JP2004308700A - Propeller shaft made of fiber-reinforced plastic - Google Patents

Propeller shaft made of fiber-reinforced plastic Download PDF

Info

Publication number
JP2004308700A
JP2004308700A JP2003099765A JP2003099765A JP2004308700A JP 2004308700 A JP2004308700 A JP 2004308700A JP 2003099765 A JP2003099765 A JP 2003099765A JP 2003099765 A JP2003099765 A JP 2003099765A JP 2004308700 A JP2004308700 A JP 2004308700A
Authority
JP
Japan
Prior art keywords
reinforced plastic
cylindrical member
propeller shaft
intermediate cylindrical
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003099765A
Other languages
Japanese (ja)
Inventor
Seiji Yamaguchi
清司 山口
Takumi Matsumoto
巧 松本
Masatoshi Kimura
雅俊 木村
Koji Kato
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003099765A priority Critical patent/JP2004308700A/en
Publication of JP2004308700A publication Critical patent/JP2004308700A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0829Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial loading of both hub and shaft by an intermediate ring or sleeve
    • F16D1/0835Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial loading of both hub and shaft by an intermediate ring or sleeve due to the elasticity of the ring or sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propeller shaft made of fiber-reinforced plastic of which a twisting strength is assured and absorbing capability for collision load is improved at collision. <P>SOLUTION: A press-fit shaft part 12b of a metal yoke 12 is jointed to an end part 14 of an FRP cylinder 11 to constitute an FRP propeller shaft 10. An intermediate cylinder member 13 is disposed between the FRP cylinder 11 and the press-fit shaft part 12b of the metal yoke 12. A serration 13a that extends in axial direction and bites into the inner peripheral surface of the FRP cylinder 11 is formed on the outer surface of the intermediate cylinder member 13, and an inside spline 13b that extends in axial direction is formed on the inner surface of the intermediate cylinder member 13. On the outer peripheral surface of the press-fit shaft part 12b of the metal yoke 12, an outside spline 12c that engages with the inside spline 13b of the intermediate cylinder member 13 is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック製プロペラシャフトに関する。
【0002】
【従来の技術】
近年、プロペラシャフトとして繊維強化プラスチック(FRP)製プロペラシャフトを使用することにより車両を軽量化して燃費の向上を図るようにした技術が提案されている。このFRP製プロペラシャフトは、FRP製筒体の両端部に対して、駆動軸や従動軸に連結される金属製ヨークを接合する方法が一般的である。このようなFRP製筒体は、一般的なフィラメントワインディング法によって形成されたものである。そして、FRP製筒体と金属製ヨークとは、通常、セレーション接合によって接合される。
【0003】
金属製ヨークの接合部の外周面には軸方向に延びるセレーションが形成されており、FRP製筒体の端部の内周面に金属製ヨークの接合部を圧入する。金属製ヨークの圧入時において、接合部のセレーションにより繊維強化プラスチック製筒体の端部内周面に刻み目を刻設して食い込ませることによって、繊維強化プラスチック製筒体と金属製ヨークとは相対回転しないように一体に接合される。
【0004】
このような繊維強化プラスチック製プロペラシャフトは、車載内燃機関が発生するトルクを捩りトルクとして駆動輪に伝達することができるように、金属製ヨークと繊維強化プラスチック製筒体との間の捩り強度が必要とされる。
【0005】
また、最近の自動車設計においては、衝突時において過大な衝撃を与えず、しかもエアバック等の安全装置の作動に時間的余裕を与えるため、衝突時にプロペラシャフトの軸方向に作用する衝突荷重を吸収する技術が、特許文献1にて提案されている。この特許文献1に記載されたプロペラシャフトは、繊維強化プラスチック製筒体の内径を金属製ヨークの最大外形の外径よりも大きく設定している。そして、プロペラシャフトの軸方向に衝突荷重を受けた際、金属製ヨークのセレーションが繊維強化プラスチック製筒体の内周面に刻み目を刻設しながら金属製ヨークは繊維強化プラスチック製筒体内に更に圧入されることにより、衝突荷重を吸収するようになっている。
【0006】
【特許文献1】
特開2000−337344号公報
【0007】
【発明が解決しようとする課題】
ところが、特許文献1に記載されたプロペラシャフトは、金属製ヨークのセレーションによって繊維強化プラスチック製筒体の内周面に刻み目を刻設しながら金属製ヨークを圧入する方法である。従って、プロペラシャフトの捩り強度を増加させるために、繊維強化プラスチック製筒体に対するセレーションの圧入代を大きく設定すると、衝突時においてセレーションによる繊維強化プラスチック製筒体の削り量が大きくなって圧入荷重が大きくなり、衝突荷重の吸収能力が低下する。逆に、衝突時においてセレーションによる繊維強化プラスチック製筒体の削り量を小さくして圧入荷重を低下させて衝突荷重の吸収能力を増加させるために、繊維強化プラスチック製筒体に対するセレーションの圧入代を小さく設定すると、プロペラシャフトの捩り強度が低下する。このように、特許文献1に記載されたプロペラシャフトは、捩り強度を確保しつつ衝突時の衝突荷重の吸収能力を向上することは困難であった。
【0008】
本発明は、こうした実情に鑑みてなされたものであって、その目的は、捩り強度を確保することができるとともに、衝突時において衝突荷重の吸収能力を向上することができる繊維強化プラスチック製プロペラシャフトを提供することにある。
【0009】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、繊維強化プラスチック製筒体の端部に金属部品の接合部を接合した繊維強化プラスチック製プロペラシャフトにおいて、前記繊維強化プラスチック製筒体と前記金属部品の接合部との間には中間円筒部材を配設し、該中間円筒部材の外面には軸方向に延びかつ前記繊維強化プラスチック製筒体の内周面に食い込むセレーションを形成し、該中間円筒部材の内面には軸方向に延びる内側スプラインを形成し、前記金属部品の接合部の外周面には前記中間円筒部材の内側スプラインに嵌合する外側スプラインを形成した。
【0010】
上記構成によれば、繊維強化プラスチック製筒体に対する中間円筒部材のセレーションの食い込み及び中間円筒部材の内側スプラインと金属部品の外側スプラインとの嵌合によって繊維強化プラスチック製プロペラシャフトの捩り強度が確保される。また、中間円筒部材と金属部品の接合部とはスプライン嵌合しているので、金属部品の繊維強化プラスチック製筒体内への圧入荷重は小さくなる。そのため、衝突時においてプロペラシャフトの軸方向に作用する衝突荷重によって金属部品は繊維強化プラスチック製筒体内に圧入されやすくなり、衝突荷重の吸収能力を向上することができるようになる。
【0011】
請求項2に記載の発明は、請求項1に記載の繊維強化プラスチック製プロペラシャフトにおいて、前記中間円筒部材の内径は、前記金属部品の最大外形の外径よりも大きく設定されている。
【0012】
上記構成によれば、衝突時においてプロペラシャフトの軸方向に作用する衝突荷重によって金属部品が繊維強化プラスチック製筒体内に圧入されるとき、金属部品は繊維強化プラスチック製筒体に衝突することなく圧入される。
【0013】
請求項3に記載の発明は、請求項1又は2に記載の繊維強化プラスチック製プロペラシャフトにおいて、前記中間円筒部材の内側スプライン又は前記金属部品の外側スプラインの一方にはリード角が付与されている。
【0014】
上記構成によれば、中間円筒部材の内側スプライン又は金属部品の外側スプラインの一方にリード角を付与したことによって、金属部品の圧入荷重を適宜調整することができ、衝突荷重の吸収能力を調節することができる。
【0015】
請求項4に記載の発明は、請求項1〜3のいずれかに記載の繊維強化プラスチック製プロペラシャフトにおいて、前記中間円筒部材には前記繊維強化プラスチック製筒体に係合して該中間円筒部材の軸方向への移動を規制する規制手段が設けられている。
【0016】
上記構成によれば、衝突時の衝突荷重によって金属部品が繊維強化プラスチック製筒体内に圧入されるとき、中間円筒部材は規制手段によって軸方向への移動が規制されるので、金属部品は容易に繊維強化プラスチック製筒体内に進入する。
【0017】
請求項5に記載の発明のように、規制手段を中間円筒部材の外端部に形成され、かつ繊維強化プラスチック製筒体の端部に当接するフランジとすることができる。
【0018】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図面を参照して説明する。
図1に示すように、本実施形態における繊維強化プラスチック(FRP)製プロペラシャフト10はFRP製筒体11と、該FRP製筒体11の両端部に接合された金属部品としての金属製ヨーク(継手)12と、中間円筒部材13とを有する。FRP製筒体11と中間円筒部材13とはセレーション結合されており、中間円筒部材13と金属製ヨーク12とはスプライン嵌合されている。なお、金属製ヨーク12及び中間円筒部材13は、FRP製筒体11の両端部に結合されるが、両端部におけるFRP製筒体11の構造とその両端部に結合されている金属製ヨーク12及び中間円筒部材13の構成は同じである。従って、本実施形態では、説明の便宜上、エンジン駆動軸側の金属製ヨーク12及び中間円筒部材13とFRP製筒体11の結合について述べ、従動軸側の金属製ヨーク12及び中間円筒部材13とFRP製筒体11の結合についてはエンジン駆動軸側と同一として説明を省略する。
【0019】
FRP製筒体11は、ほぼ一定の肉厚の円筒からなり、例えばフィラメントワインディング法によって成形されている。すなわち、FRP製筒体11は、エポキシ樹脂等のマトリックス樹脂を含浸させたカーボン繊維などの強化繊維を層状に巻き付けて筒状体を成形し、その筒状体を加熱硬化させたものである。
【0020】
FRP製筒体11は、強化繊維を所定の等ピッチで斜めに巻き付けられたヘリカル巻層11aと、各端部14においてヘリカル巻層11aの外側に設けられたフープ巻層11bとを備えている。このヘリカル巻層11aの強化繊維は、車両に組付けて使用される際に要求される曲げ、捩り、振動等の特性を満足するため、45度未満の角度に規定された値に設定される。ここでは、例えば±10度に設定されている。フープ巻層11bは、ヘリカル巻層11aと異なり、強化繊維をFRP製筒体11の軸線に対する配向角が45度以上90度未満の角度に設定される。ここでは、フープ巻層11bは例えばほぼ90度で巻き付けられたものである。
【0021】
中間円筒部材13は金属板により形成され、FRP製筒体11の端部14に圧入されている。図4に示されるように、中間円筒部材13の外面には軸方向に延びかつFRP製筒体11の内周面に食い込むセレーション13aが形成され、中間円筒部材13の内面には軸方向に延びる内側スプライン13bが形成されている。セレーション13aの歯先円の直径D13aは、FRP製筒体11の端部14の内径D11よりも大径になっている。
【0022】
また、中間円筒部材13の外端部にはFRP製筒体11の端部14に当接するフランジ13cが形成されており、フランジ13cはFRP製筒体11の端部14に係合して中間円筒部材13の軸方向への移動を規制するようにしている。
【0023】
金属製ヨーク12は十字軸と接続する部材であり、十字軸を取り付けるための孔部12aが形成されている。図3に示されるように、金属製ヨーク12の接合部としての圧入軸部12bは円柱状に形成されて、その外周面には前記中間円筒部材13の内側スプライン13bに嵌合する外側スプライン12cが形成されている。この外側スプライン12cは中間円筒部材13の内側スプライン13bに対してリード角が付与されており、金属製ヨーク12の圧入荷重を調整できるようになっている。
【0024】
また、中間円筒部材13の内径D13bは、金属製ヨーク12の圧入軸部12bを除く最大外形の外径D12よりも大きく設定されている。
図3に示されるように、上記したFRP製筒体11の端部14から中間円筒部材13を圧入すると、セレーション13aによってFRP製筒体11の端部14の内周面に刻み目を刻設しながらセレーション13aがFRP製筒体11の内周面に食い込む。フランジ13cがFRP製筒体11の端部14に当接すると、中間円筒部材13の軸方向への移動は規制される。そのため、中間円筒部材13とFRP製筒体11とは相対回転しないように一体に接合される。
【0025】
この後、中間円筒部材13内に金属製ヨーク12の圧入軸部12bを圧入すると、中間円筒部材13の内側スプライン13bと金属製ヨーク12の外側スプライン12cとが嵌合する。そのため、金属製ヨーク12とFRP製筒体11とは相対回転しないように一体に接合され、本実施形態のFRP製プロペラシャフト10が製造される。
【0026】
上記のように構成されたFRP製プロペラシャフト10の作用について説明する。
通常の車両運転時には、FRP製筒体11に対する中間円筒部材13のセレーション13aの食い込み及び中間円筒部材13の内側スプライン13bと金属製ヨーク12の外側スプライン12cとの嵌合によってFRP製プロペラシャフト10の捩り強度が確保される。
【0027】
また、中間円筒部材13と金属製ヨーク12の圧入軸部12bとは内側スプライン13bと外側スプライン12cとの嵌合により、金属製ヨーク12のFRP製筒体11内への圧入荷重は小さくなる。そのため、図2に示されるように、衝突時においてFRP製プロペラシャフト10の軸方向に衝突荷重が作用すると、金属製ヨーク12はFRP製筒体11内に圧入されやすくなり、衝突荷重の吸収能力を向上することができる。
【0028】
また、中間円筒部材13の内径D13bは、金属製ヨーク12の圧入軸部12bを除く最大外形の外径D12よりも大きく設定されている。そのため、衝突時においてFRP製プロペラシャフト10の軸方向に作用する衝突荷重によって金属製ヨーク12がFRP製筒体11内に圧入されるとき、圧入軸部12bを除く金属製ヨーク12は中間円筒部材13及びFRP製筒体11に衝突することなく圧入される。
【0029】
上記のように構成されたFRP製プロペラシャフト10によれば、以下の効果が得られる。
・ 本実施形態では、FRP製筒体11に対する中間円筒部材13のセレーション13aの食い込み及び中間円筒部材13の内側スプライン13bと金属製ヨーク12の外側スプライン12cとの嵌合によってFRP製プロペラシャフト10の捩り強度を確保することができる。また、中間円筒部材13と金属製ヨーク12の圧入軸部12bとは内側スプライン13bと外側スプライン12cとの嵌合により、金属製ヨーク12のFRP製筒体11内への圧入荷重は小さくなる。そのため、衝突時においてFRP製プロペラシャフト10の軸方向に作用する衝突荷重によって金属製ヨーク12はFRP製筒体11内に圧入されやすくなり、衝突荷重の吸収能力を向上することができる。
【0030】
・ また、中間円筒部材13の内径D13bは、金属製ヨーク12の圧入軸部12bを除く最大外形の外径D12よりも大きく設定されている。そのため、衝突時においてFRP製プロペラシャフト10の軸方向に作用する衝突荷重によって金属製ヨーク12がFRP製筒体11内に圧入されるとき、圧入軸部12bを除く金属製ヨーク12をFRP製筒体11に衝突することなく圧入することができる。
【0031】
・ さらに、金属製ヨーク12の外側スプライン12cには中間円筒部材13の内側スプライン13bに対してリード角が付与されているため、金属製ヨーク12の圧入荷重を適宜調整することができ、衝突荷重の吸収能力を調節することができる。
【0032】
・ また、中間円筒部材13にはFRP製筒体11に係合して中間円筒部材13の軸方向への移動を規制するフランジ13cが設けられている。そのため、衝突時の衝突荷重によって金属製ヨーク12がFRP製筒体11内に圧入されるとき、中間円筒部材13はフランジ13cによって軸方向への移動が規制されるので、金属製ヨーク12は容易にFRP製筒体11内に進入することができる。
【0033】
なお、実施の形態は、次のように変更してもよい。
・ 図5に示すように、中間円筒部材13には断面矩形状の内側スプライン13dを形成するとともに、金属製ヨーク12には断面矩形状の外側スプライン12dを形成してもよい。
【0034】
・ 上記実施形態では、金属製ヨーク12の圧入軸部12bの長さと中間円筒部材13の軸方向の長さを等しく設定したが、いずれか一方を長く設定するようにしてもよい。このように構成すれば、両者の一定の嵌合力によってFRP製プロペラシャフト10の軸方向に作用する衝突荷重を、両者が嵌合している期間において漸次吸収することができる。
【0035】
・ 上記実施形態において、FRP製筒体11の強化繊維として、アラミド繊維、ガラス繊維等の高弾性・高強度を有する繊維を採用したり、マトリックス樹脂として、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂を採用したりしてもよい。
【図面の簡単な説明】
【図1】一実施形態におけるFRP製プロペラシャフトの端部構成を示す断面図。
【図2】衝突時におけるFRP製プロペラシャフトの変形状態を示す断面図。
【図3】一実施形態のFRP製プロペラシャフトの一部を示す分解断面図。
【図4】図1のA−A線における拡大断面図。
【図5】別の実施形態の中間円筒部材を示す部分断面図。
【符号の説明】
10…繊維強化プラスチック製プロペラシャフト、11…FRP(繊維強化プラスチック)製筒体、11a…ヘリカル巻層、11b…フープ巻層、12…金属部品としての金属製ヨーク、12b…圧入軸部、12c,12d…外側スプライン、13…中間円筒部材、13a…セレーション、13b,13d…内側スプライン、13c…規制手段としてのフランジ、14…端部、D11,D13b…内径、D12…外径。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a propeller shaft made of fiber reinforced plastic.
[0002]
[Prior art]
In recent years, a technique has been proposed in which a propeller shaft made of fiber reinforced plastic (FRP) is used as a propeller shaft to reduce the weight of the vehicle and improve fuel efficiency. In general, the FRP propeller shaft is formed by joining metal yokes connected to the drive shaft and the driven shaft to both ends of the FRP cylinder. Such an FRP cylinder is formed by a general filament winding method. The FRP cylinder and the metal yoke are usually joined by serration joining.
[0003]
Serrations extending in the axial direction are formed on the outer peripheral surface of the joint portion of the metal yoke, and the joint portion of the metal yoke is press-fitted into the inner peripheral surface of the end portion of the FRP cylinder. When the metal yoke is press-fitted, the fiber reinforced plastic cylinder and the metal yoke rotate relative to each other by engraving the notch on the inner peripheral surface of the end of the fiber reinforced plastic cylinder by serration of the joint. So as not to be joined together.
[0004]
Such a fiber reinforced plastic propeller shaft has a torsional strength between the metal yoke and the fiber reinforced plastic cylinder so that the torque generated by the in-vehicle internal combustion engine can be transmitted to the drive wheel as a torsion torque. Needed.
[0005]
Also, in recent automobile designs, the impact load acting in the axial direction of the propeller shaft at the time of collision is absorbed in order not to give an excessive impact at the time of collision and to give time for the operation of safety devices such as airbags. The technique to do is proposed by patent document 1. FIG. In the propeller shaft described in Patent Document 1, the inner diameter of the fiber reinforced plastic cylinder is set larger than the outer diameter of the maximum outer shape of the metal yoke. When the impact load is applied in the axial direction of the propeller shaft, the metal yoke is further moved into the fiber reinforced plastic cylinder while the serration of the metal yoke scribes a notch on the inner peripheral surface of the fiber reinforced plastic cylinder. By being press-fitted, the collision load is absorbed.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-337344
[Problems to be solved by the invention]
However, the propeller shaft described in Patent Document 1 is a method in which a metal yoke is press-fitted while a notch is formed on the inner peripheral surface of a fiber-reinforced plastic cylinder by serration of the metal yoke. Therefore, in order to increase the torsional strength of the propeller shaft, if the serration press-fitting allowance for the fiber reinforced plastic cylinder is set to be large, the amount of shaving of the fiber reinforced plastic cylinder caused by the serration at the time of collision increases and the press-fit load is increased. It becomes larger, and the ability to absorb collision load decreases. Conversely, in order to reduce the amount of fiber-reinforced plastic cylinder by serration at the time of collision and reduce the press-fit load and increase the impact load absorption capacity, the serration press-fitting allowance for the fiber-reinforced plastic cylinder is reduced. If set to a small value, the torsional strength of the propeller shaft is lowered. Thus, it has been difficult for the propeller shaft described in Patent Document 1 to improve the ability to absorb a collision load at the time of collision while ensuring torsional strength.
[0008]
The present invention has been made in view of such circumstances, and the object thereof is to provide a propeller shaft made of fiber reinforced plastic that can secure torsional strength and can improve the ability to absorb a collision load at the time of collision. Is to provide.
[0009]
[Means for Solving the Problems]
In the following, means for achieving the above object and its effects are described.
The invention according to claim 1 is a fiber reinforced plastic propeller shaft in which a joint part of a metal part is joined to an end part of a fiber reinforced plastic cylinder, and the joint part of the fiber reinforced plastic cylinder and the metal part, An intermediate cylindrical member is disposed between the intermediate cylindrical members, and serrations are formed on the outer surface of the intermediate cylindrical member so as to extend in the axial direction and bite into the inner peripheral surface of the fiber-reinforced plastic cylinder. Formed an inner spline extending in the axial direction, and an outer spline fitted to the inner spline of the intermediate cylindrical member was formed on the outer peripheral surface of the joint portion of the metal part.
[0010]
According to the above configuration, the torsional strength of the propeller shaft made of fiber reinforced plastic is ensured by the biting of the serration of the intermediate cylindrical member with respect to the fiber reinforced plastic cylinder and the fitting of the inner spline of the intermediate cylindrical member and the outer spline of the metal part. The Moreover, since the intermediate cylindrical member and the joint part of the metal part are spline-fitted, the press-fitting load of the metal part into the fiber-reinforced plastic cylinder is reduced. Therefore, the metal parts are easily pressed into the fiber reinforced plastic cylinder by the collision load acting in the axial direction of the propeller shaft at the time of collision, and the ability to absorb the collision load can be improved.
[0011]
According to a second aspect of the present invention, in the fiber reinforced plastic propeller shaft according to the first aspect, an inner diameter of the intermediate cylindrical member is set larger than an outer diameter of a maximum outer shape of the metal part.
[0012]
According to the above configuration, when the metal part is pressed into the fiber reinforced plastic cylinder by the collision load acting in the axial direction of the propeller shaft at the time of the collision, the metal part is press fitted without colliding with the fiber reinforced plastic cylinder. Is done.
[0013]
According to a third aspect of the present invention, in the fiber reinforced plastic propeller shaft according to the first or second aspect, a lead angle is given to one of the inner spline of the intermediate cylindrical member or the outer spline of the metal part. .
[0014]
According to the above configuration, by applying a lead angle to one of the inner spline of the intermediate cylindrical member or the outer spline of the metal part, the press-fit load of the metal part can be adjusted as appropriate, and the ability to absorb the collision load is adjusted. be able to.
[0015]
According to a fourth aspect of the present invention, in the fiber reinforced plastic propeller shaft according to any one of the first to third aspects, the intermediate cylindrical member engages with the fiber reinforced plastic cylindrical body. A restricting means for restricting the movement in the axial direction is provided.
[0016]
According to the above configuration, when the metal part is press-fitted into the fiber-reinforced plastic cylinder due to the collision load at the time of the collision, the movement of the intermediate cylindrical member in the axial direction is restricted by the restricting means. Enter the fiber-reinforced plastic cylinder.
[0017]
As in the fifth aspect of the present invention, the restricting means can be a flange formed at the outer end of the intermediate cylindrical member and abutting against the end of the fiber reinforced plastic cylinder.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
As shown in FIG. 1, a fiber reinforced plastic (FRP) propeller shaft 10 according to this embodiment includes an FRP cylinder 11 and a metal yoke (as a metal part) joined to both ends of the FRP cylinder 11. A joint) 12 and an intermediate cylindrical member 13. The FRP cylinder 11 and the intermediate cylindrical member 13 are serrated and the intermediate cylindrical member 13 and the metal yoke 12 are spline-fitted. The metal yoke 12 and the intermediate cylindrical member 13 are coupled to both ends of the FRP cylinder 11, but the structure of the FRP cylinder 11 at both ends and the metal yoke 12 coupled to the both ends. The configuration of the intermediate cylindrical member 13 is the same. Therefore, in the present embodiment, for convenience of description, the connection between the metal yoke 12 and the intermediate cylindrical member 13 on the engine drive shaft side and the FRP cylinder 11 is described, and the metal yoke 12 and the intermediate cylindrical member 13 on the driven shaft side are described. The coupling of the FRP cylinder 11 is the same as that on the engine drive shaft side, and a description thereof is omitted.
[0019]
The FRP cylinder 11 is made of a cylinder having a substantially constant thickness, and is formed by, for example, a filament winding method. That is, the FRP cylindrical body 11 is formed by winding a reinforcing fiber such as a carbon fiber impregnated with a matrix resin such as an epoxy resin in a layer shape to form a cylindrical body, and then heating and curing the cylindrical body.
[0020]
The FRP cylinder 11 includes a helical winding layer 11a in which reinforcing fibers are wound obliquely at a predetermined equal pitch, and a hoop winding layer 11b provided outside the helical winding layer 11a at each end portion 14. . The reinforcing fiber of the helical wound layer 11a is set to a value defined at an angle of less than 45 degrees in order to satisfy the characteristics such as bending, twisting, and vibration required when used in a vehicle. . Here, for example, ± 10 degrees is set. The hoop winding layer 11b is different from the helical winding layer 11a in that the reinforcing fiber is set at an angle of 45 degrees or more and less than 90 degrees with respect to the axis of the FRP cylinder 11. Here, the hoop winding layer 11b is wound, for example, at approximately 90 degrees.
[0021]
The intermediate cylindrical member 13 is formed of a metal plate and is press-fitted into the end portion 14 of the FRP cylinder 11. As shown in FIG. 4, serrations 13 a that extend in the axial direction and bite into the inner peripheral surface of the FRP cylinder 11 are formed on the outer surface of the intermediate cylindrical member 13, and extend in the axial direction on the inner surface of the intermediate cylindrical member 13. An inner spline 13b is formed. The diameter D13a of the tip circle of the serration 13a is larger than the inner diameter D11 of the end 14 of the FRP cylinder 11.
[0022]
Further, a flange 13c is formed on the outer end of the intermediate cylindrical member 13 so as to abut on the end 14 of the FRP cylinder 11, and the flange 13c is engaged with the end 14 of the FRP cylinder 11 to be intermediate. The movement of the cylindrical member 13 in the axial direction is restricted.
[0023]
The metal yoke 12 is a member connected to the cross shaft, and has a hole 12a for attaching the cross shaft. As shown in FIG. 3, the press-fit shaft portion 12 b as a joint portion of the metal yoke 12 is formed in a columnar shape, and an outer spline 12 c fitted to the inner spline 13 b of the intermediate cylindrical member 13 on the outer peripheral surface thereof. Is formed. The outer spline 12c is provided with a lead angle with respect to the inner spline 13b of the intermediate cylindrical member 13, so that the press-fitting load of the metal yoke 12 can be adjusted.
[0024]
Further, the inner diameter D13b of the intermediate cylindrical member 13 is set to be larger than the outer diameter D12 of the maximum outer shape excluding the press-fit shaft portion 12b of the metal yoke 12.
As shown in FIG. 3, when the intermediate cylindrical member 13 is press-fitted from the end portion 14 of the FRP cylinder 11 described above, a notch is formed on the inner peripheral surface of the end portion 14 of the FRP cylinder 11 by the serration 13a. However, the serrations 13 a bite into the inner peripheral surface of the FRP cylinder 11. When the flange 13c contacts the end portion 14 of the FRP cylinder 11, the movement of the intermediate cylindrical member 13 in the axial direction is restricted. Therefore, the intermediate cylindrical member 13 and the FRP cylinder 11 are integrally joined so as not to rotate relative to each other.
[0025]
Thereafter, when the press-fitting shaft portion 12b of the metal yoke 12 is press-fitted into the intermediate cylindrical member 13, the inner spline 13b of the intermediate cylindrical member 13 and the outer spline 12c of the metal yoke 12 are fitted. Therefore, the metal yoke 12 and the FRP cylinder 11 are joined together so as not to rotate relative to each other, and the FRP propeller shaft 10 of this embodiment is manufactured.
[0026]
The operation of the FRP propeller shaft 10 configured as described above will be described.
During normal vehicle operation, the serration 13a of the intermediate cylindrical member 13 bites into the FRP cylinder 11 and the inner spline 13b of the intermediate cylindrical member 13 and the outer spline 12c of the metal yoke 12 are fitted to each other so that the FRP propeller shaft 10 is engaged. Torsional strength is ensured.
[0027]
The intermediate cylindrical member 13 and the press-fitting shaft portion 12b of the metal yoke 12 are fitted to the inner spline 13b and the outer spline 12c, so that the press-fitting load of the metal yoke 12 into the FRP cylinder 11 is reduced. Therefore, as shown in FIG. 2, when a collision load acts in the axial direction of the FRP propeller shaft 10 at the time of a collision, the metal yoke 12 is likely to be press-fitted into the FRP cylinder 11 and absorbs the collision load. Can be improved.
[0028]
Further, the inner diameter D13b of the intermediate cylindrical member 13 is set to be larger than the outer diameter D12 of the maximum outer shape excluding the press-fit shaft portion 12b of the metal yoke 12. Therefore, when the metal yoke 12 is press-fitted into the FRP cylinder 11 by the collision load acting in the axial direction of the FRP propeller shaft 10 at the time of collision, the metal yoke 12 excluding the press-fit shaft portion 12b is an intermediate cylindrical member. 13 and the FRP cylinder 11 without being collided.
[0029]
According to the FRP propeller shaft 10 configured as described above, the following effects can be obtained.
In this embodiment, the serration 13a of the intermediate cylindrical member 13 bites into the FRP cylindrical body 11 and the inner spline 13b of the intermediate cylindrical member 13 and the outer spline 12c of the metal yoke 12 are fitted to each other so that the FRP propeller shaft 10 Torsional strength can be ensured. The intermediate cylindrical member 13 and the press-fitting shaft portion 12b of the metal yoke 12 are fitted to the inner spline 13b and the outer spline 12c, so that the press-fitting load of the metal yoke 12 into the FRP cylinder 11 is reduced. Therefore, the metal yoke 12 is easily press-fitted into the FRP cylinder 11 by the collision load acting in the axial direction of the FRP propeller shaft 10 at the time of collision, and the ability to absorb the collision load can be improved.
[0030]
In addition, the inner diameter D13b of the intermediate cylindrical member 13 is set to be larger than the outer diameter D12 of the maximum outer shape excluding the press-fit shaft portion 12b of the metal yoke 12. Therefore, when the metal yoke 12 is press-fitted into the FRP cylinder 11 due to a collision load acting in the axial direction of the FRP propeller shaft 10 at the time of a collision, the metal yoke 12 excluding the press-fit shaft portion 12b is attached to the FRP cylinder. It is possible to press fit without colliding with the body 11.
[0031]
Furthermore, since the outer spline 12c of the metal yoke 12 has a lead angle with respect to the inner spline 13b of the intermediate cylindrical member 13, the press-fitting load of the metal yoke 12 can be adjusted as appropriate, and the collision load The absorption capacity of can be adjusted.
[0032]
The intermediate cylindrical member 13 is provided with a flange 13c that engages with the FRP cylinder 11 and restricts the movement of the intermediate cylindrical member 13 in the axial direction. Therefore, when the metal yoke 12 is press-fitted into the FRP cylinder 11 due to the collision load at the time of collision, the movement of the intermediate cylindrical member 13 in the axial direction is restricted by the flange 13c. It is possible to enter the FRP cylinder 11.
[0033]
The embodiment may be changed as follows.
As shown in FIG. 5, the intermediate cylindrical member 13 may be formed with an inner spline 13d having a rectangular cross section, and the metal yoke 12 may be formed with an outer spline 12d having a rectangular cross section.
[0034]
In the above embodiment, the length of the press-fit shaft portion 12b of the metal yoke 12 and the length of the intermediate cylindrical member 13 in the axial direction are set equal, but either one may be set longer. If comprised in this way, the collision load which acts on the axial direction of the propeller shaft 10 made from FRP with the fixed fitting force of both can be absorbed gradually in the period when both are fitting.
[0035]
-In the said embodiment, the fiber which has high elasticity and high intensity | strength, such as an aramid fiber and glass fiber, is employ | adopted as a reinforced fiber of the FRP cylinder 11, or unsaturated polyester resin, phenol resin, and polyimide resin as matrix resin A thermosetting resin such as the above may be employed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an end configuration of an FRP propeller shaft according to an embodiment.
FIG. 2 is a cross-sectional view showing a deformed state of an FRP propeller shaft at the time of a collision.
FIG. 3 is an exploded cross-sectional view showing a part of an FRP propeller shaft according to an embodiment.
4 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 5 is a partial cross-sectional view showing an intermediate cylindrical member of another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Fiber reinforced plastic propeller shaft, 11 ... FRP (fiber reinforced plastic) cylinder, 11a ... Helical winding layer, 11b ... Hoop winding layer, 12 ... Metal yoke as metal part, 12b ... Press-fit shaft part, 12c , 12d ... outer spline, 13 ... intermediate cylindrical member, 13a ... serration, 13b, 13d ... inner spline, 13c ... flange as a regulating means, 14 ... end, D11, D13b ... inner diameter, D12 ... outer diameter.

Claims (5)

繊維強化プラスチック製筒体の端部に金属部品の接合部を接合した繊維強化プラスチック製プロペラシャフトにおいて、
前記繊維強化プラスチック製筒体と前記金属部品の接合部との間には中間円筒部材を配設し、該中間円筒部材の外面には軸方向に延びかつ前記繊維強化プラスチック製筒体の内周面に食い込むセレーションを形成し、該中間円筒部材の内面には軸方向に延びる内側スプラインを形成し、
前記金属部品の接合部の外周面には前記中間円筒部材の内側スプラインに嵌合する外側スプラインを形成した
ことを特徴とする繊維強化プラスチック製プロペラシャフト。
In the fiber reinforced plastic propeller shaft in which the joint part of the metal part is joined to the end of the fiber reinforced plastic cylinder,
An intermediate cylindrical member is disposed between the fiber reinforced plastic cylindrical body and the joint portion of the metal part, and an axially extending outer surface of the intermediate cylindrical member and an inner circumference of the fiber reinforced plastic cylindrical body Forming a serration that bites into the surface, forming an inner spline extending in the axial direction on the inner surface of the intermediate cylindrical member,
A fiber reinforced plastic propeller shaft, characterized in that an outer spline is formed on the outer peripheral surface of the joint part of the metal part to be fitted to the inner spline of the intermediate cylindrical member.
請求項1に記載の繊維強化プラスチック製プロペラシャフトにおいて、
前記中間円筒部材の内径は、前記金属部品の最大外形の外径よりも大きく設定されている
ことを特徴とする繊維強化プラスチック製プロペラシャフト。
In the fiber reinforced plastic propeller shaft according to claim 1,
A fiber reinforced plastic propeller shaft, wherein an inner diameter of the intermediate cylindrical member is set larger than an outer diameter of a maximum outer shape of the metal part.
請求項1又は2に記載の繊維強化プラスチック製プロペラシャフトにおいて、
前記中間円筒部材の内側スプライン又は前記金属部品の外側スプラインの一方にはリード角が付与されている
ことを特徴とする繊維強化プラスチック製プロペラシャフト。
In the propeller shaft made of fiber reinforced plastic according to claim 1 or 2,
One of the inner spline of the intermediate cylindrical member and the outer spline of the metal part is provided with a lead angle.
請求項1〜3のいずれかに記載の繊維強化プラスチック製プロペラシャフトにおいて、
前記中間円筒部材には前記繊維強化プラスチック製筒体に係合して該中間円筒部材の軸方向への移動を規制する規制手段が設けられている
ことを特徴とする繊維強化プラスチック製プロペラシャフト。
In the propeller shaft made of fiber-reinforced plastic according to any one of claims 1 to 3,
A fiber reinforced plastic propeller shaft, wherein the intermediate cylindrical member is provided with a restricting means for engaging the fiber reinforced plastic cylindrical body to restrict movement of the intermediate cylindrical member in the axial direction.
請求項4に記載の繊維強化プラスチック製プロペラシャフトにおいて、
前記規制手段は、前記中間円筒部材の外端部に形成され、かつ前記繊維強化プラスチック製筒体の端部に当接するフランジである
ことを特徴とする繊維強化プラスチック製プロペラシャフト。
In the propeller shaft made of fiber-reinforced plastic according to claim 4,
The fiber-reinforced plastic propeller shaft, wherein the restricting means is a flange formed at an outer end portion of the intermediate cylindrical member and abutting against an end portion of the fiber-reinforced plastic cylinder.
JP2003099765A 2003-04-02 2003-04-02 Propeller shaft made of fiber-reinforced plastic Withdrawn JP2004308700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099765A JP2004308700A (en) 2003-04-02 2003-04-02 Propeller shaft made of fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099765A JP2004308700A (en) 2003-04-02 2003-04-02 Propeller shaft made of fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2004308700A true JP2004308700A (en) 2004-11-04

Family

ID=33464080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099765A Withdrawn JP2004308700A (en) 2003-04-02 2003-04-02 Propeller shaft made of fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2004308700A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281454A (en) * 2008-05-21 2009-12-03 Hitachi Automotive Systems Ltd Power transmission shaft and propeller shaft for vehicle
WO2011024527A1 (en) 2009-08-31 2011-03-03 藤倉ゴム工業株式会社 Frp-made drive shaft
US9316264B2 (en) 2013-10-24 2016-04-19 Hyundai Motor Company Propeller shaft
WO2019131549A1 (en) 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
JP2019167989A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Constant velocity universal joint shaft
US10443647B2 (en) 2014-11-17 2019-10-15 Ntn Corporation Power transmission shaft

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281454A (en) * 2008-05-21 2009-12-03 Hitachi Automotive Systems Ltd Power transmission shaft and propeller shaft for vehicle
JP4668293B2 (en) * 2008-05-21 2011-04-13 日立オートモティブシステムズ株式会社 Power transmission shaft
US8142294B2 (en) 2008-05-21 2012-03-27 Hitachi, Ltd. Power transmission shaft and propeller shaft for vehicle
WO2011024527A1 (en) 2009-08-31 2011-03-03 藤倉ゴム工業株式会社 Frp-made drive shaft
US9316264B2 (en) 2013-10-24 2016-04-19 Hyundai Motor Company Propeller shaft
US10443647B2 (en) 2014-11-17 2019-10-15 Ntn Corporation Power transmission shaft
WO2019131549A1 (en) 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
US11767876B2 (en) 2017-12-27 2023-09-26 Ntn Corporation Power transmission shaft
JP2019167989A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Constant velocity universal joint shaft

Similar Documents

Publication Publication Date Title
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JP2001047883A (en) Power transmission shaft
JP2003004060A (en) Coupling and power transmission shaft and method of manufacturing coupling
JP2004308700A (en) Propeller shaft made of fiber-reinforced plastic
EP0683328B1 (en) Propeller shaft
KR101664682B1 (en) Hollow drive shaft for vehicle and manufacturing meathod of the same
JP2006056389A (en) Propeller shaft and rotation power transmission mechanism provided with the shaft
JP3063583B2 (en) Propeller shaft
JP2006189095A (en) Elastic joint and wheel connecting structure for automobile
JP2007271079A (en) Torque transmission shaft
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
JP3269287B2 (en) FRP cylinder and manufacturing method thereof
JP2011017413A (en) Shaft for power transmission shaft
WO2010116883A1 (en) Intermediate shaft for drive shaft
KR101999277B1 (en) Cfrp propeller shafts for vehicle
JP2000329130A (en) Propeller shaft
JP4665546B2 (en) Steering bush and manufacturing method thereof
JP2004293708A (en) Propeller shaft of fiber-reinforced plastic, and manufacturing method for the same
EP3770449B1 (en) Power transmission shaft
KR101073093B1 (en) Coupling structure of propeller shaft in vehicle
JPH0958288A (en) Gear shifter
JP2004268339A (en) Method for manufacturing propeller shaft made of fiber reinforced plastic
JPH1129049A (en) Collapsible steering column
JP3433850B2 (en) FRP cylinder and manufacturing method thereof
JP3402255B2 (en) Universal joint of propeller shaft and propeller shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061214