JP2004307841A - Rubber-modified styrenic resin excellent in weather resistance and impact resistance, its production process and laminate obtained by using the resin - Google Patents

Rubber-modified styrenic resin excellent in weather resistance and impact resistance, its production process and laminate obtained by using the resin Download PDF

Info

Publication number
JP2004307841A
JP2004307841A JP2004077444A JP2004077444A JP2004307841A JP 2004307841 A JP2004307841 A JP 2004307841A JP 2004077444 A JP2004077444 A JP 2004077444A JP 2004077444 A JP2004077444 A JP 2004077444A JP 2004307841 A JP2004307841 A JP 2004307841A
Authority
JP
Japan
Prior art keywords
rubber
resin
styrene
weight
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004077444A
Other languages
Japanese (ja)
Other versions
JP4413048B2 (en
JP2004307841A5 (en
Inventor
Mitsutoshi Toyama
満俊 遠山
Tetsuya Hoshino
哲也 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2004077444A priority Critical patent/JP4413048B2/en
Publication of JP2004307841A publication Critical patent/JP2004307841A/en
Publication of JP2004307841A5 publication Critical patent/JP2004307841A5/ja
Application granted granted Critical
Publication of JP4413048B2 publication Critical patent/JP4413048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber-modified styrenic resin excellent in weather resistance and impact resistance, its production process and a laminate obtained by using the resin and excellent in weather resistance and adhesion strength. <P>SOLUTION: This rubber-modified styrenic resin is obtained by the production process of polymerizing a partially hydrogenated rubber obtained by hydrogenation of a conjugated diene-based rubber, a styrenic monomer and a (meth)acrylate-based monomer using a radical initiator by bulk polymerization or solution polymerization under agitation, so that the methyl ethyl ketone-insoluble gel fraction of the obtained rubber-modified styrenic resin and the swelling index of the gel content each falls within a specific range. The laminate is obtained by using the resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐候性、耐衝撃性に優れたゴム変性スチレン系樹脂とその製造方法及びその樹脂を用いてなる積層体に関するものである。   The present invention relates to a rubber-modified styrenic resin having excellent weather resistance and impact resistance, a method for producing the same, and a laminate using the resin.

耐衝撃性ポリスチレン(HIPS、ハイインパクトポリスチレン)に代表されるゴム変性スチレン系樹脂は、耐衝撃性、成形性、寸法安定性に優れた樹脂であることから、電化製品、家庭製品、食品容器等の成形材料や包装材料として多岐の分野において使用されている。
しかしながら、周知のごとく従来のゴム変性スチレン系樹脂は、連続相中のポリスチレンに分散しているゴム粒子の分子鎖に不飽和二重結合を含有しているため、紫外線や空気中の酸素により劣化し、変色や衝撃性の低下を生じるなど、耐候性が低いという問題を有している。従って、耐候性が必要な用途、例えば屋外用途ではほとんど使用されてこなかった。
Rubber-modified styrene resin represented by impact-resistant polystyrene (HIPS, high-impact polystyrene) is a resin excellent in impact resistance, moldability, and dimensional stability. It is used in various fields as a molding material and packaging material.
However, as is well known, conventional rubber-modified styrenic resins contain unsaturated double bonds in the molecular chains of rubber particles dispersed in polystyrene in the continuous phase, and are therefore degraded by ultraviolet light or oxygen in the air. However, there is a problem that the weather resistance is low, such as discoloration and a decrease in impact resistance. Therefore, it has hardly been used in applications requiring weather resistance, for example, outdoors.

また、ポリメタクリル酸メチル樹脂またはメタクリル酸メチルを主成分とした樹脂は、透明性、光沢、耐候性に優れることから、自動車部品、電気関係部品、照明器具、ディスプレーなどの幅広い分野において使用されているが、衝撃強度が低く、用途が限定されている。
また、連続相をスチレン、アクリル酸ブチル、メタクリル酸メチルを重合してなる共重合体とし、分散粒子に含まれるゴム状重合体をスチレン−ブタジエンブロック共重合体として、両者の屈折率を事実上一致させる方法が知られているが、ゴム変性スチレン系樹脂と同様にゴム粒子の分子鎖に不飽和二重結合を含有しているため、紫外線や空気中の酸素により劣化し、変色や衝撃性の低下を生じ、耐候性が低いという問題を有している。
In addition, polymethyl methacrylate resin or resin containing methyl methacrylate as a main component is used in a wide range of fields such as automobile parts, electric parts, lighting equipment and displays because of its excellent transparency, gloss and weather resistance. However, its impact strength is low and its use is limited.
In addition, the continuous phase is a copolymer obtained by polymerizing styrene, butyl acrylate, and methyl methacrylate, and the rubbery polymer contained in the dispersed particles is a styrene-butadiene block copolymer. Although a method of matching is known, similar to rubber-modified styrenic resins, since rubber particles contain unsaturated double bonds in the molecular chain, they are degraded by ultraviolet light or oxygen in the air, causing discoloration and impact resistance. And there is a problem that the weather resistance is low.

また、エチレン−α−オレフィン系共重合ゴム(EPM、EPDM)、アクリル系ゴムなどをゴム成分として用い、スチレン、アクリロニトリルをグラフト重合した、実質的に不飽和結合を含有しないAES樹脂、ASA樹脂は、ゴム変性スチレン系樹脂に比較し、紫外線、空気中の酸素に対する抵抗性が大きく耐候性が良いことが知られている。
しかしながら、AES樹脂、ASA樹脂は、ゴム変性スチレン系樹脂に比較し、着色性、成形性に劣る欠点を有している。特に着色性においては、ゴム変性スチレン系樹脂に比べ、濃色において深みが不足し、同じ色調に調色するためには、着色剤が多量に必要となる。
特許文献1には、部分水添共役ジエン系ゴムを強靭化剤として含有する耐衝撃性及び剛性に優れた耐衝撃性スチレン系樹脂が開示されているが、効果として耐候性について何ら言及されていない。
Also, ethylene-α-olefin copolymer rubbers (EPM, EPDM), acrylic rubbers and the like are used as rubber components, and styrene and acrylonitrile are graft-polymerized. It is known that, compared to rubber-modified styrenic resins, they have higher resistance to ultraviolet rays and oxygen in the air and have better weather resistance.
However, the AES resin and the ASA resin have disadvantages of being inferior in colorability and moldability as compared with the rubber-modified styrene resin. In particular, with respect to the coloring properties, compared to the rubber-modified styrenic resin, the depth is insufficient in a dark color, and a large amount of a coloring agent is required to achieve the same color tone.
Patent Literature 1 discloses an impact-resistant styrene resin containing a partially hydrogenated conjugated diene-based rubber as a toughening agent and having excellent impact resistance and rigidity, but mentions weather resistance as an effect. Absent.

また、特許文献2には、芳香族ビニルと共役ジエン化合物からなるブロック共重合体を水素添加したゴム状重合体にメタクリル酸メチルを主成分とする単量体をグラフト重合する製造方法が開示されているが、ブロック共重合体の水素添加率が高く、ゴム中の二重結合が減少することによって、著しくゴム成分の架橋反応が進行し難くなってしまうので、たとえ重合過程では所望のゴム粒子が形成されても、押出加工や射出成形の際に受ける機械的な剪断力によって粒子が変形あるいは破壊されて強度低下及び成形品の表面光沢や透明性が劣悪なものになってしまう。特許文献2には、実施例も含めてゴム成分の架橋に関する技術開示は全くされていない。   Patent Document 2 discloses a production method in which a monomer having methyl methacrylate as a main component is graft-polymerized to a rubbery polymer obtained by hydrogenating a block copolymer comprising an aromatic vinyl and a conjugated diene compound. However, since the hydrogenation rate of the block copolymer is high and the number of double bonds in the rubber decreases, the crosslinking reaction of the rubber component becomes extremely difficult to proceed. Is formed, the particles are deformed or broken by the mechanical shearing force applied during extrusion or injection molding, resulting in reduced strength and poor surface gloss and transparency of the molded product. Patent Document 2 does not disclose any technology relating to crosslinking of rubber components, including Examples.

一方、スチレン系樹脂、塩化ビニル樹脂等の熱可塑性樹脂における耐候性の問題を克服し屋外での使用を可能とする為に、熱可塑性樹脂の表面層側に耐候性に優れる樹脂を積層する方法が行われているが、特にポリスチレン、耐衝撃性ポリスチレンは、耐候性に優れる代表樹脂であるメタクリル樹脂、AAS樹脂、AES樹脂との親和性に乏しく、共押出等の熱融着により、強固に接着した積層体を形成することが不可能であった。
また、特許文献3には、芳香族ビニル化合物と共役ジエンからなるジエン系重合体を水素添加した水添ジエン系重合体存在下に、ラジカル重合可能な単量体成分をグラフト共重合させた、特定範囲のグラフト率及びメチルエチルケトン可溶分の固有粘度のゴム強化樹脂と他の熱可塑性樹脂との積層物及び特許文献4には、共役ジエン系ゴム質重合体の水素化物存在下に芳香族ビニル化合物または芳香族ビニル化合物および芳香族ビニル化合物と共重合可能な他のビニル単量体を重合してなるスチレン系樹脂と他の熱可塑性樹脂の積層体が開示されているが、スチレン系樹脂、塩化ビニル樹脂の両樹脂に接着することが困難であり、特にポリスチレン、耐衝撃性ポリスチレンとの接着性が不十分であり、実用上の接着強度に至っていない。さらに、前途のジエン系重合体の水素添加率が高いことに起因する同様な欠点を有している。
On the other hand, a method of laminating a resin having excellent weather resistance on the surface layer side of the thermoplastic resin in order to overcome the problem of weather resistance of a thermoplastic resin such as a styrene resin and a vinyl chloride resin and to enable use outdoors. In particular, polystyrene and impact-resistant polystyrene have poor affinity with methacrylic resin, AAS resin, and AES resin, which are typical resins having excellent weather resistance, and are strongly bonded by heat fusion such as co-extrusion. It was not possible to form a bonded laminate.
Patent Document 3 discloses that a radically polymerizable monomer component is graft-copolymerized in the presence of a hydrogenated diene polymer obtained by hydrogenating a diene polymer composed of an aromatic vinyl compound and a conjugated diene. A laminate of a rubber-reinforced resin having a specific range of graft ratio and an intrinsic viscosity of methyl ethyl ketone-soluble component and another thermoplastic resin and Patent Document 4 disclose aromatic vinyl in the presence of a hydride of a conjugated diene-based rubbery polymer. A laminate of a styrene resin and another thermoplastic resin obtained by polymerizing a compound or another vinyl monomer copolymerizable with an aromatic vinyl compound and an aromatic vinyl compound is disclosed, but a styrene resin, It is difficult to adhere to both vinyl chloride resins, and in particular, the adhesion to polystyrene and high-impact polystyrene is insufficient, and the adhesive strength has not yet reached a practical level. Further, it has the same disadvantages due to the high hydrogenation rate of the diene polymer ahead.

特開昭64−90208号公報JP-A-64-90208 特開平1−163209号公報JP-A-1-163209 特許2946627号公報Japanese Patent No. 2946627 特開平9−76426号公報JP-A-9-76426

本発明は、耐候性、耐衝撃性に優れ、更には従来のゴム変性スチレン系樹脂と同程度の、着色性、加工性を有するゴム変性スチレン系樹脂とその製造方法及びその樹脂を用いてなる耐候性、接着強度に優れた積層体を提供することを目的としたものである。   The present invention provides a rubber-modified styrene-based resin having excellent weather resistance, excellent impact resistance, and similar coloring properties and processability to a conventional rubber-modified styrene-based resin, and a method for producing the same, and the resin. An object of the present invention is to provide a laminate excellent in weather resistance and adhesive strength.

本発明者らは、このような現状の問題点を解決するため、誠意検討した結果、共役ジエン系ゴムが水素添加された部分水素添加ゴムとスチレン系単量体と(メタ)アクリル酸エステル系単量体とを、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率及び該ゲル分のトルエンに対する膨潤指数が特定の範囲内となるように重合させる製造方法により得られるゴム変性スチレン系樹脂及びその樹脂を用いて積層体にすることにより、前記問題点が解決する事を見いだし、本発明を完成するに至った。   The present inventors have sincerely studied to solve such a current problem, and as a result, have found that a partially hydrogenated rubber obtained by hydrogenating a conjugated diene rubber, a styrene monomer and a (meth) acrylate ester The monomer is subjected to bulk polymerization or solution polymerization with stirring using a radical initiator, and the resulting rubber-modified styrene-based resin has a methyl ethyl ketone insoluble content gel fraction and a swelling index of the gel content for toluene within a specific range. The present inventors have found that the above problems can be solved by forming a laminate using a rubber-modified styrenic resin obtained by a production method of polymerizing so as to obtain a resin and the resin, and have completed the present invention.

即ち、本発明は、共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを、(A)+(B)+(C)を100重量部として(A)が3〜16重量部でかつ(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16となるように重合させることを特徴とするゴム変性スチレン系樹脂の製造方法に関する。更に本発明は、共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が20/80〜80/20重量比であり、かつ得られるゴム変性スチレン系樹脂
のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であることを特徴とするゴム変性スチレン系樹脂に関する。更に本発明は、共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が20/80〜80/20重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であるゴム変性スチレン系樹脂(I)からなる層と(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層とが、積層された構造を有することを特徴とする積層体に関する。なお、部分水素添加ゴム(A)の、25℃における5重量%スチレン溶液粘度が20〜150センチポイズであることが好ましい。ならびに、部分水素添加ゴム(A)において、水素添加前の共役ジエン系ゴムがポリブタジエンであることが好ましい。ならびに、分散ゴム粒子相のゴム粒子径が0.5〜3.5μmであることが好ましい。ならびに、スチレン系単量体(B)がスチレンであり、かつ(メタ)アクリル酸エステル系単量体(C)がメタクリル酸メチルまたはメタクリル酸メチルとアクリル酸ブチルであることが好ましい。ならびに、(I)と(II)からなる層が熱融着してあってもよい。ならびに、(II)からなる層において、(I)以外のスチレン系樹脂がポリスチレン、耐衝撃性ポリスチレン、ABS樹脂から選ばれた少なくとも1 種であることが好ましい。ならびに、(II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂であってもよい。ならびに、(II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体であってもよい。ならびに、(II)からなる層が、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂およびそれらの木粉配合樹脂であってもよい。
That is, the present invention provides a partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate ester rubber. The monomer (C) is (A) + (B) + (C) as 100 parts by weight, (A) is 3 to 16 parts by weight, and the weight ratio of (B) / (C) is 20/80. In the range of ~ 82/18, bulk polymerization or solution polymerization is carried out with stirring using a radical initiator, and the resulting rubber-modified styrene resin has a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight and the gel The present invention relates to a method for producing a rubber-modified styrenic resin, characterized in that polymerization is carried out so that the swelling index of toluene for toluene is 8 to 16. Further, the present invention provides a partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate ester monomer. Monomer (C) in a weight ratio of (B) / (C) in the range of 20/80 to 82/18 by polymerization using a radical initiator with bulk polymerization or solution polymerization with stirring. Rubber-modified styrenic resin comprising a dispersed rubber particle phase and a resin phase, wherein the styrene-based monomer unit and the (meth) acrylate-based monomer unit are 20 in the copolymer constituting the resin phase. / 80-80 / 20 weight ratio, and the obtained rubber-modified styrenic resin has a methyl ethyl ketone insoluble gel fraction of 6-35 wt% and a swelling index of the gel for toluene of 8-16. Characterized by It relates to a rubber-modified styrenic resin. Further, the present invention provides a partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate ester monomer. Monomer (C) in a weight ratio of (B) / (C) in the range of 20/80 to 82/18 by polymerization using a radical initiator with bulk polymerization or solution polymerization with stirring. Rubber-modified styrenic resin comprising a dispersed rubber particle phase and a resin phase, wherein the styrene-based monomer unit and the (meth) acrylate-based monomer unit are 20 in the copolymer constituting the resin phase. / 80-80 / 20 weight ratio, and the obtained rubber-modified styrene-based resin has a methyl ethyl ketone insoluble content gel fraction of 6-35 wt% and a swelling index of the gel for toluene of 8-16. Modified polystyrene And a layer made of a layer comprising the system resin (I) (I) other than the styrene-based resin or vinyl chloride resin (II), a laminate, characterized in that it has a laminated structure. The partially hydrogenated rubber (A) preferably has a 5% by weight styrene solution viscosity at 25 ° C. of 20 to 150 centipoise. Further, in the partially hydrogenated rubber (A), the conjugated diene rubber before hydrogenation is preferably polybutadiene. Further, it is preferable that the rubber particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 μm. Further, it is preferable that the styrene monomer (B) is styrene and the (meth) acrylate monomer (C) is methyl methacrylate or methyl methacrylate and butyl acrylate. Further, the layer composed of (I) and (II) may be thermally fused. In the layer composed of (II), the styrene resin other than (I) is preferably at least one selected from polystyrene, impact-resistant polystyrene and ABS resin. Further, the layer made of (II) may be a styrene-based resin other than (I) or a wood powder-containing resin other than vinyl chloride-based resin. Further, the layer composed of (II) may be a foam of a styrene resin or a vinyl chloride resin other than (I). Further, the layer composed of (II) may be recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride-based resin, and a resin containing wood powder thereof.

本発明の製造方法で得られたゴム変性スチレン系樹脂は、耐候性、耐衝撃性に優れ、且つ成形性、着色性に優れた材料である。本発明のゴム変性スチレン系樹脂及びその積層体は、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野など幅広い用途での使用が可能であり、特に住設・建材分野の屋外製品及び建材として好適に用いることが出来る。   The rubber-modified styrenic resin obtained by the production method of the present invention is a material having excellent weather resistance and impact resistance, and excellent in moldability and coloring. The rubber-modified styrenic resin and the laminate thereof of the present invention can be used in a wide range of applications such as the field of automobiles, household appliances and miscellaneous goods, and the field of housing and building materials including exterior products such as exteriors, and particularly, -It can be suitably used as outdoor products and building materials in the field of building materials.

以下、本発明を詳細に説明する。本発明で用いられる部分水素添加ゴムは、公知の方法で得られる共役ジエン系重合体を部分的に水素添加することによって得られる。公知の方法で得られる共役ジエン系重合体とは、通常、ゴム変性スチレン系樹脂の製造に用いられる全てのゴムが含まれる。例えば、ポリブタジエン、スチレン−ブタジエン共重合体(ランダム及びブロックSBR)、ポリイソプレン、ブタジエン−イソプレン共重合体、ブタジエン−イソプレン−スチレン共重合体、天然ゴム等が挙げられる。特に、耐候性、補強効果の観点からポリブタジエンが好適に用いられる。
共役ジエン重合体の水素添加率は、共役ジエン単位のうち7〜70モル%である。好ましくは、9〜60モル%である。より好ましくは、15〜45モル%である。水添率が7モル%未満では、耐候性が向上しない。一方、70モル%を超える場合は、耐衝撃性が劣る。
水素添加方法は、従来公知のいかなる方法を用いても良く、例えば、特開昭52−41890号公報、特開昭59−133203号公報、特開昭60−220147号公報に示される方法を用いることができる。
Hereinafter, the present invention will be described in detail. The partially hydrogenated rubber used in the present invention is obtained by partially hydrogenating a conjugated diene-based polymer obtained by a known method. The conjugated diene polymer obtained by a known method generally includes all rubbers used for producing a rubber-modified styrene resin. Examples include polybutadiene, styrene-butadiene copolymer (random and block SBR), polyisoprene, butadiene-isoprene copolymer, butadiene-isoprene-styrene copolymer, natural rubber, and the like. In particular, polybutadiene is preferably used from the viewpoint of weather resistance and reinforcing effect.
The hydrogenation rate of the conjugated diene polymer is 7 to 70 mol% of the conjugated diene units. Preferably, it is 9 to 60 mol%. More preferably, it is 15 to 45 mol%. If the degree of hydrogenation is less than 7 mol%, the weather resistance will not be improved. On the other hand, if it exceeds 70 mol%, the impact resistance is poor.
As the hydrogenation method, any conventionally known method may be used. For example, a method described in JP-A-52-41890, JP-A-59-133203, and JP-A-60-220147 is used. be able to.

また、特に限定されるものではないが、水素添加後の不飽和1,2ビニル結合は、15モル%以下が好ましい。より好ましくは、10モル%以下である。15モル%を超える場合は、耐熱安定性、耐候性に劣る。
また、部分的に水素添加させた後の部分水素添加ゴムの100℃で測定したムーニー粘度(ML1+4 、100℃)は20〜80、25℃における5重量%スチレン溶液粘度(5%SV)は、20〜150センチポイズの範囲にあることが好ましい。より好ましい範囲は30〜120センチポイズである。この範囲内の部分水素添加ゴムを用いると、耐衝撃性に優れ、かつ製造に際してゴム粒子径制御が容易となり好ましい。
本発明のゴム変性スチレン系樹脂を製造する際に用いられる部分水素添加ゴムの含有量は、3〜16重量%である。好ましくは5〜14重量%である。3重量%未満であると、補強効果が充分ではなく、耐衝撃性が不足する。16重量%を超える場合は、耐衝撃性は向上するものの剛性、成形性、耐候性が低下し、使用用途が大きく制約を受けるので好ましくない。
Although not particularly limited, the content of unsaturated 1,2 vinyl bonds after hydrogenation is preferably 15 mol% or less. More preferably, it is at most 10 mol%. If it exceeds 15 mol%, heat resistance and weather resistance are poor.
The partially hydrogenated rubber after partial hydrogenation has a Mooney viscosity (ML 1 + 4 , 100 ° C.) measured at 100 ° C. of 20 to 80, and a 5% by weight styrene solution viscosity (5% SV) at 25 ° C. ) Is preferably in the range of 20 to 150 centipoise. A more preferred range is 30 to 120 centipoise. It is preferable to use a partially hydrogenated rubber in this range because the rubber composition has excellent impact resistance and can easily control the rubber particle diameter during production.
The content of the partially hydrogenated rubber used in producing the rubber-modified styrenic resin of the present invention is 3 to 16% by weight. Preferably it is 5 to 14% by weight. If it is less than 3% by weight, the reinforcing effect is not sufficient and the impact resistance is insufficient. If the content exceeds 16% by weight, the impact resistance is improved, but the rigidity, moldability, and weather resistance are reduced, and the usage is greatly restricted.

本発明で用いられるスチレン系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等が挙げられ、単独あるいは二種以上用いても良い。特に、スチレンが好適に用いられる。又、(メタ)アクリル酸エステル系単量体としては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート等が挙げられる。これらを単独、または混合して用いても良い。特に、メチルメタクリレート、メチルメタクリレートとブチルアクリレートの混合品が好適に用いる事が出来る。メチルメタクリレートとブチルアクリレート混合品を用いる場合、ブチルアクリレートの量は連続相を形成する重合体の10重量%以下が好適な使用範囲である。10重量%を越える場合は、耐熱性が低下し、成形体の実用範囲が狭くなり好ましくない。   Examples of the styrene-based monomer used in the present invention include styrene, α-methylstyrene, p-methylstyrene, pt-butylstyrene and the like, and they may be used alone or in combination of two or more. In particular, styrene is preferably used. Examples of the (meth) acrylate monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and cyclohexyl acrylate. These may be used alone or as a mixture. In particular, methyl methacrylate or a mixture of methyl methacrylate and butyl acrylate can be suitably used. When a mixture of methyl methacrylate and butyl acrylate is used, the amount of butyl acrylate is preferably not more than 10% by weight of the polymer forming the continuous phase. If it exceeds 10% by weight, the heat resistance is lowered, and the practical range of the molded product is undesirably narrowed.

スチレン系単量体と(メタ)アクリル酸エステル系単量体の割合は20:80〜82:18(重量比)である。好ましくは、30:70〜70:30である。より好ましくは、40:60〜60:40である。スチレン系単量体の割合が20未満になると耐衝撃性と加工性を同時に満足する樹脂が得られず、更には積層体にした際にポリスチレン、耐衝撃性ポリスチレン等との接着性が低下し好ましくない。一方、スチレン単量体の割合が82を越えると耐候性が低下し、更には積層体にした際に塩化ビニル樹脂、ABS樹脂等との接着性が低下し好ましくない。
本発明のゴム変性スチレン系樹脂を製造する際に必要に応じてその他の共重合可能な単量体(D)を用いても良い。ここで用いるその他の共重合可能な単量体としては、例えばアクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、無水マレイン酸、無水イタコン酸等の無水物基含有単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のジカルボン酸イミド基含有単量体、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有単量体、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有単量体、アクリルアミン、アミノエチルメタクリレート、アミノプロピルメタクリレート等のアミノ基含有単量体、2−ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート等のヒドロキシル基含有単量体などが挙げられる。
The ratio of the styrene monomer to the (meth) acrylate monomer is 20:80 to 82:18 (weight ratio). Preferably, it is 30:70 to 70:30. More preferably, it is 40:60 to 60:40. If the ratio of the styrene-based monomer is less than 20, a resin satisfying both impact resistance and processability cannot be obtained at the same time. Not preferred. On the other hand, when the ratio of the styrene monomer exceeds 82, the weather resistance decreases, and further, when the laminate is formed, the adhesiveness to a vinyl chloride resin, an ABS resin, or the like decreases, which is not preferable.
When producing the rubber-modified styrenic resin of the present invention, another copolymerizable monomer (D) may be used as necessary. Other copolymerizable monomers used herein include, for example, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, maleimide, N-methyl Monoimide-containing monomers such as maleimide, N-phenylmaleimide and N-cyclohexylmaleimide; epoxy-containing monomers such as glycidyl acrylate and glycidyl methacrylate; carboxyls such as acrylic acid, methacrylic acid, maleic acid and itaconic acid Group-containing monomer, amino group-containing monomer such as acrylamine, aminoethyl methacrylate, aminopropyl methacrylate, and hydroxyl group-containing such as 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, and 2-hydroxypropyl acrylate Such as the amount thereof and the like.

本発明の樹脂相を形成するスチレン系樹脂の分子量(ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算分子量)は、重量平均分子量で7万〜30万が好ましく、より好ましくは9万〜20万で範囲である。
本発明の分散ゴム粒子相のゴム粒子径は、0.5〜3.5μmの範囲が好ましい。より好ましくは0.7〜3.0μmである。更に好ましくは1.0〜3.0μmである。0.5μm未満であると、補強効果が充分ではなく、耐衝撃性が不足する。3.5μmを超え
る場合は、剛性が低下し好ましくない。
本発明はゴム成分として部分水素添加ゴムを用いる。ゴム自体の光などに対する安定性すなわち耐候性は、水素添加率が高いほど改良されるが、反面化学反応性が水素添加率の上昇に伴い急激に低下する為、グラフト反応とゴムの架橋反応が進行し難くなってしまう。本発明のゴム変性スチレン系樹脂の特徴は、ゴム粒子表面に特定の組成範囲のスチレン系単量体と(メタ)アクリル酸エステル系単量体の共重合体が適度な量グラフトし、かつゴム粒子が適度に架橋していることにより、樹脂部との相溶性が高く、成形加工時の剪断力に対してもゴム粒子の変形を生じないことにより、良好な衝撃強度、耐候性が得られることである。
The molecular weight (molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC)) of the styrene resin forming the resin phase of the present invention is preferably 70,000 to 300,000, more preferably 90,000 in terms of weight average molecular weight. The range is ~ 200,000.
The rubber particle diameter of the dispersed rubber particle phase of the present invention is preferably in the range of 0.5 to 3.5 μm. More preferably, it is 0.7 to 3.0 μm. More preferably, it is 1.0 to 3.0 μm. If it is less than 0.5 μm, the reinforcing effect is not sufficient, and the impact resistance is insufficient. If it exceeds 3.5 μm, the rigidity is undesirably reduced.
In the present invention, a partially hydrogenated rubber is used as the rubber component. The stability of the rubber itself against light, etc., that is, the weather resistance, improves as the hydrogenation rate increases, but the chemical reaction sharply decreases with the increase in the hydrogenation rate. It will be difficult to progress. The rubber-modified styrene-based resin of the present invention is characterized in that a copolymer of a styrene-based monomer and a (meth) acrylate-based monomer in a specific composition range is grafted on a rubber particle surface in an appropriate amount, and Since the particles are appropriately crosslinked, the compatibility with the resin portion is high, and the rubber particles do not deform even against the shearing force during molding, so that good impact strength and weather resistance can be obtained. That is.

グラフト率及びゴム粒子の架橋程度を直接規定することは実際上簡単ではないが、グラフト率はメチルエチルケトン不溶分ゲル分率、ゴムの架橋程度は該ゲル分のトルエンに対する膨潤指数とで間接的に規定することができる。
本発明のゴム変性スチレン系樹脂のゲル分率(ゴム変性スチレン系樹脂中のメチルエチルケトン不溶部の分率)は、6〜35重量%、好ましくは6〜30重量%で、かつ架橋度の指標となるトルエンに対する膨潤指数(ゴム変性スチレン系樹脂中のトルエン不溶のゲル分を分取し、該ゲル分のトルエンに対する膨潤指数)は、8〜16である。好ましくは、9〜13の範囲である。
ゲル分率が6重量%未満では、耐衝撃性に優れるものが得られず、35重量%を超えるものは、剛性、加工性が低下する。又、膨潤指数が9未満では、ゴム粒子の架橋程度が過大となり耐衝撃性に劣ったものとなり、逆に16を超えるとゴム粒子の架橋程度が不十分で耐衝撃性、表面光沢が低下する。
Although it is practically not easy to directly define the graft ratio and the degree of crosslinking of rubber particles, the graft ratio is indirectly defined by the methyl ethyl ketone insoluble gel fraction, and the degree of rubber crosslinking is determined by the swelling index of the gel for toluene. can do.
The gel fraction of the rubber-modified styrenic resin of the present invention (the fraction of the methyl ethyl ketone insoluble portion in the rubber-modified styrenic resin) is 6 to 35% by weight, preferably 6 to 30% by weight, and an index of the degree of crosslinking. The swelling index of the resulting toluene (toluene-insoluble gel component in the rubber-modified styrene resin is fractionated, and the swelling index of the gel component in toluene) is from 8 to 16. Preferably, it is in the range of 9-13.
If the gel fraction is less than 6% by weight, excellent impact resistance cannot be obtained, and if it exceeds 35% by weight, rigidity and workability are reduced. When the swelling index is less than 9, the degree of crosslinking of the rubber particles is excessive and the impact resistance is inferior. On the other hand, when it exceeds 16, the degree of crosslinking of the rubber particles is insufficient and the impact resistance and surface gloss are reduced. .

本発明のゴム変性スチレン系樹脂の製造方法を示す。本発明のゴム変性スチレン系樹脂は、ラジカル開始剤を用い攪拌下で、塊状重合または溶液重合することにより製造されるが、なかでも連続塊状重合または連続溶液重合が生産性と経済性の面で好ましい。即ち、部分水素添加ゴムをスチレン系単量体/(メタ)アクリル酸エステル系単量体、及び必要に応じて重合溶媒、連鎖移動剤、安定剤、鉱油などの添加剤からなる原料溶液に溶解し、通常最後にラジカル開始剤として有機過酸化物が加えられるが、溶解の順序はいずれでもかまわない。有機過酸化物は、原料溶液添加するかもしくは一部または全部を重合途中の重合液に添加しても良い。   1 shows a method for producing the rubber-modified styrenic resin of the present invention. The rubber-modified styrenic resin of the present invention is produced by bulk polymerization or solution polymerization under stirring using a radical initiator, and among them, continuous bulk polymerization or continuous solution polymerization is preferred in terms of productivity and economy. preferable. That is, the partially hydrogenated rubber is dissolved in a raw material solution comprising a styrene monomer / (meth) acrylate monomer and, if necessary, a polymerization solvent, a chain transfer agent, a stabilizer, and additives such as mineral oil. Usually, an organic peroxide is finally added as a radical initiator, but the order of dissolution may be any. The organic peroxide may be added as a raw material solution or a part or all of the organic peroxide may be added to the polymerization solution during the polymerization.

ラジカル開始剤として用いられる有機過酸化物としては、パーオキシケタール類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、ケトンパーオキサイド類、ハイドロパーオキサイド類などが挙げられる。具体的には、10時間半減期が75〜100℃の有機過酸化物としては、1. 1−ビス(t−ブチルパーオキシ)シクロヘキサン、1.1−ビス(t−ブチルパーオキシ)3.3.5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネートなどが挙げられ、10時間半減期が110〜130℃の有機過酸化物としては、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイドなどが挙げられ、これらの1種または2種以上を用いる。好ましくは、10時間半減期が75〜100℃の有機過酸化物と10時間半減期が110〜130℃の有機過酸化物を併用することが好ましい。調整された原料溶液を攪拌機付き反応機に供給し、重合を行う。重合温度はラジカル開始剤として用いる有機過酸化物の分解温度、生産性、反応機の除熱能力、目的としているゴム変性スチレン系樹脂の流動性等を考慮して、公知の技術を用いて設定することが出来る。分散相を形成するゴム粒子径の調整は公知の技術、例えば攪拌機の回転数を制御する事により行うことが出来る。部分水素添加ゴムの含有量は、目標とする含有量になるように原材料中のゴム状弾性体の含有量や重合率を調整することによって達成することができるが、高濃度のゴム状弾性体を含有するゴム変性スチレン系樹脂を上記方法で作成し、別に作成した、ゴム状弾性体を含有しないスチレン系樹脂と混合するこ
とによっても達成することができる。但し、混合後の樹脂が本発明の構成要件をすべて満たすことは当然である。
Examples of the organic peroxide used as the radical initiator include peroxy ketals, dialkyl peroxides, diacyl peroxides, peroxy dicarbonates, peroxy esters, ketone peroxides, hydroperoxides, and the like. No. Specifically, examples of the organic peroxide having a half-life of 10 hours of 75 to 100 ° C. include 1.1-bis (t-butylperoxy) cyclohexane and 1.1-bis (t-butylperoxy) 3. 3.5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, and the like. Examples of the organic peroxide having a 10-hour half-life of 110 to 130 ° C include dicumyl peroxide, t-butylcumyl peroxide, and di-methylperoxide. t-butyl peroxide and the like, and one or more of these are used. Preferably, an organic peroxide having a 10-hour half-life of 75 to 100 ° C. and an organic peroxide having a 10-hour half-life of 110 to 130 ° C. are preferably used in combination. The adjusted raw material solution is supplied to a reactor equipped with a stirrer to perform polymerization. The polymerization temperature is set using a known technique in consideration of the decomposition temperature of the organic peroxide used as the radical initiator, the productivity, the heat removal capability of the reactor, the fluidity of the target rubber-modified styrene resin, and the like. You can do it. The diameter of the rubber particles forming the dispersed phase can be adjusted by a known technique, for example, by controlling the rotation speed of a stirrer. The content of the partially hydrogenated rubber can be achieved by adjusting the content and the polymerization rate of the rubber-like elastic material in the raw material so that the target content is achieved, Can also be achieved by preparing a rubber-modified styrene-based resin containing the same and mixing it with a separately prepared styrene-based resin containing no rubber-like elastic material. However, it is natural that the resin after mixing satisfies all the constituent requirements of the present invention.

重合溶媒としては、エチルベンゼン、トルエン、キシレン等を用いることが可能である。重合反応機を出た重合溶液は、回収装置に導かれ加熱脱揮で溶媒と未反応の単量体を除去する。回収装置は、スチレン系樹脂の製造で常用される装置、例えば、フラッシュタンクシステム、多段ベント付き押出機等を用いることができる。脱揮温度は、200〜300℃、好ましくは220〜270℃の範囲である。200℃以下では、ゴム粒子の架橋が不十分となり、逆に300℃を超えるとポリマーの分解、着色が起こって好ましくない。
本発明のゴム変性スチレン系樹脂の製造方法は、重合装置として、完全混合型、プラグフロー型、循環装置を備えたプラグフロー型などいずれも好適に用いることができるが、完全混合型を用いる場合は少なくとも2つ以上の重合装置を直列に連結して使用する必要がある。
Ethylbenzene, toluene, xylene and the like can be used as the polymerization solvent. The polymerization solution exiting the polymerization reactor is led to a recovery device, and the solvent and unreacted monomers are removed by heating and devolatilization. As the recovery device, a device commonly used in the production of a styrene-based resin, for example, a flash tank system, an extruder with a multistage vent, or the like can be used. The devolatilization temperature is in the range of 200 to 300C, preferably 220 to 270C. When the temperature is lower than 200 ° C., the crosslinking of the rubber particles becomes insufficient. On the other hand, when the temperature exceeds 300 ° C., the polymer is decomposed and colored, which is not preferable.
In the method for producing a rubber-modified styrene-based resin of the present invention, as a polymerization apparatus, any of a complete mixing type, a plug flow type, a plug flow type equipped with a circulation device and the like can be suitably used. It is necessary to use at least two or more polymerization devices connected in series.

また、本発明においてゴム変性スチレン系樹脂製造時の回収工程の前後の任意の段階、あるいはゴム変性スチレン系樹脂を押出加工段階、成形加工段階において、スチレン系樹脂に慣用される各種添加剤、例えば、無機充填材、帯電防止剤、熱安定剤、ヒンダートフェノール系、リン系、イオウ系などの酸化防止剤、光安定剤、紫外線吸収剤、加工助剤、分散剤、抗菌剤、核剤、可塑剤、滑剤、難燃剤、染料、顔料、着色剤等を添加できる。
ここで、無機充填剤とは、例えばタルク、マイカ、カオリン、炭酸カルシウム、硫酸バリウム、クレー、ガラスフレーク、ガラスファイバー等が挙げられる。好ましくは、タルク、炭酸カルシウムである。
Further, in the present invention, at any stage before and after the recovery step in the production of the rubber-modified styrene-based resin, or at the extrusion processing stage of the rubber-modified styrene-based resin, at the molding processing stage, various additives commonly used for styrene-based resins, for example, , Inorganic fillers, antistatic agents, heat stabilizers, antioxidants such as hindered phenol-based, phosphorus-based, sulfur-based, light stabilizers, ultraviolet absorbers, processing aids, dispersants, antibacterial agents, nucleating agents, Plasticizers, lubricants, flame retardants, dyes, pigments, colorants and the like can be added.
Here, examples of the inorganic filler include talc, mica, kaolin, calcium carbonate, barium sulfate, clay, glass flake, and glass fiber. Preferably, talc and calcium carbonate are used.

また、紫外線吸収剤とは、例えばベンゾトリアゾール系紫外線吸収剤などが挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾールが挙げられる。好ましくは、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾールである。
また、光安定剤とは、例えばヒンダートアミン系光安定剤などが挙げられる。ヒンダートアミン系光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート、N,N’−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物が挙げられる。好ましくは、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケートである。
Examples of the ultraviolet absorber include a benzotriazole-based ultraviolet absorber. Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, and 2- (3 , 5-Di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy- 5'-t-octylphenyl) benzotriazole. Preferably, it is 2- (5-methyl-2-hydroxyphenyl) benzotriazole.
The light stabilizer includes, for example, a hindered amine light stabilizer. Examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) separate, N, N′-bis (3-aminopropyl) ethylenediamine · 2,4-bis [ N-butyl-N- (1,2,2,6,6-pentamethyl-4piperidyl) amino] -6-chloro-1,3,5-triazine condensate. Preferably, bis (2,2,6,6-tetramethyl-4-piperidyl) separate is used.

紫外線吸収剤、光安定剤の添加量は、紫外線吸収剤と光安定剤の総量でゴム変性スチレン系樹脂100重量部に対して0.2〜2.0重量部が好ましい。より好ましくは0.4〜1.5重量部である。
また、ポリジメチルシロキサンや鉱油、高級脂肪酸の金属塩、高級脂肪酸のアミド類を添加することにより、衝撃強度を一段と高めることができる。
さらに、テルペン系樹脂、テルペン系水素添加樹脂を添加することにより、成形性、耐熱性、耐衝撃性、剛性バランスや外観特性を高めることもできる。
本発明の積層体は、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層を基材とし、その基材の一部あるいは全体をゴム変性スチレン系樹脂(I)からなる層で被覆してなることを特徴とする積層体である。(I)以外のスチレン系樹脂としては、例えば、ポリスチレン、耐衝撃性ポリスチレン、AS樹脂、ABS樹脂、MS樹脂、透明HIPS樹脂、透明ABS樹脂、スチレン−(メタ)アクリル酸エステル−ブタジ
エンゴム共重合体樹脂、スチレン−(メタ)アクリル酸共重合樹脂、スチレン−無水マレイン酸共重合樹脂等が挙げられ、これらは単独または併用して使用することができる。
The added amount of the ultraviolet absorber and the light stabilizer is preferably 0.2 to 2.0 parts by weight based on 100 parts by weight of the rubber-modified styrene resin in the total amount of the ultraviolet absorber and the light stabilizer. More preferably, it is 0.4 to 1.5 parts by weight.
The impact strength can be further increased by adding polydimethylsiloxane, mineral oil, metal salts of higher fatty acids, or amides of higher fatty acids.
Further, by adding a terpene-based resin or a terpene-based hydrogenated resin, moldability, heat resistance, impact resistance, rigidity balance and appearance characteristics can be improved.
The laminate of the present invention comprises, as a base material, a layer made of a styrene resin or vinyl chloride resin (II) other than (I), and a part or the whole of the base material is made of a rubber-modified styrene resin (I). It is a laminate characterized by being coated with a layer. Examples of the styrene resin other than (I) include polystyrene, impact-resistant polystyrene, AS resin, ABS resin, MS resin, transparent HIPS resin, transparent ABS resin, and styrene- (meth) acrylate-butadiene rubber copolymer. A coalesced resin, a styrene- (meth) acrylic acid copolymer resin, a styrene-maleic anhydride copolymer resin and the like can be mentioned, and these can be used alone or in combination.

本発明の積層体中の(II)からなる層には、ゴム変性スチレン系樹脂(I)と同様に、無機充填材、帯電防止剤、熱安定剤、ヒンダートフェノール系、リン系、イオウ系などの酸化防止剤、光安定剤、紫外線吸収剤、加工助剤、分散剤、抗菌剤、核剤、可塑剤、滑剤、難燃剤、染料、顔料、着色剤等を添加できる。
本発明の積層体中の(II)からなる層には、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂を用いることができる。ここで使用される木粉は、樹木の種類を特に限定するものではないが、例えば桧、トドマツ、カラマツ、杉、栂、ブナ、楓、樅、桜、竹などの木及び住宅等で使用された廃材の粉砕品や製材時のおがくず等があげられる。又、籾殻、果物殻、とうもろこし穂芯、紙、パルプ等の粉砕品も含まれる。これらは通常60メッシュパス以下のものが好適に用いられる。
本発明の積層体中の(II)からなる層には、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体を用いることができる。発泡剤及び発泡方法については、公知の方法で実施することができる。発泡剤としては物理発泡剤または化学発泡剤が使用できる。例えば、物理発泡剤としては、空気、炭酸ガス、窒素ガス等の無機系、ブタン、ペンタン、ヘキサン等の有機系が使用できる。化学発泡剤としては、重炭酸塩、炭酸塩、炭酸ナトリウム+酸などの無機系、アゾ化合物、ヒドラジン誘導体、ニトロソ化合物等が使用できる。
In the layer composed of (II) in the laminate of the present invention, like the rubber-modified styrene resin (I), an inorganic filler, an antistatic agent, a heat stabilizer, a hindered phenol type, a phosphorus type, a sulfur type. Antioxidants, light stabilizers, ultraviolet absorbers, processing aids, dispersants, antibacterial agents, nucleating agents, plasticizers, lubricants, flame retardants, dyes, pigments, coloring agents, and the like.
For the layer composed of (II) in the laminate of the present invention, wood powder-blended resin other than (I), such as styrene resin or vinyl chloride resin, can be used. The wood flour used here is not particularly limited to the type of tree, but is used, for example, in trees such as hinoki, fir pine, larch, cedar, toga, beech, maple, fir, cherry, bamboo, and houses, and the like. Examples include crushed waste materials and sawdust from sawmills. Also included are crushed products such as rice husks, fruit husks, corn cobs, paper, and pulp. Usually, those having a mesh pass of 60 mesh or less are preferably used.
In the layer of (II) in the laminate of the present invention, a foam of a styrene resin or a vinyl chloride resin other than (I) can be used. About a foaming agent and a foaming method, it can implement by a well-known method. As the foaming agent, a physical foaming agent or a chemical foaming agent can be used. For example, as the physical foaming agent, an inorganic system such as air, carbon dioxide, and nitrogen gas, and an organic system such as butane, pentane, and hexane can be used. As the chemical foaming agent, inorganic systems such as bicarbonate, carbonate, sodium carbonate + acid, azo compounds, hydrazine derivatives, nitroso compounds and the like can be used.

本発明の積層体中の(II)からなる層には、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂及びそれらの木粉配合樹脂を用いることができる。リサイクルされた材料の形状は、加工時の安定性の確保の観点から、裁断、粉砕されていることが必要である。好ましくは、リサイクル材を混練機にて加工処理した再生樹脂ペレットである。
本発明のゴム変性スチレン系樹脂は、射出成形、プレス成形、シート押出成形、異型押出成形、真空成形、ブロー成形、発泡成形等により成形することが可能である。また、本発明の積層体は、多層共押出成形、2色射出成形、インサート成形、多層中空成形、多層異形押出成形等により成形することが可能である。
For the layer composed of (II) in the laminate of the present invention, recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride-based resin, and resin mixed with wood powder thereof can be used. The shape of the recycled material needs to be cut and pulverized from the viewpoint of securing stability during processing. Preferably, it is a recycled resin pellet obtained by processing a recycled material with a kneading machine.
The rubber-modified styrenic resin of the present invention can be molded by injection molding, press molding, sheet extrusion molding, profile extrusion molding, vacuum molding, blow molding, foam molding, or the like. The laminate of the present invention can be formed by multi-layer coextrusion molding, two-color injection molding, insert molding, multilayer hollow molding, multilayer profile extrusion molding, or the like.

本発明によると基材層のとなる(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層と被覆層となるゴム変性スチレン系樹脂(I)からなる層を熱融着するだけで十分な界面接着力が得られる。つまり本発明においては、積層体を得る場合に、通常用いられる接着剤を必要としないのである。このことも本発明の大きな特徴である。
また、本発明のゴム変性スチレン系樹脂及び積層体は、耐候性・耐衝撃性に優れることから、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野などに幅広く使用することができる。特に住宅設備・建材の屋外製品である雨樋、破風、胴差、エアコンダクトカバー、竹垣、フェンス、ラティス、プランター等に好適に用いられる。
According to the present invention, a layer made of a styrene-based resin or vinyl chloride-based resin (II) other than (I) serving as a base material layer and a layer made of a rubber-modified styrene-based resin (I) serving as a coating layer are heat-sealed. Alone can provide a sufficient interfacial adhesive strength. That is, in the present invention, when a laminate is obtained, a commonly used adhesive is not required. This is also a major feature of the present invention.
In addition, the rubber-modified styrene-based resin and laminate of the present invention have excellent weather resistance and impact resistance, and are used in the fields of automobiles, home appliances and miscellaneous goods, and housing and building materials including exterior products such as exteriors. Can be used widely. Particularly, it is suitably used for rain gutters, gables, body gaps, air conditioner duct covers, bamboo fences, fences, lattices, planters, and the like, which are outdoor products of housing equipment and building materials.

以下、本発明を実施例で更に詳しく説明する。但し、本発明はこれらの実施例によって何ら限定されるものではない。
部分水素添加ゴムについての測定には、以下の方法を用いた。
(1)5重量%スチレン溶液粘度:スチレンを溶剤とした5重量%溶液を用い、25℃でキャノンフェンスケ型粘度計を用いて測定した。単位は、cpsである。
(2)水添率及びミクロ構造(不飽和1,2ビニル結合):FT−NMRを用いて分析した。(測定の詳細は、特開昭64−90208号公報に記載の手順に従った。)
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited at all by these examples.
The following method was used for the measurement of the partially hydrogenated rubber.
(1) 5% by weight styrene solution viscosity: measured using a 5% by weight solution of styrene as a solvent at 25 ° C. using a Cannon-Fenske viscometer. The unit is cps.
(2) Hydrogenation ratio and microstructure (unsaturated 1,2-vinyl bond): analyzed by FT-NMR. (The details of the measurement followed the procedure described in JP-A-64-90208.)

ゴム変性スチレン系樹脂及び積層体についての測定には、以下の方法を用いた。
(1)分散粒子径:四酸化オスミウムで染色したゴム変性スチレン系樹脂から厚さ70nmの超薄切片を作成、電子顕微鏡撮影し、倍率1万倍の写真とした。写真中の分散粒子500〜1000個の粒子径を測定し、次式により重量平均粒子径を算出し、その値を分散粒子径とした。
分散粒子径=ΣniDi4 /ΣniDi3
ここで、niは粒子径Diのゴム状弾性体の粒子の個数、また、粒子径Diは写真中の粒子面積から円相当径としたときの粒子径である。本測定は、画像解析装置IP−1000PC(旭化成(株)製)を用いて測定した。
(2)ゴム状弾性体含有量:重合直後のゴム変性スチレン系樹脂から溶媒、未反応単量体を除去する前の溶液を採取する。230℃−10mmHgの減圧下で乾燥して、重合溶液中の固形分の重量%を求める。この値と、重合前の原料溶液に含まれるゴム状弾性体の重量%から、ゴム変性スチレン系樹脂中に含まれるゴム状弾性体の重量%を求めた。
The following method was used for the measurement of the rubber-modified styrene resin and the laminate.
(1) Dispersed particle diameter: An ultra-thin section having a thickness of 70 nm was prepared from a rubber-modified styrene-based resin dyed with osmium tetroxide, photographed with an electron microscope, and photographed at a magnification of 10,000 times. The particle diameter of 500 to 1000 dispersed particles in the photograph was measured, the weight average particle diameter was calculated by the following equation, and the value was defined as the dispersed particle diameter.
Dispersed particle size = ΣniDi 4 / ΣniDi 3
Here, ni is the number of particles of the rubber-like elastic material having the particle diameter Di, and the particle diameter Di is the particle diameter when the circle area is determined from the particle area in the photograph. This measurement was performed using an image analyzer IP-1000PC (manufactured by Asahi Kasei Corporation).
(2) Rubber-like elastic material content: A solution before removing the solvent and unreacted monomer from the rubber-modified styrene resin immediately after polymerization is collected. It is dried under a reduced pressure of 230 ° C.-10 mmHg, and the weight% of the solid content in the polymerization solution is determined. From this value and the weight% of the rubber-like elastic material contained in the raw material solution before polymerization, the weight% of the rubber-like elastic material contained in the rubber-modified styrene resin was determined.

(3)樹脂相スチレン系樹脂組成:ゴム変性スチレン系樹脂をメタノール10体積%を含むメチルエチルケトンに溶解し、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))で20000rpmで60分間処置したのち、沈殿物と上澄み液を分離し、大量のメタノールに上澄み液を加え、ゴム変性スチレン系樹脂中のスチレン系樹脂部を沈殿させる。この沈殿物を取り出し、50℃ 100mmHgの減圧下で乾燥させる。乾燥後のサンプルを日本分光(株)JNM−G400 FT−NMRを用いて、以下の条件下で1 Hを測定する。
パルス幅=8.4μs、データポイント=16384、繰り返し時間=7.559秒、積算回数=1000、サンプル濃度=10wt%、溶媒=1,1,2,2−テトラクロルエタン(d2 )、サンプル管=5mmφ、測定温度=120℃ スチレン系単量体のフェニル基に由来するピークが6.2〜7.4ppm、アクリル酸エステル系単量体の水素に由来するピークが3.4〜3.8ppmに現れる。またメタクリル酸エステル系単量体のメチル基の水素に由来するピークが0.2〜1.1ppmに現れる。ピーク分離操作を行ってピーク面積比を求め、この値よりスチレン系樹脂部の組成重量比を求めた。この値と上記(2)で求めたゴム状弾性体含有量から、ゴム変性スチレン系樹脂中の各単量体成分の重量%を求めた。
(3) Resin phase Styrene resin composition: A rubber-modified styrene resin is dissolved in methyl ethyl ketone containing 10% by volume of methanol and centrifuged at 20,000 rpm with a centrifuge (Himac CR-20 manufactured by Hitachi, Ltd. (rotor: R20A2)). After the treatment for 60 minutes, the precipitate and the supernatant are separated, and the supernatant is added to a large amount of methanol to precipitate the styrene resin portion in the rubber-modified styrene resin. The precipitate is taken out and dried under reduced pressure of 50 ° C. and 100 mmHg. 1 H is measured on the dried sample under the following conditions using JASCO Corporation JNM-G400 FT-NMR.
Pulse width = 8.4 μs, data point = 16384, repetition time = 7.559 seconds, integration frequency = 1000, sample concentration = 10 wt%, solvent = 1,1,2,2-tetrachloroethane (d 2 ), sample Tube = 5 mmφ, measurement temperature = 120 ° C. The peak derived from the phenyl group of the styrene-based monomer is 6.2 to 7.4 ppm, and the peak derived from hydrogen of the acrylate-based monomer is 3.4 to 3. Appears at 8 ppm. Further, a peak derived from hydrogen of the methyl group of the methacrylate monomer appears at 0.2 to 1.1 ppm. The peak area ratio was determined by performing a peak separation operation, and the composition weight ratio of the styrene resin portion was determined from this value. From this value and the rubber-like elastic body content obtained in the above (2), the weight% of each monomer component in the rubber-modified styrenic resin was obtained.

(4)シャルピー衝撃強さ:ISO 179に準じて測定した。
(5)メチルエチルケトン不溶分ゲル分率:ゴム変性スチレン系樹脂1gを精秤し(W1)、メチルエチルケトン20ミリリットルを加え23℃で2時間振とう後、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))にて10℃以下、20000rpmで60分間遠心分離する。上澄み液をデカンテーションして除き、不溶分を得る。引き続き、160℃、20mmHg以下の条件で1時間真空乾燥し、デシケータ内で室温まで冷却後、不溶分の重量を精秤する(W2)。下記式により、メチルエチルケトン不溶分ゲル分率を求める。
メチルエチルケトン不溶分ゲル分率(%)=(W2/W1)×100
(6)トルエンに対する膨潤指数:ゴム変性スチレン系樹脂1gを精秤し(W3)、トルエン20ミリリットルを加え23℃で2時間振とう後、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))にて10℃以下、20000rpmで60分間遠心分離する。上澄み液をデカンテーションして除き、トルエンを含んだ不溶分の重量を精秤する(W4)。引き続き、160℃、20mmHg以下の条件で1時間真空乾燥し、デシケータ内で室温まで冷却後、不溶分の重量を精秤する(W5)。下記式により、トルエンに対する膨潤指数を求める。
トルエンに対する膨潤指数=(W4/W5)
(4) Charpy impact strength: measured according to ISO 179.
(5) Methyl ethyl ketone insoluble gel fraction: 1 g of rubber-modified styrene resin is precisely weighed (W1), 20 ml of methyl ethyl ketone is added, shaken at 23 ° C. for 2 hours, and then centrifuged (Himac CR manufactured by Hitachi, Ltd.). -20 (rotor: R20A2)) and centrifuged at 20,000 rpm for 60 minutes at 10 ° C or lower. The supernatant is decanted off to obtain insolubles. Subsequently, vacuum drying is performed for 1 hour at 160 ° C. and 20 mmHg or less, and after cooling to room temperature in a desiccator, the weight of the insoluble matter is precisely weighed (W2). The methyl ethyl ketone insoluble matter gel fraction is determined by the following formula.
Methyl ethyl ketone insoluble gel fraction (%) = (W2 / W1) × 100
(6) Swelling index with respect to toluene: 1 g of a rubber-modified styrene resin was precisely weighed (W3), 20 ml of toluene was added, and the mixture was shaken at 23 ° C. for 2 hours, and then centrifuged (Himac CR-20 manufactured by Hitachi, Ltd.). (Rotor: R20A2)) at 10 ° C. or lower at 20,000 rpm for 60 minutes. The supernatant is removed by decantation, and the weight of the insoluble matter containing toluene is precisely weighed (W4). Subsequently, vacuum drying is performed for 1 hour at 160 ° C. and 20 mmHg or less, and after cooling to room temperature in a desiccator, the weight of the insoluble matter is precisely weighed (W5). The swelling index for toluene is determined by the following equation.
Swelling index for toluene = (W4 / W5)

(7)耐候性 色差:
(耐候性試験サンプルの作成)
下記配合処方で混合し、着色剤・耐候剤を押出機にて溶融混練して白着色ペレットを得た。
ゴム変性スチレン系樹脂 100重量部
顔料 酸化チタン 2.4重量部
滑剤 エチレンビスステアロアミド 0.6重量部
耐候剤 2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール(チバ・スペ
シャルティ・ケミカルズ(株)チヌビンP)
0.4重量部
耐候剤 ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート(三共(株
)サノール LS−770) 0.8重量部
それをさらに射出成形機にて50×50×2mmの平板を成形、切り出しして耐候性評価用サンプルを得た。下記条件にて耐候性を評価した。
(7) Weather resistance Color difference:
(Preparation of weather resistance test sample)
The mixture was mixed according to the following formulation, and the colorant and the weathering agent were melt-kneaded with an extruder to obtain white colored pellets.
Rubber-modified styrene resin 100 parts by weight Pigment Titanium oxide 2.4 parts by weight Lubricant Ethylene bis stearamide 0.6 parts by weight Weathering agent 2- (5-methyl-2-hydroxyphenyl) benzotriazole (Ciba Specialty Chemicals) (Tinuvin P)
0.4 parts by weight of a weathering agent bis (2,2,6,6-tetramethyl-4-piperidyl) separate (Sankyo LS-770) 0.8 part by weight A 50 × 2 mm flat plate was formed and cut out to obtain a sample for evaluating weather resistance. The weather resistance was evaluated under the following conditions.

(耐候性評価条件)
得られた耐候性評価用サンプルをメタルハライドランプ(KF−1フィルター使用)を光源とするメタルウェザー[ダイプラ・ウィンテス(株)製 型式:KU−R5C1−A]に800時間暴露し、色差計にて色差(ΔE*)を測定した。色差測定は、暴露時間200、400、600、800時間毎に実施し、その測定値の最大値を耐候性 色差(ΔE*)の値とした。
メタルウェザー試験条件:
光源のエネルギー強度 75mW/cm2
運転モード (ランプ照射)ブラックパネル温度 63℃、湿度 50RH%
(結露) ブラックパネル温度 30℃、湿度 98RH%
(水噴霧) 結露の前後 30秒
ランプ照射、結露各4時間のサイクルにて試験を実施した。
色差測定条件 C光 2°視野
(Weather resistance evaluation conditions)
The obtained sample for weather resistance evaluation was exposed to a metal weather [Model: KU-R5C1-A manufactured by Daipla Wintes Co., Ltd.] using a metal halide lamp (using a KF-1 filter) as a light source for 800 hours, and measured with a color difference meter. The color difference (ΔE *) was measured. The color difference measurement was performed every 200, 400, 600, and 800 hours of the exposure time, and the maximum value of the measured values was defined as the value of weather resistance color difference (ΔE *).
Metal weather test conditions:
Energy intensity of light source 75mW / cm 2
Operation mode (lamp irradiation) Black panel temperature 63 ℃, humidity 50RH%
(Condensation) Black panel temperature 30 ° C, humidity 98RH%
(Water spray) 30 seconds before and after condensation
The test was performed with a cycle of 4 hours each for lamp irradiation and dew condensation.
Color difference measurement conditions C light 2 ° field of view

(9)積層体接着性評価
各積層体を、23℃、24時間状態調節後、JIS K5400 付着性碁盤目テープ法に準じて、(I)からなる層を貫通して、(II)からなる層に達する切り傷間隔5mmの切り傷をつけ測定を行った。
欠損率30%未満:○ 欠損率30%以上:×
〈ゴム変性スチレン系樹脂製造例〉
[共役ジエン系ゴム及び部分水素添加ゴムA0〜A4の作製]
内容積10リットルの攪拌機付、ジャケット付オートクレーブを反応器として用いて、ブタジエン/n−ヘキサン混合液(ブタジエン濃度20重量%、テトラメチルエチレンジアミン100ppm含有)を20リットル/hrの速度で、n−ブチルリチウム/n−ヘキサン溶液(濃度5重量%)を70ミリリットル/hrで導入、重合温度110℃でブタジエンの連続重合を実施した。得られた活性重合体をメタノールで失活、別の内容積10リットルの攪拌機付、ジャケット付の反応器に重合体溶液8リットルを移し、温度60℃にて、水添触媒としてジ−p−トリルビス(1−シクロペンタジエニル)チタニウム/シクロヘキサン溶液(濃度1ミリモル/リットル)250ミリリットルと、n−ブチルリチウム溶液(濃度5ミリモル/リットル)50ミリリットルとを0℃、2.0Kg/cm2 の水素圧下で混合したものを添加、水素分圧3.0Kg/cm2 にて30分間反応させた。得られた部分水素添加重合体溶液は、安定剤を加え、溶剤を除去した。メタノール失活後にサンプリングを行って安定剤を加え、溶剤を除去して得た部分水素添加前の重合体A0及び部分水素添加重合体A1のゴム状弾性体の分析値を表1に示す。重合体A0と同様にして得られたブタジエン重合体を水素添加反応時間を変えた他は部分水素添加重合体A1と同様の条件で水素添加し、水素添加率の異なる部分水素添加重合体A2〜A4を得た
。これらのゴム状弾性体の分析値も表1に示す。
(9) Evaluation of Laminate Adhesion After conditioning each of the laminates at 23 ° C. for 24 hours, the laminate was formed of (II) by penetrating the layer of (I) according to JIS K5400 adhesive grid tape method. A cut was made with a cut of 5 mm between the cuts reaching the layer, and the measurement was performed.
Less than 30% defect rate: ○ More than 30% defect rate: ×
<Example of rubber-modified styrene resin production>
[Production of conjugated diene rubber and partially hydrogenated rubbers A0 to A4]
A butadiene / n-hexane mixed solution (butadiene concentration 20% by weight, containing 100 ppm of tetramethylethylenediamine) at a rate of 20 liter / hr was added to n-butyl using a 10 liter inner volume autoclave equipped with a stirrer and jacket as a reactor. A lithium / n-hexane solution (concentration: 5% by weight) was introduced at 70 ml / hr, and continuous polymerization of butadiene was carried out at a polymerization temperature of 110 ° C. The obtained active polymer was deactivated with methanol, 8 liter of the polymer solution was transferred to another reactor having a 10-liter internal volume equipped with a stirrer and jacket, and heated at 60 ° C. as di-p-hydrogenation catalyst. 250 ml of a tolylbis (1-cyclopentadienyl) titanium / cyclohexane solution (concentration: 1 mmol / l) and 50 ml of an n-butyllithium solution (concentration: 5 mmol / l) were added at 0 ° C. and 2.0 kg / cm 2 . The mixture mixed under a hydrogen pressure was added and reacted at a hydrogen partial pressure of 3.0 Kg / cm 2 for 30 minutes. A stabilizer was added to the obtained partially hydrogenated polymer solution, and the solvent was removed. Table 1 shows the analysis values of the rubber-like elastic material of the polymer A0 before partial hydrogenation and the partially hydrogenated polymer A1 obtained by sampling after methanol deactivation and adding a stabilizer and removing the solvent. The butadiene polymer obtained in the same manner as the polymer A0 was hydrogenated under the same conditions as the partially hydrogenated polymer A1 except that the hydrogenation reaction time was changed, and the partially hydrogenated polymers A2 having different hydrogenation rates were obtained. A4 was obtained. The analytical values of these rubber-like elastic materials are also shown in Table 1.

(実施例1〜4)
ゴム状弾性体A2 9.6重量部をスチレン39.2重量部、メチルメタクリレート39.2重量部、エチルベンゼン12.0重量部に溶解し、次いで1,1ビス(t−ブチルパーオキシ)シクロヘキサン0.02重量部、連鎖移動剤としてα−メチルスチレンダイマー0.4重量部を加え原料溶液を調整した。原料溶液を、攪拌機を備えた塔式反応機3基(各々の内容積6.2リットル)を直列に連結した重合装置に、3.0リットル/hrで連続的に供給した。重合温度は、第一反応機128℃、第二反応機135℃、第三反応機155℃で重合を実施した。得られた重合溶液を二段ベント付脱揮押出機に連続的に供給し、未反応単量体、溶媒を回収し、ゴム変性スチレン系樹脂を得た。脱揮押出機は温度を200〜260℃、真空度を20torrとした。分散粒子径は、攪拌機の攪拌数、1,1ビス(t−ブチルパーオキシ)シクロヘキサン量、α−メチルスチレンダイマー量で調整した。また、必要に応じて重合温度も調整した。分析、評価結果を表2に示す。
(Examples 1 to 4)
Dissolve 9.6 parts by weight of rubber-like elastic body A2 in 39.2 parts by weight of styrene, 39.2 parts by weight of methyl methacrylate, and 12.0 parts by weight of ethylbenzene, and then dissolve in 1,1 bis (t-butylperoxy) cyclohexane 0 0.02 parts by weight and 0.4 parts by weight of α-methylstyrene dimer as a chain transfer agent were added to prepare a raw material solution. The raw material solution was continuously supplied at a rate of 3.0 L / hr to a polymerization apparatus in which three tower reactors each having a stirrer (each having an inner volume of 6.2 L) were connected in series. The polymerization was carried out at a polymerization temperature of 128 ° C. in the first reactor, 135 ° C. in the second reactor, and 155 ° C. in the third reactor. The obtained polymerization solution was continuously supplied to a devolatilizing extruder equipped with a two-stage vent, and an unreacted monomer and a solvent were recovered to obtain a rubber-modified styrene resin. The devolatilizing extruder had a temperature of 200 to 260 ° C. and a degree of vacuum of 20 torr. The dispersed particle diameter was adjusted by the number of stirring by a stirrer, the amount of 1,1 bis (t-butylperoxy) cyclohexane, and the amount of α-methylstyrene dimer. Further, the polymerization temperature was adjusted as needed. The analysis and evaluation results are shown in Table 2.

(実施例5)
ゴム状弾性体A2 6.4重量部、スチレン40.8重量部、メチルメタクリレート40.8重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例6)
スチレン63.5重量部、メチルメタクリレート14.9重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例7)
ゴム状弾性体A1とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例8)
ゴム状弾性体A3とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例9)
スチレン39.2重量部、メチルメタクリレート34.5重量部、ブチルアクリレート4.7重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例10)
実施例1で得られたゴム変性スチレン系樹脂を耐候性評価サンプル調整時に耐候剤二種類を未添加とした。評価結果を表2に示す。
(Example 5)
The same operation as in Examples 1 to 4 was performed except that 6.4 parts by weight of the rubber-like elastic body A2, 40.8 parts by weight of styrene, 40.8 parts by weight of methyl methacrylate, and 0.3 part by weight of α-methylstyrene dimer were used. Thus, a rubber-modified styrenic resin was obtained. The analysis and evaluation results are shown in Table 2.
(Example 6)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that 63.5 parts by weight of styrene, 14.9 parts by weight of methyl methacrylate, and 0.3 part by weight of α-methylstyrene dimer were used. The analysis and evaluation results are shown in Table 2.
(Example 7)
Except having set it as the rubber-like elastic body A1, it carried out similarly to Example 1-4, and obtained the rubber modified styrene resin. The analysis and evaluation results are shown in Table 2.
(Example 8)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that the rubber-like elastic body A3 was used. The analysis and evaluation results are shown in Table 2.
(Example 9)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that 39.2 parts by weight of styrene, 34.5 parts by weight of methyl methacrylate, and 4.7 parts by weight of butyl acrylate were used. The analysis and evaluation results are shown in Table 2.
(Example 10)
Two kinds of weathering agents were not added to the rubber-modified styrene resin obtained in Example 1 at the time of preparing a sample for evaluating weathering resistance. Table 2 shows the evaluation results.

(比較例1)
ゴム状弾性体A0 4.8重量部、スチレン83.2重量部、1,1ビス(t−ブチルパーオキシ)シクロヘキサン0.01重量部、α−メチルスチレンダイマー0.1重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例2)
ゴム状弾性体A2 9.6重量部、スチレン78.4重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例3)
実施例1で得られたゴム変性スチレン系樹脂に、実施例1と同一のモノマー組成のマトリックス樹脂を押出機にて混合混練し、最終的なゴム状弾性体量を2重量%とした。評価結果を表3に示す。
(比較例4)
ゴム状弾性体A0とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例5)
ゴム状弾性体A4とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(Comparative Example 1)
Rubber-like elastic material A0 4.8 parts by weight, styrene 83.2 parts by weight, 1,1 bis (t-butylperoxy) cyclohexane 0.01 parts by weight, α-methylstyrene dimer 0.1 parts by weight By operating in the same manner as in Examples 1 to 4, a rubber-modified styrenic resin was obtained. Table 3 shows the analysis and evaluation results.
(Comparative Example 2)
Except that 9.6 parts by weight of rubber-like elastic body A2, 78.4 parts by weight of styrene, and 0.3 part by weight of α-methylstyrene dimer were used, the same operation as in Examples 1 to 4 was carried out to obtain a rubber-modified styrene resin. Was. Table 3 shows the analysis and evaluation results.
(Comparative Example 3)
A matrix resin having the same monomer composition as in Example 1 was mixed and kneaded with the rubber-modified styrenic resin obtained in Example 1 by an extruder to make the final rubber-like elastic body amount 2% by weight. Table 3 shows the evaluation results.
(Comparative Example 4)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that the rubber-like elastic body A0 was used. Table 3 shows the analysis and evaluation results.
(Comparative Example 5)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that the rubber-like elastic body A4 was used. Table 3 shows the analysis and evaluation results.

(比較例6)
ゴム状弾性体A2 6.4重量部、スチレン13.9重量部、メチルメタクリレート67.7重量部とした以外は実施例1と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例7)
比較例1で得られたゴム変性スチレン系樹脂を耐候性評価サンプル調整時に耐候剤二種類を未添加とした。評価結果を表3示す。
(Comparative Example 6)
A rubber-modified styrenic resin was obtained in the same manner as in Example 1, except that 6.4 parts by weight of the rubber-like elastic body A2, 13.9 parts by weight of styrene, and 67.7 parts by weight of methyl methacrylate were used. Table 3 shows the analysis and evaluation results.
(Comparative Example 7)
The rubber-modified styrenic resin obtained in Comparative Example 1 was not added with two kinds of weathering agents at the time of preparing a sample for evaluating weathering resistance. Table 3 shows the evaluation results.

Figure 2004307841
Figure 2004307841

Figure 2004307841
Figure 2004307841

Figure 2004307841
〈積層体実施例〉
積層体に用いた樹脂は以下の通りである。
(I)
ゴム変性スチレン系樹脂H2、H6、H9、H11、H16を用いた。
(II)
B1:耐衝撃性ポリスチレン PSジャパン(株)製 PSJポリスチレン 475D
B2:ABS樹脂 旭化成ケミカルズ(株)製 スタイラックABS 120B
B3:塩化ビニル樹脂
Figure 2004307841
<Laminate Example>
The resins used for the laminate are as follows.
(I)
Rubber-modified styrene resins H2, H6, H9, H11 and H16 were used.
(II)
B1: Impact-resistant polystyrene PSJ polystyrene 475D manufactured by PS Japan Co., Ltd.
B2: ABS resin Stylac ABS 120B manufactured by Asahi Kasei Chemicals Corporation
B3: Vinyl chloride resin

(実施例11〜15、比較例8〜12)
耐候性試験サンプルとして着色剤、耐候剤を添加し白着色された(I)の各樹脂を圧縮成形により180×150×0.2mmのシートを各々作成する。(II)の各樹脂を圧縮成形により180×150×3mmのシートを各々作成する。次いで、(I)、(II)の各シートを180×150×3mmの金型に挿入し、200℃で5分間予熱後、2MP
aの圧力下で1分間シートの圧着を行い、更に、水冷された冷却プレスで冷却し、積層体を得た。積層体を切り出しし、耐候性評価用サンプルを作成した。(I)からなる層を暴露面とし、耐候性を評価した。又、得られた積層体にて接着性を評価した。評価結果を表4に示す。
(Examples 11 to 15, Comparative Examples 8 to 12)
As a weather resistance test sample, a 180 × 150 × 0.2 mm sheet is prepared by compression-molding each of the white-colored resins (I) to which a coloring agent and a weathering agent are added. Each resin of (II) is compression molded to form a sheet of 180 × 150 × 3 mm. Then, each of the sheets (I) and (II) was inserted into a mold of 180 × 150 × 3 mm, preheated at 200 ° C. for 5 minutes, and then 2MP.
The sheet was pressed under the pressure of a for 1 minute, and further cooled by a water-cooled cooling press to obtain a laminate. The laminate was cut out to prepare a sample for evaluating weather resistance. The layer composed of (I) was used as an exposed surface, and the weather resistance was evaluated. Moreover, the adhesiveness of the obtained laminate was evaluated. Table 4 shows the evaluation results.

Figure 2004307841
Figure 2004307841

本発明の製造方法によって得られたゴム変性スチレン系樹脂は、耐候性、耐衝撃性に優れかつ成形性、着色性に優れた材料である。本発明のゴム変性スチレン系樹脂及びその樹脂を用いた積層体は、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野など幅広い用途での使用が可能であり、特に住設・建材分野の屋外
製品及び建材として好適に利用できる。
The rubber-modified styrenic resin obtained by the production method of the present invention is a material having excellent weather resistance, impact resistance, and excellent moldability and colorability. The rubber-modified styrenic resin of the present invention and a laminate using the resin can be used in a wide range of applications such as the field of automobiles, home appliances and miscellaneous goods, and the field of housing and building materials including outdoor products such as exteriors. Particularly, it can be suitably used as an outdoor product and a building material in the field of housing and building materials.

Claims (14)

共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを、(A)+(B)+(C)を100重量部として(A)が3〜16重量部でかつ(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16となるように重合させることを特徴とするゴム変性スチレン系樹脂の製造方法。   Partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, styrene monomer (B), and (meth) acrylate monomer (C) And (A) + (B) + (C) as 100 parts by weight, (A) is 3 to 16 parts by weight, and the weight ratio of (B) / (C) is 20/80 to 82/18. In the above, bulk polymerization or solution polymerization is carried out with stirring using a radical initiator, and the obtained rubber-modified styrene resin has a methyl ethyl ketone insoluble content gel fraction of 6 to 35% by weight, and a swelling index of the gel for toluene. The method for producing a rubber-modified styrenic resin, characterized in that the polymerization is carried out so as to be 8 to 16. 部分水素添加ゴム(A)の、25℃における5重量%スチレン溶液粘度が20〜150センチポイズである請求項1記載の製法。   2. The process according to claim 1, wherein the partially hydrogenated rubber (A) has a 5% by weight styrene solution viscosity at 25 [deg.] C. of 20 to 150 centipoise. 部分水素添加ゴム(A)において、水素添加前の共役ジエン系ゴムがポリブタジエンである請求項1〜2記載の製法。   3. The method according to claim 1, wherein in the partially hydrogenated rubber (A), the conjugated diene rubber before hydrogenation is polybutadiene. 共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が20/80〜80/20重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であることを特徴とするゴム変性スチレン系樹脂。   Partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, styrene monomer (B), and (meth) acrylate monomer (C) And (B) / (C) in a weight ratio of 20/80 to 82/18 by a bulk polymerization or a solution polymerization under stirring with a radical initiator to obtain a dispersed rubber particle phase. And a rubber-modified styrene resin composed of a resin phase and a copolymer constituting the resin phase, wherein the styrene monomer unit and the (meth) acrylate monomer unit are 20/80 to 80 / A rubber having a rubber-modified styrene resin having a methyl ethyl ketone-insoluble content gel fraction of 6 to 35% by weight and a swelling index of the gel in toluene of 8 to 16; Denatured steel Emissions-based resin. 部分水素添加ゴム(A)において、水素添加前の共役ジエン系ゴムがポリブタジエンである請求項4記載のゴム変性スチレン系樹脂。   The rubber-modified styrene resin according to claim 4, wherein in the partially hydrogenated rubber (A), the conjugated diene rubber before hydrogenation is polybutadiene. 分散ゴム粒子相のゴム粒子径が0.5〜3.5μmである請求項4〜5記載のゴム変性スチレン系樹脂。   The rubber-modified styrenic resin according to claim 4, wherein the rubber particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 μm. スチレン系単量体(B)がスチレンであり、かつ(メタ)アクリル酸エステル系単量体(C)がメタクリル酸メチルまたはメタクリル酸メチルとアクリル酸ブチルである請求項4〜6記載のゴム変性スチレン系樹脂。   7. The rubber modification according to claim 4, wherein the styrene monomer (B) is styrene, and the (meth) acrylate monomer (C) is methyl methacrylate or methyl methacrylate and butyl acrylate. Styrene resin. 共役ジエン系ゴムの不飽和単位のうち7〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が20/80〜82/18の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が20/80〜80/20重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であるゴム変性スチレン系樹脂(I)からなる層と(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層とが、積層された構造を有することを特徴とする積層体。   Partially hydrogenated rubber (A) in which 7 to 70 mol% of the unsaturated units of the conjugated diene rubber is hydrogenated, styrene monomer (B), and (meth) acrylate monomer (C) And (B) / (C) in a weight ratio of 20/80 to 82/18 by a bulk polymerization or a solution polymerization under stirring with a radical initiator to obtain a dispersed rubber particle phase. And a rubber-modified styrenic resin comprising a resin phase, wherein the styrene-based monomer unit and the (meth) acrylate-based monomer unit are 20/80 to 80 / A rubber-modified styrene resin having a weight ratio of 20 to 20%, a gel fraction of methyl ethyl ketone insoluble in the obtained rubber-modified styrene resin of 6 to 35% by weight, and a swelling index of the gel for toluene of 8 to 16 ( I) Laminate and a layer comprising an Ranaru layer (I) other than the styrene-based resin or vinyl chloride resin (II) is characterized by having a laminated structure. 分散ゴム粒子相のゴム粒子径が0.5〜3.5μmである請求項8記載の積層体。   9. The laminate according to claim 8, wherein the rubber particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 [mu] m. (I)と(II)からなる層を熱融着してなる請求項8〜9記載の積層体。   The laminate according to any one of claims 8 to 9, wherein the layer comprising (I) and (II) is heat-sealed. (II)からなる層において、(I)以外のスチレン系樹脂がポリスチレン、耐衝撃性ポリスチレン、ABS樹脂から選ばれた少なくとも1 種である請求項8〜9記載の積層体。   10. The laminate according to claim 8, wherein in the layer comprising (II), the styrene resin other than (I) is at least one selected from polystyrene, impact-resistant polystyrene, and ABS resin. (II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂である請求項8〜9記載の積層体。   The laminate according to any one of claims 8 to 9, wherein the layer composed of (II) is a styrene-based resin or a vinyl chloride-based resin other than (I) containing wood powder. (II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体である請求項8〜9記載の積層体。   The laminate according to claim 8, wherein the layer comprising (II) is a foam of a styrene resin or a vinyl chloride resin other than (I). (II)からなる層が、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂およびそれらの木粉配合樹脂である請求項8〜9記載の積層体。   The laminate according to any one of claims 8 to 9, wherein the layer comprising (II) is recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride-based resin, and a resin containing wood powder thereof.
JP2004077444A 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin Expired - Lifetime JP4413048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077444A JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086869 2003-03-27
JP2004077444A JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Publications (3)

Publication Number Publication Date
JP2004307841A true JP2004307841A (en) 2004-11-04
JP2004307841A5 JP2004307841A5 (en) 2007-04-19
JP4413048B2 JP4413048B2 (en) 2010-02-10

Family

ID=33478358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077444A Expired - Lifetime JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Country Status (1)

Country Link
JP (1) JP4413048B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860406A (en) * 2015-01-20 2016-08-17 中国石油化工股份有限公司 Olefin polymer, preparation method and application thereof
CN105860407A (en) * 2015-01-20 2016-08-17 中国石油化工股份有限公司 Olefin polymer, preparation method and application thereof
JP2019052251A (en) * 2017-09-15 2019-04-04 Psジャパン株式会社 Rubber-modified styrene resin composition and method for producing the same, sheet and molded article of the same
JP7145271B1 (en) * 2021-04-20 2022-09-30 デンカ株式会社 Transparent rubber-modified styrenic resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860406A (en) * 2015-01-20 2016-08-17 中国石油化工股份有限公司 Olefin polymer, preparation method and application thereof
CN105860407A (en) * 2015-01-20 2016-08-17 中国石油化工股份有限公司 Olefin polymer, preparation method and application thereof
JP2019052251A (en) * 2017-09-15 2019-04-04 Psジャパン株式会社 Rubber-modified styrene resin composition and method for producing the same, sheet and molded article of the same
JP7145271B1 (en) * 2021-04-20 2022-09-30 デンカ株式会社 Transparent rubber-modified styrenic resin composition

Also Published As

Publication number Publication date
JP4413048B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4768635B2 (en) Impact resistance improving composition and method
TWI421293B (en) A thermoplastic resin composition and a composite molded article
JP4559220B2 (en) Impact modified composition
US8969476B2 (en) Impact-modified compositions
JP2006241283A (en) Thermoplastic resin composition and resin molded product composed of the same
JP4741364B2 (en) Laminated body
JP4413048B2 (en) Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin
KR100623009B1 (en) Method of preparing thermoplastic resin having improved weatherability and impact resistance
JP6239885B2 (en) Thermoplastic resin composition and molded article
US5516842A (en) Polycarbonate resin composition and molded product thereof
JP3228448B2 (en) Rubber-modified thermoplastic resin and composition thereof
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP3472308B2 (en) Impact resistant methacrylic resin
JP2006089557A (en) Rubber-modified styrene resin, its production method and laminate obtained using the resin
JP4404969B2 (en) Thermoplastic resin composition
JP2003147153A (en) Thermoplastic resin composition
JP2003020377A (en) Composite resin composition
JP2002284944A (en) Thermoplastic flexible resin composition
JP2012223922A (en) Decorative resin sheet
JP4170053B2 (en) Thermoplastic resin composition
JP2780187B2 (en) Rubber-modified thermoplastic resin
JP4401830B2 (en) Thermoplastic resin composition and method for producing the same
JP3353429B2 (en) Thermoplastic resin composition
JP2000344842A (en) Rubber-modified thermoplastic resin
JP2001294758A (en) Resin composition for laser marking

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term