP 2004308786A
Authority
JP
Japan
Prior art keywords
piezoelectric element
vibration
pair
ribs
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003103067A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujito
宏 藤戸
Makoto Funahashi
眞 舟橋
Akira Matsumoto
亮 松本
Katsunobu Mitsune
勝信 三根
Yoshinori Hayashi
好規 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003103067A priority Critical patent/JP2004308786A/en
Publication of JP2004308786A publication Critical patent/JP2004308786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the vibration reduction effect by efficiently exercising the vibration attenuating effect of each piezoelectric element, and to reduce the number of components of the piezoelectric element and a circuit or a device attached thereto, in a method of reducing the vibration/noise of a machine by using the piezoelectric element. <P>SOLUTION: In this method of reducing the vibration of a member by converting the mechanical vibration energy on a surface of the member into the electric energy by the piezoelectric element by attaching at least one piezoelectric element to the surface of the member 10 of the machine, the surface of the member has various flexural rigidities, and the piezoelectric element is attached to a part of lower flexural rigidity on the surface of the member. The difference in flexural rigidity on the surface of the member is achieved by forming a groove 12 or a rib on the member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子を用いた自動車のトランスミッション等の機械又は装置、その他の機械又は装置の振動・騒音を低減する方法に係る。
【0002】
【従来の技術】
自動車等の機械の動力装置(エンジンやモータなど)、その動力伝達装置(トランスミッションなど)又はその他の装置・機械に於いて、機械的な振動が発生する部材、振動が伝達される経路に在る部材又はその他の部材に圧電(或いはピエゾ)素子を貼り付け、その圧電効果によって振動エネルギーを吸収することにより又は部材の振動変形を相殺することにより、振動・雑音を低減し、或いは、振動・雑音の伝播を抑える方法又は装置が知られている(例えば、下記の特許文献1−4参照。)。
【0003】
そのような圧電素子を用いた振動・雑音低減方法又は装置(或いは、制振装置、制振ユニットなどと呼ばれる場合もある。)の一つ(特許文献1及び2)においては、振動する部材に貼り付けられた(又は取り付けられた)圧電素子へ、部材の振動と逆位相の電圧を与えることにより、圧電素子を変形させ、その変形力により、部材の変形を相殺し、部材の力学的な振動が抑えられるよう構成されている(アクティブ制振方式)。このアクティブ制振方式が、例えば、自動車のトランスミッションに適用される場合には、自動車の車速、タイヤ及びシャフトの回転数及びギヤの歯数などから、トランスミッションで発生する振動の周波数及び位相をモニターすることができるので、モニターされた部材の振動と逆位相で圧電素子が変形歪みを起こすように、圧電素子に印加される電圧の位相及び周波数が制御される。
【0004】
圧電素子を用いた振動・雑音低減方法又は装置の別のもの(特許文献3及び4)においては、振動する部材に貼り付けられた圧電素子は、一対の電極を介して電気抵抗、コイル及びコンデンサを含む電気回路に接続される(パッシブ制振方式)。この場合には、圧電素子が部材の振動に伴なって変形歪みを起こすと、圧電素子に接続された電極間に電位差が発生し、この電位差によって、回路内に電流が流れるよう構成されている。回路中には抵抗が含まれているので、その抵抗に電流が流れることにより、熱が発生する。即ち、部材の振動エネルギーが、圧電素子において電気エネルギーに変換され、しかる後に、回路の抵抗において電気エネルギーが熱エネルギーに変換されて外気に散逸されることにより、部材の振動・雑音が低減されるようになっている。また、パッシブ制振方式において、回路に適当なコイル及びコンデンサを組みこむことにより、部材の振動変形を抑える方向に圧電素子が変形力を発生するよう構成することもできる。
【0005】
上記のアクティブ制振方式は、圧電素子へ外部電源による変形力が与えられるので、抑制されるべき部材の振動変形の程度に応じて印加電圧を増減することにより、振動低減効果を高くすることができる反面、部材の振動をモニターするため及び圧電素子への印加電圧の制御のためのシステム構成が複雑でコスト及び質量が増大し、また、電圧の周波数及び位相の制御に高い精度が要求される(振動の位相がずれると、部材の振幅が増大することも有り得る。)。他方、パッシブ制振方式は、そこに用いられる回路は、比較的簡単なものであり、コストアップ、質量の増大は少なく、また、アクティブ制振方式の如き複雑で且精密な制御が必要ない点で有利であるが、振動減衰効果は、アクティブ制振方式に比べると、劣るものである。
【特許文献1】
特開平5−133435号公報
【特許文献2】
実開平6−32787号公報
【特許文献3】
特開平10−309951号公報
【特許文献4】
特開2000−357824号公報
【0006】
【発明が解決しようとする課題】
上記の如き圧電素子を用いた振動・雑音低減方法又は装置においては、十分な振動減衰効果を得るべく、振動を低減されるべき部材に対して多数の圧電素子が貼り付けられている。特許文献1乃至3の図面にも示されている如く、圧電素子は、プロペラ又はドライブシャフト、トランスミッションケース、自動車のルーフなど、様々な形状の部材に適用されるところ、部材の振動が二次元又は三次元構造を伝播する場合、シャフトなどの棒状部材の場合に比して、振動のモード又は向きの数が著しく増大する。その場合、部材に貼りつける圧電素子の数を増やせば、部材に発生した振動・雑音の低減効果は確保されるが、圧電素子を、発生する振動モードに対し、ランダムな向き及び位置に貼りつけると、その向き及び位置によっては、振動減衰効果が非常に小さくなってしまうことがあり、そのような減衰効果の小さい圧電素子は無駄になってしまう。また、圧電素子自体、比較的高価な素子である上に、圧電素子の数が増えるとともに、圧電素子に接続される回路数又は制御装置数が増大し、コストアップ・質量の増大といった事態をまねいてしまう。
【0007】
ところで、パッシブ制振方式において、圧電素子が部材の振動エネルギーを吸収する機構は、既に述べた如く、圧電素子に部材の振動変形に伴なって歪みが発生し、力学的な(運動)エネルギーが電気エネルギーに変換されることによるものである。即ち、圧電素子の歪みが大きければ大きいほど、吸収される振動エネルギーが多くなる。部材に貼りつけられた各々の圧電素子は、部材の変形に伴って変形するのであるから、或る量の振動エネルギーに於いて、振動する部材の振幅が大きいほど、或いは、部材の歪みが大きいほど、個々の圧電素子に吸収される振動エネルギーも増大し(即ち、圧電変換効率が増大し)、その振動吸収能を向上することができる。
【0008】
振幅の大きな低次の振動モードは、部材の曲げ剛性の低い部位に又は曲げ剛性の低い方向(曲がり易い方向)に発現しやすく、或るの振動波についてみれば、振幅の腹の部分が最も歪み(変形量)が大きくなる。また、一般に、平板状部材の曲げ剛性は、その部材における長い辺に沿う方向(長軸方向)が、それよりも短い辺に沿う方向(短軸方向)よりも低く、大きな振幅が発現しやすい。しかしながら、実際の機械又は装置に於ける平面状若しくは立体状の部材は、種々の形状を有し、必ずしも、直観的に、剛性の低い方向又は振幅の腹が生ずる部位を特定できるとは限らない。
【0009】
かくして、パッシブ制振方式において、平面状又は立体状部材の剛性分布を考慮して振動振幅又は振動変形の大きい部位にて、或いは、振動振幅の大きい振動モードに対して最も効率的に圧電素子に歪みが発生するように、圧電素子を貼り付ける位置及び方向を特定することができれば、個々の圧電素子に於ける圧電変換効率が増大され(各圧電素子が有する振動減衰能を有効に引き出すことができ)、従って、振動減衰効果の効率が向上される。そして、これにより、従来必要であった圧電素子数及び付随する回路又は制御装置数を低減することが可能となる。
【0010】
従って、本発明の解決しようとする一つの課題は、機械又は装置の部材、特に、平面状又は立体状の部材における機械的な振動・雑音を、圧電素子を用いて、低減する方法又は装置において、個々の圧電素子の振動減衰効果を増大する圧電素子を貼り付ける新規な方法を提供することである。
【0011】
本発明のもう一つの課題は、上記の如き方法であって、部材の剛性を考慮して大きな振動が発生する部位に圧電素子を貼り付け、振動エネルギーを効率的に吸収する方法を提供することである。
【0012】
本発明のもう一つの課題は、上記の如き方法であって、部材の振動変形が、効率良く圧電素子内の歪みに変換されるようにする方法を提供することである。
【0013】
本発明の更にもう一つの課題は、上記の如き方法であって、個々の圧電素子の振動低減効果を増大することにより、機械の振動低減のために用いられる圧電素子数及びそれらに付随する回路又は装置数を低減し、機械の製造又は維持費用を低減し、又は、質量を低減することのできる方法を提供することである。
【0014】
本発明の更にもう一つの課題は、上記の如き方法であって、パッシブ制振方式に於ける振動・雑音低減効果を増大することのできる圧電素子を振動する部材に貼り付ける方法を提供することである。
【0015】
【課題を解決するための手段】
上記の課題は、機械の部材の面上に少なくとも一つの圧電素子を貼り付けて前記部材の面上の振動エネルギー(機械的エネルギー)を前記圧電素子により電気的エネルギーに変換することにより前記部材の振動を低減する方法であって、前記部材の面上の曲げ剛性に差を設ける過程と、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程とを含むことを特徴とする方法により達成される。
【0016】
或る量の振動エネルギーの振動が、例えば、自動車のトランスミッションに於けるギヤの噛合い部分などの振動源にて発生し、次いで、機械の部材、例えば、トランスミッションケースに伝播したとすると、振動エネルギーは、その部材の面上において剛性(特に曲げ剛性)が低い部位又は低い方向において大きな振幅の振動波として通過し、更にその部材に接続された別の部材、例えば、自動車のシャーシへと更に伝播してゆくこととなる。振動波が伝播していく過程で、その振動の周波数と、部材の固有振動周波数とが重なると、部材は共振するところ、曲げ剛性の低い部位において振幅の腹若しくは大きな歪みが生ずる。しかしながら、既に述べた如く、部材の形状が一方向に長い長方形若しくは楕円形などの場合を除き、一般的には、何れの方向の曲げ剛性が低く、低次の振動モードの振幅が発現し易いか、或いは、どの部位に振幅の腹が生ずるかを知ることは、容易ではない。
【0017】
上記の本発明の構成によれば、振動が抑えられるべき機械の部材の面上に曲げ剛性の差を積極的に設け、これにより、振幅の大きい振動波の伝播経路を定め、圧電素子は、かかる振幅の大きい伝播経路、即ち、部材の面上の曲げ剛性の低い部位に貼り付けられる。既に述べた如く、圧電素子は受ける歪みが大きいほど振動低減効果が大きいので、振動源から伝播してきた振動エネルギーは、その振幅が大きくなるところで、圧電素子により、効率良く振動を吸収され、かくして、振動エネルギーが更に別の部材に伝播することを抑制することとなる。換言すれば、本発明の構成によれば、個々の圧電素子は、各々の振動低減能が有効に発揮されるよう部材上に貼り付けられ、これにより、振動波が更に伝播して振動・雑音となることが回避されるのである。
【0018】
上記の本発明の一つの局面において、部材の面上に溝を形成し、その溝を跨いで圧電素子を貼り付けるようにされてよい。この場合、部材の面上に溝が形成されることにより、部材は、溝の近傍において、その溝に垂直な方向曲がり易くなり、これにより、振幅の大きくなる振動モードの伝播経路、即ち、部材の曲がり易い方向と位置が決定される。更に、この局面の構成においては、溝が形成された部位は、曲げ剛性自体が低減するので、そこでの振幅、即ち、歪みは、溝がない場合よりも大きくなる。従って、より効率的に振動エネルギーが電気エネルギーに変換され、圧電素子による振動吸収効果を増大することができる。
【0019】
また、この局面において、圧電素子として少なくとも一対のリブを有するものを用い、部材の面上に前記一対のリブの各々の壁面に密に係合する少なくとも一対の溝を形成し、圧電素子の前記リブが前記一対の溝に嵌合した状態にて前記圧電素子を前記部材の面上に貼り付けるようになっていてよい。
【0020】
圧電素子にリブが設けられることにより、圧電素子の変形しやすい方向がリブと垂直な方向に決定される。そして、圧電素子のリブが部材の溝に嵌合させられることにより、圧電素子の変形しやすい方向と部材の曲がり易い方向とが一致するので、圧電素子の、部材の変形に対する応答がよくなり(部材の変形に対する圧電素子の変形歪みの追従性がよくなる。)、振動吸収効率が増大する。また、通常の態様では、圧電素子は、樹脂などの接着剤を介して、部材面上に貼り付けられるところ、圧電素子のリブと部材の溝とが直接に係合することにより、部材の変形が直接に圧電素子に伝わることになるので、部材から圧電素子への歪みの伝達効率が高くなる(樹脂を介すると樹脂部分が変形歪みを生ずる分、圧電素子に伝達される変形歪み量が小さくなる。)。従って、部材の変形が圧電素子に伝わり易くなることで、圧電素子の振動吸収効果が一層増大する。
【0021】
本発明の別の局面においては、部材の面上に少なくとも一対のリブを設け、リブの対の間に圧電素子を貼り付けるようにしてよい。この場合、一対のリブが設けられた部位及びリブに平行な方向の曲げ剛性が増大し、リブの間の領域が、リブと垂直な方向に、相対的に曲がり易くなるので、振幅が大きくなる振動の伝播経路が一対のリブと垂直な方向に定まると伴に、歪みの大きくなる部位が、一対のリブの間に定まる(振動変位量の大きい位置が定まる)。かくして、リブの間に圧電素子を貼り付けることにより、圧電素子により、振動エネルギーを効率的に吸収できるようになる。
【0022】
本発明の別の局面において、圧電素子として少なくとも一対の溝を有するものを用い、部材の面上に圧電素子の一対の溝の各々の壁面に密に係合する少なくとも一対のリブを設け、圧電素子の溝にリブが嵌合するよう部材の面上に圧電素子を貼り付けるようにされてよい。この場合、圧電素子において変形し易い方向が一対の溝に垂直な方向に決定され、かかる溝が部材上のリブに嵌合することにより、圧電素子と部材上での低次の振動モードの発現する方向が一致し、部材の変形に対する圧電素子の変形の追従性がよくなって、振動吸収効率が増大する。また、圧電素子のリブと部材の溝とが直接に係合することにより、部材の変形が効率的に圧電素子に伝えられるようになり、部材の変形が圧電素子に伝わり易くなるので、圧電素子の振動吸収効果が一層増大する。
【0023】
上記の本発明の種々の局面のいずれにおいても、圧電素子が長軸方向と短軸方向を有する場合には、長軸方向が前記部材の面の曲げ剛性の低い方向に実質的に沿うように圧電素子が貼り付けられるようにするのが好ましい。
【0024】
振動が低減されるべき部材が、例えば、長方形又は楕円形など、一方向に長いものは、その長い方向、即ち長軸方向の曲げ剛性が低く湾曲しやすい。そのような部材の形状から湾曲しやすい方向が分かるものを含め、部材の面の曲げ弾性の低い方向に圧電素子の長軸方向を一致させることにより、圧電素子に発生する応力を大きくすることができ、従って、電気エネルギーに変換される振動エネルギー量が大きくなり(エネルギーの変換効率が良くなる。)、個々の圧電素子の振動吸収の効率が良くなる。
【0025】
本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。
【0026】
【発明の実施の形態】
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。
【0027】
図1は、振動が低減されるべき機械の部材、例えば、自動車のトランスミッションカバーの面10上に本発明の一つの局面における方法により、板状の圧電素子Pを貼り付けた状態を模式的に示している(図1(A)は、圧電素子を貼り付けた部位の模式的な上面図であり、図1(B)は、模式的な斜視図である。)。本発明の方法においては、まず、部材10の面上に圧着素子Pが貼り付けられるのに先だって、部材10の表面に、溝12が形成される。その後、溝12を跨ぐ態様にて、部材10の面上に、圧電素子Pが、接着剤等の当業者にとって任意の方法により貼り付けられる。部材10への圧電素子の貼り付けは、任意の方法、例えば、エポキシ樹脂系の接着剤によってなされてよい。
【0028】
圧電素子Pは、図示していないが、その表面及び裏面が導電性材料により覆われており、かかる導電性材料が電極を構成する。図1の実施形態における振動を低減する方法は、いわゆるパッシブ制振方式であり、従って、圧電素子の表面と裏面の電極は、各々、当業者にとって周知の、抵抗、コンデンサ又はコイルを含む電気回路に接続されていてよい。本発明においては、圧電素子によって部材10の振動エネルギーを電気エネルギーとして吸収する態様により、機械の部材から振動を除去するよう構成されているので、電気回路においては、一旦吸収された振動エネルギーが、再び、圧電素子を介して機械の部材に逆流することのないようにすることが好ましい。したがって、圧電素子に接続される電気回路は、そのような目的に適合するものであることが好ましい。
【0029】
溝12が形成されることにより、部材10は、図示の如く、溝12に垂直な方向に湾曲されやすくなる、即ち、溝12に垂直な方向に曲げ剛性が低減され、部材10に振動が与えられると、図示の如き、溝12を振幅の腹として、溝12に垂直な方向に低次の振動モードの振動変形が発現されやすくなる。しかも、部材の厚みが溝12において薄くなっていることにより、溝のない部位よりも剛性が低くなっているため、変位量が大きくなる(振幅の腹は、概ね、溝又は溝の近傍に生ずる)。従って、溝12を跨ぐように圧電素子Pを貼り付けると、圧電素子の変形量、即ち、歪み量を最も大きくすることができ、圧電素子のエネルギー変換効率は、最大限に引上げられることとなるのである。
【0030】
図1の実施形態において、後に図5に関連して説明する如く、圧電素子Pは、その長い辺に沿う方向、即ち、長軸方向が溝に対して垂直に、即ち、曲げ剛性の低い方向に一致するよう貼り付けられていることが好ましい。
【0031】
かくして、図1の実施形態においては、圧電素子の貼り付けられる部材において、敢えて、振幅が増大されるよう構成することにより、振動エネルギーが効率良く吸収されるようになり、振動波が更に別の部材へ伝播していくことが抑制することができるようになる。
【0032】
図2(A)は、本発明の別の実施形態を示しており、この実施形態においては、図2(B)に示す如く、圧電素子Pに一対のリブ18a、18bを形成したものを用い、部材10には、一対の溝12a、12bを形成し、圧電素子Pを部材10に貼り付ける際に、リブ18a、bと溝12a、bとを嵌合させる。その際、各々対応するリブと溝との壁面は、図2(A)に示されている如く、密に直接に係合するよう構成する。その他の構成については、図1の実施形態と同様であってよい。
【0033】
図2の実施形態においても、図1の場合と同様に、部材10には、溝12a、bに垂直な方向の曲げ剛性が低減するので、溝に垂直な方向に湾曲する変形が生ずる。そして、更に、ここでは、圧電素子Pにリブが設けられていることにより、圧電素子の歪みは、一対のリブの中間を振幅の腹としてリブに垂直な方向に発現することとなる。既に述べた如く、圧電素子Pと部材10との振動変形し易い方向が一致することにより、部材の変形に対する圧電素子の変形の追従性が向上され、部材の変形に対する圧電素子の応答が向上される。また、圧電素子Pの一部、即ち、リブ18a、bと、部材10とが直接的に係合していることによっても、部材の変形に対する圧電素子の応答性が向上されることとなる。
【0034】
また、圧電素子のリブ18a、bとにより、部材10の溝の間の部位を挾持することにより、部材の変形時に接着剤19にかかる剪断力を低減することができ、接着剤の耐久性を向上することができる(剥がれにくくできる。)
【0035】
図3には、本発明の更に別の実施形態が示されている。同図の実施形態においては、部材10に一対のリブ20a、bを設け、そのリブの中間に圧電素子Pを貼り付ける。図示の如く、部材10にリブを設けると、リブ20a、bの部分は、剛性が大きくなるため、部材10に振動が伝播してきた際、振幅の節となり、リブの中間が腹となる。かくして、リブの中間に圧電素子Pを貼付することにより、圧電素子Pの変形量を大きくすることができ、該圧電素子Pの振動減衰効果を最大限に引き出すことが可能となる。本実施形態のその他の構成は、図1に例示の形態と同様であってよい。なお、圧電素子が長方形の板状である場合には、図1と同様に、素子は、その長軸方向がリブの延在する方向に垂直になるよう貼り付けられることが好ましい。
【0036】
図4(A)は、本発明の更に別の実施形態を示しており、この実施形態においては、図4(B)に示す如く、圧電素子Pとして一対の溝22a、bが形成されているものを用い、部材10には、圧電素子Pの溝に嵌合するリブ24a、bを形成する。この場合、部材10は、図3の場合と同様の振動変形が発現され、他方、圧電素子Pは、その溝に垂直な方向に変形し易くなる。かくして、リブ24a、bと、溝22a、bとが嵌合されることにより、圧電素子Pの変形し易い方向は、部材10の曲がり易い方向と一致し、図2の実施形態と同様に、部材10の変形に対する圧電素子Pの変形の追従性が向上される。また、図2の場合と同様に、図4(A)に示す如く、リブと溝とが直接に密に係合し、リブにより、圧電素子を保持するよう構成することにより、接着剤19の耐久性が向上する。その他の構成は、図1に例示の実施形態と同様であってよい。
【0037】
図5(A)には、部材10の形状が、長方形若しくは楕円形などの一方向に長い場合、その他の直観的に曲げ剛性の低い方向が予測される場合において、圧電素子Pを貼り付ける方法を例示したものである。このような場合、同図に示されている如く、部材の長い辺に沿う方向、即ち、長軸方向(若しくは曲げ剛性の低い方向)と、圧電素子の長軸方向とが、一致するよう、圧電素子を貼り付けることが好ましい。その理由は、その第一には、圧電素子の歪みによる電気分極が剪断歪みの寄与を大きく受ける場合には、円弧状に湾曲した板状部材の剪断歪みは、周方向(湾曲方向)の両端に近づくほど大きくなり、従って、湾曲した部分の長さがその円弧状の方向に長いほど、素子の電極間には、大きな電位差を生ずるからである。第二には、圧電素子を貼付する部位のずれに対する圧電素子の応答、即ち、変形量の変化が少ないためである。部材の振幅において、曲げ変形歪みの大きい部分は、振幅の腹、即ち、部材の長軸方向の中間領域であるところ、図5(B)の如く、部材の長軸と圧電素子の長軸とが直交する場合には、振幅の腹が発生する部位に的確に圧電素子を貼付することが困難である上に、少しでもずれると部材の変形歪み量が低減し、したがって、圧電素子の歪み量も低減してしまう。この点、図5(A)の場合、圧電素子を振幅の腹に重なるように貼付することは容易であり、非常にロバスト性が高い。
【0038】
【発明の効果】
従来の圧電素子を用いて振動・雑音を低減する技術において、例えば、特許文献4に示されているように、圧電素子の振動低減効果又は感度を増大する又は最適化するべく、圧電素子の構成を改良することが提案されている。かかる従来の技術とは異なり、本発明の場合では、圧電素子を有効に利用する、即ち、圧電素子の有している振動低減能を十分に引き出す目的で、振動が低減されるべき部材の構成に変更を加え、或いは、圧電素子を貼り付ける部位及び方向を特定する、というものである。従って、本発明において、特許文献4に示されている如き感度の改良された圧電素子を用いれば、更に、振動低減効果を改善することができるであろう。
【0039】
本発明によれば、個々の圧電素子の振動低減効果が十分に発揮されるようになるので、機械において振動及び雑音を問題とならない程度までに抑えるのに必要な圧電素子の数を低減することができ、このことは、既に述べた如く、特に、二次元又は三次元の構造体に於ける振動・雑音を低減する際に有効である。更に、かかる二次元又は三次元の構造体の場合、振動変形は、面、即ち、二次元空間にて生ずるため、振動波の伝播方向が問題となるが、かかる問題に対処すべく、本発明によれば、従来は予測が難しかった振動波の伝播方向をコントロールし、かかるコントロールされた振動変形波において、最適に振動低減効果が得られる(圧電素子の歪みが大きくなるような)圧電素子の位置及び方向が特定される。
【0040】
ところで、上記の本発明の実施形態は、パッシブ制振方式に本発明を適用した例について説明されているが、アクティブ制振方式においても、同様の態様にて本発明における各過程が適用されてよい。アクティブ制振方式においても、圧電素子が貼付されるべき場所は、振動波の腹又は変形量の大きくなるべき部位である。よって、本発明の教示するところに従い、部材上に生ずる振動波形をコントロールし、振動の腹が生じ易い部位及び方向を特定して圧電素子を貼付することにより、必要な振動低減効果を得るための圧電素子の数を低減することができる。
【0041】
以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。
【図面の簡単な説明】
【図1】本発明の第一の実施形態に従って圧電素子が貼付された部材の模式的な上面図(A)と斜視図(B)。(B)においては、部材が振動波により変形されている。
【図2】本発明の第二の実施形態に従って圧電素子が貼付された部材の模式的な断面図(A)と、この実施形態において用いられる圧電素子の模式的な斜視図(B)。
【図3】本発明の第三の実施形態に従って圧電素子が貼付された部材の模式的な斜視図。部材は振動波により変形された状態で示されている。
【図4】本発明の第四の実施形態に従って圧電素子が貼付された部材の模式的な断面図(A)と、この実施形態において用いられる圧電素子の模式的な斜視図(B)。
【図5】一方向に長い部材に圧電素子を貼り付ける方法を説明する図。(A)圧電素子の長軸方向と部材の長軸方向を平行にした場合。(B)圧電素子の長軸方向を部材の長軸方向に垂直にした場合。
【符号の説明】
10…部材
12、12a、b…溝
18a、b…リブ
20a、b…リブ
22a、b…溝
24a、b…リブ
P…圧電素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing vibration and noise of a machine or device such as an automobile transmission using a piezoelectric element, and other machines or devices.
[0002]
[Prior art]
In a power device (such as an engine or a motor) of a machine such as an automobile, a power transmission device (such as a transmission) or another device or machine, a member that generates mechanical vibration, and a path along which vibration is transmitted. Attach a piezoelectric (or piezo) element to a member or other member and reduce vibration / noise by absorbing vibration energy by the piezoelectric effect or canceling vibration deformation of the member, or reduce vibration / noise There is known a method or a device for suppressing the propagation of the light (for example, see Patent Documents 1 to 4 below).
[0003]
In one of the vibration / noise reduction methods or devices using such a piezoelectric element (or sometimes referred to as a vibration damping device, a vibration damping unit, etc.) (Patent Documents 1 and 2), a vibrating member may By applying a voltage having an opposite phase to the vibration of the member to the attached (or attached) piezoelectric element, the piezoelectric element is deformed, and the deformation force cancels the deformation of the member, and the mechanical Vibration is suppressed (active vibration suppression method). When this active vibration suppression method is applied to, for example, a transmission of a vehicle, the frequency and phase of vibration generated in the transmission are monitored based on the vehicle speed of the vehicle, the number of rotations of tires and shafts, and the number of gear teeth. Therefore, the phase and frequency of the voltage applied to the piezoelectric element are controlled such that the piezoelectric element undergoes deformation and distortion in a phase opposite to the vibration of the monitored member.
[0004]
In another vibration / noise reduction method or apparatus using a piezoelectric element (Patent Documents 3 and 4), a piezoelectric element attached to a vibrating member includes an electric resistance, a coil, and a capacitor via a pair of electrodes. (Passive vibration suppression method). In this case, when the piezoelectric element causes deformation due to vibration of the member, a potential difference is generated between the electrodes connected to the piezoelectric element, and the potential difference causes a current to flow in the circuit. . Since a resistor is included in the circuit, a current flows through the resistor to generate heat. That is, the vibration energy of the member is reduced by converting the vibration energy of the member into electric energy in the piezoelectric element and then converting the electric energy into heat energy in the resistance of the circuit and dissipating it to the outside air. It has become. Further, in the passive vibration damping system, by incorporating an appropriate coil and capacitor in a circuit, the piezoelectric element can be configured to generate a deformation force in a direction to suppress vibration deformation of the member.
[0005]
In the active vibration suppression method described above, since a deformation force is applied to the piezoelectric element by an external power supply, the vibration reduction effect can be enhanced by increasing or decreasing the applied voltage according to the degree of vibration deformation of the member to be suppressed. On the other hand, the system configuration for monitoring the vibration of the members and controlling the voltage applied to the piezoelectric element is complicated and increases the cost and mass, and high precision is required for controlling the frequency and phase of the voltage. (If the phase of the vibration is shifted, the amplitude of the member may increase.) On the other hand, the passive damping system uses a relatively simple circuit, has little cost increase and does not increase the mass, and does not require complicated and precise control unlike the active damping system. However, the vibration damping effect is inferior to the active damping system.
[Patent Document 1]
JP-A-5-133435
[Patent Document 2]
JP-A-6-32787
[Patent Document 3]
JP-A-10-309951
[Patent Document 4]
JP 2000-357824 A
[0006]
[Problems to be solved by the invention]
In the vibration or noise reduction method or apparatus using the piezoelectric element as described above, a large number of piezoelectric elements are attached to a member whose vibration is to be reduced in order to obtain a sufficient vibration damping effect. As shown in the drawings of Patent Documents 1 to 3, the piezoelectric element is applied to members having various shapes such as a propeller or a drive shaft, a transmission case, and a roof of an automobile. When propagating through a three-dimensional structure, the number of modes or directions of vibration is significantly increased compared to the case of a rod-shaped member such as a shaft. In this case, if the number of piezoelectric elements to be attached to the member is increased, the effect of reducing vibration and noise generated in the member is ensured, but the piezoelectric element is attached in a random direction and position with respect to the generated vibration mode. Depending on the direction and position, the vibration damping effect may be very small, and such a piezoelectric element having a small damping effect is wasted. In addition, the piezoelectric element itself is a relatively expensive element, and in addition to the increase in the number of piezoelectric elements, the number of circuits or control devices connected to the piezoelectric element increases, which leads to an increase in cost and mass. I will.
[0007]
By the way, in the passive vibration damping system, the mechanism in which the piezoelectric element absorbs the vibration energy of the member, as described above, generates distortion in the piezoelectric element due to the vibration deformation of the member, and the mechanical (kinetic) energy is reduced. This is due to being converted into electrical energy. That is, the greater the distortion of the piezoelectric element, the greater the vibration energy absorbed. Since each piezoelectric element affixed to the member is deformed in accordance with the deformation of the member, at a certain amount of vibration energy, the larger the amplitude of the vibrating member or the greater the distortion of the member. Thus, the vibration energy absorbed by each piezoelectric element increases (that is, the piezoelectric conversion efficiency increases), and the vibration absorbing ability can be improved.
[0008]
A low-order vibration mode having a large amplitude is likely to appear in a portion where the bending rigidity of the member is low or in a direction where the bending rigidity is low (in a direction in which the member is easily bent). The distortion (deformation amount) increases. In general, the bending stiffness of a flat member is lower in a direction along a longer side (longer axis direction) of the member than in a direction along a shorter side (shorter axis direction) of the member, and a large amplitude is likely to appear. . However, a planar or three-dimensional member in an actual machine or device has various shapes, and it is not always possible to intuitively specify a portion where a direction of low rigidity or an antinode of amplitude occurs. .
[0009]
Thus, in the passive vibration suppression method, the piezoelectric element is most efficiently applied to a portion having a large vibration amplitude or vibration deformation in consideration of the rigidity distribution of a planar or three-dimensional member, or to a vibration mode having a large vibration amplitude. If the position and direction of the piezoelectric element to be attached can be specified so that distortion occurs, the piezoelectric conversion efficiency of each piezoelectric element is increased (it is possible to effectively extract the vibration damping ability of each piezoelectric element). Possible), and thus the efficiency of the vibration damping effect is improved. As a result, it is possible to reduce the number of piezoelectric elements and the number of associated circuits or control devices that have been conventionally required.
[0010]
Therefore, one problem to be solved by the present invention is a method or an apparatus for reducing mechanical vibration and noise in a member of a machine or an apparatus, particularly, a planar or three-dimensional member by using a piezoelectric element. Another object of the present invention is to provide a novel method of attaching a piezoelectric element that increases the vibration damping effect of each piezoelectric element.
[0011]
Another object of the present invention is to provide a method as described above, in which a piezoelectric element is attached to a portion where large vibration occurs in consideration of the rigidity of a member, and the vibration energy is efficiently absorbed. It is.
[0012]
Another object of the present invention is to provide a method as described above, in which vibration deformation of a member is efficiently converted into distortion in a piezoelectric element.
[0013]
Still another object of the present invention is a method as described above, wherein the number of piezoelectric elements used for reducing vibration of a machine by increasing the effect of reducing the vibration of individual piezoelectric elements and a circuit associated therewith are provided. It is another object of the present invention to provide a method capable of reducing the number of devices, reducing the cost of manufacturing or maintaining a machine, or reducing the mass.
[0014]
Still another object of the present invention is to provide a method as described above, wherein a method of attaching a piezoelectric element to a vibrating member capable of increasing a vibration / noise reduction effect in a passive vibration damping system. It is.
[0015]
[Means for Solving the Problems]
The above object is achieved by attaching at least one piezoelectric element on the surface of a member of a machine and converting vibration energy (mechanical energy) on the surface of the member into electric energy by the piezoelectric element. A method for reducing vibration, comprising: providing a difference in bending stiffness on a surface of the member, and attaching the piezoelectric element to a portion having low bending stiffness on the surface of the member. Is achieved by:
[0016]
If a vibration of a certain amount of vibration energy occurs at a vibration source such as a meshing portion of a gear in a transmission of an automobile, and then propagates to a member of a machine such as a transmission case, the vibration energy Passes as a vibration wave having a large amplitude in a portion or a low direction where rigidity (particularly, bending rigidity) is low on the surface of the member, and further propagates to another member connected to the member, for example, a chassis of an automobile. It will be done. If the frequency of the vibration and the natural vibration frequency of the member overlap in the process of propagation of the vibration wave, the member resonates, and an antinode of the amplitude or a large distortion occurs in a portion having low bending rigidity. However, as described above, in general, the bending stiffness in any direction is low, and the amplitude of a low-order vibration mode is easily generated, except for the case where the shape of the member is a rectangle or an ellipse that is long in one direction. It is not easy to know which or where the antinode of the amplitude occurs.
[0017]
According to the configuration of the present invention described above, the difference in bending stiffness is positively provided on the surface of the machine member whose vibration is to be suppressed, thereby determining the propagation path of the vibration wave having a large amplitude, and the piezoelectric element is It is attached to a propagation path having such a large amplitude, that is, a portion having low bending rigidity on the surface of the member. As described above, the greater the distortion applied to the piezoelectric element, the greater the vibration reduction effect.Therefore, the vibration energy transmitted from the vibration source is efficiently absorbed by the piezoelectric element where the amplitude is large, and thus, Propagation of vibration energy to another member is suppressed. In other words, according to the configuration of the present invention, the individual piezoelectric elements are attached on a member so that the respective vibration reducing capabilities are effectively exhibited, whereby the vibration wave is further propagated and the vibration / noise is Is avoided.
[0018]
In one aspect of the present invention described above, a groove may be formed on the surface of the member, and the piezoelectric element may be attached across the groove. In this case, by forming the groove on the surface of the member, the member is easily bent in the direction perpendicular to the groove in the vicinity of the groove, whereby the propagation path of the vibration mode in which the amplitude increases, that is, the member The direction and position at which the vehicle easily bends are determined. Further, in the configuration of this aspect, the bending rigidity itself is reduced in the portion where the groove is formed, so that the amplitude there, that is, the distortion, is larger than that without the groove. Therefore, vibration energy is more efficiently converted into electric energy, and the vibration absorbing effect of the piezoelectric element can be increased.
[0019]
Further, in this aspect, a piezoelectric element having at least a pair of ribs is used, and at least a pair of grooves that closely engage with respective wall surfaces of the pair of ribs are formed on the surface of the member, and the piezoelectric element has The piezoelectric element may be stuck on the surface of the member with the rib fitted in the pair of grooves.
[0020]
By providing the rib on the piezoelectric element, the direction in which the piezoelectric element is easily deformed is determined to be the direction perpendicular to the rib. When the rib of the piezoelectric element is fitted into the groove of the member, the direction in which the piezoelectric element is easily deformed matches the direction in which the member is easily bent, so that the response of the piezoelectric element to the deformation of the member is improved ( The follow-up of the deformation distortion of the piezoelectric element to the deformation of the member is improved.), And the vibration absorption efficiency is increased. In a normal mode, the piezoelectric element is attached to the surface of the member via an adhesive such as a resin, so that the rib of the piezoelectric element directly engages the groove of the member, thereby deforming the member. Is transmitted directly to the piezoelectric element, so that the efficiency of distortion transmission from the member to the piezoelectric element is increased (the amount of deformation distortion transmitted to the piezoelectric element is small due to the deformation of the resin portion through resin). Become.). Therefore, since the deformation of the member is easily transmitted to the piezoelectric element, the vibration absorbing effect of the piezoelectric element is further increased.
[0021]
In another aspect of the present invention, at least a pair of ribs may be provided on the surface of the member, and a piezoelectric element may be attached between the pair of ribs. In this case, the bending rigidity in the portion provided with the pair of ribs and in the direction parallel to the ribs increases, and the region between the ribs relatively easily bends in the direction perpendicular to the ribs, so that the amplitude increases. As the vibration propagation path is determined in a direction perpendicular to the pair of ribs, a portion where the distortion increases is determined between the pair of ribs (a position where the vibration displacement amount is large). Thus, by attaching the piezoelectric element between the ribs, the vibration energy can be efficiently absorbed by the piezoelectric element.
[0022]
In another aspect of the present invention, a piezoelectric element having at least a pair of grooves is used, and at least a pair of ribs are provided on a surface of the member so as to closely engage with respective wall surfaces of the pair of grooves of the piezoelectric element. The piezoelectric element may be stuck on the surface of the member so that the rib fits into the groove of the element. In this case, the direction in which the piezoelectric element is easily deformed is determined to be a direction perpendicular to the pair of grooves, and the grooves are fitted to the ribs on the member, whereby the lower-order vibration mode is developed on the piezoelectric element and the member. The directions of the movements coincide with each other, the followability of the deformation of the piezoelectric element to the deformation of the member is improved, and the vibration absorption efficiency increases. Further, by directly engaging the ribs of the piezoelectric element with the grooves of the member, the deformation of the member can be efficiently transmitted to the piezoelectric element, and the deformation of the member can be easily transmitted to the piezoelectric element. The effect of absorbing vibrations is further increased.
[0023]
In any of the various aspects of the present invention described above, when the piezoelectric element has a major axis direction and a minor axis direction, the major axis direction is substantially along the direction in which the bending rigidity of the surface of the member is low. It is preferable that the piezoelectric element be attached.
[0024]
If the member whose vibration is to be reduced is long in one direction, such as a rectangle or an ellipse, the bending rigidity in the long direction, that is, the long axis direction is low and the member is easily bent. It is possible to increase the stress generated in the piezoelectric element by making the long axis direction of the piezoelectric element coincide with the direction of low bending elasticity of the surface of the member, including the direction in which the direction of bending is easily understood from the shape of such a member. Therefore, the amount of vibration energy converted into electric energy is increased (energy conversion efficiency is improved), and the efficiency of vibration absorption of each piezoelectric element is improved.
[0025]
Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail with respect to some preferred embodiments with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same parts.
[0027]
FIG. 1 schematically shows a state in which a plate-shaped piezoelectric element P is attached to a member of a machine whose vibration is to be reduced, for example, a surface 10 of a transmission cover of an automobile by the method according to one aspect of the present invention. (FIG. 1A is a schematic top view of a portion where a piezoelectric element is attached, and FIG. 1B is a schematic perspective view). In the method of the present invention, first, the groove 12 is formed on the surface of the member 10 before the crimping element P is attached on the surface of the member 10. Thereafter, the piezoelectric element P is stuck on the surface of the member 10 in a manner of straddling the groove 12 by an arbitrary method such as an adhesive for those skilled in the art. The attachment of the piezoelectric element to the member 10 may be performed by any method, for example, using an epoxy resin-based adhesive.
[0028]
Although not shown, the piezoelectric element P has its front surface and back surface covered with a conductive material, and the conductive material forms an electrode. The method of reducing the vibration in the embodiment of FIG. 1 is a so-called passive vibration damping method, and therefore, the electrodes on the front and back surfaces of the piezoelectric element each include an electric circuit including a resistor, a capacitor or a coil, which is well known to those skilled in the art. May be connected to In the present invention, the vibration energy of the member 10 is absorbed by the piezoelectric element as electric energy, and the vibration is removed from the members of the machine. Again, it is preferable not to flow back to the machine components via the piezoelectric element. Therefore, it is preferable that the electric circuit connected to the piezoelectric element is suitable for such a purpose.
[0029]
By forming the groove 12, the member 10 is easily bent in the direction perpendicular to the groove 12, as shown in the drawing, that is, the bending rigidity is reduced in the direction perpendicular to the groove 12, and the member 10 is vibrated. Then, as shown in the figure, vibration deformation of a low-order vibration mode is likely to occur in a direction perpendicular to the groove 12 with the groove 12 serving as an antinode of amplitude. In addition, since the thickness of the member is thinner in the groove 12, the rigidity is lower than that of the portion without the groove, so that the displacement amount increases (the antinode of the amplitude generally occurs near the groove or the groove). ). Therefore, when the piezoelectric element P is attached so as to straddle the groove 12, the amount of deformation of the piezoelectric element, that is, the amount of distortion can be maximized, and the energy conversion efficiency of the piezoelectric element can be maximized. It is.
[0030]
In the embodiment of FIG. 1, as described later with reference to FIG. 5, the piezoelectric element P has a direction along its long side, that is, a long axis direction is perpendicular to the groove, that is, a direction with low bending rigidity. It is preferable that it is attached so as to match with.
[0031]
Thus, in the embodiment shown in FIG. 1, the member to which the piezoelectric element is attached is configured so that the amplitude is intentionally increased, so that the vibration energy is efficiently absorbed, and the vibration wave is further separated. Propagation to the member can be suppressed.
[0032]
FIG. 2A shows another embodiment of the present invention. In this embodiment, as shown in FIG. 2B, a piezoelectric element P having a pair of ribs 18a and 18b is used. The member 10 is formed with a pair of grooves 12a, 12b, and the ribs 18a, b are fitted to the grooves 12a, b when the piezoelectric element P is attached to the member 10. At this time, the wall surfaces of the corresponding ribs and grooves are configured to closely and directly engage as shown in FIG. Other configurations may be the same as the embodiment of FIG.
[0033]
Also in the embodiment of FIG. 2, similarly to the case of FIG. 1, since the bending rigidity of the member 10 in the direction perpendicular to the grooves 12a and 12b is reduced, the member 10 is deformed to bend in the direction perpendicular to the grooves. Further, here, since the ribs are provided on the piezoelectric element P, the distortion of the piezoelectric element appears in a direction perpendicular to the ribs with the middle of the pair of ribs as the antinode of the amplitude. As described above, since the directions in which the piezoelectric element P and the member 10 are easily deformed by vibration coincide with each other, the followability of the deformation of the piezoelectric element to the deformation of the member is improved, and the response of the piezoelectric element to the deformation of the member is improved. You. In addition, the responsiveness of the piezoelectric element to deformation of the member is also improved by a part of the piezoelectric element P, that is, the ribs 18a and 18b being directly engaged with the member 10.
[0034]
Further, by sandwiching the portion between the grooves of the member 10 with the ribs 18a and 18b of the piezoelectric element, the shearing force applied to the adhesive 19 when the member is deformed can be reduced, and the durability of the adhesive can be reduced. Can be improved (can be hardly peeled off)
[0035]
FIG. 3 shows still another embodiment of the present invention. In the embodiment shown in the figure, a pair of ribs 20a and 20b are provided on the member 10, and the piezoelectric element P is attached between the ribs. As shown in the drawing, when the ribs are provided on the member 10, the ribs 20a and 20b have high rigidity. Therefore, when the vibration is propagated to the member 10, the rib becomes a node of the amplitude and the middle of the rib becomes the antinode. Thus, by attaching the piezoelectric element P in the middle of the rib, the amount of deformation of the piezoelectric element P can be increased, and the vibration damping effect of the piezoelectric element P can be maximized. Other configurations of the present embodiment may be the same as those illustrated in FIG. When the piezoelectric element has a rectangular plate shape, it is preferable that the element is attached such that the major axis direction is perpendicular to the direction in which the rib extends, as in FIG.
[0036]
FIG. 4A shows still another embodiment of the present invention. In this embodiment, a pair of grooves 22a and 22b are formed as the piezoelectric element P as shown in FIG. 4B. In the member 10, ribs 24a and 24b to be fitted in the groove of the piezoelectric element P are formed. In this case, the member 10 exhibits the same vibration deformation as in the case of FIG. 3, while the piezoelectric element P is easily deformed in a direction perpendicular to the groove. Thus, by fitting the ribs 24a, b and the grooves 22a, b, the direction in which the piezoelectric element P is easily deformed coincides with the direction in which the member 10 is easily bent, and as in the embodiment of FIG. The followability of the deformation of the piezoelectric element P to the deformation of the member 10 is improved. Also, as shown in FIG. 4A, the ribs and the grooves are directly closely engaged with each other, and the piezoelectric elements are held by the ribs, as shown in FIG. The durability is improved. Other configurations may be similar to the embodiment illustrated in FIG.
[0037]
FIG. 5A shows a method of attaching the piezoelectric element P when the shape of the member 10 is long in one direction, such as a rectangle or an ellipse, or when the direction in which bending rigidity is low is intuitively predicted. Is an example. In such a case, as shown in the figure, the direction along the long side of the member, that is, the long axis direction (or the direction with low bending rigidity) and the long axis direction of the piezoelectric element coincide with each other. It is preferable to attach a piezoelectric element. The first reason is that, when the electric polarization due to the distortion of the piezoelectric element is greatly influenced by the shear strain, the shear strain of the plate-like member curved in an arc shape is increased at both ends in the circumferential direction (curved direction). The larger the length of the curved portion in the direction of the arc, the greater the potential difference between the electrodes of the element. Second, the response of the piezoelectric element to the displacement of the portion where the piezoelectric element is attached, that is, the change in the amount of deformation is small. In the amplitude of the member, the portion where the bending deformation strain is large is the antinode of the amplitude, that is, the middle region in the major axis direction of the member. As shown in FIG. Are orthogonal to each other, it is difficult to accurately attach the piezoelectric element to the position where the antinode of the amplitude occurs. Is also reduced. In this regard, in the case of FIG. 5A, it is easy to attach the piezoelectric element so as to overlap the antinode of the amplitude, and the robustness is extremely high.
[0038]
【The invention's effect】
In a technology for reducing vibration and noise using a conventional piezoelectric element, for example, as disclosed in Patent Document 4, the configuration of a piezoelectric element is set to increase or optimize the vibration reduction effect or sensitivity of the piezoelectric element. It has been proposed to improve. Unlike such a conventional technique, in the case of the present invention, in order to effectively use the piezoelectric element, that is, the configuration of the member whose vibration is to be reduced in order to sufficiently bring out the vibration reducing ability of the piezoelectric element. Or to specify a part and a direction in which the piezoelectric element is to be attached. Therefore, in the present invention, if a piezoelectric element with improved sensitivity as shown in Patent Document 4 is used, the vibration reduction effect can be further improved.
[0039]
According to the present invention, since the vibration reduction effect of each piezoelectric element is sufficiently exhibited, it is possible to reduce the number of piezoelectric elements necessary for suppressing vibration and noise in a machine to a level that does not cause a problem. As described above, this is particularly effective in reducing vibration and noise in a two-dimensional or three-dimensional structure. Further, in the case of such a two-dimensional or three-dimensional structure, since the vibration deformation occurs in a plane, that is, in a two-dimensional space, the propagation direction of the vibration wave becomes a problem. According to the method described above, the propagation direction of the vibration wave, which has been difficult to predict in the past, is controlled, and the vibration reduction effect can be optimally obtained (such that the distortion of the piezoelectric element increases) in the controlled vibration deformation wave. The position and direction are specified.
[0040]
By the way, the above-described embodiment of the present invention describes an example in which the present invention is applied to a passive vibration damping method. However, in an active vibration damping method, each step of the present invention is applied in a similar manner. Good. Also in the active vibration damping method, the place where the piezoelectric element is to be attached is a part where the antinode of the vibration wave or the amount of deformation is to be large. Therefore, in accordance with the teachings of the present invention, by controlling the vibration waveform generated on the member, specifying the site and direction in which antinodes of vibration are likely to occur, and attaching the piezoelectric element to obtain the necessary vibration reduction effect. The number of piezoelectric elements can be reduced.
[0041]
Although the above description has been made in connection with the embodiments of the present invention, many modifications and changes are easily possible for those skilled in the art, and the present invention is limited to only the above-exemplified embodiments. It will be clear that the invention is not limited and applies to various devices without departing from the concept of the invention.
[Brief description of the drawings]
FIG. 1 is a schematic top view (A) and a perspective view (B) of a member to which a piezoelectric element is attached according to a first embodiment of the present invention. In (B), the member is deformed by the vibration wave.
FIG. 2 is a schematic sectional view (A) of a member to which a piezoelectric element is attached according to a second embodiment of the present invention, and a schematic perspective view (B) of the piezoelectric element used in this embodiment.
FIG. 3 is a schematic perspective view of a member to which a piezoelectric element is attached according to a third embodiment of the present invention. The member is shown deformed by the vibration wave.
FIG. 4 is a schematic sectional view (A) of a member to which a piezoelectric element is adhered according to a fourth embodiment of the present invention, and a schematic perspective view (B) of a piezoelectric element used in this embodiment.
FIG. 5 is a diagram illustrating a method of attaching a piezoelectric element to a member that is long in one direction. (A) When the long axis direction of the piezoelectric element and the long axis direction of the member are parallel. (B) The case where the long axis direction of the piezoelectric element is perpendicular to the long axis direction of the member.
[Explanation of symbols]
10 ... members
12, 12a, b ... groove
18a, b ... rib
20a, b ... rib
22a, b ... groove
24a, b ... rib
P: Piezoelectric element

Claims (7)

機械の部材の面上に少なくとも一つの圧電素子を貼り付けて前記部材の面上の機械的振動エネルギーを前記圧電素子により電気的エネルギーに変換することにより前記部材の振動を低減する方法であって、前記部材の面上の曲げ剛性に差を設ける過程と、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程とを含むことを特徴とする方法。A method of reducing vibration of a member by attaching at least one piezoelectric element on a surface of a member of a machine and converting mechanical vibration energy on the surface of the member into electric energy by the piezoelectric element. Providing a difference in bending stiffness on the surface of the member, and affixing the piezoelectric element to a portion having low bending stiffness on the surface of the member. 請求項1の方法であって、前記部材の面上の曲げ剛性に差を設ける過程において、前記部材の面上に溝を形成し、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程において、前記溝を跨いで前記圧電素子を貼り付けることを特徴とする方法。2. The method according to claim 1, wherein, in the step of providing a difference in bending stiffness on the surface of the member, a groove is formed on the surface of the member, and the piezoelectric element is formed on a portion of the member having low bending stiffness. Attaching the piezoelectric element across the groove in the step of attaching the piezoelectric element. 請求項2の方法であって、前記圧電素子が少なくとも一対のリブを有し、前記部材の面上に前記一対のリブの各々の壁面に密に係合する少なくとも一対の溝を形成し、前記圧電素子の前記リブが前記一対の溝に嵌合した状態にて前記圧電素子を前記部材の面上に貼り付けることを特徴とする方法。3. The method of claim 2, wherein the piezoelectric element has at least one pair of ribs, and at least one pair of grooves is formed on a surface of the member to closely engage a wall of each of the pair of ribs, A method comprising: attaching the piezoelectric element to a surface of the member while the rib of the piezoelectric element is fitted in the pair of grooves. 請求項1の方法であって、前記部材の面上の曲げ剛性に差を設ける過程において、前記部材の面上に少なくとも一対のリブを設け、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程において、前記リブの対の間に前記圧電素子を貼り付けることを特徴とする方法。2. The method of claim 1, wherein in the step of providing a difference in bending stiffness on the surface of the member, at least one pair of ribs is provided on the surface of the member, and the portion having a low bending stiffness on the surface of the member. The method of attaching a piezoelectric element, the method comprising applying the piezoelectric element between the pair of ribs. 請求項1の方法であって、前記圧電素子が少なくとも一対の溝を有し、前記部材の面上の曲げ剛性に差を設ける過程において、前記部材の面上に前記一対の溝の各々の壁面に密に係合する少なくとも一対のリブを設け、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程において、前記圧電素子の前記溝に前記リブが嵌合するよう前記部材の面上に前記圧電素子を貼り付けることを特徴とする方法。2. The method according to claim 1, wherein the piezoelectric element has at least a pair of grooves, and in the step of providing a difference in bending stiffness on a surface of the member, a wall surface of each of the pair of grooves on the surface of the member. Providing at least a pair of ribs that closely engage with each other, and, in the step of attaching the piezoelectric element to a portion having low bending rigidity on the surface of the member, the member so that the rib fits into the groove of the piezoelectric element. Bonding the piezoelectric element on a surface of the substrate. 機械の部材の面上に少なくとも一つの圧電素子を貼り付けて前記圧電素子が前記部材の面上の機械的振動エネルギーを電気的エネルギーに変換可能な状態とすることにより前記部材の振動を低減する方法であって、前記部材の面上の曲げ剛性に差を設ける過程と、前記部材の面上の曲げ剛性の低い部位に前記圧電素子を貼り付ける過程とを含むことを特徴とする方法。At least one piezoelectric element is attached to a surface of a member of a machine to reduce vibration of the member by allowing the piezoelectric element to convert mechanical vibration energy on the surface of the member into electrical energy. A method, comprising: providing a difference in bending stiffness on a surface of the member; and attaching the piezoelectric element to a portion of the surface of the member having low bending stiffness. 請求項1乃至6の方法であって、前記圧電素子が長軸方向と短軸方向を有し、前記長軸方向が前記部材の面の曲げ剛性の低い方向に実質的に沿うように前記圧電素子が貼り付けられることを特徴とする方法。7. The method according to claim 1, wherein the piezoelectric element has a major axis direction and a minor axis direction, and the piezoelectric element is arranged so that the major axis direction is substantially along a direction in which bending rigidity of the surface of the member is low. A method, wherein the element is attached.
JP2003103067A 2003-04-07 2003-04-07 Vibration/noise reducing method using piezoelectric element Pending JP2004308786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103067A JP2004308786A (en) 2003-04-07 2003-04-07 Vibration/noise reducing method using piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103067A JP2004308786A (en) 2003-04-07 2003-04-07 Vibration/noise reducing method using piezoelectric element

Publications (1)

Publication Number Publication Date
JP2004308786A true JP2004308786A (en) 2004-11-04

Family

ID=33466329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103067A Pending JP2004308786A (en) 2003-04-07 2003-04-07 Vibration/noise reducing method using piezoelectric element

Country Status (1)

Country Link
JP (1) JP2004308786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127940B1 (en) 2009-12-24 2012-03-23 재단법인 포항산업과학연구원 Connecting device for vibration reduction and installation structure using the same
JP2014066292A (en) * 2012-09-25 2014-04-17 Keisuke Yamada Active damper
JP2017069901A (en) * 2015-10-02 2017-04-06 セイコーエプソン株式会社 Piezoelectric device, probe, and ultrasonic measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127940B1 (en) 2009-12-24 2012-03-23 재단법인 포항산업과학연구원 Connecting device for vibration reduction and installation structure using the same
JP2014066292A (en) * 2012-09-25 2014-04-17 Keisuke Yamada Active damper
JP2017069901A (en) * 2015-10-02 2017-04-06 セイコーエプソン株式会社 Piezoelectric device, probe, and ultrasonic measurement device

Similar Documents

Publication Publication Date Title
KR101215673B1 (en) Force generator
JP2003148569A (en) Chain and tensioner system for power transmission
JP4810646B2 (en) Vibration suppression device
JP5120496B2 (en) Piezoelectric generator
WO2017163917A1 (en) Actuator and tactile sensation presentation device
JP5473279B2 (en) Vibration wave motor
JP2006207749A (en) Damping device
US6138996A (en) Vibration control device for automotive panels
EP1291551B1 (en) Control system for vibration employing piezoelectric strain actions
KR101846866B1 (en) Active Dynamic Vibration Absorber
JP2005110488A (en) Apparatus and method for driving ultrasonic actuator
JP2004308786A (en) Vibration/noise reducing method using piezoelectric element
JPH06269183A (en) Ultrasonic motor
JP2002291263A5 (en)
JP2007033393A (en) Angular velocity sensor device
JP5309732B2 (en) Electric power steering device
JP2000269563A (en) Fixing structure of piezoelectric transducer to panel
WO2019230367A1 (en) Actuator and tactile sensation presentation device
JPH0674292A (en) Panel exciting device
KR100456871B1 (en) A torsional damper in vehicle
JPH07154982A (en) Ultrasonic actuator
JP2005331070A (en) Mounting method of vibration damping piezoelectric element and piezoelectric vibration damping device
JPH0612081A (en) Soundproof panel
JP2007009999A (en) Vibration damping device
JPH10287270A (en) Vibration damping device for panel unit for automobile