JP2004307922A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2004307922A
JP2004307922A JP2003102475A JP2003102475A JP2004307922A JP 2004307922 A JP2004307922 A JP 2004307922A JP 2003102475 A JP2003102475 A JP 2003102475A JP 2003102475 A JP2003102475 A JP 2003102475A JP 2004307922 A JP2004307922 A JP 2004307922A
Authority
JP
Japan
Prior art keywords
furnace
production
increase
blast furnace
gas amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102475A
Other languages
Japanese (ja)
Inventor
Kaoru Nakano
薫 中野
Masaru Ujisawa
優 宇治澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003102475A priority Critical patent/JP2004307922A/en
Publication of JP2004307922A publication Critical patent/JP2004307922A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method by which a blast furnace can be promptly shifted to production increase operation while stable gas ventilation and lowering of charged material is kept without requiring a large scaled facility. <P>SOLUTION: An operating method for shifting a blast furnace into production increase operation is provided by which a relation between a gas ventilation resistance in the furnace and the limited value of the increasing ratio of a bosh gas amount in the operation before shifting into the production increase operation is obtained to operate the furnace at not higher than the limited value of the bosh gas amount obtained from the gas ventilation resistance value. When the blast furnace is shifted into the production increase operation, it is desirable that the above operating method is performed by dividing into a plurality of times. Further, after the change of various elements of the operation is completed once, it is desirable to operate the furnace for ≥ 150 hr at not higher than the limited value of the increasing ratio of the bosh gas amount. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高炉の増産への移行時の操業方法に関し、さらに詳しくは、減産時における炉内の不活性な状態から増産への移行時に、過度に高炉炉内圧力損失が増加する現象を抑制し、短期間で増産に移行可能とする高炉の増産移行における操業方法に関する。
【0002】
【従来の技術】
高炉は、炉頂から炭材と鉄鉱石を原料として装入し、炉下部の羽口からは高温高圧の空気または酸素濃度を富化した空気を吹き込み、炭材を燃焼させて発生した高温の還元ガス(COガス)により鉄鉱石を還元、溶解して銑鉄を製造する向流移動層型反応装置である。羽口前方では吹き込まれた前記の空気による衝風によりコークスが旋回運動を行うレースウェイと称する領域が形成され、炉頂から装入され荷下がりにより降下してレースウェイに侵入したコークス、および羽口から吹き込まれた微粉炭は、送風により吹き込まれた空気により燃焼して還元ガス(COガス)を生成する。
【0003】
高炉の減産状態では、炉内発生ガス量が少ないため、羽口風速または発生ガスの炉内流通速度が低下し、レースウェイ内においてコークスが旋回時に互いに衝突することにより発生するコークス粉、および未燃焼の微粉炭に由来する粉がレースウェイの奥に存在する炉芯と称する部位に蓄積されやすくなる。また、この炉芯に存在するコークスは、炉芯上方の融着帯から滴下する溶銑中への浸炭や溶滓中のFeOとの反応により化学的に劣化していく。この炉芯の部位は、高炉の下部中央に存在するコークス主体の充填領域であり、この領域では、荷下がり速度は、周囲の荷下がり速度に比べて極度に遅く、炉芯の更新周期は5日〜2週間程度といわれている。
【0004】
減産によって前記の炉芯更新の原動力である荷下がり速度が低下すると、炉芯の更新速度は遅くなる。このため、高炉において減産を実施した場合、この炉芯コークスの更新周期はさらに長くなり、コークスの劣化が進展する。さらに、炉内流通ガス量の低下により、炉下部の炉壁部の温度が低下し、ガス流速の低い領域において、付着物が生成しやすくなる。
【0005】
これらの現象は、総称して炉下部不活性現象と称され、高炉内の通気および通液性の悪化や、炉内における原料の荷下がり不良などを惹起し、円滑な操業を阻害する要因となる。高炉の生産量を減少させ、低負荷操業を継続している場合には、必ずしも顕在化しない程度の炉下部不活性状態であっても、増産への移行過程において上記のような現象の影響が問題となり、増産への急激な移行を図る場合には、過度の炉内圧力損失の上昇がおこり、安定操業が継続できずに増産への移行が停滞することとなる。
【0006】
このような、減産時の炉内不活性現象を解消する手段として、例えば、下記の方法が開示されている。
【0007】
特許文献1には、高炉操業の休風時に長手方向に複数の穴の開いた金属管を羽口から炉内に挿入し、炉内に送風して燃焼加熱するか、またはプラズマトーチを挿入して直接加熱する操業方法が開示されている。
【0008】
また、特許文献2には、不活性状態の高炉炉芯を活性化するに際して、送風休止の10時間以上前から燃料比を600(kg/t−溶銑)に増加して操業するとともに、送風休止後に、羽口からコークス排出管を炉芯の中心部まで挿入し、不活性化した炉芯コークスを排出後、送風を再開する操業方法が開示されている。
【0009】
しかし、前記の特許文献1に開示された方法では、炉芯に蓄積した粉の除去は可能であるものの、劣化したコークスは炉芯に残存する。また、特許文献2に開示された方法では、コークスの置換は可能であるとしても、炉下部炉壁部の付着物は除去できない。また、いずれの方法も大規模な設備を要し、しかも高温の炉内に気体吹き込み用プローブやコークス排出管などを挿入することから、炉前作業に危険と困難を伴う。
【特許文献1】
特開平5―65517号公報(特許請求の範囲、段落[0013])
【特許文献2】
特開平5−98323号公報(特許請求の範囲、段落[0005])
【非特許文献1】
山岡秀行:鉄と鋼, Vol.72(1986),p2194〜2201
【非特許文献2】
Kouji TAKATANI, Takanobu INADA and Yutaka UJISAWA:ISIJ Int., Vol.39(1999), p15〜22
【0010】
【発明が解決しようとする課題】
本発明の課題は、上述の問題に鑑み、高炉の増産への移行時において、大規模な設備を要することなく、また、過度の圧損上昇を招かずに安定操業を継続しながら速やかに高炉炉内の活性化を図り、増産への移行を可能とする操業方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上述の課題を達成するために、前記した従来の問題点について検討を加え、下記の(a)〜(d)の知見を得た。
【0012】
(a)高炉の炉内通気抵抗をパラメータとして炉内の圧損上昇率とボッシュガス量増加率との関係を高炉の数学モデルにより求め、前記の圧損上昇率がゼロ(0)であるボッシュガス量増加率と炉内通気抵抗との関係を求めることにより、ボッシュガス量増加率の限界値(以下「限界ボッシュガス量増加率」とも記す)と炉内通気抵抗との関係が得られる。
【0013】
(b)前記(a)で得られた限界ボッシュガス量増加率と炉内通気抵抗との関係に基き、増産への移行前の炉内通気抵抗に見合った限界ボッシュガス量増加率以下で操業を行うことにより、安定した高炉操業を維持できる。
(c)前記(b)の増産への移行操業を行う場合に、高炉内が定常状態に達するためには150時間以上が必要である。
(d)前記(b)および(c)の増産への移行操業を複数回繰り返すことにより、所望の増産操業を達成できる。
【0014】
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(4)に示す高炉の操業方法にある。
【0015】
(1)増産操業への移行前の操業における炉内通気抵抗とボッシュガス量増加率の限界値との関係を求め、前記炉内通気抵抗値から求められるボッシュガス量増加率の限界値以下で操業する高炉の増産移行における操業方法。
【0016】
(2)前記(1)に記載の操業方法を複数回行う高炉の増産移行における操業方法。
【0017】
(3)前記(2)に記載の高炉の増産移行における操業方法において、一回の操業諸元の変更が終了後に、ボッシュガス量増加率の限界値以下で150時間以上操業することが好ましい。
【0018】
(4)前記(1)〜(3)のいずれかに記載の高炉の増産移行における操業方法において、炉内通気抵抗として、増産操業への移行前1日間の炉内通気抵抗の平均値を用いることが好ましい。
【0019】
本発明において、「炉内通気抵抗」とは、炉内通過ガス量の影響を除去し、装入物固有の特性に基くガスの流通抵抗を表す指標を意味する。種々の算出方法があるが、装入物固有の通気抵抗を表すかまたはそれを意図するものであれば、本発明に用いることができる。
「ボッシュガス量」とは、羽口から吹き込まれる空気、酸素富化用の酸素、送風湿分などの送風による羽口前コークスの燃焼、および、微粉炭、液体燃料などの補助燃料の燃焼により羽口前で生成する総ガス量をいう。
「増産操業」とは、出銑量を増加させる操業をいい、10日平均の出銑量の増加率が5%以上となる操業をいう。
【0020】
また、「限界ボッシュガス量増加率」とは、過度の炉内圧損の上昇を起こさないために許容されるボッシュガス量の増加率の上限値をいう。
【0021】
【発明の実施の形態】
本発明は、前記のとおり、増産への移行前における炉内通気抵抗とボッシュガス量増加率の限界値との関係を求め、炉内通気抵抗値から求められるボッシュガス量増加率の限界値以下で操業する高炉の操業方法である。高炉炉内の不活性状態を定量的に把握し、それに基いてボッシュガス量の限界値以下の範囲で増産操業行うためには、炉内通気抵抗の的確な把握が重要となる。そこで、まず、炉内通気抵抗の算出について述べる。
高炉内のガスの流通抵抗を、充填層内におけるガスの通気抵抗として評価する方法としては、例えば、Kozeny−Carmanの圧損式における摩擦係数に基く指数△P/VBOSH 、および△P/VBOSH 、さらにこれらに温度補正を行った指数(P −P )/VBOSH 1.7 、ならびに、S.Ergunの圧損式における摩擦係数などが用いられている。ここで、△Pは炉内の圧力損失、VBOSHはボッシュガス量、P は送風圧力、P は炉頂圧力である。
【0022】
本発明者らは、層流域および乱流域のいずれのガス流れ領域においても圧損を精度良く表現できる S.Ergunの圧損式の記述形式に基き、摩擦係数を高炉内のガス流れに関するレイノルズ数の関数として記述し、下記の(1)〜(10)式により炉内通気抵抗指数(KR)を求めた。
【0023】

Figure 2004307922
ただし、Lは羽口と層頂間の距離(m)、VBOSHはボッシュガス量(Nm/s)、Vは送風量(Nm/s)、VO2は酸素富化量(Nm/s)、Fは送風湿分(kg/Nm)、WPCは微粉炭吹き込み量(kg/s)、微粉炭中水素含有率(−)、VNCARは微粉炭キャリアガス量(Nm/s)、Pは送風圧力(Pa)、Pは炉頂圧力(Pa)、そしてAはシャフト部下端断面積(m)である。ここで、圧力は全てゲージ圧力を表す。
【0024】
高炉内では、粒状体の存在に加えて、粉体、液体、さらには炉下部において鉱石類が軟化融着して形成される融着帯が存在するため、上記の炉内通気抵抗指数(KR)の値は、通常の固気充填層に比べて高く、4000〜13000(1/m)の範囲の値となる。さらに、上述のように高炉内で発生する粉の滞留量や付着物の生成量に応じて炉内通気抵抗指数は増加する。このため、炉内通気抵抗指数は、炉内が不活性状態の減産期には大きく、炉内が活性状態の増産期には小さい値となる。
【0025】
したがって、送風諸元を増加させて炉内流通ガス量を増加させ、高炉が減産状態から増産状態へ移行する場合、すなわち、炉内が不活性な状態から活性な状態へ移行するときに、炉内において過度の圧損上昇を招くおそれがある。
【0026】
そこで、表1に示される減産期の操業諸元から増産期の操業諸元に移行した場合の圧損上昇におよぼす影響につき検討を行った。
【0027】
【表1】
Figure 2004307922
【0028】
図1は、減産状態から急激に増産状態に移行した時の炉内の圧力損失の時間的変化を数学モデルにより算出した結果を示す図である。
【0029】
同図の結果は、レースウェイ内におけるコークス粒子同士の衝突による粉化および充填層の荷下がり応力場におけるコークスの粉化を力学的に評価し、非特許文献1に記載された「粉を含む固気二相流モデル」を用いて、減産状態から急激にボッシュガス量を増加させて増産状態に移行させた場合に生じる炉内の圧損変化を数値シミュレーションしたものである。
【0030】
増産期においては減産期に比較して炉内での粉の発生速度は増加する。他方、炉内におけるガス流速は、増産期に比べて減産期の方が小さく、炉芯の更新速度も遅いため、炉内における粉のホールドアップ量が多くなり、したがって、増産操業への移行直後に過度の圧損上昇がみられ、安定操業の維持が困難になると考えられる。
【0031】
上述の理由により、過度の炉内圧損の上昇を回避するためには、増産操業に移行する前の時点での炉内通気抵抗に応じた移行操業を行うことが必要である。また、1回の操業諸元の変更操作により目的とする増産操業への移行が達成できない場合には、この操業諸元の変更操作を複数回繰り返す必要がある。
【0032】
以下に、増産操業への移行操作を行う前の時点における炉内通気抵抗に応じて操業諸元の変更操作を行う場合について、1回の操業諸元の変更操作で可能な送風諸元変更量、および、複数回これらの操作を繰り返す場合の操業操作の時間間隔について検討した。
【0033】
まず、増産操業への移行操作を行う時点での炉内通気抵抗に応じて操業条件を変更する場合について、1回の操業条件の変更により許容されるボッシュガス量の増加量を検討した。
【0034】
図2は、前記の「粉を含む固気二相流」数学モデルを用い、減産時における炉内通気抵抗指数をパラメターとして、ボッシュガス量増加率と過度の圧損上昇率との関係を算出し、示した図である。
【0035】
同図の結果によれば、1回の操業諸元の変更操作によるボッシュガス量の増加率が大きいほど、過度の圧損上昇率は大きく、また、減産時、すなわち操業諸元変更前における炉内通気抵抗指数(KR)が小さいほど、過度の圧損上昇率は小さい。さらに、これらの曲線群は、横軸に切片を有することから、1回の操業諸元の変更操作によるボッシュガス量増加率を低く抑えることによって、過度の圧損上昇率を抑制できることがわかる。
【0036】
図3は、減産時における炉内通気抵抗指数と限界ボッシュガス量増加率との関係を示す図である。すなわち、同図は、減産状態から1回の操業諸元の変更操作により、過度の圧損上昇率を抑制することが可能なボッシュガス量増加率を示したものである。
【0037】
同図に示される関係に基いてボッシュガス量を増加させれば、過度の圧損上昇を招くことなく増産操業への移行を図ることが可能である。また、減産期の通気抵抗指数が高いほど、1回の操業諸元の変更操作で可能なボッシュガス量増加率は小さく抑えなければならないことが明らかである。
同図に示される関係から、1回の操業諸元の変更操作により変更可能なボッシュガス量の増加率の範囲は、近似的に下記の(11)式により表される。
△VBOSH/VBOSH ≦1.055×10×KR−1.42 ・・・・・・・(11)
ここで、△VBOSH は、1回の操業諸元の変更操作により変更可能なボッシュガス量増加量(Nm/s)である。
【0038】
次いで、複数の操業諸元を変更操作することにより増産を図る場合について、各操業条件の変更時の炉内応答の時間的変化を検討した。本検討は、非特許文献2に開示された高炉の三次元非定常数学モデルに、高炉の操業諸元を変更したデータを入力し、前記数学モデルにより炉内の熱的状態および反応の応答の時間的変化を数値シミュレーションすることにより行った。
【0039】
表2に、(酸素富化量/送風量)の比、(微粉炭吹き込み量/送風量)の比、および羽口前理論燃焼温度を一定として、送風諸元を変更することによりボッシュガス量を増加させて、減産操業から増産操業へ移行する操業諸元の変更例を示す(以下「ケース1」と記す)。
【0040】
【表2】
Figure 2004307922
【0041】
図4は、上記のケース1に示す送風操作によりボッシュガス量を増加させた場合の高炉内状態の変化を示す図である。
同図の結果によれば、ケース1に示す送風諸元変更操作の場合には、操業諸元を変更後約50時間で、炉内の反応および熱的状態は応答を完了し、増産操業における定常状態に達している。
図6は、装入物分布を、炉内の半径方向中間部の(鉱石質量/コークス質量)の比(以下「O/C」と記す)が大きい分布1から、炉内中心部のO/Cが小さく炉壁側のO/Cが大きい分布2に変更することにより、減産操業から増産操業へ移行する操業諸元の変更例を示す図である(以下「ケース2」と記す)。
【0042】
図5は、送風条件を一定として上記のケース2に示す装入物分布変更操作を行った場合の高炉内状態の変化を示す図である。
同図の結果から、ケース2に示す装入物分布変更操作の場合には、炉内反応および熱的状態の変動が大きく、増産操業における定常状態に達するまでに約150時間(約6.3日)を要し、応答時間も長いことがわかる。
【0043】
現実には、減産操業から増産操業への移行過程では、送風諸元とともに装入物諸元も変更操作することが多いことから、炉内の装入物の分布状態や炉芯の形状は変化する。したがって、減産操業から増産操業への移行時においては、このような炉内の変化を考慮して、1回の操業諸元の変更操作による操業を150時間以上継続することが好ましい。
【0044】
【実施例】
本発明の効果を確認するため、炉内容積2700mの高炉において下記の試験を実施した。なお、以下の記述においては、当技術分野において、慣習的に用いられている単位を尊重し、これにSI単位を併記することとした。
【0045】
(比較例)
日産出銑量の3ヶ月間の平均値が4800(t/d)(55.56kg/s)、すなわち、出銑比1.78(t/d/m−炉内容積)(0.0206kg/s/m−炉内容積)の減産操業状態から、出銑比を0.11(t/d/m−炉内容積)(1.27×10−3kg/s/m−炉内容積)だけ上昇させる増産操業を行うために、送風諸元の変更操作を行った。
【0046】
表3に、減産操業期ならびに増産への移行操業期における炉内通気抵抗指数、送風諸元およびボッシュガス量増加率を示した。
【0047】
【表3】
Figure 2004307922
【0048】
なお、同表において、減産操業期の炉内通気抵抗指数は、増産操業に移行する1日前における炉内通気抵抗指数の平均値を、限界ボッシュガス量増加率は、前記の(11)式による計算値を、そして、実績ボッシュガス量増加率は、増産操業期への移行期におけるボッシュガス量増加率の実績値を、それぞれ示す。
【0049】
増産操業への操業諸元の変更を実施する1日前の減産操業期における炉内通気抵抗指数(KR)は7410(1/m)であった。
【0050】
そこで、ボッシュガス量増加率を、(11)式により算出される本発明の限界ボッシュガス量増加率0.037(−)を超える0.040(−)に設定して、増産操業への変更操作を行い、増産操業への移行操業を実施した。
【0051】
図7は、比較例の増産操業への移行操業推移を示す図である。
【0052】
同図の結果に見られるとおり、送風諸元の変更操作を実施した第10日に炉内装入物の荷下がり状況が不調となり、スリップの発生頻度が急増して10(回/d)を超えたため、増産への移行操業が維持できず、元の減産操業諸元に戻さざるを得なかった。
【0053】
(本発明例)
日産出銑量の3ヶ月間の平均値が4700(t/d)(54.40kg/s)、すなわち、出銑比1.74(t/d/m−炉内容積)(0.0201kg/s/m−炉内容積)の減産操業状態から、出銑比を0.11(t/d/m−炉内容積)(1.27×10−3kg/s/m−炉内容積)だけ上昇させる増産操業を行うために、送風諸元の変更操作を行った。
【0054】
表4に、減産操業期ならびに増産への移行操業期における炉内通気抵抗指数、送風諸元およびボッシュガス量増加率を示した。
【0055】
【表4】
Figure 2004307922
【0056】
なお、前記の表3と同様に、表4において、炉内通気抵抗指数は、増産操業への諸元移行操作の1日前における炉内通気抵抗指数の平均値を、限界ボッシュガス量増加率は、前記の(11)式による計算値を、そして、実績ボッシュガス量増加率は、増産操業期への移行期におけるボッシュガス量増加率の実績値を、それぞれ示す。
本発明例である当試験操業では、増産操業への操業諸元の変更を増産操業移行期1から増産操業移行期3までの3期に分けて実施し、1回の変更操作の後、10日間は同一操業諸元の操業を維持しながら、段階的に増産操業に移行させた。
【0057】
増産操業移行期1での移行に当たっては、移行操作を実施する1日前の減産操業期における炉内通気抵抗指数(KR)は7230(1/m)であった。そこで、ボッシュガス量増加率を、(11)式により算出される本発明の限界ボッシュガス量増加率0.035(−)以下の0.018(−)に設定して、増産操業移行期1への変更操作を行った。
【0058】
以下、増産操業移行期2での変更操作および増産操業移行期3での変更操作についても、同様に限界ボッシュガス量増加率以下の範囲で変更操作を行い、それぞれ10日間の同一操業諸元の操業期間を設けた。
【0059】
図8は、本発明例の増産操業への移行操業推移を示す図である。
【0060】
同図の結果に見られるとおり、増産操業移行期1から増産操業移行期3までの3回の操業諸元の変更により、炉内通気性および装入物の荷下がり状況を順調に維持しながら、30日間で出銑比を0.11(t/d/m−炉内容積)増加させる増産操業への移行を完了した。
【0061】
【発明の効果】
本発明法の高炉の操業方法によれば、減産操業時における炉内の不活性状態を的確に把握し、炉内の通気性に応じてボッシュガス量を増加させ、増産操業への移行操業を行うことができる。これにより、従来、減産操業から増産操業への移行には数ケ月を要していたが、炉内における過度の圧損上昇や装入物の荷下がり異常を発生させることなく、短期間で増産操業に移行させることが可能となり、高炉操業に生産弾力性を付与できる。
【図面の簡単な説明】
【図1】減産状態から急激に増産状態に移行した時の炉内の圧力損失の時間的変化を数学モデルにより算出した結果を示す図である。
【図2】減産時における炉内通気抵抗指数をパラメターとしてボッシュガス量増加率と過度の圧損上昇率との関係を示した図である。
【図3】減産時における炉内通気抵抗指数と限界ボッシュガス量増加率との関係を示す図である。
【図4】送風操作によりボッシュガス量を増加させた場合の高炉内状態の変化を示す図である。
【図5】装入物分布を変更した場合の高炉内状態の変化を示す図である。
【図6】装入物分布についての操業諸元の変更を示す図である。
【図7】比較例の増産操業への移行操業推移を示す図である。
【図8】本発明例の増産操業への移行操業推移を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation method at the time of shifting to increased production of a blast furnace, and more specifically, suppresses a phenomenon in which pressure loss inside a blast furnace excessively increases at the time of shifting from an inactive state in a furnace to increasing production at the time of reduced production. The present invention also relates to an operation method for increasing the production of a blast furnace in which production can be shifted in a short time.
[0002]
[Prior art]
In the blast furnace, carbon material and iron ore are charged from the furnace top as raw materials, and high-temperature high-pressure air or oxygen-enriched air is blown from the tuyere at the lower part of the furnace, and the high-temperature This is a counter-current moving bed type reactor for producing pig iron by reducing and dissolving iron ore with a reducing gas (CO gas). In front of the tuyere, an area called a raceway in which coke makes a swirling motion is formed by the blast of the blown air. The pulverized coal blown from the mouth burns with the air blown by the blowing to generate a reducing gas (CO gas).
[0003]
In the reduced production state of the blast furnace, since the amount of gas generated in the furnace is small, the tuyere wind speed or the flow speed of the generated gas in the furnace decreases, and the coke powder generated when the coke collides with each other when turning in the raceway, and Powder derived from the pulverized coal of combustion tends to accumulate in a portion called a furnace core located at the back of the raceway. The coke present in the furnace core is chemically degraded due to carburization into the hot metal dropped from the cohesive zone above the furnace core and reaction with FeO in the slag. This core portion is a coke-based filling region located in the lower center of the blast furnace. In this region, the unloading speed is extremely slower than the surrounding unloading speed, and the renewal period of the core is 5 times. It is said to be about two days to two days.
[0004]
When the unloading speed, which is the driving force of the core renewal, is reduced due to the decrease in production, the renewal speed of the core is reduced. For this reason, when the production is reduced in the blast furnace, the renewal cycle of the core coke becomes longer, and the deterioration of the coke progresses. Furthermore, the temperature of the furnace wall at the lower part of the furnace decreases due to the decrease in the amount of gas flowing through the furnace, and deposits are easily generated in a region where the gas flow rate is low.
[0005]
These phenomena are collectively referred to as lower furnace inertness phenomena.They cause deterioration of ventilation and liquid permeability in the blast furnace, poor loading of raw materials in the furnace, and other factors that hinder smooth operation. Become. If the production volume of the blast furnace is reduced and low-load operation is continued, the effects of the above phenomena in the process of shifting to production increase, even in the inactive state of the lower part of the furnace that is not necessarily apparent. If this is a problem, and a rapid transition to increased production is attempted, excessive pressure rise in the furnace will occur, and stable operation cannot be continued, and the transition to increased production will be stagnated.
[0006]
For example, the following method is disclosed as a means for eliminating such a furnace inactivation phenomenon at the time of production reduction.
[0007]
Patent Document 1 discloses that a metal tube having a plurality of holes in a longitudinal direction is inserted into a furnace from a tuyere when the blast furnace operation is shut off, and is blown into the furnace to be heated by combustion, or a plasma torch is inserted. An operating method for direct heating is disclosed.
[0008]
Further, in Patent Document 2, when activating the blast furnace core in an inactive state, the fuel ratio is increased to 600 (kg / t-hot metal) from 10 hours or more before the suspension of the blowing, and the operation is started. Later, an operation method is disclosed in which a coke discharge pipe is inserted from the tuyere to the center of the furnace core, and after the inactivated core coke is discharged, the blowing is restarted.
[0009]
However, according to the method disclosed in Patent Document 1, although powder accumulated in the furnace core can be removed, deteriorated coke remains in the furnace core. Further, according to the method disclosed in Patent Document 2, even if coke can be replaced, it is not possible to remove deposits on the furnace wall of the lower furnace. In addition, all of these methods require large-scale equipment and insert a gas blowing probe, a coke discharge pipe, and the like into a high-temperature furnace.
[Patent Document 1]
JP-A-5-65517 (Claims, paragraph [0013])
[Patent Document 2]
JP-A-5-98323 (Claims, paragraph [0005])
[Non-patent document 1]
Hideyuki Yamaoka: Iron and Steel, Vol. 72 (1986), p2194-2201
[Non-patent document 2]
Kouji TAKATANI, Takanobu INADA and Yutaka UJISAWA: ISIJ Int. , Vol. 39 (1999), pp. 15-22
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above-described problems, an object of the present invention is to quickly increase a blast furnace furnace while maintaining stable operation without requiring large-scale equipment and causing an excessive increase in pressure loss when shifting to increased production of the blast furnace. It is an object of the present invention to provide an operation method that can activate the inside of the plant and enable a shift to increased production.
[0011]
[Means for Solving the Problems]
The present inventors have studied the above-mentioned conventional problems in order to achieve the above-mentioned problems, and obtained the following findings (a) to (d).
[0012]
(A) The relationship between the pressure loss increase rate in the furnace and the Bosch gas rate increase rate is determined by a mathematical model of the blast furnace using the ventilation resistance in the furnace of the blast furnace as a parameter, and the Bosch gas quantity at which the pressure drop rate is zero (0) By obtaining the relationship between the increase rate and the in-furnace airflow resistance, the relationship between the limit value of the Bosch gas amount increase rate (hereinafter also referred to as “limit Bosch gas amount increase rate”) and the in-furnace airflow resistance is obtained.
[0013]
(B) Based on the relationship between the limit Bosch gas amount increase rate obtained in the above (a) and the in-furnace airflow resistance, the operation is performed at a rate equal to or less than the limit Bosch gas amount increase rate corresponding to the in-furnace airflow resistance before the shift to increased production. , It is possible to maintain stable blast furnace operation.
(C) In the case of performing the operation for shifting to the production increase in (b), 150 hours or more are required for the inside of the blast furnace to reach a steady state.
(D) By repeating the operations (b) and (c) for increasing the production a plurality of times, a desired production increase operation can be achieved.
[0014]
The present invention has been completed based on the above findings, and the gist of the invention lies in the following blast furnace operating methods (1) to (4).
[0015]
(1) The relationship between the in-furnace airflow resistance and the limit value of the Bosch gas amount increase rate in the operation before the shift to the production increase operation is determined. How to operate a blast furnace to increase production.
[0016]
(2) An operation method in shifting to increasing the production of a blast furnace in which the operation method according to (1) is performed a plurality of times.
[0017]
(3) In the operation method for shifting the production of the blast furnace described in (2) above, it is preferable that the operation is performed for 150 hours or more at or below the limit value of the Bosch gas amount increase rate after one change of the operation specifications is completed.
[0018]
(4) In the operation method in the shift to increased production of the blast furnace according to any one of the above (1) to (3), an average value of the in-furnace air resistance for one day before the shift to the increased production operation is used as the furnace airflow resistance. Is preferred.
[0019]
In the present invention, the “furnace ventilation resistance” refers to an index that eliminates the influence of the amount of gas passing through the furnace and indicates the gas flow resistance based on the characteristic of the charge. Although there are various calculation methods, any calculation method can be used in the present invention as long as it represents or intends the ventilation resistance inherent to the charge.
"Bosch gas volume" refers to the combustion of coke in front of the tuyere by air blown from the tuyere, oxygen for oxygen enrichment, blast moisture, and the combustion of auxiliary fuel such as pulverized coal and liquid fuel. It means the total amount of gas generated before the tuyere.
The “increased production operation” refers to an operation that increases the tapping rate, and refers to an operation in which the rate of increase in the tapping rate on a 10-day average is 5% or more.
[0020]
In addition, the “limit Bosch gas amount increase rate” refers to the upper limit of the increase rate of the Bosch gas amount that is allowable so as not to cause an excessive increase in furnace pressure loss.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention, as described above, determines the relationship between the furnace ventilation resistance and the limit value of the Bosch gas amount increase rate before the shift to increased production, and is equal to or less than the limit value of the Bosch gas amount increase rate obtained from the furnace ventilation resistance value. It is a method of operating a blast furnace operated at In order to quantitatively grasp the inactive state in the blast furnace and to increase production within the limit of the amount of Bosch gas based on it, it is important to accurately grasp the ventilation resistance in the furnace. Therefore, the calculation of the in-furnace ventilation resistance will be described first.
The flow resistance of the gas in the blast furnace, as a method for evaluating the ventilation resistance of the gas in the filling layer may, for example, index based on the friction coefficient in the pressure loss type Kozeny-Carman △ P / V BOSH , and △ P / V BOSH 2, further indices making these temperature correction (P B 2 -P T 2) / V BOSH 1.7, and, S. The coefficient of friction in Ergun's pressure drop equation is used. Here, △ P pressure loss in the furnace, V BOSH Bosch gas amount, the P B is blowing pressure, P T is the furnace top pressure.
[0022]
The present inventors can accurately represent the pressure loss in both the laminar flow region and the turbulent gas flow region. The coefficient of friction was described as a function of the Reynolds number for the gas flow in the blast furnace based on the description format of the pressure drop equation of Ergun, and the in-furnace airflow resistance index (KR) was determined by the following equations (1) to (10).
[0023]
Figure 2004307922
Here, L is the distance (m) between the tuyere and the top of the layer, V BOSH is the amount of Bosch gas (Nm 3 / s), V B is the amount of air blown (Nm 3 / s), and VO 2 is the amount of oxygen enrichment (Nm 3 3 / s), F m is blowing moisture (kg / Nm 3), W PC is blowing amount of pulverized coal (kg / s), in the pulverized coal hydrogen content (-), V NCAR the pulverized coal carrier gas amount ( Nm 3 / s), P B is the blowing pressure (Pa), P T is the furnace top pressure (Pa), and a S are the shaft portion lower end cross sectional area (m 2). Here, all pressures represent gauge pressures.
[0024]
In the blast furnace, in addition to the presence of the granular material, there is a cohesion zone formed by softening and fusion of powders, liquids, and ores in the lower part of the furnace. The value of ()) is higher than that of a normal solid-gas packed layer, and is in the range of 4000 to 13000 (1 / m). Further, as described above, the in-furnace ventilation resistance index increases in accordance with the amount of powder generated in the blast furnace and the amount of attached matter generated. For this reason, the in-furnace ventilation resistance index is large during the reduced production period when the furnace is in an inactive state, and small during the increased production period when the furnace is in an active state.
[0025]
Therefore, when the blast furnace shifts from the reduced production state to the increased production state, that is, when the blast furnace shifts from the inactive state to the active state, the furnace There is a possibility that an excessive increase in pressure loss may be caused in the inside.
[0026]
Therefore, the effect on the pressure loss rise when the operation parameters in the production reduction period shown in Table 1 were changed to the operation parameters in the production increase period was examined.
[0027]
[Table 1]
Figure 2004307922
[0028]
FIG. 1 is a diagram showing a result of calculating a temporal change of a pressure loss in a furnace when a shift from a reduced production state to a rapidly increased production state is performed using a mathematical model.
[0029]
The results in the figure are based on the dynamic evaluation of powdering due to collision between coke particles in the raceway and coking in the loading stress field of the packed bed. Using a "solid-gas two-phase flow model", a numerical simulation is performed of a change in pressure loss in a furnace that occurs when the amount of Bosch gas is rapidly increased from a reduced production state to increase the production state.
[0030]
In the increased production period, the rate of powder generation in the furnace increases compared to the reduced production period. On the other hand, the gas flow rate in the furnace is smaller in the reduced production period than in the increased production period, and the renewal speed of the furnace core is slow, so that the amount of powder held up in the furnace increases, and therefore, immediately after the shift to the increased production operation It is thought that excessive pressure drop was observed in the, and it became difficult to maintain stable operation.
[0031]
For the above-described reasons, in order to avoid an excessive increase in the furnace pressure loss, it is necessary to perform a transfer operation according to the furnace airflow resistance at the time before shifting to the production increase operation. In addition, if the shift to the target production increase operation cannot be achieved by one operation specification change operation, it is necessary to repeat this operation specification change operation a plurality of times.
[0032]
The following shows the amount of change in the air parameters that can be changed by one operation parameter change operation when the operation parameters are changed according to the ventilation resistance in the furnace before the shift operation to the production increase operation. , And the time intervals of the operation when these operations are repeated a plurality of times.
[0033]
First, when the operating conditions were changed in accordance with the in-furnace ventilation resistance at the time of performing the shift operation to the increased production operation, the amount of increase in the amount of the Bosch gas allowed by one change of the operating conditions was examined.
[0034]
FIG. 2 uses the above-mentioned “solid-gas two-phase flow including powder” mathematical model to calculate the relationship between the Bosch gas amount increase rate and the excessive pressure drop increase rate, using the in-furnace ventilation resistance index during production reduction as a parameter. FIG.
[0035]
According to the results shown in the figure, as the rate of increase in the amount of Bosch gas by one operation of changing the operation specifications is larger, the excessive pressure loss increase rate is higher. The smaller the ventilation resistance index (KR), the smaller the excessive pressure loss increase rate. Furthermore, since these curves have intercepts on the horizontal axis, it can be understood that the excessive pressure drop increase rate can be suppressed by suppressing the increase rate of the Bosch gas amount by one operation specification change operation.
[0036]
FIG. 3 is a diagram showing the relationship between the in-furnace ventilation resistance index and the rate of increase in the limit Bosch gas amount at the time of production reduction. That is, the figure shows the Bosch gas amount increase rate that can suppress the excessive pressure loss increase rate by one operation specification change operation from the reduced production state.
[0037]
If the amount of Bosch gas is increased based on the relationship shown in the figure, it is possible to shift to a production increase operation without causing an excessive increase in pressure loss. Also, it is clear that the higher the ventilation resistance index during the reduced production period, the smaller the rate of increase in the amount of Bosch gas that can be performed by one operation of changing the operation specifications must be reduced.
From the relationship shown in the figure, the range of the increasing rate of the Bosch gas amount that can be changed by one operation specification changing operation is approximately expressed by the following equation (11).
ΔV BOSH / V BOSH ≦ 1.055 × 10 4 × KR −1.42 (11)
Here, ΔV BOSH is a Bosch gas amount increase (Nm 3 / s) that can be changed by one operation specification changing operation.
[0038]
Next, in the case of increasing production by changing a plurality of operation parameters, the temporal change of the in-furnace response when each operation condition was changed was examined. In this study, the data obtained by changing the operating parameters of the blast furnace was input to the three-dimensional unsteady mathematical model of the blast furnace disclosed in Non-Patent Document 2, and the thermal model and the response of the reaction in the furnace were calculated by the mathematical model. The change over time was performed by numerical simulation.
[0039]
Table 2 shows that the ratio of (oxygen-enriched amount / blowing amount), the ratio of (pulverized coal blowing amount / blowing amount), and the theoretical combustion temperature in front of the tuyere are constant, and the blowing specifications are changed to change the Bosch gas amount. The following is an example of a change in operation specifications for shifting from reduced production operation to increased production operation by increasing the number of operations (hereinafter referred to as “case 1”).
[0040]
[Table 2]
Figure 2004307922
[0041]
FIG. 4 is a diagram showing a change in the state in the blast furnace when the Bosch gas amount is increased by the blowing operation shown in Case 1 described above.
According to the results shown in the figure, in the case of the blowing parameter changing operation shown in Case 1, approximately 50 hours after the changing of the operating parameters, the reaction and thermal state in the furnace completed the response, and the Steady state has been reached.
FIG. 6 shows that the charge distribution was changed from the distribution 1 in which the ratio of (ore mass / coke mass) (hereinafter, referred to as “O / C”) in the middle part in the radial direction in the furnace was large, to the O / C in the center part of the furnace. It is a figure which shows the example of a change of the operation specification which shifts from production reduction operation to production increase operation by changing to distribution 2 with small C and large O / C on the furnace wall side (hereinafter referred to as "case 2").
[0042]
FIG. 5 is a diagram showing a change in the state in the blast furnace when the charge distribution changing operation shown in the above-described case 2 is performed with the blowing conditions kept constant.
From the results shown in the figure, in the case of the charge distribution changing operation shown in Case 2, the reaction in the furnace and the thermal state greatly fluctuate, and it takes about 150 hours (about 6.3) to reach the steady state in the production increase operation. Days) and the response time is long.
[0043]
In reality, during the transition from reduced production operation to increased production operation, it is often the case that the charge specifications are changed along with the air supply specifications, so the distribution of the charges in the furnace and the shape of the furnace core change. I do. Therefore, at the time of the transition from the reduced production operation to the increased production operation, it is preferable to continue the operation by one operation specification change operation for 150 hours or more in consideration of such a change in the furnace.
[0044]
【Example】
In order to confirm the effect of the present invention, tests were carried out following the blast furnace capacity 2700 m 3. In the following description, units customarily used in this technical field are respected, and SI units are described together with them.
[0045]
(Comparative example)
The average value of the daily iron production for three months is 4800 (t / d) (55.56 kg / s), that is, the tapping ratio is 1.78 (t / d / m 3 -furnace internal volume) (0.0206 kg / S / m 3 -furnace capacity), the tapping ratio is 0.11 (t / d / m 3 -furnace capacity) (1.27 × 10 −3 kg / s / m 3 −) In order to carry out the production increase operation to increase the furnace internal volume, the ventilation specifications were changed.
[0046]
Table 3 shows the in-furnace ventilation resistance index, ventilation specifications, and Bosch gas amount increase rate during the production reduction operation period and the shift operation period to the production increase operation.
[0047]
[Table 3]
Figure 2004307922
[0048]
In the table, the in-furnace ventilation resistance index during the reduced production operation period is the average value of the in-furnace ventilation resistance index one day before the shift to the increased production operation, and the marginal Bosch gas amount increase rate is obtained by the above equation (11). The calculated value and the actual Bosch gas amount increase rate indicate the actual value of the Bosch gas amount increase rate in the transition period to the increased production operation period, respectively.
[0049]
The in-furnace ventilation resistance index (KR) was 7410 (1 / m) in the production reduction operation period one day before the change of the operation specifications to the production increase operation.
[0050]
Then, the Bosch gas amount increase rate is set to 0.040 (-) which exceeds the limit Bosch gas amount increase rate 0.037 (-) of the present invention calculated by the equation (11), and the operation is changed to the increase production operation. The operation was carried out and a shift operation to a production increase operation was carried out.
[0051]
FIG. 7 is a diagram showing a transition operation transition to a production increase operation of the comparative example.
[0052]
As can be seen from the results in the figure, on the 10th day when the operation of changing the ventilation specifications was carried out, the unloading situation of the furnace interior became unsatisfactory, and the frequency of occurrence of slip increased rapidly and exceeded 10 (times / d). Therefore, the operation to shift to increased production could not be maintained, and it was necessary to return to the original specifications for reduced production.
[0053]
(Example of the present invention)
The average value of the daily iron production for three months is 4700 (t / d) (54.40 kg / s), that is, the tapping ratio is 1.74 (t / d / m 3 -furnace internal volume) (0.0201 kg / S / m 3 -furnace capacity), the tapping ratio is 0.11 (t / d / m 3 -furnace capacity) (1.27 × 10 −3 kg / s / m 3 −) In order to carry out the production increase operation to increase the furnace internal volume, the ventilation specifications were changed.
[0054]
Table 4 shows the in-furnace ventilation resistance index, the ventilation specifications, and the Bosch gas increase rate during the production reduction operation period and the shift operation period to the production increase operation.
[0055]
[Table 4]
Figure 2004307922
[0056]
In addition, similarly to Table 3 described above, in Table 4, the in-furnace ventilation resistance index is an average value of the in-furnace ventilation resistance index one day before the operation of shifting to the specification increasing operation, and the limiting Bosch gas amount increase rate is , The calculated value according to the formula (11), and the actual increase rate of the Bosch gas indicate the actual value of the increase rate of the Bosch gas in the transition period to the production increase operation period.
In this test operation, which is an example of the present invention, the change of the operation specifications to the production increase operation is performed in three periods from the production increase transition period 1 to the production increase transition period 3, and after one change operation, During the day, the operation was gradually shifted to a production increase operation while maintaining the same operation specifications.
[0057]
In the transition in the transition period 1 for increased production operation, the in-furnace ventilation resistance index (KR) was 7230 (1 / m) in the reduced production operation period one day before the transition operation was performed. Therefore, the Bosch gas amount increase rate is set to 0.018 (-) which is equal to or less than the limit Bosch gas amount increase rate 0.035 (-) of the present invention calculated by the equation (11), and the production transition period 1 is increased. The change operation was performed.
[0058]
In the following, the changing operation in the transition period 2 of the production increase operation and the modification operation in the transition period 3 of the production increase operation are similarly performed within the range not exceeding the increase rate of the limit Bosch gas amount, and the same operation specifications for 10 days are respectively obtained. An operation period was established.
[0059]
FIG. 8 is a diagram showing a transition operation transition to a production increase operation of the example of the present invention.
[0060]
As can be seen from the results in the figure, the three changes of the operation parameters from the transition period 1 to the transition period 3 increase the air permeability in the furnace and the unloading state of the charge smoothly. In 30 days, the transition to the production increase operation in which the tapping ratio was increased by 0.11 (t / d / m 3 -furnace volume) was completed.
[0061]
【The invention's effect】
According to the blast furnace operating method of the present invention, the inactive state in the furnace during the production reduction operation is accurately grasped, the amount of Bosch gas is increased according to the air permeability in the furnace, and the shift operation to the production increase operation is performed. It can be carried out. As a result, the transition from reduced production operation to increased production operation required several months, but increased production operation in a short period of time without causing excessive pressure loss in the furnace or abnormal loading of the charge. , It is possible to impart production elasticity to the blast furnace operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a result of calculating a temporal change of pressure loss in a furnace when a transition from a reduced production state to a rapidly increased production state is performed using a mathematical model.
FIG. 2 is a graph showing a relationship between a Bosch gas amount increase rate and an excessive pressure loss increase rate, using a furnace ventilation resistance index at the time of production reduction as a parameter.
FIG. 3 is a diagram showing the relationship between the in-furnace ventilation resistance index and the rate of increase in the limit Bosch gas amount at the time of production reduction.
FIG. 4 is a diagram showing a change in a state in a blast furnace when the amount of Bosch gas is increased by a blowing operation.
FIG. 5 is a diagram showing a change in the state inside the blast furnace when the charge distribution is changed.
FIG. 6 is a diagram showing a change in operation specifications for the charge distribution.
FIG. 7 is a diagram showing a transition operation transition to a production increase operation of a comparative example.
FIG. 8 is a diagram showing a transition operation transition to a production increase operation of the example of the present invention.

Claims (4)

増産操業への移行前の操業における炉内通気抵抗とボッシュガス量増加率の限界値との関係を求め、前記炉内通気抵抗値から求められるボッシュガス量増加率の限界値以下で操業することを特徴とする高炉の増産移行における操業方法。Obtain the relationship between the in-furnace ventilation resistance and the limit value of the Bosch gas amount increase rate in the operation before the shift to the increased production operation, and operate at the limit value of the Bosch gas amount increase rate obtained from the in-furnace ventilation resistance value or less. A method of operating a blast furnace in increasing production. 請求項1に記載の操業方法を複数回行うことを特徴とする高炉の増産移行における操業方法。An operation method for increasing production of a blast furnace, wherein the operation method according to claim 1 is performed a plurality of times. 一回の操業諸元の変更が終了した後に、ボッシュガス量増加率の限界値以下で150時間以上操業することを特徴とする請求項2に記載の高炉の増産移行における操業方法。3. The method according to claim 2, wherein after one change of the operation parameters is completed, the operation is performed for 150 hours or more at the limit value of the Bosch gas amount increase rate or less. 炉内通気抵抗として、増産操業への移行前の操業における1日間の炉内通気抵抗の平均値を用いることを特徴とする請求項1〜3のいずれかに記載の高炉の増産移行における操業方法。The method according to any one of claims 1 to 3, wherein an average value of one-day furnace airflow resistance in an operation before shifting to a production increase operation is used as the furnace airflow resistance. .
JP2003102475A 2003-04-07 2003-04-07 Method for operating blast furnace Pending JP2004307922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102475A JP2004307922A (en) 2003-04-07 2003-04-07 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102475A JP2004307922A (en) 2003-04-07 2003-04-07 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2004307922A true JP2004307922A (en) 2004-11-04

Family

ID=33465894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102475A Pending JP2004307922A (en) 2003-04-07 2003-04-07 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2004307922A (en)

Similar Documents

Publication Publication Date Title
JP7297091B2 (en) Blast furnace operation method
CN104878140A (en) Blast Furnace Operation Method
CN106957935B (en) A kind of flexible measurement method of blast furnace inside soft heat belt shape
WO2014088031A1 (en) Method for operating blast furnace and method for producing molten pig iron
EP2410065B1 (en) Blast furnace operation method
JP5589765B2 (en) Blast furnace operation method
JP5381899B2 (en) Blast furnace operation method
JP2004307922A (en) Method for operating blast furnace
JP2008240028A (en) Method for operating blast furnace
JP4765723B2 (en) Method of charging ore into blast furnace
JP7203680B2 (en) Method for setting gas blowing conditions and program for setting method for gas blowing conditions
JP3589016B2 (en) Blast furnace operation method
WO2023199551A1 (en) Blast furnace operation method
Wang et al. Influence of bed condition on gas flow in Corex melter gasifier
JP2004263258A (en) Method for operating blast furnace
TWI812069B (en) Oxygen blast furnace and operation method of oxygen blast furnace
JP2023177114A (en) Operation method for blast furnace
WO2022168503A1 (en) Method for detecting height of molten material and method for operating blast furnace
JP4778351B2 (en) Blast furnace operation method
JP2023128470A (en) Blast furnace operation method
JP2003306708A (en) Method for stably operating blast furnace
JP6737107B2 (en) Blast furnace operation method
JP2022054397A (en) Blast furnace operation method
JP5874449B2 (en) Hot metal production method using vertical scrap melting furnace
JP2022182422A (en) Operation method for blast furnace