JP2004305907A - Cyclone type separation apparatus - Google Patents

Cyclone type separation apparatus Download PDF

Info

Publication number
JP2004305907A
JP2004305907A JP2003102810A JP2003102810A JP2004305907A JP 2004305907 A JP2004305907 A JP 2004305907A JP 2003102810 A JP2003102810 A JP 2003102810A JP 2003102810 A JP2003102810 A JP 2003102810A JP 2004305907 A JP2004305907 A JP 2004305907A
Authority
JP
Japan
Prior art keywords
cyclone
inner diameter
type separation
conical portion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102810A
Other languages
Japanese (ja)
Inventor
Masazumi Hirasawa
正澄 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rokaki Co Ltd
Original Assignee
Nippon Rokaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rokaki Co Ltd filed Critical Nippon Rokaki Co Ltd
Priority to JP2003102810A priority Critical patent/JP2004305907A/en
Publication of JP2004305907A publication Critical patent/JP2004305907A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the increase in pressure loss of fluid in improving the separation efficiency of dust from the fluid. <P>SOLUTION: In a part of a conical part 4 having a decreasing inner diameter toward a lower part extended downward from a cylindrical part 3, a contracted part 8 where the inner diameter of the conical part 4 is abruptly reduced than in other conical part is provided. Thus, while keeping the inner diameter of the cylindrical part 3 large, the inner diameter of the conical part 4 can be reduced without increasing the length of the conical part 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サイクロン型分離装置に関する。
【0002】
【従来の技術】
従来、例えばダストが混入された流体から、そのダストを遠心力を利用して分離させるサイクロン型分離装置がある(例えば、特許文献1参照)。このようなサイクロン型分離装置を図4に示す。
【0003】
図4に示すように、サイクロン型分離装置101は、円筒部102と、この円筒部102の下端から下方に延出した円錐部103とから構成されたサイクロン本体104を備えている。円筒部102の側部から内部に導入管105が連通し、円筒部102の上部には上部排出管106が設けられている。円錐部103の下端は、下部排出管107に連通している。
【0004】
このような構造のサイクロン型分離装置101では、導入管105より円筒部102の内部に円筒部102の内周面に沿って圧入された流体がサイクロン本体104の内周面に沿った旋回流108を発生し、この旋回流108は重力により下降する。そして、円錐部103の下部まで達した旋回流108は、下部排出管107から装置の外部へ排出される下降旋回流109と、円錐部103及び円筒部102の中心部を旋回しつつ上昇して上部排出管106から排出される上昇旋回流110とに分かれる。流体よりも比重の重いダストは、遠心力によりサイクロン本体104の内周面に向かって移動し、サイクロン本体104の内周面に沿って下降する下降旋回流109の流れに乗り、一部の流体とともに下部排出管107から外部に排出される。一方、大部分の流体はダストが分離された状態で上昇旋回流110により上部排出管106から排出される。
【0005】
このようなサイクロン型分離装置101では、流体からのダストの分離効率はダストに作用する遠心力により決定される。つまり、ダストに作用させる遠心力を大きくすることにより、流体からのダストの分離効率を上げることができる。
【0006】
ここで、物質の質量をm、物質の回転速度をv、物質の回転半径をrとすると、遠心力Fは、F=m・v/rと表される。これにより、ダストに作用する遠心力はサイクロン本体104の内径と流体の流速とにより決定されることが分かる。遠心力を大きくするためには、次の方法が取られる。
▲1▼サイクロン本体104全体の内径を小さくする。
▲2▼導入管105の内径を小さくすることによりサイクロン本体104に流入する流体の流速を上げる。
▲3▼円錐部103を上下方向に長くして、円錐部103の内径の小さい部分を増やして流速を上げる。
【0007】
【特許文献1】
特開平2002−177822号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記▲1▼、▲2▼の方法において、サイクロン型分離装置101の流体の処理流量をサイクロン本体104の内径や導入管105の内径を小さくする前のサイクロン型分離装置101の流体の処理流量と同等に保つ場合には、流体の圧力損失が増大してしまい、流体をサイクロン型分離装置101に送り出す図示しないポンプや図示しない配管などにかかる負荷が大きくなってしまうという問題がある。
【0009】
また、上記▲3▼の方法では、円錐部103が長大となってしまい、サイクロン型分離装置101が大型化してしまうという問題がある。
【0010】
本発明の目的は、流体からのダストの分離効率の向上を図る際の流体の圧力損失の増加を抑えることである。
【0011】
本発明の目的は、流体からのダストの分離効率の向上を図る際にサイクロン型分離装置が大型化することを防止することである。
【0012】
【課題を解決するための手段】
請求項1記載の発明のサイクロン型分離装置は、側方から内部に流体を導入させるための導入口が連通する円筒部と、前記円筒部から下方に延出して下方に向かうに従い内径が小さくなる円錐部と、前記円錐部の一部に設けられ、前記円錐部の他の部分よりも前記円錐部の内径を大きく絞る絞り部と、前記円筒部の上部に設けられ上方に開口した上部排出口と、前記円錐部の下端に設けられ下方に開口した下部排出口と、を備える。
【0013】
ここで、絞り部が「円錐部の他の部分よりも円錐部の内径を大きく絞る」とは、絞り部のうちの少なくとも一部分の下方向への内径の変化率が円錐部の他の部分の下方向への内径の変化率よりも大きいということである。
【0014】
また、絞り部は、請求項2に記載したように円錐部の円筒部に連なる位置に位置していても良いし、円錐部の円筒部に連ならない位置に位置していても良い。
【0015】
したがって、円筒部の内径を大径に維持しながら、円錐部の内径を円錐部の長さを長くすることなく小径にすることが可能となる。
【0016】
請求項2記載の発明は、請求項1記載のサイクロン型分離装置において、前記絞り部は、前記円錐部の前記円筒部に連なる位置に位置している。
【0017】
したがって、円筒部の内径を大径に維持しながら、円錐部の全内径を円錐部の長さを長くすることなく小径にすることが可能となる。
【0018】
請求項3記載の発明は、請求項1又は2記載のサイクロン型分離装置において、前記絞り部の傾斜は、曲線状である。
【0019】
したがって、絞り部での流体の圧力損失の増大を抑制することが可能となる。
【0020】
【発明の実施の形態】
本発明の一実施の形態を図1及び図2に基づいて説明する。ここで、図1は本実施の形態のサイクロン型分離装置を示す縦断側面図、図2はその平面図である。
【0021】
図1及び図2に示すように、サイクロン型分離装置1のサイクロン本体2は、円筒状であって上面が閉じられた円筒部3と、この円筒部3の下方から延出する円錐部4などから構成されている。このようなサイクロン本体2は、単一の円筒部材を絞り加工して円筒部3と円錐部4とを形成したものであっても良いし、円筒部3と円錐部4とが別部材であってそれらの部材を溶接などにより接合させたものであっても良い。
【0022】
円筒部3の側壁には、導入口として機能する導入管5が設けられている。この導入管5は図示しない配管を介して図示しないポンプに接続され、ポンプにより送り出された流体を円筒部3の内周面に沿うようにして円筒部3の内部に導入する。円筒部3の上壁3aの中央部には上方に開口した上部排出口として機能し円筒部3に対して同心状に配置された上部排出管6が設けられている。
【0023】
円錐部4は、下方に向かうに従い内径が小さくなるように形成されている。円錐部4の下端は、下方に開口した下部排出口として機能し円筒部3に対して同心状に配置された下部排出管7に連通している。
【0024】
円錐部4には、絞り部8が形成されている。この絞り部8は、円錐部4の他の部分よりも円錐部4の内径を大きく絞るように形成されており、絞り部8のうちの少なくとも一部分の下方向への内径の変化率は、円錐部4の他の部分の下方向への内径の変化率よりも大きい。絞り部8は、円錐部4の円筒部3に連なる位置に位置付けられている。絞り部8は、その傾斜が曲線状になるように形成されている。なお、絞り部8の傾斜としては、曲線状のものに限るものではなく、例えば、直線状であっても良い。円錐部4の絞り部8以外の部分の傾斜は直線状に形成されている。
【0025】
このような構成により、ダストが混入された流体を図示しない配管を介して図示しないポンプにより導入管5からサイクロン本体2に圧入すると、流体は、サイクロン本体2の内周面に沿った旋回流9を発生し、この旋回流9は重力により下降する。そして、円錐部4の下部まで達した旋回流9は、下部排出管7へ向かう下降旋回流10と、方向を反転しサイクロン本体2の中心部を旋回しながら上昇し上部排出管6へ向かう上昇旋回流11とに分かれる。流体よりも比重の重いダストは、遠心力によりサイクロン本体2の内周面に向かって移動し、下降旋回流10の流れに乗り、一部の流体とともに下部排出管7から外部に排出される。
一方、大部分の流体はダストが分離された状態で上昇旋回流11により上部排出管6から排出される。
【0026】
ここで、本実施の形態では、絞り部8で円錐部4の内径が大きく絞られているので、従来の円錐部の傾斜が全域で直線的なサイクロン型分離装置に比べて、円筒部3の内径を大径に維持しながら、円錐部4の内径を円錐部4の長さを長くすることなく小径にすることができる。これにより、大径に維持される円筒部3では円筒部3での圧力損失の増大を抑制することができ、小径の円錐部4では流体の流速を高速にして流体からのダストの分離効率を向上させることができる。しかも、円錐部4の内径の小径化は、円錐部4の長さを長くすることなく実現可能であるので、サイクロン型分離装置1の大型化を防止することができる。
【0027】
また、本実施の形態では、絞り部8が円錐部4の円筒部3に連なる位置に位置付けられていることにより、円筒部3の内径を大径に維持しながら、円錐部4の全内径を円錐部4の長さを長くすることなく小径にすることができるので、絞り部8が円錐部4の円筒部3に連なる位置以外に位置している場合よりも、流体からのダストの分離効率をさらに向上させることができる。
【0028】
また、本実施の形態では、絞り部8の傾斜が曲線状であることにより、絞り部8での流体の圧力損失の増大を抑制することができる。
【0029】
なお、本実施の形態では、絞り部8が円錐部4の円筒部3に連なる位置に位置付けられた例を説明したが、絞り部8の位置はこれに限るものではなく、例えば円錐部4の上下方向の中間部などの円錐部4の円筒部3に連ならない位置に位置していても良い。
【0030】
【実施例】
次に、本発明の実施例を図3に基づいて説明する。本実施例のサイクロン型分離装置1は、円筒部3の内径が100mm、導入管5の内径が16mmに設定されている。そして、このサイクロン型分離装置1を用いて、サイクロン型分離装置1に送り込まれる流体の流量を40l/minとし、流体の混入させたISO標準ダスト(A−4:平均粒内径27μm)の分離実験を行なった。
【0031】
このサイクロン型分離装置1と比較するために、図4に示した従来のサイクロン型分離装置101として以下の3種類のサイクロン型分離装置101を用意し、サイクロン型分離装置1と同条件、つまり、サイクロン型分離装置101に送り込まれる流体の流量及び流体に混入させたダストの量をサイクロン型分離装置1に対するものと同じとして、サイクロン型分離装置101に対するダストの分離実験を行なった。
▲1▼円筒部102の内径と導入管105の内径とが、本実施例の円筒部3の内径と導入管5の内径と同じであるサイクロン型分離装置101。
▲2▼円筒部102の内径が50mm、導入管105の内径が16mmに設定されたサイクロン型分離装置101。
▲3▼円筒部102の内径が50mm、導入管105の内径が8mmに設定されたサイクロン型分離装置101。
なお、これらのサイクロン型分離装置101の上記以外の部位の寸法は、サイクロン型分離装置1の対応する部位と同寸法である。
【0032】
これらのダスト分離実験での、各サイクロン型分離装置1,101におけるダスト分離効率、圧力損失を図3に示す。図3に示すように、本実施例のサイクロン型分離装置1は、従来のサイクロン型分離装置101よりも圧力損失の増加を抑えて、流体からのダストの分離効率を向上させることができた。また、装置寸法が同等の従来のサイクロン型分離装置101に比べて流体からのダストの分離効率を向上させることができた。
【0033】
【発明の効果】
請求項1記載の発明のサイクロン型分離装置によれば、側方から内部に流体を導入させるための導入口が連通する円筒部と、前記円筒部から下方に延出して下方に向かうに従い内径が小さくなる円錐部と、前記円錐部の一部に設けられ、前記円錐部の他の部分よりも前記円錐部の内径を大きく絞る絞り部と、前記円筒部の上部に設けられ上方に開口した上部排出口と、前記円錐部の下端に設けられ下方に開口した下部排出口と、を備えることにより、円筒部の内径を大径に維持しながら、円錐部の内径を円錐部の長さを長くすることなく小径にすることができる。これにより、大径に維持される円筒部では円筒部での圧力損失の増大を抑制することができ、小径の円錐部では流体の流速を高速にして流体からのダストの分離効率を向上させることができる。しかも、円錐部の内径の小径化は、円錐部の長さを長くすることなく実現可能であるので、サイクロン型分離装置の大型化を防止することができる。
【0034】
請求項2記載の発明によれば、請求項1記載のサイクロン型分離装置において、前記絞り部は、前記円錐部の前記円筒部に連なる位置に位置していることにより、円筒部の内径を大径に維持しながら、円錐部の全内径を円錐部の長さを長くすることなく小径にすることができるので、絞り部が円錐部の円筒部に連なる位置以外に位置している場合よりも、流体からのダストの分離効率をさらに向上させることができる。
【0035】
請求項3記載の発明によれば、請求項1又は2記載のサイクロン型分離装置において、前記絞り部の傾斜は、曲線状であることにより、絞り部での流体の圧力損失の増大を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のサイクロン型分離装置を示す縦断側面図である。
【図2】その平面図である。
【図3】本発明の実施例のサイクロン型分離装置と、従来のサイクロン型分離装置とのダスト分離効率比較及び圧力損失比較を示す説明図である。
【図4】従来のサイクロン型分離装置を示す縦断側面図である。
【符号の説明】
1 サイクロン型分離装置
3 円筒部
4 円錐部
5 導入管(導入口)
6 上部排出管(上部排出口)
7 下部排出管(下部排出口)
8 絞り部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cyclone type separation device.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there is a cyclone-type separation device that separates dust from a fluid mixed with the dust using centrifugal force (for example, see Patent Document 1). FIG. 4 shows such a cyclone type separation apparatus.
[0003]
As shown in FIG. 4, the cyclone-type separation device 101 includes a cyclone main body 104 including a cylindrical portion 102 and a conical portion 103 extending downward from a lower end of the cylindrical portion 102. An introduction pipe 105 communicates from the side of the cylindrical part 102 to the inside, and an upper discharge pipe 106 is provided above the cylindrical part 102. The lower end of the conical portion 103 communicates with the lower discharge pipe 107.
[0004]
In the cyclone-type separation device 101 having such a structure, the fluid press-fitted into the inside of the cylindrical portion 102 from the introduction pipe 105 along the inner circumferential surface of the cylindrical portion 102 causes the swirling flow 108 along the inner circumferential surface of the cyclone body 104. Is generated, and the swirling flow 108 descends due to gravity. The swirling flow 108 reaching the lower portion of the conical portion 103 rises while swirling the descending swirling flow 109 discharged from the lower discharge pipe 107 to the outside of the apparatus and the central portions of the conical portion 103 and the cylindrical portion 102. It is divided into an upward swirling flow 110 discharged from the upper discharge pipe 106. The dust having a specific gravity higher than that of the fluid moves toward the inner peripheral surface of the cyclone body 104 by centrifugal force and rides on the flow of the downward swirling flow 109 descending along the inner peripheral surface of the cyclone body 104, and a part of the fluid. At the same time, it is discharged to the outside from the lower discharge pipe 107. On the other hand, most of the fluid is discharged from the upper discharge pipe 106 by the upward swirling flow 110 with the dust separated.
[0005]
In such a cyclone type separation apparatus 101, the efficiency of separating dust from the fluid is determined by the centrifugal force acting on the dust. That is, by increasing the centrifugal force acting on the dust, the efficiency of separating the dust from the fluid can be increased.
[0006]
Here, assuming that the mass of the substance is m, the rotational speed of the substance is v, and the radius of rotation of the substance is r, the centrifugal force F is expressed as F = m · v 2 / r. This indicates that the centrifugal force acting on the dust is determined by the inner diameter of the cyclone body 104 and the flow velocity of the fluid. The following method is used to increase the centrifugal force.
{Circle around (1)} The inner diameter of the entire cyclone body 104 is reduced.
(2) The flow velocity of the fluid flowing into the cyclone body 104 is increased by reducing the inner diameter of the introduction pipe 105.
{Circle around (3)} The conical portion 103 is lengthened in the vertical direction, and the portion of the conical portion 103 having a small inner diameter is increased to increase the flow velocity.
[0007]
[Patent Document 1]
JP-A-2002-177822 [0008]
[Problems to be solved by the invention]
However, in the above methods (1) and (2), the processing of the fluid in the cyclone-type separation device 101 before reducing the processing flow rate of the fluid in the cyclone-type separation device 101 to the inner diameter of the cyclone body 104 or the inner diameter of the introduction pipe 105 is reduced. When the flow rate is kept equal to the flow rate, the pressure loss of the fluid increases, and there is a problem that the load applied to a pump (not shown) or a pipe (not shown) for sending the fluid to the cyclone-type separation device 101 increases.
[0009]
Further, in the above method (3), there is a problem that the conical portion 103 becomes long and the cyclone-type separation device 101 becomes large.
[0010]
An object of the present invention is to suppress an increase in pressure loss of a fluid when improving the efficiency of separating dust from a fluid.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to prevent a cyclone-type separation device from increasing in size when improving the efficiency of separating dust from a fluid.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a cyclone-type separation device, wherein a cylindrical portion communicates with an introduction port for introducing a fluid from the side into the inside, and the inner diameter extends downward from the cylindrical portion and decreases as going downward. A conical portion, a constriction portion provided in a part of the conical portion, for narrowing the inner diameter of the conical portion more than other portions of the conical portion, and an upper discharge port provided on an upper portion of the cylindrical portion and opened upward And a lower outlet provided at a lower end of the conical portion and opened downward.
[0013]
Here, the phrase “the throttle portion narrows the inner diameter of the conical portion larger than the other portion of the conical portion” means that the rate of change of the inner diameter of at least a part of the throttle portion in the downward direction is smaller than that of the other portion of the conical portion. That is, it is larger than the rate of change of the inner diameter in the downward direction.
[0014]
Further, the constricted portion may be located at a position continuous with the cylindrical portion of the conical portion as described in claim 2, or may be positioned at a position not connected to the cylindrical portion of the conical portion.
[0015]
Therefore, it is possible to reduce the inner diameter of the conical portion without increasing the length of the conical portion while maintaining the inner diameter of the cylindrical portion at a large diameter.
[0016]
According to a second aspect of the present invention, in the cyclone type separation apparatus according to the first aspect, the throttle portion is located at a position that is continuous with the cylindrical portion of the conical portion.
[0017]
Therefore, it is possible to reduce the entire inner diameter of the conical portion without increasing the length of the conical portion while maintaining the inner diameter of the cylindrical portion at a large diameter.
[0018]
According to a third aspect of the present invention, in the cyclone type separation apparatus according to the first or second aspect, the inclination of the throttle portion is curved.
[0019]
Therefore, it is possible to suppress an increase in pressure loss of the fluid in the throttle section.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a longitudinal sectional side view showing a cyclone type separation apparatus of the present embodiment, and FIG. 2 is a plan view thereof.
[0021]
As shown in FIGS. 1 and 2, the cyclone body 2 of the cyclone-type separation device 1 has a cylindrical portion 3 having a cylindrical shape and a closed upper surface, a conical portion 4 extending from below the cylindrical portion 3, and the like. It is composed of Such a cyclone body 2 may be formed by drawing a single cylindrical member to form a cylindrical portion 3 and a conical portion 4, or the cylindrical portion 3 and the conical portion 4 may be separate members. These members may be joined by welding or the like.
[0022]
An introduction pipe 5 functioning as an introduction port is provided on a side wall of the cylindrical portion 3. The introduction pipe 5 is connected to a pump (not shown) via a pipe (not shown), and introduces the fluid sent out by the pump into the inside of the cylindrical portion 3 along the inner peripheral surface of the cylindrical portion 3. At the center of the upper wall 3a of the cylindrical portion 3, there is provided an upper discharge pipe 6 which functions as an upper outlet opening upward and is arranged concentrically with the cylindrical portion 3.
[0023]
The conical portion 4 is formed such that the inner diameter decreases as it goes downward. The lower end of the conical part 4 functions as a lower discharge port opened downward and communicates with a lower discharge pipe 7 arranged concentrically with the cylindrical part 3.
[0024]
The conical portion 4 is formed with a throttle portion 8. The constricted portion 8 is formed so as to constrict the inner diameter of the conical portion 4 more than the other portions of the conical portion 4. The rate of change of the inner diameter of the other part of the part 4 in the downward direction is larger. The throttle unit 8 is positioned at a position that is continuous with the cylindrical unit 3 of the conical unit 4. The throttle section 8 is formed such that its inclination is curved. In addition, the inclination of the throttle unit 8 is not limited to a curved shape, and may be, for example, a straight shape. The slope of the portion of the conical portion 4 other than the throttle portion 8 is formed linearly.
[0025]
With such a configuration, when the fluid mixed with dust is pressed into the cyclone body 2 from the introduction pipe 5 by a pump (not shown) through a pipe (not shown), the fluid is swirled by a swirling flow 9 along the inner peripheral surface of the cyclone body 2. And the swirling flow 9 descends due to gravity. Then, the swirling flow 9 reaching the lower part of the conical portion 4 and the descending swirling flow 10 toward the lower discharge pipe 7, ascending while turning around the center of the cyclone body 2 and rising toward the upper discharge pipe 6. It is divided into a swirling flow 11. The dust having a higher specific gravity than the fluid moves toward the inner peripheral surface of the cyclone body 2 by centrifugal force, rides on the flow of the downward swirling flow 10, and is discharged to the outside from the lower discharge pipe 7 together with a part of the fluid.
On the other hand, most of the fluid is discharged from the upper discharge pipe 6 by the upward swirling flow 11 with the dust separated.
[0026]
Here, in the present embodiment, since the inner diameter of the conical portion 4 is greatly reduced by the constriction portion 8, the inclination of the conical portion is smaller than that of the conventional cyclone type separation device in which the inclination of the conical portion is linear over the entire area. The inner diameter of the conical portion 4 can be reduced without increasing the length of the conical portion 4 while maintaining the inner diameter at a large diameter. Thus, in the cylindrical portion 3 maintained at a large diameter, an increase in pressure loss at the cylindrical portion 3 can be suppressed, and at the small-diameter conical portion 4, the flow velocity of the fluid is increased to increase the efficiency of separating dust from the fluid. Can be improved. In addition, since the inner diameter of the conical portion 4 can be reduced without increasing the length of the conical portion 4, it is possible to prevent the cyclone-type separation device 1 from increasing in size.
[0027]
Further, in the present embodiment, since the constricted portion 8 is positioned at a position following the cylindrical portion 3 of the conical portion 4, the entire inner diameter of the conical portion 4 can be reduced while maintaining the inner diameter of the cylindrical portion 3 large. Since the diameter of the conical portion 4 can be reduced without increasing the length, the efficiency of separating dust from the fluid can be reduced as compared with the case where the throttle portion 8 is located at a position other than the position where the conical portion 4 is connected to the cylindrical portion 3. Can be further improved.
[0028]
Further, in the present embodiment, since the inclination of the throttle portion 8 is curved, an increase in pressure loss of the fluid in the throttle portion 8 can be suppressed.
[0029]
In the present embodiment, an example in which the constricted portion 8 is positioned at a position following the cylindrical portion 3 of the conical portion 4 has been described. However, the position of the constricted portion 8 is not limited to this. It may be located at a position not connected to the cylindrical portion 3 of the conical portion 4 such as an intermediate portion in the vertical direction.
[0030]
【Example】
Next, an embodiment of the present invention will be described with reference to FIG. In the cyclone type separation apparatus 1 of the present embodiment, the inner diameter of the cylindrical portion 3 is set to 100 mm, and the inner diameter of the introduction pipe 5 is set to 16 mm. Then, using this cyclone-type separation device 1, the flow rate of the fluid fed into the cyclone-type separation device 1 was set to 40 l / min, and the separation experiment of ISO standard dust (A-4: average particle diameter 27 μm) mixed with the fluid was performed. Was performed.
[0031]
For comparison with the cyclone-type separation device 1, the following three types of cyclone-type separation devices 101 were prepared as the conventional cyclone-type separation device 101 shown in FIG. A dust separation experiment was performed on the cyclone-type separator 101 with the flow rate of the fluid fed into the cyclone-type separator 101 and the amount of dust mixed into the fluid being the same as those for the cyclone-type separator 1.
{Circle around (1)} The cyclone-type separation device 101 in which the inner diameter of the cylindrical portion 102 and the inner diameter of the introduction tube 105 are the same as the inner diameter of the cylindrical portion 3 and the inner diameter of the introduction tube 5 in the present embodiment.
{Circle around (2)} The cyclone-type separation device 101 in which the inner diameter of the cylindrical portion 102 is set to 50 mm and the inner diameter of the introduction tube 105 is set to 16 mm.
{Circle around (3)} The cyclone-type separation device 101 in which the inner diameter of the cylindrical portion 102 is set to 50 mm and the inner diameter of the introduction tube 105 is set to 8 mm.
The dimensions of the other parts of the cyclone-type separation device 101 other than those described above are the same as the corresponding parts of the cyclone-type separation device 1.
[0032]
FIG. 3 shows the dust separation efficiency and pressure loss in each of the cyclone type separation devices 1 and 101 in these dust separation experiments. As shown in FIG. 3, the cyclone-type separation device 1 of the present embodiment was able to suppress the increase in pressure loss as compared with the conventional cyclone-type separation device 101 and improve the efficiency of separating dust from fluid. Further, the efficiency of separating dust from fluid could be improved as compared with the conventional cyclone-type separation device 101 having the same device size.
[0033]
【The invention's effect】
According to the cyclone-type separation device of the invention described in claim 1, the cylindrical portion communicates with the introduction port for introducing the fluid from the side into the inside, and the inner diameter extends downward from the cylindrical portion and goes downward. A conical portion that becomes smaller, a constriction portion that is provided in a part of the conical portion and narrows the inner diameter of the conical portion more than other portions of the conical portion, and an upper portion that is provided on the upper portion of the cylindrical portion and that opens upward By providing a discharge port and a lower discharge port provided at the lower end of the conical portion and opened downward, the inner diameter of the conical portion is increased by increasing the length of the conical portion while maintaining the inner diameter of the cylindrical portion at a large diameter. It is possible to reduce the diameter without performing. As a result, it is possible to suppress an increase in pressure loss at the cylindrical portion in the cylindrical portion maintained at a large diameter, and to improve the efficiency of separating dust from the fluid by increasing the flow velocity of the fluid at the small-diameter conical portion. Can be. In addition, since the inner diameter of the conical portion can be reduced without increasing the length of the conical portion, it is possible to prevent an increase in the size of the cyclone-type separation device.
[0034]
According to the second aspect of the present invention, in the cyclone type separation apparatus according to the first aspect, the throttle portion is located at a position following the cylindrical portion of the conical portion, so that the inner diameter of the cylindrical portion is increased. While maintaining the diameter, the entire inner diameter of the conical portion can be reduced without increasing the length of the conical portion, so that the constricted portion is located at a position other than the position connected to the cylindrical portion of the conical portion. In addition, the efficiency of separating dust from fluid can be further improved.
[0035]
According to the third aspect of the present invention, in the cyclone type separation apparatus according to the first or second aspect, the inclination of the throttle portion is curved, thereby suppressing an increase in pressure loss of fluid at the throttle portion. be able to.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view showing a cyclone type separation apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view thereof.
FIG. 3 is an explanatory diagram showing a comparison of dust separation efficiency and a comparison of pressure loss between a cyclone-type separation device according to an embodiment of the present invention and a conventional cyclone-type separation device.
FIG. 4 is a vertical sectional side view showing a conventional cyclone-type separation device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cyclone-type separation device 3 Cylindrical part 4 Conical part 5 Inlet pipe (inlet)
6 upper discharge pipe (upper discharge port)
7 Lower discharge pipe (lower discharge port)
8 Aperture part

Claims (3)

側方から内部に流体を導入させるための導入口が連通する円筒部と、
前記円筒部から下方に延出して下方に向かうに従い内径が小さくなる円錐部と、
前記円錐部の一部に設けられ、前記円錐部の他の部分よりも前記円錐部の内径を大きく絞る絞り部と、
前記円筒部の上部に設けられ上方に開口した上部排出口と、
前記円錐部の下端に設けられ下方に開口した下部排出口と、を備えるサイクロン型分離装置。
A cylindrical portion through which an introduction port for introducing a fluid from the side into the inside communicates,
A conical portion that extends downward from the cylindrical portion and has an inner diameter that decreases as going downward,
A throttle portion provided on a part of the conical portion, for narrowing the inner diameter of the conical portion more than other portions of the conical portion,
An upper discharge port provided at an upper portion of the cylindrical portion and opened upward,
A cyclone type separation device comprising: a lower discharge port provided at a lower end of the conical portion and opened downward.
前記絞り部は、前記円錐部の前記円筒部に連なる位置に位置している請求項1記載のサイクロン型分離装置。The cyclone-type separation device according to claim 1, wherein the constricted portion is located at a position continuous with the cylindrical portion of the conical portion. 前記絞り部の傾斜は、曲線状である請求項1又は2記載のサイクロン型分離装置。The cyclone-type separation device according to claim 1, wherein the inclination of the throttle portion is curved.
JP2003102810A 2003-04-07 2003-04-07 Cyclone type separation apparatus Pending JP2004305907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102810A JP2004305907A (en) 2003-04-07 2003-04-07 Cyclone type separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102810A JP2004305907A (en) 2003-04-07 2003-04-07 Cyclone type separation apparatus

Publications (1)

Publication Number Publication Date
JP2004305907A true JP2004305907A (en) 2004-11-04

Family

ID=33466134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102810A Pending JP2004305907A (en) 2003-04-07 2003-04-07 Cyclone type separation apparatus

Country Status (1)

Country Link
JP (1) JP2004305907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519876A (en) * 2004-11-11 2008-06-12 バーゼル・ポリオレフィン・ゲーエムベーハー Equipment for the gas phase polymerization of olefins, especially ethylene
JP2009544766A (en) * 2006-07-20 2009-12-17 ウエストレイク ロングビュー コーポレイション Method and apparatus for olefin polymerization in a fluidized bed reactor
KR101267878B1 (en) 2011-09-07 2013-05-27 한국에너지기술연구원 Apparatus for separating particles using swirl flow of high pressure state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519876A (en) * 2004-11-11 2008-06-12 バーゼル・ポリオレフィン・ゲーエムベーハー Equipment for the gas phase polymerization of olefins, especially ethylene
JP2009544766A (en) * 2006-07-20 2009-12-17 ウエストレイク ロングビュー コーポレイション Method and apparatus for olefin polymerization in a fluidized bed reactor
KR101267878B1 (en) 2011-09-07 2013-05-27 한국에너지기술연구원 Apparatus for separating particles using swirl flow of high pressure state

Similar Documents

Publication Publication Date Title
US6540917B1 (en) Cyclonic inertial fluid cleaning apparatus
US6896720B1 (en) Cleaning apparatus
EP1312879B1 (en) Oil separator and outdoor unit with the oil separator
JP5718226B2 (en) Cyclone separator with two gas outlets and separation method
US7335313B2 (en) Dual stage centrifugal liquid-solids separator
US20060162299A1 (en) Separation apparatus
CN107899307A (en) A kind of screw type gas-liquid separator
MXPA03008790A (en) Improvements in and relating to hydrocyclones.
WO2002018056A2 (en) Cyclone entrance nozzle
RU2019142224A (en) Hydrocyclone separator
CA2348453A1 (en) Separator apparatus
US10639651B2 (en) Multi-stage axial flow cyclone separator
JP2004305907A (en) Cyclone type separation apparatus
JPH02115056A (en) Eddy current pipe separator
US7066987B2 (en) Separating cyclone and method for separating a mixture
US11154873B2 (en) Multi-cyclonic dust filter device
JP2010535687A (en) Apparatus and method for performing chemical and / or physical reaction between solid and gas, and plant for producing cement
KR20040050221A (en) Cyclone type dust collector
JPS59213460A (en) Cyclone
JP3336440B2 (en) Low pressure drop cyclone
CN211099626U (en) High-efficient concentrated gypsum swirler
US9861913B2 (en) Centrifugal separator
JPS60161762A (en) Particle separation apparatus
KR200178634Y1 (en) Multi cyclone dust collector
CN110422908A (en) A kind of efficient degreasing eddy flow and hydrocyclone

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Written amendment

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090527