JP2004306919A - Telescopic shaft for vehicle steering - Google Patents

Telescopic shaft for vehicle steering Download PDF

Info

Publication number
JP2004306919A
JP2004306919A JP2003106776A JP2003106776A JP2004306919A JP 2004306919 A JP2004306919 A JP 2004306919A JP 2003106776 A JP2003106776 A JP 2003106776A JP 2003106776 A JP2003106776 A JP 2003106776A JP 2004306919 A JP2004306919 A JP 2004306919A
Authority
JP
Japan
Prior art keywords
shaft
diameter
male
steering
pitch circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106776A
Other languages
Japanese (ja)
Other versions
JP2004306919A5 (en
Inventor
Kenichi Shibazaki
健一 柴崎
Yasuhisa Yamada
康久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
NSK Steering Systems Co Ltd
Original Assignee
NSK Ltd
NSK Steering Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, NSK Steering Systems Co Ltd filed Critical NSK Ltd
Priority to JP2003106776A priority Critical patent/JP2004306919A/en
Publication of JP2004306919A publication Critical patent/JP2004306919A/en
Publication of JP2004306919A5 publication Critical patent/JP2004306919A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a telescopic shaft for vehicle steering free from backlash in rotational directions, capable of transmitting a torque in a high rigid state, having an excellent life and having a low cost. <P>SOLUTION: A torque transmission member 7, which is rolled in relative movement in a shaft direction, is disposed between a plurality of pairs of axial grooves 3, 5 provided respectively on an outer circumferential face of a male shaft 1 and an inner circumferential face of a female shaft 2. Regarding the diameter of the outer circumferential face of the male shaft 1, there are a part, which is passed through the rolling center of the torque transmission member 7 and has a larger diameter than a ball pitch circle 10, and a part, which has a smaller diameter than the ball pitch circle 10, are alternately formed with the axial groove 3 being sandwiched therebetween. At the same time, in the diameter of the inner circumferential face of the female shaft 2, according to the size of the outer diameter of the male shaft 1, a part, which has a larger diameter than the ball pitch circle 10, and a part, which has a smaller diameter than the ball pitch circle 10, are alternately formed with the axial groove 5 being sandwiched therebetween. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両のステアリングシャフトに組み込まれ、雄軸と雌軸とを、相互に回転不能且つ摺動自在に嵌合した車両ステアリング用伸縮軸に関するものである。
【0002】
【従来の技術】
従来より、自動車の操舵機構部の車両ステアリング用伸縮軸には、自動車が走行する際に発生する軸方向の変位を吸収して、ステアリングホイール上にその変位や振動を伝えないようにする性能が要求され、また、運転者が自動車を運転するのに最適なポジションを得るために、ステアリングホイールの軸方向の位置を調整する機能が要求されている。
【0003】
したがって、車両ステアリング用伸縮軸は軸方向に伸縮する機能が要求されており、上記の何れの場合にも、伸縮軸はガタ音を低減することが要求される。このような事情から、従来、雄軸にナイロン膜をコーティングし、摺動部にはグリースを塗布することにより、金属騒音や金属打音等を吸収、又は緩和すると共に、軸方向の摺動抵抗、及び軸の回転方向のガタつきの低減を図ってきた。
【0004】
しかしながら、経時変化によりナイロン膜の摩耗が進むと、回転方向のガタが大きくなる。特に、エンジンルーム内の高音にさらされる条件下においては、ナイロン膜の体積が変化し、摺動抵抗が著しく大きくなったり、摩耗が著しく促進されたりするため、回転方向のガタつきが一層大きくなるという問題点があった。
【0005】
そこで、特許文献1においては、雄軸の外周面と雌軸の内周面との間に配置され、雄軸と雌軸との軸方向相対移動の際に転動するトルク伝達部材(例えば球状体)と、このトルク伝達部材に径方向に隣接して配置され、トルク伝達部材を介して雄軸と雌軸に予圧を与える弾性体と、を設けた車両ステアリング用伸縮軸が開示されている。この構成により、安定した摺動荷重を実現すると共に、ガタつきを確実に防止して、高剛性の状態でトルクの伝達が可能となる。
【0006】
【特許文献1】
独国特許発明DE3730393C2号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の上記車両ステアリング用伸縮軸は、トルク伝達部材を介して雄軸と雌軸に予圧を付与するために弾性体を設けているため、部品点数が多くなってコスト高になるという問題点があった。
【0008】
また、回転方向のガタを確実に防止して高剛性の状態を実現するために、弾性体に板バネ等を用いると、板バネに高い応力が発生し、これが永久変形して捩じり剛性が低下してしまうという問題点があった。
【0009】
本発明は、上述した従来例の有する不都合を改善し、雄軸と雌軸の回転方向のガタを確実に防止できると共に、高剛性の状態でトルクを伝達することができ、しかも耐久性に優れ、低コストな車両ステリアリング用伸縮軸を提供することを課題としている。
【0010】
【課題を解決するための手段】
上記課題を達成するために、本発明では、車両のステアリングシャフトに組み込み、雄軸と雌軸を相互に回転不能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸において、前記雄軸の外周面と前記雌軸の内周面とにそれぞれ形成した複数対の軸方向溝の間に、前記両軸の軸方向相対移動の際に転動するトルク伝達部材を配置し、前記雄軸の外周面の外径は、前記トルク伝達部材の転動中心を通過するボールピッチ円径よりも大きい部分と、これより小さい部分とが、前記軸方向溝を挟んで交互に形成された構成であり、且つ、前記雌軸の内周面の内径は、前記雄軸の外径の大小に応じて、前記ボールピッチ円径よりも大きい部分と、これより小さい部分とが、前記軸方向溝を挟んで交互に形成された構成であることを特徴としている。
【0011】
以上のように構成されたことで、トルク伝達時には、雄軸の軸方向溝の、ボールピッチ円径よりも大きい部分側の面(内縁部)と、この溝に対向する雌軸の軸方向溝の、ボールピッチ円径よりも小さい部分側の面(内縁部)とによってトルク伝達部材が円周方向に拘束されるため、雄軸と雌軸の間の回転方向の剛性が向上し、高剛性の状態でトルクを伝達するができると共に、雄軸と雌軸の間の回転方向のガタつきを防止することができる。
【0012】
また、雄軸と雌軸とトルク伝達部材のみによって軸回転方向に与圧を付与することができるので、与圧を付与するための弾性体を省略することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態に係る車両ステアリング用伸縮軸を図面を参照しつつ説明する。
【0014】
(車両用ステアリングシャフトの全体構成)
図5は、本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動車の操舵機構部の側面図である。
【0015】
図5において、車体側のメンバ100にアッパブラケット101とロアブラケット102とを介して取り付けられたアッパステアリングシャフト部120(ステアリングコラム103と、ステアリングコラム103に回転自在に保持されたスアリングシャフト104を含む)と、ステアリングシャフト104の上端に装着されたステアリングホイール105と、ステアリングシャフト104の下端にユニバーサルジョイント106を介して連結されたロアステアリングシャフト部107と、ロアステアリングシャフト部107に操舵軸継手108を介して連結されたピニオンシャフト109と、ピニオンシャフト109に連結したステアリングラック軸112と、このステアリングラック軸112を支持して車体の別のフレーム110に弾性体111を介して固定されたステアリングラック支持部材113とから操舵機構部が構成されている。
【0016】
ここで、アッパステアリングシャフト部120とロアステアリングシャフト部107が本発明の実施の形態に係る車両ステアリング用伸縮軸(以後、伸縮軸と記す)を用いている。ロアステアリングシャフト部107は、雄軸と雌軸とを嵌合したものであるが、このようなロアステアリングシャフト部107には自動車が走行する際に発生する軸方向の変位を吸収し、ステアリングホイール105上にその変位や振動を伝えない性能が要求される。このような性能は、車体がサブフレーム構造となっていて、操舵機構上部を固定するメンバ100とステアリングラック支持部材113が固定されているフレーム110が別体となっておりステアリングラック支持部材113がゴムなどの弾性体111を介してフレーム110に締結固定されている構造の場合に要求される。また、その他のケースとして操舵軸継手108をピニオンシャフト109に締結する際に作業者が、伸縮軸をいったん縮めてからピニオンシャフト109に嵌合させ締結させるため伸縮機能が必要とされる場合がある。さらに、操舵機構の上部にあるアッパステアリングシャフト部120も、雄軸と雌軸とを嵌合したものであるが、このようなアッパステアリングシャフト部120には、運転者が自動車を運転するのに最適なポジションを得るためにステアリングホイール105の位置を軸方向に移動し、その位置を調整する機能が要求されるため、軸方向に伸縮する機能が要求される。前述のすべての場合において、伸縮軸には嵌合部のガタ音を低減することと、ステアリングホイール105上のガタ感を低減することと、軸方向摺動時における摺動抵抗を低減することが要求される。
【0017】
(第1実施の形態)
図1は本発明の第1の実施形態を示す車両ステアリング用伸縮軸の径方向断面図、図2は図1の車両ステアリング用伸縮軸を示す縦断面図、図3は図1の雌軸を示す径方向断面図、図4は図1の雄軸を示す径方向断面図である。
【0018】
先ず、第1の実施形態について図1〜図4を参照して説明する。図2に示すように、車両ステアリング用伸縮軸は、相互に回転不能に且つ摺動自在に嵌合した雄軸1と雌軸2とから成っている。
【0019】
図1に示すように、雄軸1の外周面には、6個の軸方向溝3が軸方向に互いに平行に形成されている。雌軸2の内周面には、これらの軸方向溝3に対向する位置に、6個の軸方向溝5が軸方向に互いに平行に形成されている。これらの6対の軸方向溝3,5の間には、それぞれ、両軸の軸方向相対移動の際に転動する複数個のトルク伝達部材である球状体7が介装されている。また、これら球状体7は、図2に示すように、雄軸1の端部に設けた止め輪11により軸方向溝3,5から外れないようにされている。
【0020】
この球状体7の径は適切な与圧が発生するように設計されており、組み込み性を向上させるために、軸方向溝3,5の溝底の長さ方向には、中央部の有効支持部を除いた溝端部に、外方に緩やかに湾曲した湾曲部が形成されている。この実施形態では、トルク伝達部材として球状体7を採用したが、これに限らず、コロであっても良い。
【0021】
図1に示すように、6組の対となる軸方向溝3,5をそれぞれA、B、C、D、E、F、雄軸1の軸中心をOとすると、雌軸2の内周面の隣合う軸方向溝5の配置角度パターンは、
∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°
である。但し、∠AOB等は雌軸2の軸方向溝5断面形状の各円弧中心点の軸中心Oに対する円弧角を意味する。
【0022】
一方、雄軸1の外周面の隣合う軸方向溝3の配置角度パターンは、
∠AOB=∠COD=∠EOF=58°
∠BOC=∠DOE=∠FOA=62°
である。但し、∠AOB等は雄軸1の軸方向溝3断面形状の各円弧中心点の軸中心Oに対する円弧角を意味する。このように、雄軸1の隣合う軸方向溝3の配置角度パターンは異なっており、62°を大、58°を小とすると、小→大→小→大→小→大、となっている。
【0023】
そして、雌軸2の内周面の内径は、図3にも示すように、球状体7の転動中心を通過するボールピッチ円10(一点鎖線で示す)径よりも大きい部分と、これより小さい部分aとが、軸方向溝5を挟んで交互に形成したパターンが連続した構成とされている。
【0024】
同様に、雄軸1の外周面の外径は、図4にも示すように、雌軸2の内径の大小に応じて、球状体7のボールピッチ円10径よりも大きい部分bと、これより小さい部分とが、軸方向溝3を挟んで交互に形成したパターンが連続した構成とされている。
【0025】
このように、雌軸2の最小内径aはボールピッチ円10より小さく、雄軸1の最大外径bはボールピッチ円10より大きく設定されている。即ち、雄軸1の最大外径bは雌軸2の最小内径aよりも大きくなっている。
【0026】
雌軸2の内径のボールピッチ円径10よりも大きい部分に、雄軸1の隣合う軸方向溝3の配置角度が大で、その外径がボールピッチ円径10よりも大きい部分bが対向し、雌軸2の内径のボールピッチ円径10よりも小さい部分aに、雄軸1の隣合う軸方向溝3の配置角度が小で、その外径がボールピッチ円径10よりも小さい部分が対向している。
【0027】
上記構成において、トルク非伝達時(摺動時)には、図1に示すように、雄軸1側の軸方向溝3と雌軸2側の軸方向溝5とは、異なった配置角度パターンを有すると共に、雄軸1の最大外径bを雌軸2の最小内径aよりも大きく設定しているるので、球状体7に重ねて示した矢印方向に球状体7と軸方向溝3,5が押し合って互いに弾性変形しているため、雄軸1と雌軸2の間の回転方向のガタつきを確実に防止することができる。それと共に、ガタつきのない安定した摺動荷重で雄軸1と雌軸2とを軸方向に摺動することができる。
【0028】
一方、トルク伝達時には、雄軸1と雌軸2の隣合う軸方向溝3,5の配置角度パターンは異なると共に、雄軸1の最大外径bを雌軸2の最小内径aよりも大きく設定しているので、球状体7を周方向に拘束できるようになっている。したがって、雄軸1と雌軸2の間の回転方向のガタつきを確実に防止して、高剛性の状態でトルクを伝達することができる。
【0029】
本実施形態のにおいては、雄軸1の隣合う軸方向溝3の配置角度パターンが異なっているのに加えて、特に、雄軸1の最大外径bをボールピッチ円10より大きく、雌軸2の最小内径をボールピッチ円10より小さく設定している。
【0030】
本実施形態の構成では、図1に示すように、球状体7と軸方向溝3,5の接触力を示す矢印が円周方向(ボールピッチ円10方向)と略一致するようになる。これは、雄軸1の軸方向溝3の、ボールピッチ円10径よりも大きい部分側の内縁部3aと、この溝3に対向する雌軸2の軸方向溝5の、ボールピッチ円10径よりも小さい部分側の内縁部5aとによって球状体7が円周方向に拘束されるためである。
【0031】
この作用により、本実施形態では、雄軸1と雌軸2の間の回転方向の剛性を向上させることができ、より高剛性の状態でトルクを伝達することができる。
【0032】
次に、第2の実施形態について図6〜図8を参照して説明する。
図6は第2の実施形態を示す車両ステアリング用伸縮軸の径方向断面図、図7は図6の雌軸を示す径方向断面図、図8は図6の雄軸を示す径方向断面図である。
【0033】
この実施形態は上記第1の実施形態と略同様であって、同一部材には同一番号を付しており、重複する説明は省略する。異なっているのは、雌軸2の軸方向溝BとC、DとE、FとAについては、それぞれの溝5に挟まれた部分の内径と、溝底の最大内径の大きさを一致させている点である。同様に、雄軸1の軸方向溝AとB、CとD、EとFについては、それぞれの溝3に挟まれた部分の外径と、溝底の最小外径の大きさを一致させている。
【0034】
そして、図7及び図8に示すように、第1の実施形態と同様に、雌軸2の最小内径aはボールピッチ円10より小さく、雄軸1の最大外径bはボールピッチ円10より大きくなっている。即ち、雄軸1の最大外径bは雌軸2の最小内径aよりも大きくなっている。
【0035】
この構成においても、雄軸1の軸方向溝3の、ボールピッチ円10径よりも大きい部分側の内縁部3bと、この溝3に対向する雌軸2の軸方向溝5の、ボールピッチ円10径よりも小さい部分側の内縁部5bとによって球状体7が円周方向に拘束される。この作用により、本実施形態では、図1の第1の実施形態と同様、若しくはそれ以上に、雄軸1と雌軸2の間の回転方向の剛性を向上させることができ、より高剛性の状態でトルクを伝達することができる。
【0036】
尚、上記第1及び第2の実施形態では、雄軸1の外周面と雌軸2の内周面とにそれぞれ形成した複数対の軸方向溝3,5は、6列としたが、4列以上であって、偶数列であれば、他の構成にすることも可能である。
【0037】
また、上記第1及び第2の実施形態では、雄軸1の隣合う軸方向溝3の配置角度パターンが異なる、小→大→小→大→小→大とし、雌軸2の隣合う軸方向溝5の配置角度パターンは6つとも60°で同一としたが、この構成に限らず、雄軸1の隣合う軸方向溝3の配置角度パターンを同じく小→大→小→大・・・とするのに対し、この各配置角度に対応する雌軸2の隣合う軸方向溝5の配置角度を大→小→大→小→大→小とした構成、即ち、雄軸1の隣合う軸方向溝3の配置角度が小(又は大)に対向する雌軸2の隣合う軸方向溝5の配置角度を大(又は小)にすることもできる。
【0038】
この場合、雌軸2の隣合う軸方向溝3の配置角度が小で、その間の内径がボールピッチ円径10よりも大きい部分に、雄軸1の隣合う軸方向溝3の配置角度が大で、その間の外径がボールピッチ円径10よりも大きい部分bが対向する。そして、雌軸2の隣合う軸方向溝3の配置角度が大で、その間の内径がボールピッチ円径10よりも小さい部分aに、雄軸1の隣合う軸方向溝3の配置角度が小で、その間の外径がボールピッチ円径10よりも小さい部分が対向した構成となる。
【0039】
これにより、球状体7を周方向により確実に拘束できるようになるため、雄軸1と雌軸2の間の回転方向のガタつきを防止し、高剛性の状態でトルクを伝達する点でより効果的である。
【0040】
【発明の効果】
以上説明したように、この発明によれば、トルク伝達部材が円周方向に拘束される作用がより効果的に発揮され、雄軸と雌軸の回転方向の剛性を向上させることができる。
【0041】
したがって、高剛性の状態でトルクを伝達することができると共に、安定した摺動荷重を実現することができ、軸回転方向のガタつきも確実に防止することができる。しかも、耐久性に優れていて、低コストにて実現することができる。
また、雄軸と雌軸とトルク伝達部材のみにより軸回転方向に予圧を付与することができるので、弾性体等の予圧を付与する手段を省略することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す車両ステアリング用伸縮軸の径方向断面図である。
【図2】図1の車両ステアリング用伸縮軸を示す縦断面図である。
【図3】図1の雌軸を示す径方向断面図である。
【図4】図1の雄軸を示す径方向断面図である。
【図5】本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動車の操舵機構部の側面図である。
【図6】本発明の第2の実施形態を示す車両ステアリング用伸縮軸の径方向断面図である。
【図7】図6の雌軸を示す径方向断面図である。
【図8】図6の雄軸を示す径方向断面図である。
【符号の説明】
1 雄軸
2 雌軸
3 雄軸の軸方向溝
5 雌軸の軸方向溝
7 トルク伝達部材(球状体)
10 ボールピッチ円
11 止め輪
100 車体側メンバ
101 アッパブラケット
102 ロアブラケット
103 ステアリングコラム
104 ステアリングシャフト
105 ステアリングホイール
106 ユニバーサルジョイント
107 ロアステアリングシャフト部
108 操舵軸継手
109 ピニオンシャフト
110 フレーム
111 弾性体
112 ステアリングラック軸
113 ステアリングラック支持部材
120 アッパステアリングシャフト部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a telescopic shaft for a vehicle steering, which is incorporated in a steering shaft of a vehicle and in which a male shaft and a female shaft are non-rotatably and slidably fitted to each other.
[0002]
[Prior art]
Conventionally, telescopic shafts for vehicle steering in the steering mechanism of automobiles have the ability to absorb the axial displacement that occurs when the automobile travels and to prevent the displacement and vibration from being transmitted to the steering wheel. There is also a need for a function that adjusts the axial position of the steering wheel in order to obtain the optimal position for the driver to drive the car.
[0003]
Therefore, the telescopic shaft for vehicle steering is required to have a function of expanding and contracting in the axial direction. In any of the above cases, the telescopic shaft is required to reduce rattling. Under these circumstances, conventionally, the male shaft is coated with a nylon film and the sliding part is coated with grease to absorb or reduce metal noise and metal tapping noise, and to reduce the sliding resistance in the axial direction. , And the play of the shaft in the rotation direction has been reduced.
[0004]
However, as the abrasion of the nylon film progresses due to aging, play in the rotational direction increases. In particular, under the condition of being exposed to high noise in the engine room, the volume of the nylon film changes, the sliding resistance becomes extremely large, and the wear is remarkably accelerated, so that the rattling in the rotating direction is further increased. There was a problem.
[0005]
Therefore, in Patent Document 1, a torque transmitting member (for example, spherical) that is disposed between the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft and rolls when the male shaft and the female shaft move in the axial direction relative to each other. And an elastic body disposed radially adjacent to the torque transmitting member and applying a preload to the male shaft and the female shaft via the torque transmitting member. . With this configuration, a stable sliding load is realized, rattling is reliably prevented, and torque can be transmitted in a highly rigid state.
[0006]
[Patent Document 1]
German Patent DE 37 30 393 C2
[Problems to be solved by the invention]
However, the conventional telescopic shaft for vehicle steering has a problem that the number of parts increases and the cost increases because the elastic body is provided to apply a preload to the male shaft and the female shaft via the torque transmitting member. There was a point.
[0008]
In addition, if a leaf spring or the like is used for the elastic body in order to reliably prevent backlash in the rotating direction and achieve a high rigidity state, high stress is generated in the leaf spring, which is permanently deformed and causes torsional rigidity. However, there is a problem that the temperature is reduced.
[0009]
The present invention improves the disadvantages of the conventional example described above, can reliably prevent backlash in the rotating direction of the male shaft and the female shaft, can transmit torque in a highly rigid state, and has excellent durability. It is an object of the present invention to provide a low-cost telescopic shaft for vehicle steering.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a telescopic shaft for a vehicle steering in which a male shaft and a female shaft are fitted in a steering shaft of a vehicle such that the male shaft and the female shaft are non-rotatably and slidably fitted to each other, A torque transmitting member that rolls when the two shafts move relative to each other in the axial direction is disposed between a plurality of pairs of axial grooves formed on the inner surface of the female shaft and the inner circumferential surface of the female shaft, respectively. The outer diameter of the surface is configured such that a portion larger than a ball pitch circle diameter passing through the rolling center of the torque transmitting member and a portion smaller than this are formed alternately with the axial groove interposed therebetween. In addition, the inner diameter of the inner peripheral surface of the female shaft is larger or smaller than the ball pitch circle diameter according to the outer diameter of the male shaft. It is characterized by being formed alternately.
[0011]
With the above configuration, at the time of torque transmission, the surface (inner edge) of the axial groove of the male shaft on the side of the portion larger than the ball pitch circle diameter and the axial groove of the female shaft facing this groove Since the torque transmission member is constrained in the circumferential direction by the surface (inner edge) of the portion smaller than the ball pitch circle diameter, the rigidity in the rotational direction between the male shaft and the female shaft is improved, and high rigidity is achieved. In this state, torque can be transmitted, and rattling in the rotational direction between the male shaft and the female shaft can be prevented.
[0012]
In addition, since pressurization can be applied in the shaft rotation direction only by the male shaft, the female shaft, and the torque transmitting member, an elastic body for applying pressurization can be omitted.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a telescopic shaft for vehicle steering according to an embodiment of the present invention will be described with reference to the drawings.
[0014]
(Overall configuration of vehicle steering shaft)
FIG. 5 is a side view of a steering mechanism of an automobile to which the telescopic shaft for vehicle steering according to the embodiment of the present invention is applied.
[0015]
In FIG. 5, an upper steering shaft portion 120 (a steering column 103 and a swirling shaft 104 rotatably held by the steering column 103 are attached to a vehicle body side member 100 via an upper bracket 101 and a lower bracket 102). ), A steering wheel 105 mounted on the upper end of the steering shaft 104, a lower steering shaft portion 107 connected to a lower end of the steering shaft 104 via a universal joint 106, and a steering shaft joint 108 connected to the lower steering shaft portion 107. , A steering rack shaft 112 connected to the pinion shaft 109, and an elastic frame mounted on another frame 110 of the vehicle body by supporting the steering rack shaft 112. Steering mechanism from a fixed steering rack support member 113 via 111 is formed.
[0016]
Here, the upper steering shaft portion 120 and the lower steering shaft portion 107 use the telescopic shaft for vehicle steering (hereinafter referred to as the telescopic shaft) according to the embodiment of the present invention. The lower steering shaft portion 107 is formed by fitting a male shaft and a female shaft. The lower steering shaft portion 107 absorbs an axial displacement generated when a vehicle travels, and is provided with a steering wheel. A performance that does not transmit the displacement or vibration on the surface 105 is required. In such a performance, the vehicle body has a sub-frame structure, and the member 100 for fixing the upper part of the steering mechanism and the frame 110 on which the steering rack support member 113 is fixed are separate bodies. This is required in the case of a structure fastened and fixed to the frame 110 via an elastic body 111 such as rubber. Further, as another case, when fastening the steering shaft joint 108 to the pinion shaft 109, the operator may need to first contract the telescopic shaft and then fit and fasten to the pinion shaft 109 so that the telescopic function is required. . Further, the upper steering shaft portion 120 at the upper part of the steering mechanism is also one in which a male shaft and a female shaft are fitted. However, such an upper steering shaft portion 120 is used for driving a car by a driver. In order to obtain the optimal position, a function of moving the position of the steering wheel 105 in the axial direction and adjusting the position is required, so that a function of expanding and contracting in the axial direction is required. In all the above cases, the telescopic shaft is required to reduce rattling noise of the fitting portion, reduce rattling on the steering wheel 105, and reduce sliding resistance when sliding in the axial direction. Required.
[0017]
(1st Embodiment)
FIG. 1 is a radial cross-sectional view of a vehicle steering telescopic shaft according to a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the vehicle steering telescopic shaft of FIG. 1, and FIG. 3 is a female shaft of FIG. FIG. 4 is a radial sectional view showing the male shaft of FIG.
[0018]
First, a first embodiment will be described with reference to FIGS. As shown in FIG. 2, the telescopic shaft for vehicle steering is composed of a male shaft 1 and a female shaft 2 which are non-rotatably and slidably fitted to each other.
[0019]
As shown in FIG. 1, six axial grooves 3 are formed on the outer peripheral surface of the male shaft 1 so as to be parallel to each other in the axial direction. Six axial grooves 5 are formed on the inner peripheral surface of the female shaft 2 at positions facing these axial grooves 3 so as to be parallel to each other in the axial direction. Between these six pairs of axial grooves 3, 5, spherical bodies 7, which are a plurality of torque transmitting members that roll when the two shafts move relative to each other in the axial direction, are interposed. Further, as shown in FIG. 2, these spherical bodies 7 are prevented from coming off the axial grooves 3 and 5 by a retaining ring 11 provided at the end of the male shaft 1.
[0020]
The diameter of the spherical body 7 is designed so that an appropriate pressurization is generated, and in order to improve the assembling property, the effective support of the central portion is set in the length direction of the axial grooves 3 and 5 at the bottom of the groove. A curved portion that is gently curved outward is formed at the groove end excluding the portion. In this embodiment, the spherical body 7 is used as the torque transmitting member, but the present invention is not limited to this, and a roller may be used.
[0021]
As shown in FIG. 1, assuming that six pairs of axial grooves 3, 5 are A, B, C, D, E, F, and the center of the male shaft 1 is O, the inner circumference of the female shaft 2 is The arrangement angle pattern of the axial groove 5 adjacent to the surface is
∠AOB = ∠BOC = ∠COD = ∠DOE = ∠EOF = ∠FOA = 60 °
It is. However, ∠AOB or the like means an arc angle with respect to the axis O of each arc center point of the cross-sectional shape of the axial groove 5 of the female shaft 2.
[0022]
On the other hand, the arrangement angle pattern of the axial grooves 3 adjacent to the outer peripheral surface of the male shaft 1 is as follows.
∠AOB = ∠COD = ∠EOF = 58 °
∠BOC = ∠DOE = ∠FOA = 62 °
It is. However, ∠AOB or the like means an arc angle with respect to the axis O of each arc center point of the cross-sectional shape of the axial groove 3 of the male shaft 1. As described above, the arrangement angle patterns of the axial grooves 3 adjacent to the male shaft 1 are different, and when 62 ° is large and 58 ° is small, small → large → small → large → small → large. I have.
[0023]
As shown in FIG. 3, the inner diameter of the inner peripheral surface of the female shaft 2 is larger than the diameter of a ball pitch circle 10 (indicated by a dashed line) passing through the rolling center of the spherical body 7, and The small portion a has a configuration in which a pattern formed alternately with the axial groove 5 interposed therebetween is continuous.
[0024]
Similarly, the outer diameter of the outer peripheral surface of the male shaft 1 is, as shown in FIG. 4, a portion b larger than the ball pitch circle 10 diameter of the spherical body 7 in accordance with the inner diameter of the female shaft 2. The smaller portion has a configuration in which a pattern formed alternately with the axial groove 3 interposed therebetween is continuous.
[0025]
As described above, the minimum inner diameter a of the female shaft 2 is set smaller than the ball pitch circle 10, and the maximum outer diameter b of the male shaft 1 is set larger than the ball pitch circle 10. That is, the maximum outer diameter b of the male shaft 1 is larger than the minimum inner diameter a of the female shaft 2.
[0026]
A portion b of the inner diameter of the female shaft 2 which is larger than the ball pitch circle diameter 10 is opposed to a portion b in which the adjacent axial groove 3 of the male shaft 1 is disposed at a large angle and the outer diameter of which is larger than the ball pitch circle diameter 10. In the portion a of the inner diameter of the female shaft 2 smaller than the ball pitch circle diameter 10, the arrangement angle of the adjacent axial groove 3 of the male shaft 1 is small, and the outer diameter thereof is smaller than the ball pitch circle diameter 10. Are facing each other.
[0027]
In the above configuration, when torque is not transmitted (sliding), as shown in FIG. 1, the axial groove 3 on the male shaft 1 and the axial groove 5 on the female shaft 2 have different arrangement angle patterns. And the maximum outer diameter b of the male shaft 1 is set to be larger than the minimum inner diameter a of the female shaft 2, so that the spherical body 7 and the axial groove 3, 5 are pressed against each other and are elastically deformed, so that rattling in the rotational direction between the male shaft 1 and the female shaft 2 can be reliably prevented. At the same time, the male shaft 1 and the female shaft 2 can slide in the axial direction with a stable sliding load without rattling.
[0028]
On the other hand, when transmitting torque, the arrangement angle patterns of the adjacent axial grooves 3 and 5 of the male shaft 1 and the female shaft 2 are different, and the maximum outer diameter b of the male shaft 1 is set larger than the minimum inner diameter a of the female shaft 2. As a result, the spherical body 7 can be restrained in the circumferential direction. Therefore, it is possible to reliably prevent rattling in the rotational direction between the male shaft 1 and the female shaft 2 and transmit torque in a highly rigid state.
[0029]
In the present embodiment, in addition to the difference in the arrangement angle pattern of the axial grooves 3 adjacent to the male shaft 1, in particular, the maximum outer diameter b of the male shaft 1 is larger than the ball pitch circle 10, 2 is smaller than the ball pitch circle 10.
[0030]
In the configuration of the present embodiment, as shown in FIG. 1, the arrow indicating the contact force between the spherical body 7 and the axial grooves 3 and 5 substantially coincides with the circumferential direction (the direction of the ball pitch circle 10). This is because the inner groove 3a of the axial groove 3 of the male shaft 1 on the side larger than the diameter of the ball pitch circle 10 and the diameter of the ball pitch circle 10 of the axial groove 5 of the female shaft 2 opposed to the groove 3 are formed. This is because the spherical body 7 is constrained in the circumferential direction by the inner edge portion 5a on the smaller side.
[0031]
By this effect, in the present embodiment, the rigidity in the rotational direction between the male shaft 1 and the female shaft 2 can be improved, and the torque can be transmitted with a higher rigidity.
[0032]
Next, a second embodiment will be described with reference to FIGS.
6 is a radial cross-sectional view of a telescopic shaft for vehicle steering showing a second embodiment, FIG. 7 is a radial cross-sectional view showing a female shaft of FIG. 6, and FIG. 8 is a radial cross-sectional view showing a male shaft of FIG. It is.
[0033]
This embodiment is substantially the same as the first embodiment, and the same members are denoted by the same reference numerals and overlapping description will be omitted. What is different is that for the axial grooves B and C, D and E, and F and A of the female shaft 2, the inner diameter of the portion sandwiched between the respective grooves 5 and the maximum inner diameter of the groove bottom coincide. The point is Similarly, for the axial grooves A and B, C and D, and E and F of the male shaft 1, the outer diameter of the portion sandwiched between the respective grooves 3 and the minimum outer diameter of the groove bottom are made to match. ing.
[0034]
7 and 8, the minimum inner diameter a of the female shaft 2 is smaller than the ball pitch circle 10 and the maximum outer diameter b of the male shaft 1 is smaller than the ball pitch circle 10, as in the first embodiment. It is getting bigger. That is, the maximum outer diameter b of the male shaft 1 is larger than the minimum inner diameter a of the female shaft 2.
[0035]
Also in this configuration, the ball pitch circle of the inner groove 3b of the axial groove 3 of the male shaft 1 on the side larger than the ball pitch circle 10 diameter and the axial groove 5 of the female shaft 2 opposed to the groove 3 The spherical body 7 is constrained in the circumferential direction by the inner edge portion 5b on the side of the portion smaller than 10 diameters. By this operation, in the present embodiment, the rigidity in the rotational direction between the male shaft 1 and the female shaft 2 can be improved in the same manner as or more than the first embodiment in FIG. The torque can be transmitted in the state.
[0036]
In the first and second embodiments, a plurality of pairs of axial grooves 3 and 5 formed on the outer peripheral surface of the male shaft 1 and the inner peripheral surface of the female shaft 2 are formed in six rows. Other configurations are possible as long as the number of rows is equal to or greater than the number of rows and the number of rows is even.
[0037]
Further, in the first and second embodiments, the arrangement angle patterns of the axial grooves 3 adjacent to the male shaft 1 are different, small → large → small → large → small → large. Although the arrangement angle pattern of the direction grooves 5 is the same at 60 ° for all six, the arrangement angle pattern of the adjacent axial grooves 3 of the male shaft 1 is not limited to this configuration, but is also small → large → small → large ... However, the arrangement angle of the axial groove 5 adjacent to the female shaft 2 corresponding to each arrangement angle is large → small → large → small → large → small, that is, adjacent to the male shaft 1. The arrangement angle of the adjacent axial grooves 5 of the female shaft 2 that opposes the small (or large) arrangement angle of the corresponding axial groove 3 can be made large (or small).
[0038]
In this case, the arrangement angle of the adjacent axial groove 3 of the female shaft 2 is small, and the arrangement angle of the adjacent axial groove 3 of the male shaft 1 is large at the portion where the inner diameter between them is larger than the ball pitch circle diameter 10. The portion b in which the outside diameter is larger than the ball pitch circle diameter 10 is opposed. The arrangement angle of the adjacent axial grooves 3 of the female shaft 2 is large, and the arrangement angle of the adjacent axial grooves 3 of the male shaft 1 is small in the portion a where the inner diameter between them is smaller than the ball pitch circle diameter 10. Thus, a portion in which the outer diameter is smaller than the ball pitch circle diameter 10 faces each other.
[0039]
As a result, the spherical body 7 can be more securely restrained in the circumferential direction, so that rattling in the rotational direction between the male shaft 1 and the female shaft 2 is prevented, and torque is transmitted in a highly rigid state. It is effective.
[0040]
【The invention's effect】
As described above, according to the present invention, the function of restricting the torque transmitting member in the circumferential direction is more effectively exhibited, and the rigidity of the male shaft and the female shaft in the rotational direction can be improved.
[0041]
Therefore, torque can be transmitted in a state of high rigidity, a stable sliding load can be realized, and rattling in the shaft rotation direction can be reliably prevented. Moreover, it has excellent durability and can be realized at low cost.
In addition, since the preload can be applied in the shaft rotation direction only by the male shaft, the female shaft, and the torque transmitting member, a means for applying a preload such as an elastic body can be omitted.
[Brief description of the drawings]
FIG. 1 is a radial cross-sectional view of a telescopic shaft for vehicle steering according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a telescopic shaft for vehicle steering in FIG.
FIG. 3 is a radial sectional view showing the female shaft of FIG. 1;
FIG. 4 is a radial sectional view showing the male shaft of FIG. 1;
FIG. 5 is a side view of a steering mechanism of an automobile to which the telescopic shaft for vehicle steering according to the embodiment of the present invention is applied.
FIG. 6 is a radial sectional view of a vehicle steering telescopic shaft according to a second embodiment of the present invention.
FIG. 7 is a radial sectional view showing the female shaft of FIG. 6;
FIG. 8 is a radial sectional view showing the male shaft of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Male shaft 2 Female shaft 3 Male shaft axial groove 5 Female shaft axial groove 7 Torque transmitting member (spherical body)
Reference Signs List 10 Ball pitch circle 11 Stop ring 100 Body side member 101 Upper bracket 102 Lower bracket 103 Steering column 104 Steering shaft 105 Steering wheel 106 Universal joint 107 Lower steering shaft part 108 Steering shaft joint 109 Pinion shaft 110 Frame 111 Elastic body 112 Steering rack shaft 113 Steering rack support member 120 Upper steering shaft

Claims (2)

車両のステアリングシャフトに組み込み、雄軸と雌軸を相互に回転不能に且つ摺動自在に嵌合した車両のステアリング用伸縮軸において、
前記雄軸の外周面と前記雌軸の内周面とにそれぞれ形成した複数対の軸方向溝の間に、前記両軸の軸方向相対移動の際に転動するトルク伝達部材を配置し、
前記雄軸の外周面の外径は、前記トルク伝達部材の転動中心を通過するボールピッチ円径よりも大きい部分と、これより小さい部分とが、前記軸方向溝を挟んで交互に形成された構成であり、且つ、前記雌軸の内周面の内径は、前記雄軸の外径の大小に応じて、前記ボールピッチ円径よりも大きい部分と、これより小さい部分とが、前記軸方向溝を挟んで交互に形成された構成であることを特徴とする車両のステアリング用伸縮軸。
In a telescopic shaft for steering of a vehicle, in which a male shaft and a female shaft are fitted to each other so as to be non-rotatably and slidably, incorporated into a steering shaft of the vehicle,
Between a plurality of pairs of axial grooves formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft, a torque transmitting member that rolls when the two shafts move relative to each other in the axial direction is arranged.
The outer diameter of the outer peripheral surface of the male shaft is larger than a ball pitch circle diameter passing through the rolling center of the torque transmitting member and smaller than the ball pitch circle diameter, and are alternately formed with the axial groove interposed therebetween. The inner diameter of the inner peripheral surface of the female shaft is larger or smaller than the ball pitch circle diameter according to the outer diameter of the male shaft. A steering telescopic shaft for a vehicle, wherein the telescopic shaft is formed alternately with a direction groove interposed therebetween.
前記雄軸の外周面と前記雌軸の内周面とにそれぞれ形成した複数対の軸方向溝は、4列以上であって、且つ偶数列であることを特徴とする請求項1記載の車両のステアリング用伸縮軸。2. The vehicle according to claim 1, wherein the plurality of pairs of axial grooves formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft are four or more rows and are even rows. 3. Telescopic shaft for steering.
JP2003106776A 2003-04-10 2003-04-10 Telescopic shaft for vehicle steering Pending JP2004306919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106776A JP2004306919A (en) 2003-04-10 2003-04-10 Telescopic shaft for vehicle steering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106776A JP2004306919A (en) 2003-04-10 2003-04-10 Telescopic shaft for vehicle steering

Publications (2)

Publication Number Publication Date
JP2004306919A true JP2004306919A (en) 2004-11-04
JP2004306919A5 JP2004306919A5 (en) 2006-04-27

Family

ID=33468859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106776A Pending JP2004306919A (en) 2003-04-10 2003-04-10 Telescopic shaft for vehicle steering

Country Status (1)

Country Link
JP (1) JP2004306919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309518A (en) * 2006-05-17 2007-11-29 Punch Powertrain Nv Continuously variable transmission of automobile
JP2010065793A (en) * 2008-09-12 2010-03-25 Nsk Ltd Retractable rotation transmission shaft
CN111247049A (en) * 2017-10-19 2020-06-05 蒂森克虏伯普利斯坦股份公司 Steering shaft for a motor vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309518A (en) * 2006-05-17 2007-11-29 Punch Powertrain Nv Continuously variable transmission of automobile
JP2010065793A (en) * 2008-09-12 2010-03-25 Nsk Ltd Retractable rotation transmission shaft
CN111247049A (en) * 2017-10-19 2020-06-05 蒂森克虏伯普利斯坦股份公司 Steering shaft for a motor vehicle

Similar Documents

Publication Publication Date Title
JP4770193B2 (en) Telescopic shaft for vehicle steering
JP4190905B2 (en) Vehicle steering device
US7416216B2 (en) Telescopic shaft for vehicle steering
JP4258470B2 (en) Telescopic shaft for vehicle steering and telescopic shaft for vehicle steering with cardan shaft joint
JP4196642B2 (en) Telescopic shaft for vehicle steering
JP4254194B2 (en) Telescopic shaft for vehicle steering
US20090143151A1 (en) Slip joint of steering apparatus for vehicle
JP2004122938A (en) Telescopic shaft for vehicle steering
WO2007013446A1 (en) Extensible shaft and steering device for vehicle
JP4586983B2 (en) Telescopic shaft for vehicle steering
JP4321503B2 (en) Suspension bearing
JP2004306919A (en) Telescopic shaft for vehicle steering
KR101034099B1 (en) Device for supporting worm gear shaft of motor driven power steering system
JP5347881B2 (en) Telescopic shaft for vehicle steering
JP2004218790A (en) Bearing device for steering column
JP2005306216A (en) Steering system for vehicle
JP2011073543A5 (en)
KR100554001B1 (en) Ball bearing assembly for absorbing impact energy and vibration
JP2007239878A (en) Drive shaft boot
JP2004168229A (en) Extensible shaft for vehicle steering
JP2005299779A5 (en)
JP2010242780A (en) Drive shaft
JP2022121843A (en) Intermediate shaft and steering device
JP2009293701A (en) Tripod type constant velocity universal joint
JP2004122833A (en) Telescopic shaft for vehicle steering

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125