JP2004308742A - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP2004308742A
JP2004308742A JP2003101677A JP2003101677A JP2004308742A JP 2004308742 A JP2004308742 A JP 2004308742A JP 2003101677 A JP2003101677 A JP 2003101677A JP 2003101677 A JP2003101677 A JP 2003101677A JP 2004308742 A JP2004308742 A JP 2004308742A
Authority
JP
Japan
Prior art keywords
rolling
bearing
rolling element
cage
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003101677A
Other languages
Japanese (ja)
Inventor
Taketoshi Chibu
剛敏 千布
Shinichi Natsumeda
伸一 棗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003101677A priority Critical patent/JP2004308742A/en
Publication of JP2004308742A publication Critical patent/JP2004308742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/28Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing whose size does not get larger even if an existing bearing materia is used, for higher rigidity and larger load capacitance. <P>SOLUTION: A roller bearing 1 comprises a plurality of rolling elements 13 that are interposed between track surfaces 11a and 12a of inner/outer rings 11 and 12 and arrayed in circumferential direction of the inner/outre rings 11 and 12, a holder 14 that holds the plurality of rolling elements 13 with constant intervals in the circumferential direction, and a seal member 16 for shielding both ends, in axial direction, of an annular space 15 between the inner/outer rings 11 and 12. In the rolling element 13, a ball P is cut at upper and lower parts , parallel to each other, so that flat circular parts 13a and 13b are formed on upper and lower surfaces, with a remaining spherical surface 13c used as a rolling contact surface. The holder 14 comprises guide flat parts 14a and 14b which are so incorporated that the angles formed between a rotation axis L and a bearing center axis K are equal and contact the flat surface parts 13a and 13b of each rolling element 13 to allow the rolling element 13 roll only in circumferential direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、電気、情報、鉄鋼などの産業分野における各種機械に用いられる高剛性、高負荷容量の転がり軸受に関する。
【0002】
【従来の技術】
近年では、工作機械や産業機械等のさまざまな分野の各種機械類、或いは、自動車に搭載されるエンジン等の原動機の補機類の小型、軽量化が進められており、それに伴い、それらに使用される転がり軸受の小型化、高剛性化及び高負荷容量化が求められている。
【0003】
これらの要求に対して、例えば、転動体にファインセラミクスを使用することで、高速回転と高荷重とが共に加わる軸受の長寿命化を図ったグリース封入玉軸受が提案されている(例えば、特許文献1参照)。
また、一対の軌道輪間に複数の転動体が組み込まれ、各軌道輪は転動体の半径より大径状の二つの軌道を夫々有し、各転動体は転がり接触面となる外径が軸方向にも曲率を持ち、周方向に隣り合う転動体が夫々交互に交差状に配されると共に、各転動体の外径が常に相対する一方の軌道輪の軌道と他方の軌道輪の軌道にて二点接触している、所謂クロスボール軸受が提案されている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平4−244624号公報
【特許文献2】
特開2002−235755号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述したように転動体にセラミクスを用いた玉軸受の場合には、高コストになるという問題がある。
また、上述した従来のクロスボール軸受は、例えば一組の相対面を有する上下切断状玉(玉の上下部分を切断して相対面を形成した構造のものを云う。)が、この相対面に垂直な自転中心軸が夫々交差状となるように夫々の転動体が組み込まれるので、その分、軸受の幅が大きくなる。その上、転動体が傾転しないように保持する保持器の形状が複雑になり、コスト高になる等の問題がある。
【0006】
更に、高剛性、高負荷容量の転がり軸受を実現するために、単純に転動体の外径を大きくすることが考えられるが、単純に外径を大きくすると、転動体や転動体を保持する保持器がシール部材に干渉する等の問題がある。
【0007】
従って、本発明の目的は上記課題を解消することに係り、現行の軸受材料で軸受寸法を大きくすることなく、高剛性化、高負荷容量化を図ることができる良好な転がり軸受を提供することである。
【0008】
【課題を解決するための手段】
本発明の上記目的は、内輪と、外輪と、これら内外輪間に介装された複数の転動体と、これら転動体を周方向に沿って等間隔に保持する保持器と、を備えた転がり軸受であって、
前記転動体が、球状体の少なくとも上下何れかの部分を切断して形成された平面部を有すると共に、前記保持器が、それぞれ自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれた前記転動体の平面部に接触して該転動体を周方向にのみ転動させる案内平面部を有していることを特徴とする転がり軸受により達成される。
尚、前記球状体とは、完全な球体(真球)に限らず、自転中心軸方向の直径とそれと直交する方向の直径とが若干異なる球体も含むものとする。
【0009】
上記構成の転がり軸受によれば、転動体が、球状体の少なくとも上下何れかの部分を切断して形成された平面部を有しており、これら転動体を等間隔に保持する保持器が、それぞれ自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれた転動体の平面部に接触して該転動体を周方向にのみ転動させる案内平面部を有している。
そこで、前記平面部が軸受の幅方向端部側に位置することにより、軸受の幅寸法を拡大することなく転動体の転がり接触面となる球面の外径を大きくして、転がり軸受の高剛性化及び高負荷容量化を図ることができる。
【0010】
又、前記転動体は、単純に球体の外径を大きくしただけでなく、球状体の少なくとも上下何れかの部分に平面部を形成し、それぞれの平面部に垂直な自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれているので、前記転動体が平面部を有している分だけ軸受の幅寸法を球体を組み込んだ場合より小さく抑えることができ、転動体や転動体を保持する保持器がシール部材等に干渉する虞を無くせる。
【0011】
又、それぞれの自転中心軸と軸受中心軸のなす角が等しくなるように転動体を組み込んでいるので、各転動体の平面部の位置が全て揃う。
そこで、これら転動体の平面部に接触して案内する保持器の案内平面部も全て同じに位置に形成すれば良くなり、従来のクロスボール軸受のように、転動体が傾転しないように保持する保持器の形状が複雑にならない上、軸受幅も拡大しない。
【0012】
【発明の実施の形態】
以下、添付図面に基づいて本発明の一実施形態に係る転がり軸受を詳細に説明する。
図1は本発明の第1実施態様に係る転がり軸受の要部断面図であり、図2及び図3は図1に示した転動体の斜視図及び正面図である。
【0013】
本第1実施形態に係る転がり軸受1は、図1に示すように、内輪11と、外輪12と、これら内外輪11,12の軌道面11a,12a間に介装されて内外輪11,12の周方向に配列された複数の転動体13と、これら複数の転動体13を周方向に沿って等間隔に保持する保持器14と、前記内外輪11,12間の環状空間15の軸方向両端をシールするシール部材16とを備えている。
【0014】
前記転動体13は、図2及び図3に示すように、球状体である球体Pの上下部分を平行に切断して上下面に円形の平面部13a,13bを形成し、残る球面13cを転がり接触面とした転動体である。
そして、前記転動体13は、これら平面部13a,13bの中心を通る垂直な中心線を自転中心軸Lとして、前記内外輪11,12の軌道面11a,12a間に挟まれて転動する。ここで、前記軌道面11a,12aは、転動体13における球面13cの半径より大径に設定され、該転動体13の球面(転動面)13cは、軌道面11a,12aにそれぞれ一点接触している。
【0015】
前記保持器14は、図1に示すように、それぞれ自転中心軸Lと軸受中心軸Kのなす角が等しくなるように組み込まれた前記各転動体13の平面部13a,13bに接触して該転動体13を周方向にのみ転動させる案内平面部14a,14bを有している。
本第1実施形態の場合、前記各転動体13の自転中心軸Lは、軸受中心軸Kと平行に設定されており、前記保持器14の案内平面部14a,14bは、軸受中心軸Kと直交する平面として形成されている。
【0016】
即ち、本第1実施形態の転がり軸受1は、転動体13が、球体Pそのものではなく、上下部分を平行に切断して形成された平面部13a,13bを有すると共に、前記保持器14が、それぞれ自転中心軸Lと軸受中心軸Kのなす角が等しくなるように組み込まれた前記転動体13の平面部13a,13bに接触して該転動体13を周方向にのみ転動させる案内平面部14a,14bを有している。
そこで、前記平面部13a,13bが、軸受の幅方向両端側に位置することにより、軸受の幅寸法を拡大することなく転動体13の転がり接触面となる球面13cの外径を大きくして、転がり軸受1の高剛性化及び高負荷容量化を図ることができる。
【0017】
又、前記転動体13は、単純に球体Pの外径を大きくしただけでなく、球体Pの上下部分を平行に切断して上下面に平面部13a,13bを形成し、それぞれの平面部13a,13bに垂直な自転中心軸Lと軸受中心軸Kのなす角が等しくなるように組み込まれているので、前記転動体13が平面部を有している分だけ軸受の幅寸法を球体Pを組み込んだ場合より小さく抑えることができ、転動体13や転動体13を保持する保持器14がシール部材16に干渉する虞を無くせる。
【0018】
また、それぞれの自転中心軸Lと軸受中心軸Kのなす角が等しくなるように転動体13を組み込んでいるので、各転動体13の平面部13a,13bの位置が全て揃うことになる。
そこで、これら転動体13の平面部13a,13bに接触して案内する保持器14の案内平面部14a,14bも全て同じに位置に同じ向きで形成すればよくなり、従来のクロスボール軸受のように、保持器14の形状が複雑にならず、軸受幅の増大も抑えられる。
【0019】
例えば、前記転がり軸受1の幅寸法を一般的な玉軸受(転動体が球体の転がり軸受)と同等に維持しながら、転動体13の球面13cの外径を大きくすることができ、高剛性、高負荷容量を図ることができる。
因みに、一般的な玉軸受の場合、図13に示すように、転動体である玉の直径をDa、軌道輪の断面高さをH、軌道輪の幅をBとした場合、Da/H、Da/Bは0.65程度が使用限度となっているが、本実施形態の転がり軸受1では、Da/H、Da/Bを0.06〜0.75程度とすることができ、高負荷容量の転がり軸受とすることができる。
【0020】
次に、本発明の転がり軸受を他の異なる形式の転がり軸受に適用した場合の各実施形態について説明する。なお、以下の各実施形態に係る添付図では、シール部材は省略してある。また、同じ機能を持つ構成部材については、形状等が若干違う場合にも図1と同符号を付して詳細な説明を省略する。
【0021】
図4は本発明の第2実施形態に係る転がり軸受の要部断面図である。
本第2実施形態の転がり軸受2は、本発明の転がり軸受をマグネト玉軸受に適用したものであり、外輪12にはカウンタボア12cが形成されている。
【0022】
図5は本発明の第3実施形態に係る転がり軸受の要部断面図である。
本第3実施形態の転がり軸受3は、本発明の転がり軸受をアンギュラ玉軸受に適用したものであり、転動体13の傾きに応じた角度で保持器14の案内平面部14a,14bが形成されている。
【0023】
図6は本発明の第4実施形態の転がり軸受の要部断面図である。
本第4実施形態の転がり軸受4は、図1に示した第1実施形態の転がり軸受1の変形例であり、内輪11の軌道面11aを二つの球面で構成し、転動体13の球面13cと内輪11の軌道面11aとの接触を二点接触としたものである。
【0024】
図7は本発明の第5実施形態の転がり軸受の要部断面図である。
本第5実施形態の転がり軸受5は、図6の第4実施形態の転がり軸受4の変形例であり、外輪12の軌道面12aを二つの球面で構成し、転動体13の球面13cと外輪12の軌道面12aとの接触も二点接触としたものである。
即ち、上述した第4及び第5実施形態の転がり軸受4及び5のように、三点接触や四点接触等の多点接触転がり軸受とすることで、アキシアル荷重を受けることができる。
【0025】
図8は本発明の第6実施形態の転がり軸受の要部断面図である。
本第6実施形態の転がり軸受6は、転動体13を複列に配列して、高荷重に耐える複列軸受としたものである。
なお、本発明の転がり軸受は、非常に大きな耐高荷重が必要とされる特殊環境下等で使用する場合には、コスト上昇を招くこととなるが、前記転動体13の材質をセラミクスとすることを否定するものではない。
【0026】
図9〜図12は上記各実施形態の転がり軸受1〜6で使用される保持器14の例を示しており、各図は保持器の外径側から見た部分平面図である。
図9に示した保持器14Aは、金属製の一体型保持器であり、転動体13を収容するポケット部の対向側縁に、案内平面部14a,14bを有している。
【0027】
図10に示した保持器14Bは、冠型のプラスチック保持器であり、ポケット部の内奥縁に案内平面部14aを有している。このプラスチック保持器14Bを図8に示した複列の転がり軸受6に使用する場合は、各列の転動体13の外側から取り付けて使用するのがよい。
【0028】
図11に示した保持器14Cは、所定形状に打抜き形成した一対の鋼板をピンで一体化した鋼板プレス保持器であり、転動体13を収容するポケット部の対向側縁に、案内平面部14a,14bを有している。
図12に示した保持器14Dは、金属材から削り出した一対の分割体をピンで一体化したもみ抜き保持器であり、転動体13を収容するポケット部の対向側縁に、案内平面部14a,14bを有している。
【0029】
尚、本発明の転がり軸受は、上述した各実施形態の構成に限定されるものではなく、本発明の趣旨に基づいて種々の形態を採りうることは云うまでもない。
例えば、上記各実施形態では、転動体13が両端に互いに平行な平面部13a,13bを有する場合を説明したが、本発明の転動体は、球状体の少なくとも上下何れかの部分を切断して形成された平面部を有すれば良く、平面部が片側だけにしかない場合でも良い。
【0030】
また、本発明の転動体の両端に形成される円形の平面部の大きさが違っていてもよい。
更に、本発明の転動体は、完全な球体の少なくとも上下何れかの部分を切断して形成したものでなくても、例えば、図3に示した自転中心軸L方向の直径Da1とそれと直交する方向の直径Da2とが若干異なり、Da2/Da1≦1となる略球体(球状体)を基本形とし、その自転中心軸L方向の両端を切断して平面部13a,13bを形成した転動体を用いてもよい。
【0031】
なお、上述した本発明の転がり軸受の用途例としては、自動車などに用いられる、金属、樹脂、ゴム等のベルトを使用した無段変速機、エアコン用コンプレッサ、オルタネータやベルト式ISG(Integrated Starter Generate)等において、ベルトをかけるプーリ軸の荷重を支持する軸受が挙げられる。また、自動車などに用いられるトロイダル型の無段変速機において、ラジアル荷重を受けながら軸の位置決めを行う軸受としても使用できる。
【0032】
【発明の効果】
以上説明したように、本発明の転がり軸受によれば、転動体が、球状体の少なくとも上下何れかの部分を切断して形成された平面部を有しており、これら転動体を等間隔に保持する保持器が、それぞれ自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれた転動体の平面部に接触して該転動体を周方向にのみ転動させる案内平面部を有している。
そこで、前記平面部が軸受の幅方向端部側に位置することにより、軸受の幅寸法を拡大することなく転動体の転がり接触面となる球面の外径を大きくして、転がり軸受の高剛性化及び高負荷容量化を図ることができる。
【0033】
又、前記転動体は、単純に球体の外径を大きくしただけでなく、球状体の少なくとも上下何れかの部分に平面部を形成し、それぞれの平面部に垂直な自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれているので、前記転動体が平面部を有している分だけ軸受の幅寸法を球体を組み込んだ場合より小さく抑えることができ、転動体や転動体を保持する保持器がシール部材等に干渉する虞を無くせる。
【0034】
又、それぞれの自転中心軸と軸受中心軸のなす角が等しくなるように転動体を組み込んでいるので、各転動体の平面部の位置が全て揃う。
そこで、これら転動体の平面部に接触して案内する保持器の案内平面部も全て同じに位置に形成すれば良くなり、従来のクロスボール軸受のように、転動体が傾転しないように保持する保持器の形状が複雑にならない上、軸受幅も拡大しない。
従って、現行の軸受材料で軸受寸法を大きくすることなく、高剛性化、高負荷容量化を図ることができる良好な転がり軸受を提供できる。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係る転がり軸受の要部断面図である。
【図2】図1に示した転動体の斜視図である。
【図3】図1に示した転動体の正面図である。
【図4】本発明の第2実施態様に係る転がり軸受の要部断面図である。
【図5】本発明の第3実施態様に係る転がり軸受の要部断面図である。
【図6】本発明の第4実施態様に係る転がり軸受の要部断面図である。
【図7】本発明の第5実施態様に係る転がり軸受の要部断面図である。
【図8】本発明の第6実施態様に係る転がり軸受の要部断面図である。
【図9】本発明の転がり軸受に係る保持器の部分平面図である。
【図10】本発明の転がり軸受に係る他の保持器の部分平面図である。
【図11】本発明の転がり軸受に係る他の保持器の部分平面図である。
【図12】本発明の転がり軸受に係る他の保持器の部分平面図である。
【図13】一般的な玉軸受の構成を示す要部断面図である。
【符号の説明】
1 転がり軸受
11 内輪
12 外輪
13 転動体
13a,13b 平面部
14 保持器
14a,14b 案内平面部
16 シール部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling bearing having high rigidity and high load capacity used in various machines in industrial fields such as automobiles, electricity, information, and steel.
[0002]
[Prior art]
In recent years, various types of machines such as machine tools and industrial machines, or auxiliary machinery for prime movers such as engines mounted on automobiles have been made smaller and lighter, and used for them. Therefore, there is a demand for downsizing, high rigidity, and high load capacity of the rolling bearing.
[0003]
In response to these demands, for example, a grease-filled ball bearing has been proposed that uses a fine ceramics rolling element to extend the life of a bearing to which both high-speed rotation and high load are applied (for example, patents) Reference 1).
In addition, a plurality of rolling elements are incorporated between a pair of race rings, and each race ring has two races each having a diameter larger than the radius of the rolling element, and each rolling element has an outer diameter serving as a rolling contact surface. The rolling elements adjacent to each other in the circumferential direction are alternately arranged in a crossing manner, and the outer diameters of the rolling elements are always opposite to each other in the raceway of one raceway and the raceway of the other raceway. So-called cross ball bearings that are in contact at two points have been proposed (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
JP-A-4-244624 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-235755
[Problems to be solved by the invention]
However, in the case of a ball bearing using ceramics as the rolling element as described above, there is a problem that the cost becomes high.
In the conventional cross ball bearing described above, for example, an upper and lower cut ball having a pair of relative surfaces (which has a structure in which the upper and lower portions of the ball are cut to form a relative surface) is provided on this relative surface. Since the respective rolling elements are incorporated so that the vertical rotation center shafts are crossed, the width of the bearing is increased accordingly. In addition, there is a problem that the shape of the cage that holds the rolling elements so that the rolling elements do not tilt becomes complicated and the cost increases.
[0006]
Furthermore, in order to realize a rolling bearing with high rigidity and high load capacity, it is conceivable to simply increase the outer diameter of the rolling element. However, if the outer diameter is simply increased, the rolling element and the holding member that holds the rolling element are considered. There is a problem that the container interferes with the seal member.
[0007]
Accordingly, an object of the present invention is to solve the above-mentioned problems, and to provide a good rolling bearing capable of achieving high rigidity and high load capacity without increasing the bearing size with the current bearing material. It is.
[0008]
[Means for Solving the Problems]
The above object of the present invention is to provide a rolling device including an inner ring, an outer ring, a plurality of rolling elements interposed between the inner and outer rings, and a cage that holds the rolling elements at equal intervals in the circumferential direction. A bearing,
The rolling element has a flat portion formed by cutting at least one of the upper and lower parts of the spherical body, and the cage is incorporated so that the angles formed by the rotation center shaft and the bearing center shaft are equal to each other. In addition, the present invention is achieved by a rolling bearing having a guide plane portion that contacts the plane portion of the rolling element and causes the rolling element to roll only in the circumferential direction.
The spherical body is not limited to a perfect sphere (true sphere), and includes a sphere having a slightly different diameter in the direction of the center axis of rotation and a diameter in a direction perpendicular thereto.
[0009]
According to the rolling bearing of the above configuration, the rolling element has a flat surface portion formed by cutting at least one of the upper and lower parts of the spherical body, and a cage that holds these rolling elements at equal intervals. Each has a guide plane part that contacts the plane part of the rolling element incorporated so that the angle formed between the rotation center axis and the bearing center axis is equal, and rolls the rolling element only in the circumferential direction.
Therefore, the positioning of the flat portion on the end side in the width direction of the bearing increases the outer diameter of the spherical surface serving as the rolling contact surface of the rolling element without increasing the width dimension of the bearing, thereby increasing the rigidity of the rolling bearing. And high load capacity can be achieved.
[0010]
Further, the rolling element not only simply increases the outer diameter of the sphere, but also forms a flat portion at least in the upper and lower portions of the sphere, and the rotation center shaft and the bearing center shaft perpendicular to the respective plane portions. Since the rolling element has a flat portion, the width of the bearing can be kept smaller than when a spherical body is incorporated, so that the rolling element and the rolling element can be reduced. It is possible to eliminate the possibility that the cage to be held interferes with the seal member or the like.
[0011]
Further, since the rolling elements are incorporated so that the angles formed by the respective rotation center shafts and the bearing center shafts are equal, all the positions of the plane portions of the respective rolling elements are aligned.
Therefore, it is only necessary to form the guide flat portions of the cage that come into contact with the flat portions of the rolling elements at the same position, and hold the rolling elements so that they do not tilt like conventional cross ball bearings. The cage shape does not become complicated, and the bearing width does not increase.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a main part of a rolling bearing according to a first embodiment of the present invention. FIGS. 2 and 3 are a perspective view and a front view of the rolling element shown in FIG.
[0013]
As shown in FIG. 1, the rolling bearing 1 according to the first embodiment is interposed between an inner ring 11, an outer ring 12, and raceway surfaces 11 a and 12 a of the inner and outer rings 11 and 12, and the inner and outer rings 11 and 12. Axial direction of the annular space 15 between the inner and outer rings 11, 12, a plurality of rolling elements 13 arranged in the circumferential direction, a cage 14 that holds the plurality of rolling elements 13 at equal intervals along the circumferential direction, And a seal member 16 for sealing both ends.
[0014]
As shown in FIGS. 2 and 3, the rolling element 13 is formed by cutting the upper and lower parts of a spherical body P in parallel to form circular plane portions 13a and 13b on the upper and lower surfaces, and rolling the remaining spherical surface 13c. It is a rolling element as a contact surface.
The rolling element 13 rolls while being sandwiched between the raceway surfaces 11a and 12a of the inner and outer rings 11 and 12 with a vertical center line passing through the centers of the flat portions 13a and 13b as a rotation center axis L. Here, the raceway surfaces 11a and 12a are set to have a larger diameter than the radius of the spherical surface 13c of the rolling element 13, and the spherical surface (rolling surface) 13c of the rolling element 13 contacts the raceway surfaces 11a and 12a at one point. ing.
[0015]
As shown in FIG. 1, the cage 14 comes into contact with the flat portions 13 a and 13 b of the rolling elements 13 incorporated so that the angles formed by the rotation center axis L and the bearing center axis K are equal to each other. It has guide plane portions 14a and 14b for rolling the rolling element 13 only in the circumferential direction.
In the case of the first embodiment, the rotation center axis L of each rolling element 13 is set in parallel to the bearing center axis K, and the guide plane portions 14a and 14b of the cage 14 are connected to the bearing center axis K. It is formed as an orthogonal plane.
[0016]
That is, in the rolling bearing 1 of the first embodiment, the rolling element 13 is not the sphere P itself, but has flat portions 13a and 13b formed by cutting the upper and lower portions in parallel, and the cage 14 is A guide plane portion that contacts the plane portions 13a and 13b of the rolling element 13 incorporated so that the angles formed by the rotation center axis L and the bearing center axis K are equal to each other and rolls the rolling element 13 only in the circumferential direction. 14a and 14b.
Therefore, by positioning the flat portions 13a and 13b on both ends in the width direction of the bearing, the outer diameter of the spherical surface 13c serving as the rolling contact surface of the rolling element 13 is increased without increasing the width dimension of the bearing. It is possible to increase the rigidity and load capacity of the rolling bearing 1.
[0017]
Further, the rolling element 13 not only simply increases the outer diameter of the sphere P, but also cuts the upper and lower parts of the sphere P in parallel to form the flat parts 13a and 13b on the upper and lower surfaces, and the respective flat parts 13a. , 13b and the rotation center axis L perpendicular to the bearing center axis K are incorporated so that the angles formed by the bearing center axis K are equal to each other. It can be suppressed to a smaller size than when it is incorporated, and there is no possibility that the rolling element 13 or the retainer 14 that holds the rolling element 13 interferes with the seal member 16.
[0018]
Further, since the rolling elements 13 are incorporated so that the angles formed by the respective rotation center axes L and the bearing center axes K are equal, the positions of the flat portions 13a and 13b of the respective rolling elements 13 are all aligned.
Therefore, all of the guide flat portions 14a and 14b of the cage 14 that contact and guide the flat portions 13a and 13b of the rolling elements 13 may be formed at the same position and in the same direction, like a conventional cross ball bearing. In addition, the shape of the cage 14 is not complicated, and an increase in the bearing width can be suppressed.
[0019]
For example, the outer diameter of the spherical surface 13c of the rolling element 13 can be increased while maintaining the width dimension of the rolling bearing 1 equal to that of a general ball bearing (a rolling element having a spherical rolling element). High load capacity can be achieved.
Incidentally, in the case of a general ball bearing, as shown in FIG. 13, when the diameter of the ball, which is a rolling element, is Da, the sectional height of the bearing ring is H, and the width of the bearing ring is B, Da / H, Da / B has a limit of about 0.65, but in the rolling bearing 1 of this embodiment, Da / H and Da / B can be set to about 0.06 to 0.75, and the load is high. It can be a rolling bearing with a capacity.
[0020]
Next, each embodiment when the rolling bearing of the present invention is applied to another different type of rolling bearing will be described. In addition, the sealing member is abbreviate | omitted in the accompanying drawing concerning each following embodiment. Moreover, about the structural member which has the same function, even if a shape etc. are a little different, the same code | symbol as FIG. 1 is attached | subjected and detailed description is abbreviate | omitted.
[0021]
FIG. 4 is a sectional view of an essential part of a rolling bearing according to the second embodiment of the present invention.
The rolling bearing 2 of the second embodiment is obtained by applying the rolling bearing of the present invention to a magneto ball bearing, and the outer ring 12 has a counter bore 12c.
[0022]
FIG. 5 is a cross-sectional view of a main part of a rolling bearing according to a third embodiment of the present invention.
The rolling bearing 3 of the third embodiment is obtained by applying the rolling bearing of the present invention to an angular ball bearing, and the guide plane portions 14 a and 14 b of the cage 14 are formed at an angle corresponding to the inclination of the rolling element 13. ing.
[0023]
FIG. 6 is a sectional view of an essential part of a rolling bearing according to a fourth embodiment of the present invention.
The rolling bearing 4 of the fourth embodiment is a modification of the rolling bearing 1 of the first embodiment shown in FIG. 1, and the raceway surface 11 a of the inner ring 11 is composed of two spherical surfaces, and the spherical surface 13 c of the rolling element 13. The contact between the inner ring 11 and the raceway surface 11a is a two-point contact.
[0024]
FIG. 7 is a sectional view of an essential part of a rolling bearing according to a fifth embodiment of the present invention.
The rolling bearing 5 of the fifth embodiment is a modification of the rolling bearing 4 of the fourth embodiment of FIG. 6, and the raceway surface 12 a of the outer ring 12 is configured by two spherical surfaces, and the spherical surface 13 c of the rolling element 13 and the outer ring. The contact with the 12 raceway surfaces 12a is also a two-point contact.
That is, as in the rolling bearings 4 and 5 of the fourth and fifth embodiments described above, an axial load can be received by using a multipoint contact rolling bearing such as a three-point contact or a four-point contact.
[0025]
FIG. 8 is a cross-sectional view of a main part of a rolling bearing according to a sixth embodiment of the present invention.
The rolling bearing 6 of the sixth embodiment is a double row bearing that withstands a high load by arranging rolling elements 13 in a double row.
It should be noted that the rolling bearing according to the present invention increases the cost when used in a special environment where a very high load resistance is required, but the material of the rolling element 13 is ceramics. There is no denying that.
[0026]
9-12 has shown the example of the holder | retainer 14 used with the rolling bearings 1-6 of each said embodiment, and each figure is the fragmentary top view seen from the outer diameter side of the holder | retainer.
The retainer 14A shown in FIG. 9 is a metal integrated retainer, and has guide plane portions 14a and 14b on opposite side edges of the pocket portion that accommodates the rolling elements 13.
[0027]
The cage 14B shown in FIG. 10 is a crown-shaped plastic cage, and has a guide plane portion 14a on the inner back edge of the pocket portion. When this plastic retainer 14B is used for the double row rolling bearing 6 shown in FIG. 8, it is preferable that the plastic cage 14B is attached from the outside of the rolling elements 13 of each row.
[0028]
A retainer 14C shown in FIG. 11 is a steel plate press retainer in which a pair of steel plates punched and formed into a predetermined shape are integrated with pins, and a guide flat surface portion 14a is formed on the opposite side edge of the pocket portion that accommodates the rolling elements 13. , 14b.
A cage 14D shown in FIG. 12 is a machined cage in which a pair of divided bodies cut out from a metal material are integrated with pins, and a guide plane portion is provided on the opposite side edge of the pocket portion that accommodates the rolling elements 13. 14a and 14b.
[0029]
The rolling bearing of the present invention is not limited to the configuration of each of the above-described embodiments, and it goes without saying that various forms can be adopted based on the spirit of the present invention.
For example, in each of the above embodiments, the case where the rolling element 13 has the flat portions 13a and 13b parallel to each other at both ends has been described. However, the rolling element of the present invention cuts at least one of the upper and lower parts of the spherical body. It suffices to have a formed flat portion, and the flat portion may be on only one side.
[0030]
Moreover, the magnitude | size of the circular plane part formed in the both ends of the rolling element of this invention may differ.
Furthermore, even if the rolling element of the present invention is not formed by cutting at least one of the upper and lower parts of a complete sphere, for example, the diameter Da1 in the direction of the rotation center axis L shown in FIG. A rolling element is used which is slightly different from the diameter Da2 in the direction and has a substantially spherical body (spherical body) with Da2 / Da1 ≦ 1 as a basic shape and cuts both ends in the direction of the rotation center axis L to form the plane portions 13a and 13b. May be.
[0031]
Examples of the application of the rolling bearing of the present invention described above include a continuously variable transmission using a belt made of metal, resin, rubber or the like, a compressor for an air conditioner, an alternator, or a belt type ISG (Integrated Starter Generate) used in automobiles. ) Etc., there is a bearing that supports the load of the pulley shaft on which the belt is applied. Further, in a toroidal-type continuously variable transmission used in an automobile or the like, it can also be used as a bearing for positioning a shaft while receiving a radial load.
[0032]
【The invention's effect】
As described above, according to the rolling bearing of the present invention, the rolling element has a flat portion formed by cutting at least one of the upper and lower parts of the spherical body, and the rolling elements are arranged at equal intervals. The holding cage has a guide plane part that contacts the plane part of the rolling element incorporated so that the angles formed by the rotation center axis and the bearing center axis are equal to each other and rolls the rolling element only in the circumferential direction. doing.
Therefore, the positioning of the flat portion on the end side in the width direction of the bearing increases the outer diameter of the spherical surface serving as the rolling contact surface of the rolling element without increasing the width dimension of the bearing, thereby increasing the rigidity of the rolling bearing. And high load capacity can be achieved.
[0033]
Further, the rolling element not only simply increases the outer diameter of the sphere, but also forms a flat portion at least in the upper and lower portions of the sphere, and the rotation center shaft and the bearing center shaft perpendicular to the respective plane portions. Since the rolling element has a flat portion, the width of the bearing can be kept smaller than when a spherical body is incorporated, so that the rolling element and the rolling element can be reduced. It is possible to eliminate the possibility that the cage to be held interferes with the seal member or the like.
[0034]
Further, since the rolling elements are incorporated so that the angles formed by the respective rotation center shafts and the bearing center shafts are equal, all the positions of the plane portions of the respective rolling elements are aligned.
Therefore, it is only necessary to form the guide flat portions of the cage that come into contact with the flat portions of the rolling elements at the same position, and hold the rolling elements so that they do not tilt like conventional cross ball bearings. The cage shape does not become complicated, and the bearing width does not increase.
Therefore, it is possible to provide a good rolling bearing capable of achieving high rigidity and high load capacity without increasing the bearing size with the current bearing material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a rolling bearing according to a first embodiment of the present invention.
FIG. 2 is a perspective view of the rolling element shown in FIG.
3 is a front view of the rolling element shown in FIG. 1. FIG.
FIG. 4 is a cross-sectional view of a main part of a rolling bearing according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of a principal part of a rolling bearing according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view of a main part of a rolling bearing according to a fourth embodiment of the present invention.
FIG. 7 is a cross-sectional view of a main part of a rolling bearing according to a fifth embodiment of the present invention.
FIG. 8 is a sectional view of an essential part of a rolling bearing according to a sixth embodiment of the present invention.
FIG. 9 is a partial plan view of a cage according to the rolling bearing of the present invention.
FIG. 10 is a partial plan view of another cage according to the rolling bearing of the present invention.
FIG. 11 is a partial plan view of another cage according to the rolling bearing of the present invention.
FIG. 12 is a partial plan view of another cage according to the rolling bearing of the present invention.
FIG. 13 is a cross-sectional view of a main part showing a configuration of a general ball bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rolling bearing 11 Inner ring 12 Outer ring 13 Rolling body 13a, 13b Planar part 14 Cage 14a, 14b Guide plane part 16 Seal member

Claims (1)

内輪と、外輪と、これら内外輪間に介装された複数の転動体と、これら転動体を周方向に沿って等間隔に保持する保持器と、を備えた転がり軸受であって、
前記転動体が、球状体の少なくとも上下何れかの部分を切断して形成された平面部を有すると共に、前記保持器が、それぞれ自転中心軸と軸受中心軸のなす角が等しくなるように組み込まれた前記転動体の平面部に接触して該転動体を周方向にのみ転動させる案内平面部を有していることを特徴とする転がり軸受。
A rolling bearing comprising an inner ring, an outer ring, a plurality of rolling elements interposed between the inner and outer rings, and a cage that holds the rolling elements at equal intervals along the circumferential direction,
The rolling element has a flat portion formed by cutting at least one of the upper and lower parts of the spherical body, and the cage is incorporated so that the angles formed by the rotation center shaft and the bearing center shaft are equal to each other. A rolling bearing comprising a guide plane portion that contacts the plane portion of the rolling element and causes the rolling element to roll only in the circumferential direction.
JP2003101677A 2003-04-04 2003-04-04 Roller bearing Pending JP2004308742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101677A JP2004308742A (en) 2003-04-04 2003-04-04 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101677A JP2004308742A (en) 2003-04-04 2003-04-04 Roller bearing

Publications (1)

Publication Number Publication Date
JP2004308742A true JP2004308742A (en) 2004-11-04

Family

ID=33465392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101677A Pending JP2004308742A (en) 2003-04-04 2003-04-04 Roller bearing

Country Status (1)

Country Link
JP (1) JP2004308742A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089868A1 (en) * 2007-01-26 2008-07-31 Schaeffler Kg Radial rolling bearing, particularly single-row deep groove rolling bearing
JP2008537070A (en) * 2005-03-31 2008-09-11 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove ball bearings
JP2009518607A (en) * 2005-12-10 2009-05-07 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove rolling bearings
JP2009518608A (en) * 2005-12-10 2009-05-07 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove rolling bearings
JP2009520937A (en) * 2005-12-23 2009-05-28 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row spherical roller bearings
JP2009534609A (en) * 2006-04-26 2009-09-24 シャフラー、コマンディット、ゲゼルシャフト Radial roller bearings, particularly single row spherical roller bearings and their assembly methods
JP2009534608A (en) * 2006-04-26 2009-09-24 シャフラー、コマンディット、ゲゼルシャフト Radial roller bearings, especially single row spherical roller bearings
JP2010507758A (en) * 2006-10-26 2010-03-11 シャエフラー カーゲー Rolling bearing ball, rolling bearing, and rolling bearing ball processing method
US9995344B2 (en) * 2014-05-19 2018-06-12 Aktiebolaget Skf Capacitance measurement in a bearing
CN109236865A (en) * 2018-11-12 2019-01-18 安徽华旦机械制造有限公司 One kind being applied to the dismountable shield bearing of bearing appearance

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537070A (en) * 2005-03-31 2008-09-11 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove ball bearings
KR101379608B1 (en) 2005-12-10 2014-03-28 섀플러 홀딩 게엠베하 운트 코. 카게 Radial antifriction bearing
JP2009518607A (en) * 2005-12-10 2009-05-07 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove rolling bearings
JP2009518608A (en) * 2005-12-10 2009-05-07 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row deep groove rolling bearings
KR101433387B1 (en) * 2005-12-10 2014-08-26 섀플러 홀딩 게엠베하 운트 코. 카게 Radial rolling bearing, especially single-row deep groove rolling bearing
JP2009520937A (en) * 2005-12-23 2009-05-28 シエフレル・コマンデイトゲゼルシヤフト Radial rolling bearings, especially single row spherical roller bearings
JP2009534609A (en) * 2006-04-26 2009-09-24 シャフラー、コマンディット、ゲゼルシャフト Radial roller bearings, particularly single row spherical roller bearings and their assembly methods
JP2009534608A (en) * 2006-04-26 2009-09-24 シャフラー、コマンディット、ゲゼルシャフト Radial roller bearings, especially single row spherical roller bearings
US8419289B2 (en) 2006-04-26 2013-04-16 Schaeffler Technologies AG & Co. KG Radial anti-friction bearing, in particular, single-row spherical roller bearing, and method for mounting thereof
JP2010507758A (en) * 2006-10-26 2010-03-11 シャエフラー カーゲー Rolling bearing ball, rolling bearing, and rolling bearing ball processing method
WO2008089868A1 (en) * 2007-01-26 2008-07-31 Schaeffler Kg Radial rolling bearing, particularly single-row deep groove rolling bearing
US9995344B2 (en) * 2014-05-19 2018-06-12 Aktiebolaget Skf Capacitance measurement in a bearing
CN109236865A (en) * 2018-11-12 2019-01-18 安徽华旦机械制造有限公司 One kind being applied to the dismountable shield bearing of bearing appearance
CN109236865B (en) * 2018-11-12 2020-04-14 安徽华旦机械制造有限公司 Be applied to dustproof bearing of bearing outward appearance detachable

Similar Documents

Publication Publication Date Title
EP1908970A1 (en) Needle roller bearing and bearing structure
JP2004308742A (en) Roller bearing
CN109964055A (en) Retainer for rolling bearing and rolling bearing
US20120283058A1 (en) Rotation urging mechanism and pulley device
JP2006144821A (en) Retainer for thrust roller bearing
EP1878929A1 (en) Rolling bearing
JP2002174234A (en) Linear guide
JP2007247815A (en) Split cage for roller bearing and split type roller bearing
WO2003058083A1 (en) Roller bearing
JP2008138842A (en) Tandem type double row angular contact ball bearing
JPH09177795A (en) Ball bearing
JP2011153639A (en) Thrust roller bearing
EP1160469A2 (en) Bearing assemblies incorporating roller bearings
US6398417B1 (en) Rolling member
JPH09126233A (en) Cross roller bearing
JP2006183718A (en) Rolling bearing
JP2003120684A (en) Thrust roller bearing
JP2007187259A (en) Split type rolling bearing
JP2004314203A (en) Machine tool table device and rolling bearing for machine tool table device
JP2004293599A (en) Ball joint
JPH11230314A (en) Pulley unit
JP2003097549A (en) Rolling bearing device
JPH058045U (en) Angular type ball bearing
JP2001050264A (en) Rolling bearing
JP2003148480A (en) Rolling bearing