JP2004308755A - Hollow roller rolling element, its manufacturing method, and roller bearing using the same - Google Patents

Hollow roller rolling element, its manufacturing method, and roller bearing using the same Download PDF

Info

Publication number
JP2004308755A
JP2004308755A JP2003102111A JP2003102111A JP2004308755A JP 2004308755 A JP2004308755 A JP 2004308755A JP 2003102111 A JP2003102111 A JP 2003102111A JP 2003102111 A JP2003102111 A JP 2003102111A JP 2004308755 A JP2004308755 A JP 2004308755A
Authority
JP
Japan
Prior art keywords
rolling element
roller rolling
hollow
hollow roller
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102111A
Other languages
Japanese (ja)
Inventor
Minoru Takao
実 高尾
Hiroyoshi Tonai
弘喜 藤内
Tatsuya Imaizumi
辰弥 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003102111A priority Critical patent/JP2004308755A/en
Publication of JP2004308755A publication Critical patent/JP2004308755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow roller rolling element capable of being lightened and operated at a high speed, and having superior abrasion resistance and long service life characteristic, and to provide its inexpensive manufacturing method and a roller bearing and a linear drive system using the inexpensive rolling element. <P>SOLUTION: In this hollow roller rolling element 1 composed of a ceramic sintered body having a hollow part 6 in the internal axial direction, a volume ratio of the hollow part 6 to the total hollow roller rolling element 1 is 8-50 %, and a thickness 2T of the rolling part is 10 % or more of a diameter D of the hollow roller rolling element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、中空ころ転動体、その製造方法およびこの転動体を用いたころ軸受に係り、特に軽量化を図り高速運転が可能になると共に耐磨耗性に優れ、高寿命特性を発揮し得る中空ころ転動体、その安価な製造方法およびこの転動体を用いたころ軸受および直動システムに関する。
【0002】
【従来の技術】
機器の回転軸を保持する機構として軸受が一般に使用されている。軸受は、回転中心に対して同心状に配置された外輪と内輪との間に形成される環状の空間に、複数の転動体を保持器により等間隔に保持して構成される。また直線状の軌道と可動体との間に複数の転動体を介装し、この軌道に沿って可動体を往復動させる直動システムも可動テーブル機構等に多用されている。
【0003】
軸受には、例えば球状の転動体を用いた玉軸受や、円柱状の転動体を用いたころ軸受があるが、同程度の荷重を軸受に受ける場合、玉軸受は点接触で荷重を受ける構造のため2組以上の軸受を必要とする。一般に高信頼性が要求される用途の軸受(ベアリング)や直動システムのように荷重による負荷が大きい高荷重用の軸受には、転動体として球ではなく、線接触で荷重を受けるころ転動体が用いられる。特に、工作機械その他加工機の回転軸用の軸受は、耐荷重性が重視されるため、転動体が点接触で荷重を受ける玉軸受よりも線接触で荷重を受けるころ軸受の方が有利である。
【0004】
近年、工作機械も加工精度および加工能率の向上が要求され、ころ軸受も高速回転化が必要とされる傾向にある。ころ軸受の高速回転を実現するために、軽量性、耐摩耗性および摺動性に優れたセラミックス製のころ転動体を使用したころ軸受が実用化されている。例えば、ジェットエンジンのギアボックス用の軸受として、転動体(ボールやころ)を窒化けい素などのセラミックス焼結体で形成した軸受が一部で実用化されている。
【0005】
上記の窒化けい素を主成分とするセラミックス製ころ転動体は、従来の軸受鋼などの耐熱特殊鋼製ころよりも耐久性に優れ、また比重が軸受鋼の1/2〜1/3程度であるため、機器使用時における遠心力が軽減されるので高速化が可能であり、また特殊鋼の約2倍の摂氏500℃までの高熱に耐えることが確認されている。高温回転機器や工作機械の軸受として採用されつつある。
【0006】
近年、ころ軸受には、使用される工作機械の加工精度・加工能率のさらなる向上が技術的課題として要求されており、軸受のより高速回転化が必要とされつつある。この高速回転を実現するためには、従来の軸受鋼を素材とするころ転動体よりも比重がその1/2〜1/3程度のセラミックス製転動体の方が遠心力が軽減され有利であり、市場でも採用されている
【0007】
【発明が解決しようとする課題】
しかしながら、ころ転動体は球状転動体と比較すると体積が大きいため、原料価格が高いセラミックス焼結体を用いると製造コストが急騰し高価格になるという問題点があった。
【0008】
本発明は上記課題に対処するためになされたものであり、特に軽量化を図り高速運転が可能になると共に耐磨耗性に優れ、高寿命特性を発揮し得る中空ころ転動体、その安価な製造方法およびこの低価格の転動体を用いたころ軸受および直動システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは上記目的を達成するために、種々の構造を有するセラミックス製ころ転動体を調製し、その各構造がころ転動体の摩耗特性、転動特性、構造強度、原料使用量等に及ぼす影響を比較検討した。その結果、ころ転動体の軸方向に添って所定の中空部を有するセラミックス製ころ転動体を作成したところ、中実のころ転動体と同等の摩耗特性、転動特性が得られると共に、使用原料を大幅に削減することができ、より低価格なセラミックス製ころ転動体およびころ軸受を提供することが可能になるという知見を得た。
【0010】
また、ころ転動体内に形成する中空部の体積(容積)割合、ころ転動体の転動部の肉厚、中空部の内径と転動体の外径との比等を適正に規定することにより、構造強度を大きく損なうことなく、中実の転動体と同等の摩耗特性、転動特性が得られるという知見も得られた。本発明はこれらの知見に基づいて完成されたものである。
【0011】
すなわち、本発明に係る中空ころ転動体は、内部軸方向に中空部が形成されているセラミックス焼結体から成る中空ころ転動体であり、この中空ころ転動体全体に占める前記中空部の占める体積割合が8〜50%であり、転動部の肉厚が前記中空ころ転動体の直径に対して10%以上であることを特徴とする。
【0012】
上記ころ転動体の内部軸方向に中空部が形成されているため、同一寸法を有する中実のころ転動体と比較して、重量が軽減され、より高速回転が可能になる上に、ころ転動体を製造するために必要な高価なセラミックス原料を削減でき、ころ転動体を安価に提供できる。
【0013】
なお、図1に示すように、上記中空部がころ転動体の内部で閉空間を形成するように、転動体の両端面をセラミックス材料で閉止した構造を採用した場合には、中空ころ転動体の外形は従来の中実のころ転動体と同一になるため、軸受を組み立てる際に使用するころ転動体の取扱い治具や装着治具として、従来の治具をそのまま転用することができる。また、上記転動体の両端面を閉止した構造を有する中空ころ転動体によれば、軸受の潤滑材として充填したグリース等が中空ころ転動体の内部に進入することがなく、従来の潤滑方式をそのまま採用できる。
【0014】
また、上記中空ころ転動体において、前記中空ころ転動体全体に占める前記中空部の占める体積割合は8〜50%であることを特徴とする。中空ころ転動体全体に占めるこの中空部の体積割合が8%未満である場合には、構造強度の低下は少ないが、セラミックス原料の削減効果が不十分となる。一方、上記中空部の体積割合が50%を超える場合には、構造強度の低下が顕著になり、ころ軸受の耐久性(寿命)が低下してしまう。したがって、上記中空部の占める体積割合は8〜50%の範囲に規定されるが、20〜40%の範囲がより好ましい。
【0015】
さらに、上記中空ころ転動体において、中空ころ転動体の転動部の肉厚が前記中空ころ転動体の直径に対して10%以上であることを特徴とする。この転動部の肉厚が転動体の直径に対して10%未満である場合には、転動体の構造強度が不十分であり、ころ軸受の耐荷重性及び耐久性が低下する。
【0016】
また、上記中空ころ転動体において、前記中空部が中空ころ転動体の内部軸方向に貫通するように構成しても良い。この場合、成形段階において,中心軸方向に中空部に相当する心材を設けた円筒状の成形金型を使用したり、心材を突出させた上パンチを使用したりすることにより、上記中空部を形成することができる。
【0017】
さらに、上記中空部が軸方向に貫通した中空ころ転動体において、中空ころ転動体の外径が中空部の内径の1.5倍以上であることが好ましい。この中空ころ転動体の外径が中空部の内径の1.5倍未満である場合には、転動体の構造強度が不十分となり、ころ軸受の耐荷重性及び耐久性が低下する。
【0018】
また、上記中空部が軸方向に貫通した中空ころ転動体において、この中空ころ転動体の中心軸と前記中空部の中心軸とのずれ長さ(偏移量)が前記中空ころ転動体の外径寸法の5%以内であることが好ましい。上記ずれ長さ(偏移量)が中空ころ転動体の外径寸法の5%を超えると、ころ軸受の転動体として高速回転した場合に、振動が生じ易くなる。
【0019】
また、上記中空ころ転動体を構成するセラミックス焼結体としては、良好な耐磨耗性、軽量性、摺動特性、構造強度等を有する限り、特に限定されるものではないが、窒化けい素(Si),サイアロン(Si−Al−O−N),炭化けい素(SiC),ジルコニア(ZrO),アルミナ(Al)およびアルジル(Al−ZrO)のいずれかのセラミックス焼結体であることが好ましい。特に高強度性および高靭性を有する窒化けい素(Si)焼結体が好ましい。
【0020】
本発明に係るころ軸受は、回転中心に対して同心状に配置された内輪と外輪との間の環状空間に保持器を介して複数の転動体を配設して構成されたころ軸受において、用いる転動体が上記のように構成された中空ころ転動体であることを特徴とする。
【0021】
また、本発明に係る直動システムは、直線状の軌道と可動体との間に複数の転動体を介装してなり、上記軌道に沿って可動体を往復動させる直動システムにおいて、用いる転動体が上記のように構成された中空ころ転動体であることを特徴とする。
【0022】
さらに、中空部が軸方向に貫通せず、軸方向の両端部が閉止されている中空ころ転動体の製造方法は、成形型の中心軸方向に固形有機物を配置する一方、この固形有機物の周囲にセラミックス粉末を充填した後に、軸方向に加圧力を付加して成形体を形成する工程と、得られた成形体を大気圧以上の圧力で加圧しながら加熱し前記固形有機物を揮散させて脱脂する工程と、得られた脱脂体を常圧焼結する工程とを具備することを特徴とする。
【0023】
上記成形体形成工程において、成形型の中心軸方向に配置する固形有機物は、中空部を形成するために用いられるものである。上記固形有機物としては、MCナイロンなどのエンジニアリングプラスチックや固形ワックス等が好適に使用できる。
【0024】
セラミックス粉末には、焼結助剤としての希土類酸化物(Yなど)、アルミナ(Al)、さらに必要に応じてマグネシア(MgO)、窒化アルミニウム(AlN)、酸化チタン(TiO)などが1〜10質量%とバインダとが添加配合され原料混合体として使用される。そして、上記固形有機物の周囲にセラミックス粉末を含む原料混合体を充填した後に、軸方向に100〜250MPaの加圧力を付加して原料混合体を圧密化して成形体が形成される。
【0025】
次の脱脂工程では、得られた成形体を大気圧以上の圧力、具体的には0.2MPa以上に加圧した不活性ガス雰囲気や窒素ガス雰囲気中で加熱することにより、前記固形有機物およびバインダが揮散除去されて脱脂されると共に、成形体の内部軸方向に延びる中空部が形成される。
【0026】
なお上記脱脂雰囲気ガス圧力が0.2MPa未満であると、加熱された固形有機物が急激に成形体から抜けるため、成形体に割れが発生しやすい。一方、脱脂雰囲気ガス圧力を0.2MPa以上に高めておけば、固形有機物は緩速度で徐々に成形体から抜けるため、割れを生じる恐れは少ない。
【0027】
上記のように脱脂された成形体(脱脂体)を、窒素ガスなどの非酸化性雰囲気中で1700〜1800℃の温度範囲で1〜5時間、常圧焼結することにより、緻密化したころ転動体が得られる。
【0028】
また、中空ころ転動体の製造方法において、前記成形体を常圧焼結した後に、さらに熱間静水圧プレス(HIP)処理を実施することにより、より緻密であり耐磨耗性および構造強度が優れた中空ころ転動体が得られる。
【0029】
上記構成に係る中空ころ転動体およびその製造方法によれば、ころ転動体の軸方向に添って所定の中空部が形成されているため、同一寸法を有する中実のころ転動体と比較して、重量が軽減され、より高速回転が可能になる上に、ころ転動体を製造するために必要な高価なセラミックス原料の使用量を大幅に削減することができ、より低価格なセラミックス製ころ転動体およびころ軸受を提供することが可能になる。
【0030】
一方、ころ転動体内に形成する中空部の体積(容積)割合、ころ転動体の転動部の肉厚、中空部の内径と転動体の外径との比等が適正に規定されているため、構造強度を大きく損なうことなく、中実の転動体と同等の摩耗特性、転動特性が得られ、軽量化したころ転動体の使用により軸受の高速回転化も可能になる。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0032】
(実施例1〜3および比較例1〜4)
酸素量が0.9質量%であり、α型窒化けい素を97質量%含む平均粒径0.55μmの窒化けい素粉末に、焼結助剤としての酸化イットリウム(Y)粉末を5質量%と、酸化アルミニウム(Al)粉末を4質量%と、窒化アルミニウム(AlN)粉末を3質量%と、酸化チタン(TiO)粉末を1.5質量%と、バインダーとを添加し、ボールミルで湿式混合した後に、スプレードライヤーにて乾燥噴霧し、圧粉成形用粉末を作製した。
【0033】
内径100mmの成形型の中心軸方向に直径が異なる固形有機物としてのMCナイロンを配設した状態で、その周囲に上記圧粉成形用粉末を充填し、軸方向に100〜250MPaの加圧力で加圧成形し、各実施例用の成形体をそれぞれ調製した。次に作製した各成形体について、0.2MPaに加圧した窒素ガス雰囲気中で400〜550℃に加熱して脱脂することにより、上記固形有機物およびバインダーを除去した後、1700〜1800℃の温度条件及び窒素ガス雰囲気条件下で常圧焼結を実施し、ころ焼結体をそれぞれ調製した。さらに、得られた各ころ焼結体を、窒素ガス雰囲気中で100〜150MPaに加圧した状態で1700〜1800℃の温度に加熱する熱間静水圧プレス(HIP)処理を実施すことにより各実施例1〜3および比較例1〜3に係る中空ころ転動体を作製した。
【0034】
各実施例および比較例に係る中空ころ転動体1は、図1に示すように、窒化けい素セラミックス焼結体から成り、外周に転動面2を有し、内部軸方向に中空部6が形成されている。
【0035】
一方、比較例4として、固形有機物としてのMCナイロンを成形型に配設しない点以外は実施例と同一条件で成形、脱脂、焼結処理、HIP処理を実施することにより、中空部が形成されていない中実の従来型のころ転動体を作製した。
【0036】
こうして調製した各実施例および比較例に係るころ転動体について、ころ転動面(摺動面)2の肉厚の割合および中空部の体積割合を測定すると共に、ころ転動体の圧砕強度を測定評価し、さらに各ころ転動体を軸受に組み込んで磨耗試験を実施した。
【0037】
具体的に圧砕強度の評価方法としては、一組(2個)のころ転動体焼結体をその摺動面同士が接触するように配置した状態で上下方向から押圧力を作用せしめ、ころ転動体が破壊したときの最大荷重を圧砕強度として測定し評価する方法を採用した。
【0038】
また、磨耗試験方法としては、得られたころ転動体の転動面の表面粗さが算術平均粗さRaで0.1μm以下となるように研削加工した後に、図3および図4に示すようなころ軸受10に組み込み、荷重が3GPaで回転数が5000rpmの負荷条件で連続回転試験を実施し、ころ転動体の転動面に剥離が生じるに至るまでの回転時間を測定することにより、磨耗特性の評価を行った。なお、上記磨耗評価は荷重が3GPaと通常使用しない過大な負荷を与える加速試験のため、連続回転時間は最大400時間に設定した。
【0039】
図3および図4に示すように各実施例および比較例に係るころ軸受10は、回転中心に対して同心状に配置された内輪4と外輪3との間の環状空間に保持器5を介して複数の転動体1を配設して構成されたころ軸受10において、上記転動体1が、上記のように調製された中空ころ転動体1である用に構成されている。
【0040】
上記圧砕強度および磨耗特性の測定評価結果を下記表1に示す。
【0041】
【表1】

Figure 2004308755
【0042】
上記表1に示す結果から明らかなように、中空ころ転動体の転動部の肉厚が直径に対して10%以上である実施例1〜3および比較例1〜2に係る中空ころ転動体によれば、圧砕強度および磨耗特性が、従来の中実のころ転動体である比較例4の転動体とほぼ同等であり、優れた構造強度および耐久性(耐磨耗性)が得られることが判明した。特に、転動体全体に占める中空部6の占める体積割合が8〜72%の範囲である実施例1〜3および比較例2に係る中空ころ転動体において、上記構造強度および耐久性(耐磨耗性)と共に、良好な原料削減効果が得られることが確認できた。
【0043】
一方、転動部の肉厚が直径に対して5%である比較例3に係る中空ころ転動体によれば、中空部容積が大きく原料コストの低減効果は顕著であるが、圧砕強度が低く、磨耗特性も低下した。
【0044】
(実施例4〜6および比較例5〜9)
次に、実施例1〜3で使用した窒化けい素粉末に代えて、表2に示すようにサイアロン(Si−Al−O−N)粉末またはジルコニア(ZrO2)粉末を用いた点以外は実施例1〜3と同様な条件で成形型の中心軸方向に直径が異なる固形有機物としてのMCナイロンを配設した状態で、その周囲に上記圧粉成形用粉末を充填し、軸方向に100〜250MPaの加圧力で加圧成形し、各実施例用の成形体をそれぞれ調製した。次に作製した各成形体について、0.2MPaに加圧した窒素ガス雰囲気中で400〜550℃に加熱して脱脂することにより、上記固形有機物およびバインダーを除去した後、サイアロンの場合には1700〜1800℃の温度条件及び窒素ガス雰囲気条件下で常圧焼結を実施する一方、ジルコニアの場合には1500〜1700℃の温度条件および大気中で常圧焼結を実施して、ころ焼結体をそれぞれ調製した。さらに、得られた各ころ焼結体がサイアロンである場合には、窒素ガス雰囲気中で100〜150MPaに加圧した状態で1700〜1800℃の温度に加熱する熱間静水圧プレス(HIP)処理を実施する一方、ジルコニアである場合には、窒素ガス雰囲気中で1500〜1700℃の温度条件でHIP処理を実施することにより各実施例および比較例に係る中空ころ転動体を作製した。
【0045】
こうして調製した各実施例および比較例に係るころ転動体について、実施例1〜3と同様にして、ころ転動面(摺動面)2の肉厚の割合および中空部の体積割合を測定すると共に、ころ転動体の圧砕強度を測定評価し、さらに各ころ転動体を軸受に組み込んで磨耗試験を実施した。
【0046】
上記圧砕強度および磨耗特性の測定評価結果を下記表2に示す。
【0047】
【表2】
Figure 2004308755
【0048】
上記表2に示す結果から明らかなように、中空ころ転動体の転動部の肉厚が直径に対して10%以上である実施例4〜6および比較例5,7,8に係る中空ころ転動体によれば、圧砕強度を大きく損なうことなく、優れた耐久性(耐磨耗性)が得られることが判明した。特に、転動体全体に占める中空部6の占める体積割合が22〜72%の範囲である実施例4,5,6に係る中空ころ転動体において、上記構造強度および耐久性(耐磨耗性)と共に、良好な原料削減効果が得られることが確認できた。
【0049】
また、表1に示す窒化けい素焼結体製ころ転動体の特性と、表2に示す結果との比較でも明らかなように、ころ転動体の材質をサイアロン(Si−Al−O−N)やジルコニア(ZrO2)に代えた場合においても、ころ転動体の直径に対する転動面の肉厚の割合が10%以上である限り、圧砕強度および磨耗特性の傾向は変化せず、窒化けい素の場合と同様の結果が得られることが判明した。
【0050】
次に、中空部が中空ころ転動体の内部軸方向に貫通している中空ころ転動体の実施例について説明する。
【0051】
(実施例7〜10および比較例10)
実施例1で使用した窒化けい素粉末に焼結助剤として、酸化イットリウムを5質量%と、酸化アルミニウムを4質量%と、窒化アルミニウムを3質量%と、酸化チタンを1.5質量%と、バインダーとを添加し、ボールミルで湿式混合し、スプレードライヤーにて乾燥噴霧し、圧粉成形用粉末を作製した。
【0052】
次に、プレス成形型の中心軸方向に直径が異なる心材を配設した状態で、その周囲に上記圧粉成形用粉末を充填し、軸方向に100〜250MPaの加圧力でプレス加圧成形し、各実施例用の成形体をそれぞれ調製した。次に作製した各成形体について、窒素ガス雰囲気中で400〜550℃に加熱して脱脂することにより、上記バインダーを除去した後、1700〜1800℃の温度条件及び窒素ガス雰囲気条件下で常圧焼結を実施し、中空ころ焼結体をそれぞれ調製した。さらに、得られた各ころ焼結体を、窒素ガス雰囲気中で100〜150MPaに加圧した状態で1700〜1800℃の温度に加熱する熱間静水圧プレス(HIP)処理を実施すことにより、外径が9mmであり、内径が3〜7mmであり、長さが10mmである各実施例7〜10に係る中空ころ転動体を作製した。
【0053】
各実施例7〜10に係る中空ころ転動体1aは、図2に示すように、窒化けい素セラミックス焼結体から成り、外周に転動面2を有し、内部軸方向に貫通した中空部6aが形成されている。
【0054】
一方、比較例10として、成形型の中心軸方向に前記心材を配設しない点以外は実施例7〜10と同一条件で成形、脱脂、焼結処理、HIP処理を実施することにより、中空部が形成されていない中実の従来型のころ転動体を作製した。
【0055】
こうして調製した各実施例および比較例10に係るころ転動体について、ころ転動体1aの中空部の径に対する外径の比を測定すると共に、実施例1〜3と同様にして、各ころ転動体の圧砕強度を測定評価し、さらに各ころ転動体を軸受に組み込んで磨耗試験を実施した。
【0056】
上記ころ転動体1aの外形/内径比、圧砕強度および磨耗特性の測定評価結果を下記表3に示す。
【0057】
【表3】
Figure 2004308755
【0058】
上記表3に示す結果から明らかなように、中空ころ転動体の外径が中空部の内径の1.5倍以上である実施例7〜9に係る中空ころ転動体によれば、中空部を形成していない従来の中実のころ転動体(比較例10)と比較して、圧砕強度を大きく損なうことなく、同等の優れた耐磨耗性が得られることが判明した。しかしながら、ころ転動体1aの外形/内径比を1.3とした実施例10に係る中空ころ転動体においては、圧砕強度が低下し構造強度が劣化すると共に、磨耗特性も低下することが確認できた。
【0059】
次に、中空部が中空ころ転動体の内部軸方向に貫通している中空ころ転動体において、中空部の中心軸と転動体の中心軸とのずれ(偏移量)の影響について、以下の実施例を参照して説明する。
【0060】
(実施例11〜14)
実施例7において、プレス成形型の中心軸と心材の中心軸とが偏位するように上記心材を配設した状態で、実施例7で調製した圧粉成形用粉末を心材の周囲に充填した点以外は、実施例7と同一条件で成形、脱脂、焼結処理、HIP処理を実施することにより、転動体の中心軸と中空部の中心軸との同軸度が表4に示すように異なる実施例11〜14に係る中空ころ転動体をそれぞれ作製した。各実施例11〜14に係る中空ころ転動体の外径は9mmとし、内径は6mmとし、長さは10mmに統一した。
【0061】
こうして調製した各実施例に係るころ転動体について、ころ転動体1aの外形Dに対する転動体の中心軸と中空部6aの中心軸との偏位量の割合を測定すると共に、実施例1〜3と同様にして、各ころ転動体を軸受に組み込んで磨耗試験を実施した。
【0062】
上記ころ転動体1aおよび中空部6aの中心軸の偏位割合および磨耗特性の測定評価結果を表4に示す。
【0063】
【表4】
Figure 2004308755
【0064】
上記表4に示す結果から明らかなように、中空ころ転動体1aの中心軸と中空部6aの中心軸とのずれ長さが前記中空ころ転動体1aの外径寸法Dの5%以内である実施例11〜13に係る中空ころ転動体によれば、偏位量が大きい実施例14の中空ころ転動体と比較して、優れた耐磨耗性が得られることが判明した。
【0065】
以上の実施例では図3および図4に示すように、回転軸を支持するころ軸受およびその転動体に本発明を適用した例を示しているが、本発明に係るころ転動体は回転軸支持用のころ軸受の転動体に限らず、図5に示すような直動システム20の転動体6bとしても使用できる。すなわち、直線状の軌道21と可動体22との間に複数の転動体1bを保持器5aとともに介装してなり、上記軌道21に沿って可動体22を往復動させる直動システム20において、上記転動体1bとして前記のような中空ころ転動体を使用した場合においても、軽量化による高速移動が可能であり、材料費を軽減した直動システムが得られる。
【0066】
【発明の効果】
以上のように本発明に係る中空ころ転動体およびその製造方法によれば、ころ転動体の軸方向に添って所定の中空部が形成されているため、同一寸法を有する中実のころ転動体と比較して、重量が軽減され、より高速回転が可能になる上に、ころ転動体を製造するために必要な高価なセラミックス原料の使用量を大幅に削減することができ、より低価格なセラミックス製ころ転動体およびころ軸受を提供することが可能になる。
【0067】
一方、ころ転動体内に形成する中空部の体積(容積)割合、ころ転動体の転動部の肉厚、中空部の内径と転動体の外径との比等が適正に規定されているため、構造強度を大きく損なうことなく、中実の転動体と同等の摩耗特性、転動特性が得られ、軽量化したころ転動体の使用により軸受の高速回転化も可能になる。
【図面の簡単な説明】
【図1】本発明に係る中空ころ転動体の一実施例の構造を示す部分破断正面図。
【図2】本発明に係る中空ころ転動体の他の実施例の構造を示す部分破断正面図。
【図3】本発明に係るころ軸受の一実施例の構造を示す正面図。
【図4】図3に示すころ軸受の断面図。
【図5】本発明に係る中空ころ転動体を使用した直動システムの構造例を示す断面図。
【符号の説明】
1、1a、1b ころ転動体
2 転動面(摺動面)
3 外輪
4 内輪
5、5a 保持器
6、6a 中空部
10 ころ軸受
20 直動システム
21 軌道
22 可動体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hollow roller rolling element, a method for manufacturing the same, and a roller bearing using the rolling element. Particularly, the present invention achieves weight reduction, enables high-speed operation, has excellent wear resistance, and can exhibit long life characteristics. The present invention relates to a hollow roller rolling element, an inexpensive manufacturing method thereof, and a roller bearing and a linear motion system using the rolling element.
[0002]
[Prior art]
A bearing is generally used as a mechanism for holding a rotating shaft of a device. The bearing is configured such that a plurality of rolling elements are held at equal intervals by a retainer in an annular space formed between an outer ring and an inner ring arranged concentrically with respect to the center of rotation. Further, a linear motion system in which a plurality of rolling elements are interposed between a linear track and a movable body and the movable body reciprocates along the track is also frequently used in a movable table mechanism or the like.
[0003]
For example, there are ball bearings that use spherical rolling elements and roller bearings that use cylindrical rolling elements.However, when the same load is applied to the bearing, the ball bearing receives a point-contact load. Therefore, two or more sets of bearings are required. In general, bearings for applications requiring high reliability and bearings for high loads such as linear motion systems that have a large load due to load are used as rolling elements. Is used. In particular, bearings for rotating shafts of machine tools and other processing machines emphasize load resistance, so roller bearings that receive loads in line contact are more advantageous than ball bearings in which rolling elements receive load in point contact. is there.
[0004]
In recent years, machine tools have been required to have improved machining accuracy and machining efficiency, and roller bearings have also tended to require high-speed rotation. BACKGROUND ART In order to realize high-speed rotation of a roller bearing, a roller bearing using a ceramic rolling element excellent in light weight, wear resistance and slidability has been put to practical use. For example, as a bearing for a gearbox of a jet engine, a bearing in which rolling elements (balls and rollers) are formed of a ceramic sintered body such as silicon nitride has been partially used.
[0005]
The above-mentioned ceramic roller rolling elements containing silicon nitride as a main component are more durable than conventional heat-resistant special steel rollers such as bearing steel, and have a specific gravity of about 1/2 to 1/3 of that of bearing steel. Therefore, it has been confirmed that the centrifugal force at the time of using the device is reduced, so that the speed can be increased, and that it can withstand high heat up to 500 ° C. which is about twice that of special steel. It is being adopted as a bearing for high-temperature rotating equipment and machine tools.
[0006]
In recent years, roller bearings have been required to further improve the processing accuracy and processing efficiency of a machine tool used as a technical problem, and higher-speed rotation of the bearing has been required. In order to realize this high-speed rotation, a ceramic rolling element having a specific gravity of about 1/2 to 1/3 thereof is more advantageous than a conventional rolling element made of bearing steel because the centrifugal force is reduced. , Has been adopted in the market [0007]
[Problems to be solved by the invention]
However, since the rolling elements of the roller have a larger volume than that of the spherical rolling elements, there has been a problem that the use of a ceramic sintered body having a high raw material price results in a rapid increase in manufacturing cost and a high price.
[0008]
The present invention has been made in order to address the above-described problems, and in particular, is a hollow roller rolling element capable of achieving high-speed operation with reduced weight, excellent wear resistance, and exhibiting a long life characteristic, and its inexpensiveness. It is an object of the present invention to provide a manufacturing method and a roller bearing and a linear motion system using the low-cost rolling element.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have prepared ceramic roller rolling elements having various structures, and the respective structures have been adjusted to the wear characteristics, rolling characteristics, structural strength, raw material usage, etc. of the roller rolling elements. The effects were compared. As a result, when a ceramic rolling element having a predetermined hollow portion was formed along the axial direction of the roller rolling element, wear characteristics and rolling characteristics equivalent to those of a solid roller rolling element were obtained, and the raw material used was Has been found that it is possible to provide a ceramic roller and a roller bearing at lower cost.
[0010]
In addition, by appropriately defining the volume (volume) ratio of the hollow portion formed in the roller rolling element, the thickness of the rolling portion of the roller rolling element, the ratio of the inner diameter of the hollow portion to the outer diameter of the rolling element, and the like. It was also found that the wear characteristics and rolling characteristics equivalent to those of a solid rolling element can be obtained without significantly impairing the structural strength. The present invention has been completed based on these findings.
[0011]
That is, the hollow roller rolling element according to the present invention is a hollow roller rolling element made of a ceramic sintered body having a hollow portion formed in the inner axial direction, and the volume occupied by the hollow portion in the entire hollow roller rolling element. The ratio is 8 to 50%, and the thickness of the rolling portion is 10% or more with respect to the diameter of the hollow roller rolling element.
[0012]
Since the hollow portion is formed in the inner axial direction of the roller rolling element, the weight is reduced and higher-speed rotation is enabled, as compared with a solid roller rolling element having the same dimensions. Expensive ceramic raw materials required for manufacturing the moving body can be reduced, and the roller rolling body can be provided at low cost.
[0013]
As shown in FIG. 1, when adopting a structure in which both end surfaces of the rolling element are closed with a ceramic material so that the hollow portion forms a closed space inside the roller rolling element, the hollow roller rolling element is used. Since the outer shape of the roller becomes the same as that of a conventional solid roller, the conventional jig can be used as it is as a jig for handling and mounting the roller in use in assembling the bearing. According to the hollow roller rolling element having a structure in which both end faces of the rolling element are closed, grease or the like filled as a lubricant for the bearing does not enter the inside of the hollow roller rolling element, and a conventional lubrication method is used. Can be adopted as it is.
[0014]
In the above-mentioned hollow roller rolling element, the volume ratio of the hollow portion to the entire hollow roller rolling element is 8 to 50%. When the volume ratio of the hollow portion to the whole hollow roller rolling element is less than 8%, the structural strength is not significantly reduced, but the effect of reducing the amount of the ceramic raw material is insufficient. On the other hand, when the volume ratio of the hollow portion exceeds 50%, the structural strength is significantly reduced, and the durability (life) of the roller bearing is reduced. Therefore, the volume ratio occupied by the hollow portion is defined in the range of 8 to 50%, but is more preferably in the range of 20 to 40%.
[0015]
Further, in the above-mentioned hollow roller rolling element, the thickness of the rolling portion of the hollow roller rolling element is 10% or more with respect to the diameter of the hollow roller rolling element. When the thickness of the rolling portion is less than 10% of the diameter of the rolling element, the structural strength of the rolling element is insufficient, and the load resistance and durability of the roller bearing are reduced.
[0016]
In the above-mentioned hollow roller rolling element, the hollow portion may be configured to penetrate in the axial direction of the hollow roller rolling element. In this case, in the molding step, the hollow portion is formed by using a cylindrical molding die provided with a core material corresponding to the hollow portion in the center axis direction, or by using an upper punch with the core material protruding. Can be formed.
[0017]
Further, in the hollow roller rolling element in which the hollow part penetrates in the axial direction, it is preferable that the outer diameter of the hollow roller rolling element is 1.5 times or more the inner diameter of the hollow part. When the outer diameter of the hollow roller rolling element is less than 1.5 times the inner diameter of the hollow portion, the structural strength of the rolling element becomes insufficient, and the load resistance and durability of the roller bearing decrease.
[0018]
Further, in the hollow roller rolling element in which the hollow portion penetrates in the axial direction, a deviation length (amount of deviation) between a central axis of the hollow roller rolling element and a central axis of the hollow portion is outside the hollow roller rolling element. Preferably, it is within 5% of the diameter. If the deviation length (deviation amount) exceeds 5% of the outer diameter of the hollow roller rolling element, vibration tends to occur when the roller bearing roller rotates at high speed.
[0019]
The ceramic sintered body constituting the above-mentioned hollow roller rolling element is not particularly limited as long as it has good wear resistance, light weight, sliding characteristics, structural strength, etc. (Si 3 O 4 ), sialon (Si—Al—O—N), silicon carbide (SiC), zirconia (ZrO 2 ), alumina (Al 2 O 3 ) and azil (Al 2 O 3 —ZrO 2 ). Any of the ceramic sintered bodies is preferable. Particularly, a silicon nitride (Si 3 O 4 ) sintered body having high strength and high toughness is preferable.
[0020]
The roller bearing according to the present invention is a roller bearing configured by arranging a plurality of rolling elements via a retainer in an annular space between an inner ring and an outer ring arranged concentrically with respect to a rotation center, The rolling element to be used is a hollow roller rolling element configured as described above.
[0021]
The linear motion system according to the present invention is used in a linear motion system in which a plurality of rolling elements are interposed between a linear track and a movable body, and the movable body reciprocates along the track. The rolling element is a hollow roller rolling element configured as described above.
[0022]
Furthermore, a method of manufacturing a hollow roller rolling element in which a hollow portion does not penetrate in the axial direction and both ends in the axial direction are closed includes disposing a solid organic substance in a central axis direction of a forming die, and surrounding the solid organic substance. After filling the ceramic powder into the ceramic powder, applying a pressing force in the axial direction to form a molded body, and heating the obtained molded body while applying pressure at or above atmospheric pressure to volatilize the solid organic matter and degrease it. And sintering the obtained degreased body under normal pressure.
[0023]
In the molded body forming step, the solid organic substance arranged in the central axis direction of the molding die is used for forming a hollow portion. As the solid organic substance, engineering plastics such as MC nylon, solid wax, and the like can be suitably used.
[0024]
The ceramic powder includes a rare earth oxide (such as Y 2 O 3 ) as a sintering aid, alumina (Al 2 O 3 ), and, if necessary, magnesia (MgO), aluminum nitride (AlN), and titanium oxide (TiO 2). 2 ) 1 to 10% by mass and a binder are added and blended and used as a raw material mixture. After the raw material mixture containing the ceramic powder is filled around the solid organic substance, a pressing force of 100 to 250 MPa is applied in the axial direction to consolidate the raw material mixture to form a compact.
[0025]
In the next degreasing step, the solid organic matter and the binder are heated by heating the obtained molded body in an inert gas atmosphere or a nitrogen gas atmosphere at a pressure higher than the atmospheric pressure, specifically, at a pressure higher than 0.2 MPa. Is volatilized and removed and degreased, and a hollow portion extending in the inner axial direction of the molded body is formed.
[0026]
If the pressure of the degreasing atmosphere gas is less than 0.2 MPa, the heated solid organic matter rapidly falls out of the molded body, so that the molded body is liable to crack. On the other hand, if the degreasing atmosphere gas pressure is increased to 0.2 MPa or more, the solid organic matter gradually comes off the molded body at a slow speed, so that there is little possibility of cracking.
[0027]
The compacted body (defatted body) obtained by sintering under normal pressure for 1 to 5 hours in a temperature range of 1700 to 1800 ° C. in a non-oxidizing atmosphere such as nitrogen gas for 1 to 5 hours. A rolling element is obtained.
[0028]
Further, in the method for manufacturing a hollow roller rolling element, by performing a hot isostatic pressing (HIP) process after normal-pressure sintering of the compact, the compact is more dense and has abrasion resistance and structural strength. An excellent hollow roller rolling element can be obtained.
[0029]
According to the hollow roller rolling element and the method for manufacturing the same according to the above configuration, since a predetermined hollow portion is formed along the axial direction of the roller rolling element, compared to a solid roller rolling element having the same dimensions. In addition to reducing weight and enabling higher-speed rotation, the use of expensive ceramic raw materials required for manufacturing roller rolling elements can be greatly reduced, and lower-cost ceramic roller rolling can be achieved. Moving bodies and roller bearings can be provided.
[0030]
On the other hand, the volume (volume) ratio of the hollow part formed in the roller rolling element, the thickness of the rolling part of the roller rolling element, the ratio of the inner diameter of the hollow part to the outer diameter of the rolling element, and the like are properly defined. Therefore, wear characteristics and rolling characteristics equivalent to those of a solid rolling element can be obtained without significantly impairing the structural strength, and the use of a light-weight roller rolling element enables high-speed rotation of the bearing.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0032]
(Examples 1-3 and Comparative Examples 1-4)
Yttrium oxide (Y 2 O 3 ) powder as a sintering aid was added to silicon nitride powder having an oxygen amount of 0.9% by mass and an average particle size of 0.55 μm containing 97% by mass of α-type silicon nitride. 5% by mass, 4% by mass of aluminum oxide (Al 2 O 3 ) powder, 3 % by mass of aluminum nitride (AlN) powder, 1.5% by mass of titanium oxide (TiO 2 ) powder, and a binder After adding and wet-mixing with a ball mill, the mixture was dry-sprayed with a spray drier to produce a powder compacting powder.
[0033]
In a state in which MC nylon as a solid organic substance having a different diameter in the center axis direction of a molding die having an inner diameter of 100 mm is provided, the powder for compaction molding is filled around the nylon, and the pressure is applied in the axial direction at a pressure of 100 to 250 MPa. Press molding was performed to prepare molded articles for each example. Next, for each formed body, the solid organic matter and the binder were removed by heating to 400 to 550 ° C. in a nitrogen gas atmosphere pressurized to 0.2 MPa to remove the solid matter, and then heated to a temperature of 1700 to 1800 ° C. Under normal conditions and nitrogen gas atmosphere conditions, normal-pressure sintering was performed to prepare roller sintered bodies. Further, each of the obtained roller sintered bodies is subjected to a hot isostatic press (HIP) treatment of heating to a temperature of 1700 to 1800 ° C. while being pressurized to 100 to 150 MPa in a nitrogen gas atmosphere. Hollow roller rolling elements according to Examples 1 to 3 and Comparative Examples 1 to 3 were produced.
[0034]
As shown in FIG. 1, the hollow roller rolling element 1 according to each of the examples and the comparative example is made of a silicon nitride ceramic sintered body, has a rolling surface 2 on an outer periphery, and has a hollow portion 6 in an inner axial direction. Is formed.
[0035]
On the other hand, as Comparative Example 4, a hollow portion was formed by performing molding, degreasing, sintering, and HIP processing under the same conditions as in Example except that MC nylon as a solid organic substance was not provided in the molding die. A solid conventional rolling element was manufactured.
[0036]
With respect to the roller rolling elements according to the examples and the comparative examples thus prepared, the ratio of the thickness of the roller rolling surface (sliding surface) 2 and the volume ratio of the hollow portion were measured, and the crushing strength of the roller rolling element was measured. After the evaluation, a rolling test was performed by incorporating each rolling element into a bearing.
[0037]
More specifically, as a method of evaluating the crushing strength, a set of (two) roller rolling element sintered bodies are arranged so that their sliding surfaces are in contact with each other, and a pressing force is applied from above and below, and roller rolling is performed. A method was adopted in which the maximum load when the moving body was broken was measured and evaluated as crushing strength.
[0038]
Further, as a wear test method, as shown in FIG. 3 and FIG. 4, after grinding the surface of the rolling surface of the obtained roller rolling element so as to have an arithmetic average roughness Ra of 0.1 μm or less, Wear in the roller bearing 10 by conducting a continuous rotation test under a load condition of a load of 3 GPa and a rotation speed of 5000 rpm, and measuring the rotation time until the rolling surface of the roller rolling element is peeled off. The properties were evaluated. In the above-mentioned abrasion evaluation, the continuous rotation time was set to a maximum of 400 hours for an acceleration test in which a load was 3 GPa and an excessive load that was not normally used was given.
[0039]
As shown in FIGS. 3 and 4, the roller bearing 10 according to each of the embodiments and the comparative example has a retainer 5 in an annular space between the inner ring 4 and the outer ring 3 arranged concentrically with respect to the rotation center. In the roller bearing 10 configured by disposing a plurality of rolling elements 1, the rolling elements 1 are configured to be the hollow roller rolling elements 1 prepared as described above.
[0040]
The results of measurement and evaluation of the crushing strength and wear characteristics are shown in Table 1 below.
[0041]
[Table 1]
Figure 2004308755
[0042]
As is clear from the results shown in Table 1 above, the hollow roller rolling elements according to Examples 1 to 3 and Comparative Examples 1 and 2 in which the thickness of the rolling portion of the hollow roller rolling element is 10% or more with respect to the diameter. According to the method, the crushing strength and wear characteristics are almost equal to those of the conventional rolling element of Comparative Example 4 which is a solid rolling element, and excellent structural strength and durability (abrasion resistance) can be obtained. There was found. In particular, in the hollow roller rolling elements according to Examples 1 to 3 and Comparative Example 2 in which the volume ratio of the hollow portion 6 to the entire rolling element is in the range of 8 to 72%, the structural strength and durability (wear resistance) ) As well as a good raw material reduction effect.
[0043]
On the other hand, according to the hollow roller rolling element according to Comparative Example 3 in which the thickness of the rolling portion is 5% of the diameter, the hollow portion volume is large and the effect of reducing the raw material cost is remarkable, but the crushing strength is low. And abrasion characteristics were also reduced.
[0044]
(Examples 4 to 6 and Comparative Examples 5 to 9)
Next, in place of the silicon nitride powder used in Examples 1 to 3, a sialon (Si-Al-ON) powder or a zirconia (ZrO2) powder was used as shown in Table 2, except that the powder was used. In a state where MC nylon as a solid organic substance having a different diameter in the center axis direction of the molding die is provided under the same conditions as those of 1 to 3, the surroundings are filled with the powder for compacting, and 100 to 250 MPa in the axial direction. , And molded articles were prepared for each example. Next, each formed body was heated to 400 to 550 ° C. in a nitrogen gas atmosphere pressurized to 0.2 MPa and degreased to remove the solid organic substances and the binder. Atmospheric pressure sintering is carried out under the temperature conditions of ~ 1800 ° C and nitrogen gas atmosphere, while in the case of zirconia, atmospheric pressure sintering is carried out at the temperature condition of 1500-1700 ° C and in the air, Each body was prepared. Further, when each of the obtained roller sintered bodies is Sialon, a hot isostatic pressing (HIP) treatment is performed in which the pressure is increased to 100 to 150 MPa in a nitrogen gas atmosphere and the temperature is increased to 1700 to 1800 ° C. On the other hand, when zirconia was used, hollow roller rolling elements according to Examples and Comparative Examples were manufactured by performing HIP processing under a temperature condition of 1500 to 1700 ° C. in a nitrogen gas atmosphere.
[0045]
With respect to the roller rolling bodies according to each of the examples and the comparative examples thus prepared, the thickness ratio of the roller rolling surface (sliding surface) 2 and the volume ratio of the hollow portion are measured in the same manner as in Examples 1 to 3. At the same time, the crushing strength of the roller rolling elements was measured and evaluated, and each roller rolling element was incorporated into a bearing to perform a wear test.
[0046]
The results of measurement and evaluation of the crushing strength and wear characteristics are shown in Table 2 below.
[0047]
[Table 2]
Figure 2004308755
[0048]
As is clear from the results shown in Table 2, the hollow rollers according to Examples 4 to 6 and Comparative Examples 5, 7, and 8 in which the thickness of the rolling portion of the hollow roller rolling element is 10% or more of the diameter. According to the rolling elements, it was found that excellent durability (abrasion resistance) can be obtained without significantly impairing the crushing strength. In particular, in the hollow roller rolling elements according to Examples 4, 5, and 6, in which the volume ratio of the hollow portion 6 to the entire rolling element is in the range of 22 to 72%, the structural strength and durability (abrasion resistance) described above. At the same time, it was confirmed that a good raw material reduction effect was obtained.
[0049]
Further, as is clear from the comparison between the characteristics of the silicon nitride sintered body roller shown in Table 1 and the results shown in Table 2, the material of the roller body was sialon (Si-Al-ON) or Even when zirconia (ZrO2) is used, as long as the ratio of the thickness of the rolling surface to the diameter of the rolling elements is 10% or more, the tendency of the crushing strength and wear characteristics does not change. It turned out that the same result as was obtained.
[0050]
Next, an embodiment of a hollow roller rolling element in which a hollow portion penetrates in the axial direction of the hollow roller rolling element will be described.
[0051]
(Examples 7 to 10 and Comparative Example 10)
5% by mass of yttrium oxide, 4% by mass of aluminum oxide, 3% by mass of aluminum nitride, and 1.5% by mass of titanium oxide were added to the silicon nitride powder used in Example 1 as a sintering aid. And a binder were added thereto, and the mixture was wet-mixed with a ball mill and dried and sprayed with a spray drier to prepare a powder for compacting.
[0052]
Next, in a state where core materials having different diameters are arranged in the central axis direction of the press forming die, the powder for compacting is filled around the core material, and press-press forming is performed with a pressing force of 100 to 250 MPa in the axial direction. A molded body for each example was prepared. Next, each of the formed bodies was degreased by heating to 400 to 550 ° C. in a nitrogen gas atmosphere to remove the binder, and then heated at a normal pressure of 1700 to 1800 ° C. and a nitrogen gas atmosphere. Sintering was carried out to prepare hollow roller sintered bodies. Further, by performing a hot isostatic pressing (HIP) process of heating the obtained roller sintered bodies to a temperature of 1700 to 1800 ° C. in a state of being pressurized to 100 to 150 MPa in a nitrogen gas atmosphere, Hollow roller rolling elements according to Examples 7 to 10 having an outer diameter of 9 mm, an inner diameter of 3 to 7 mm, and a length of 10 mm were produced.
[0053]
As shown in FIG. 2, the hollow roller rolling element 1a according to each of Examples 7 to 10 is made of a silicon nitride ceramic sintered body, has a rolling surface 2 on its outer periphery, and has a hollow portion penetrating in the internal axial direction. 6a are formed.
[0054]
On the other hand, as Comparative Example 10, the hollow portion was formed by performing molding, degreasing, sintering, and HIP processing under the same conditions as in Examples 7 to 10 except that the core material was not provided in the center axis direction of the molding die. A solid conventional rolling element in which no was formed was produced.
[0055]
The ratio of the outer diameter to the diameter of the hollow portion of the roller rolling element 1a was measured for the roller rolling elements according to each of the examples and Comparative Example 10 thus prepared, and in the same manner as in Examples 1 to 3, The crushing strength of each roller was measured and evaluated, and a rolling test was carried out by incorporating each rolling element into a bearing.
[0056]
Table 3 below shows the results of measurement and evaluation of the outer / inner diameter ratio, crushing strength, and wear characteristics of the roller rolling element 1a.
[0057]
[Table 3]
Figure 2004308755
[0058]
As is clear from the results shown in Table 3, according to the hollow roller rolling elements according to Examples 7 to 9 in which the outer diameter of the hollow roller rolling element is 1.5 times or more the inner diameter of the hollow part, the hollow part is It was found that, as compared with a conventional solid roller rolling element not formed (Comparative Example 10), the same excellent abrasion resistance was obtained without significantly impairing the crushing strength. However, in the hollow roller rolling element according to Example 10 in which the outer / inner diameter ratio of the roller rolling element 1a was 1.3, it was confirmed that the crushing strength was reduced, the structural strength was deteriorated, and the wear characteristics were also reduced. Was.
[0059]
Next, in a hollow roller rolling element in which the hollow portion penetrates in the direction of the internal axis of the hollow roller rolling element, the following describes the effect of the deviation (deviation) between the central axis of the hollow section and the central axis of the rolling element. This will be described with reference to examples.
[0060]
(Examples 11 to 14)
In Example 7, the core for powder compacting prepared in Example 7 was filled around the core in a state where the core was arranged so that the center axis of the press mold and the center of the core deviated. Except for the point, by performing molding, degreasing, sintering, and HIP processing under the same conditions as in Example 7, the coaxiality between the central axis of the rolling element and the central axis of the hollow portion is different as shown in Table 4. Hollow roller rolling elements according to Examples 11 to 14 were produced. The outer diameter of the hollow roller rolling elements according to Examples 11 to 14 was 9 mm, the inner diameter was 6 mm, and the length was 10 mm.
[0061]
With respect to the roller rolling elements according to the respective examples thus prepared, the ratio of the amount of deviation between the central axis of the rolling elements and the central axis of the hollow portion 6a with respect to the outer shape D of the roller rolling elements 1a was measured. In the same manner as in the above, a rolling test was conducted by incorporating each rolling element into a bearing.
[0062]
Table 4 shows the measurement and evaluation results of the deviation ratio of the central axis of the roller rolling element 1a and the hollow portion 6a and the wear characteristics.
[0063]
[Table 4]
Figure 2004308755
[0064]
As is clear from the results shown in Table 4, the deviation length between the central axis of the hollow roller rolling element 1a and the central axis of the hollow portion 6a is within 5% of the outer diameter D of the hollow roller rolling element 1a. According to the hollow roller rolling elements according to Examples 11 to 13, it was found that superior wear resistance was obtained as compared with the hollow roller rolling element of Example 14 having a large amount of deflection.
[0065]
In the above embodiment, as shown in FIGS. 3 and 4, an example in which the present invention is applied to a roller bearing for supporting a rotating shaft and a rolling element thereof is shown. It is not limited to the rolling element of the roller bearing for use, but can also be used as the rolling element 6b of the linear motion system 20 as shown in FIG. That is, in the linear motion system 20 in which a plurality of rolling elements 1b are interposed between the linear track 21 and the movable body 22 together with the retainer 5a, and the movable body 22 reciprocates along the track 21, Even when the above-described hollow roller rolling element is used as the rolling element 1b, a high-speed movement can be achieved by weight reduction, and a linear motion system with reduced material cost can be obtained.
[0066]
【The invention's effect】
As described above, according to the hollow roller rolling element and the method for manufacturing the same according to the present invention, since a predetermined hollow portion is formed along the axial direction of the roller rolling element, a solid roller rolling element having the same dimensions is provided. In addition to reducing the weight and enabling higher speed rotation, the amount of expensive ceramic raw materials required to manufacture the roller rolling elements can be significantly reduced, resulting in lower cost. It is possible to provide a ceramic rolling element and a roller bearing.
[0067]
On the other hand, the volume (volume) ratio of the hollow part formed in the roller rolling element, the thickness of the rolling part of the roller rolling element, the ratio of the inner diameter of the hollow part to the outer diameter of the rolling element, and the like are properly defined. Therefore, wear characteristics and rolling characteristics equivalent to those of a solid rolling element can be obtained without significantly impairing the structural strength, and the use of a light-weight roller rolling element enables high-speed rotation of the bearing.
[Brief description of the drawings]
FIG. 1 is a partially broken front view showing the structure of one embodiment of a hollow roller rolling element according to the present invention.
FIG. 2 is a partially broken front view showing the structure of another embodiment of the hollow roller rolling element according to the present invention.
FIG. 3 is a front view showing the structure of one embodiment of the roller bearing according to the present invention.
FIG. 4 is a sectional view of the roller bearing shown in FIG. 3;
FIG. 5 is a sectional view showing a structural example of a linear motion system using the hollow roller rolling elements according to the present invention.
[Explanation of symbols]
1, 1a, 1b Rolling element 2 Rolling surface (sliding surface)
Reference Signs List 3 outer ring 4 inner ring 5, 5a cage 6, 6a hollow portion 10 roller bearing 20 linear motion system 21 track 22 movable body

Claims (10)

内部軸方向に中空部が形成されているセラミックス焼結体から成る中空ころ転動体であり、この中空ころ転動体全体に占める前記中空部の占める体積割合が8〜50%であり、転動部の肉厚が前記中空ころ転動体の直径に対して10%以上であることを特徴とする中空ころ転動体。A hollow roller rolling element made of a ceramic sintered body having a hollow portion formed in an inner axial direction, wherein the volume ratio of the hollow portion to the entire hollow roller rolling element is 8 to 50%, Wherein the thickness of the roller is 10% or more of the diameter of the hollow roller rolling element. 前記中空部が中空ころ転動体の内部軸方向に貫通していることを特徴とする請求項1記載の中空ころ転動体。The hollow roller rolling element according to claim 1, wherein the hollow portion penetrates in the axial direction of the hollow roller rolling element. 前記中空ころ転動体の外径が中空部の内径の1.5倍以上であることを特徴とする請求項2記載の中空ころ転動体。The hollow roller rolling element according to claim 2, wherein the outer diameter of the hollow roller rolling element is 1.5 times or more the inner diameter of the hollow portion. 前記中空ころ転動体の中心軸と前記中空部の中心軸とのずれ長さが前記中空ころ転動体の外径寸法の5%以内であることを特徴とする請求項2記載の中空ころ転動体。The hollow roller rolling element according to claim 2, wherein a deviation length between a central axis of the hollow roller rolling element and a central axis of the hollow portion is within 5% of an outer diameter of the hollow roller rolling element. . 前記セラミックス焼結体が、窒化けい素,サイアロン,炭化けい素,ジルコニア,アルミナおよびアルジルのいずれかであることを特徴とする請求項1ないし4のいずれかに記載の中空ころ転動体。5. The hollow roller rolling element according to claim 1, wherein the ceramic sintered body is any one of silicon nitride, sialon, silicon carbide, zirconia, alumina, and azil. 回転中心に対して同心状に配置された内輪と外輪との間の環状空間に保持器を介して複数の転動体を配設して構成されたコロ軸受において、上記転動体が請求項1ないし5のいずれかに記載の中空ころ転動体であることを特徴とするころ軸受。In a roller bearing configured by arranging a plurality of rolling elements via a retainer in an annular space between an inner ring and an outer ring that are concentrically arranged with respect to a rotation center, the rolling elements are characterized in that the above-mentioned rolling elements are provided. 5. A roller bearing, characterized by being the hollow roller rolling element according to any one of the above items 5. 直線状の軌道と可動体との間に複数の転動体を介装してなり、上記軌道に沿って可動体を往復動させる直動システムにおいて、上記転動体が請求項1ないし5のいずれかに記載の中空ころ転動体であることを特徴とする直動システム。6. A linear motion system in which a plurality of rolling elements are interposed between a linear track and a movable body to reciprocate the movable body along the track, wherein the rolling elements are any one of claims 1 to 5. A linear motion system, characterized by being a hollow roller rolling element according to (1). 成形型の中心軸方向に固形有機物を配置する一方、この固形有機物の周囲にセラミックス粉末を充填した後に、軸方向に加圧力を付加して成形体を形成する工程と、得られた成形体を大気圧以上の圧力で加圧しながら加熱し前記固形有機物を揮散させて脱脂する工程と、得られた脱脂体を常圧焼結する工程とを具備することを特徴とする中空ころ転動体の製造方法。A step of placing a solid organic substance in the center axis direction of a molding die, filling ceramic powder around the solid organic substance, and then applying a pressing force in an axial direction to form a molded article; Manufacturing a hollow roller rolling element, comprising: a step of heating while pressurizing at a pressure equal to or higher than atmospheric pressure to volatilize the solid organic matter to degrease it; and sintering the obtained degreased body at normal pressure. Method. 前記成形体を常圧焼結した後に、さらに熱間静水圧プレス(HIP)処理を実施することを特徴とする請求項8記載の中空ころ転動体の製造方法。The method of manufacturing a hollow roller rolling element according to claim 8, wherein after the formed body is sintered under normal pressure, hot isostatic pressing (HIP) is further performed. 前記セラミックス粉末として、窒化けい素、サイアロン、炭化けい素、ジルコニア、アルミナおよびアルジルのいずれかを使用することを特徴とする請求項8記載の中空ころ転動体の製造方法。9. The method according to claim 8, wherein any one of silicon nitride, sialon, silicon carbide, zirconia, alumina and azil is used as the ceramic powder.
JP2003102111A 2003-04-04 2003-04-04 Hollow roller rolling element, its manufacturing method, and roller bearing using the same Pending JP2004308755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102111A JP2004308755A (en) 2003-04-04 2003-04-04 Hollow roller rolling element, its manufacturing method, and roller bearing using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102111A JP2004308755A (en) 2003-04-04 2003-04-04 Hollow roller rolling element, its manufacturing method, and roller bearing using the same

Publications (1)

Publication Number Publication Date
JP2004308755A true JP2004308755A (en) 2004-11-04

Family

ID=33465696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102111A Pending JP2004308755A (en) 2003-04-04 2003-04-04 Hollow roller rolling element, its manufacturing method, and roller bearing using the same

Country Status (1)

Country Link
JP (1) JP2004308755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889300A (en) * 2011-07-19 2013-01-23 谢夫勒科技股份两合公司 Rotor main support
WO2018025297A1 (en) * 2016-07-30 2018-02-08 株式会社ハーモニック・ドライブ・システムズ Wave generator, and wave gear device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889300A (en) * 2011-07-19 2013-01-23 谢夫勒科技股份两合公司 Rotor main support
WO2018025297A1 (en) * 2016-07-30 2018-02-08 株式会社ハーモニック・ドライブ・システムズ Wave generator, and wave gear device
TWI724170B (en) * 2016-07-30 2021-04-11 日商和諧驅動系統股份有限公司 Wave generator and strain wave gearing
US11035452B2 (en) 2016-07-30 2021-06-15 Harmonic Drive Systems Inc. Wave generator and strain wave gearing

Similar Documents

Publication Publication Date Title
CN100473627C (en) Wear-resistance silicon nitride member and method for manufacturing thereof
EP2397713B1 (en) Rolling contact member, rolling bearing, and method of producing rolling contact member
JP3549239B2 (en) Rolling bearing
CA2185131C (en) Silicon nitride bearing ball having high fatigue life
JP5268750B2 (en) Impact resistant member and manufacturing method thereof
US10865149B2 (en) Metal-detectable plastic material
JP4642956B2 (en) Bearing ball, bearing, and method of manufacturing bearing ball
JP2004308755A (en) Hollow roller rolling element, its manufacturing method, and roller bearing using the same
JP2009286678A (en) Ceramic-based composite material, method for producing the same, rolling member and rolling device
JP2003004040A (en) Rolling guide apparatus
KR100613956B1 (en) Silicon nitride anti-wear member and process for producing the same
JP2000337386A (en) Ceramic rolling element raw material, its manufacture and rolling element using it
JP2973651B2 (en) Composite bearing structure
WO2015099148A1 (en) Wear-resistant member and rolling support device provided with same, and shaft sealing device
US11225704B2 (en) Cermet body
JP2004002067A (en) Wear-resistant member and its production process
CN111620694A (en) Processing method of high-temperature-resistant high-speed ceramic bearing
JP2011017415A (en) Rolling bearing for turbocharger and method for manufacturing the same
JP2001151576A (en) Sliding member
Nakamura et al. Tribological behaviour of uni-directionally aligned silicon nitride against steel
Takebayashi Bearings for extreme special environments—part 3—basic performance of ceramic (silicon nitride) bearings
JP3861522B2 (en) Manufacturing method of low friction ceramics
JP2822765B2 (en) Sliding member
JP3773080B2 (en) Rolling bearing
JP3629300B2 (en) Rolling / sliding parts and rollers for cam followers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209