JP2004305704A - Apparatus for classifying action potentials of neurocyte and its program - Google Patents

Apparatus for classifying action potentials of neurocyte and its program Download PDF

Info

Publication number
JP2004305704A
JP2004305704A JP2003372038A JP2003372038A JP2004305704A JP 2004305704 A JP2004305704 A JP 2004305704A JP 2003372038 A JP2003372038 A JP 2003372038A JP 2003372038 A JP2003372038 A JP 2003372038A JP 2004305704 A JP2004305704 A JP 2004305704A
Authority
JP
Japan
Prior art keywords
action potential
nerve cell
nerve
feature amount
microelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372038A
Other languages
Japanese (ja)
Other versions
JP3931238B2 (en
Inventor
Hidekazu Kaneko
秀和 金子
Hiroshi Tamura
弘 田村
Shinya Suzuki
慎也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003372038A priority Critical patent/JP3931238B2/en
Publication of JP2004305704A publication Critical patent/JP2004305704A/en
Application granted granted Critical
Publication of JP3931238B2 publication Critical patent/JP3931238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a constant and long-term observation of action potentials of neurocytes if a physical relationship between a microelectrode and a neurocyte may change. <P>SOLUTION: Action potentials of a plurality of neurocytes 10a, 10b are detected at an electrode recording point 2 provided on a tip of a microelectrode for observing action potentials of neurocytes piercing a cranial nerve or a nerve fascicle tissue. The output data are sequentially classified by each neurocyte per short interval, within which supposedly a position of the microelectrode changes not so much. Based on the classified data obtained from consecutive short intervals, changes of feature extractions over time are followed by sequential calculation of feature extractions corresponding to each neurocyte, by which action potentials are to be unified and the data can be reclassified. All the procedures can be executed by a classifying program with a computer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、神経細胞組織に刺入された微小電極により人間又は人間以外の動物の神経細胞活動を観測する装置に関し、特に微小電極と微小電極周辺の神経細胞との相対的な位置関係が変化してしまう場合でも、神経細胞活動電位の振幅や持続時間などの特徴量の変化を追跡することによって各神経細胞毎の活動を長期間高精度に観測可能とするものに関する。 The present invention relates to a device for observing a nerve cell activity of a human or a non-human animal with a microelectrode inserted into a nerve cell tissue, and in particular, a relative positional relationship between a microelectrode and a nerve cell around the microelectrode is changed. The present invention also relates to a method for observing the activity of each nerve cell with high accuracy over a long period of time by tracking changes in feature amounts such as the amplitude and duration of nerve cell action potential.

神経細胞集団の活動から脳機能を解明しようとする手法は脳科学における基本的手段である。脳機能を解明する上で個々の神経細胞の機能解明は必要不可欠であり、従来、神経細胞活動電位の振幅や持続時間などの特徴量によって神経細胞毎に活動電位を分類しようとする単一神経細胞活動観測方法や複数神経細胞活動観測法(例えば、特許文献1)によって行われている。なお、ここで、特徴量とは、同一の神経細胞の活動電位であっても微小電極の移動に伴って変化する量、例えば、神経細胞活動電位の振幅、持続時間、及びこれらを組み合わせて得られる量をいう。     Techniques for elucidating brain functions from the activities of neuronal populations are fundamental tools in brain science. Elucidation of the function of individual nerve cells is indispensable for elucidating brain functions, and conventionally, single nerves that classify action potentials for each nerve cell based on features such as amplitude and duration of nerve cell action potential It is performed by a cell activity observation method or a multiple nerve cell activity observation method (for example, Patent Document 1). Here, the feature amount is an amount that changes with movement of the microelectrode even if the action potential of the same nerve cell is, for example, the amplitude and duration of the nerve cell action potential, and a combination thereof. Refers to the amount obtained.

しかし、呼吸、心拍、体動、電極挿入時の脳組織のひずみ量の変化に伴う微小電極と神経細胞との位置関係の変動によって神経細胞活動電位の振幅や持続時間などの特徴量は変化してしまうため、神経細胞の活動を長時間観測することは困難であった。 However, changes in the positional relationship between the microelectrodes and the nerve cells associated with changes in the amount of brain tissue strain during respiration, heartbeat, body movement, and electrode insertion change feature quantities such as the amplitude and duration of nerve cell action potentials. Therefore, it was difficult to observe the activity of nerve cells for a long time.

図5は、微小電極1の位置変動に対する活動電位の振幅と持続時間の変動を説明する図である。図の例は神経細胞10aの活動(発火)を観測した場合である。神経細胞活動電位の振幅と持続時間は図3に示すような振幅と時間差を用いて算出した。スパイク状の活動電位波形の負の最大振幅値を振幅とし、そのときの時刻と次に続いて正の極大振幅値を取る時刻との時間差を基準の時間差300マイクロ秒で割った値を持続時間に関する係数とした。図5(a)は微小電極1が垂直方向に距離yだけ位置を移動した例を示し、(b)と(c)はラットの脳表面に刺入された電極1の先端の記録点2dの脳表面からの深度に対する記録点2dと2cでの活動電位の振幅(平均値)と持続時間係数(平均値)をそれぞれ示す。 FIG. 5 is a diagram illustrating the fluctuation of the amplitude and the duration of the action potential with respect to the fluctuation of the position of the microelectrode 1. The example in the figure is a case where the activity (firing) of the nerve cell 10a is observed. The amplitude and duration of the nerve cell action potential were calculated using the amplitude and time difference as shown in FIG. The maximum negative amplitude value of the spike-like action potential waveform is defined as the amplitude, and the time difference between the time at that time and the time at which the next positive maximum amplitude value is obtained is divided by the reference time difference of 300 microseconds to obtain the duration. Coefficient. FIG. 5A shows an example in which the microelectrode 1 moves vertically by a distance y, and FIGS. 5B and 5C show recording points 2d at the tip of the electrode 1 inserted into the brain surface of the rat. The amplitude (average value) and the duration coefficient (average value) of the action potential at the recording points 2d and 2c with respect to the depth from the brain surface are shown, respectively.

その結果、記録点2dにより観測された神経細胞10bの活動電位振幅(ch.4)は電極刺入深度が1480ミクロンよりも浅い範囲では増加し、それよりも深くなると次第に減少して、観測される。すなわち、電極刺入深度1480ミクロンで神経細胞10bと記録点2dの距離が最も近くなり、活動電位振幅が最大となっている。一方、記録点2dよりも80ミクロン浅い位置に配置されている記録点2cにより観測された神経細胞10bの活動電位振幅(ch.3)は電極刺入深度1560ミクロンで最大値をとる。また、持続時間係数からも電極刺入深度に伴ってこの神経細胞の活動電位波形の持続時間が短くなっていることがわかる。 As a result, the action potential amplitude (ch. 4) of the nerve cell 10b observed at the recording point 2d increases when the electrode insertion depth is shallower than 1480 microns, and gradually decreases when the electrode insertion depth becomes deeper than that. You. That is, at the electrode insertion depth of 1480 microns, the distance between the nerve cell 10b and the recording point 2d is the shortest, and the action potential amplitude is the maximum. On the other hand, the action potential amplitude (ch.3) of the nerve cell 10b observed at the recording point 2c located at a position 80 microns shallower than the recording point 2d has the maximum value at an electrode insertion depth of 1560 microns. Also, it can be seen from the duration coefficient that the duration of the action potential waveform of the nerve cell becomes shorter with the electrode insertion depth.

これらの結果から、記録点2dや2cと神経細胞10bの距離に応じて活動電位振幅は変化し,距離が近ければ活動電位振幅は大きく、距離が離れていれば活動電位振幅は小さく観測される。また、活動電位の持続時間も同様に電極位置の変動に伴って変化する。したがって、微小電極と神経細胞の位置関係が変化すると活動電位の振幅や持続時間などの特徴量も変化してしまい、神経活動電位を分類する際に誤分類を引き起こす。 From these results, the action potential amplitude changes according to the distance between the recording points 2d and 2c and the nerve cell 10b, and the action potential amplitude is large when the distance is short and small when the distance is long. . In addition, the duration of the action potential also changes with the electrode position. Therefore, when the positional relationship between the microelectrode and the nerve cell changes, the feature amount such as the amplitude and duration of the action potential also changes, causing erroneous classification when classifying the nerve action potential.

これに対処するため、微小電極の移動量を機械的に測定して、神経細胞と電極との相対的位置を修正する神経細胞活動電位計測用電極移動装置が考案されている(例えば、特許文献2)が、機械制御部分を含む特殊な装置を必要とするため実用性に乏しかった。 In order to cope with this, an electrode moving device for nerve cell action potential measurement has been devised which mechanically measures the amount of movement of the microelectrode and corrects the relative position between the nerve cell and the electrode (for example, Patent Document 1). However, 2) requires a special device including a machine control part, and thus is not practical.

特許第2736326号公報Japanese Patent No. 2736326 特許第3131628号公報Japanese Patent No. 3131628

本発明の技術的課題は、呼吸、心拍、体動、電極挿入時の脳神経組織のひずみ量の変化に伴う微小電極と神経細胞との位置関係の変動による神経細胞活動電位の振幅や持続時間などの特徴量の変化を追跡することによって、長時間安定に神経細胞活動を観測しえるようにすることにある。   Technical problems of the present invention include breathing, heartbeat, body movement, amplitude and duration of nerve cell action potential due to fluctuation of positional relationship between microelectrodes and nerve cells due to change in strain of brain nerve tissue at the time of electrode insertion. An object of the present invention is to enable a long-term stable observation of nerve cell activity by tracking a change in the characteristic amount of the target.

本発明の神経細胞活動電位分類装置は、人間又は動物の、脳神経又は神経束組織に刺入した神経細胞活動観測用微小電極、その先端に設置された電極記録点から複数の神経細胞の活動電位波形を増幅する増幅器,その出力から複数の神経細胞の活動電位から特徴量を検出する複数神経細胞活動電位特徴量検出手段、その出力データから短区間毎に神経細胞活動電位の特徴量を各神経細胞毎に逐次分類する短区間神経細胞活動電位分類手段、その出力である神経細胞活動電位分類結果のうち時間の前後する短区間から得られた結果を用いて各神経細胞毎に特徴量の対応関係を算出することによって経時的な活動電位の変化を追跡する神経細胞活動電位特徴量変化追跡手段、その出力結果を用いて全区間の活動電位を再分類する神経細胞活動電位再分類手段を組み合わせたものとして構成される。   The nerve cell action potential classifying apparatus of the present invention is a human or animal, a nerve electrode for observation of nerve cell activity pierced into cranial nerve or nerve bundle tissue, the action potential of a plurality of nerve cells from an electrode recording point installed at the tip thereof An amplifier for amplifying a waveform, a plurality of nerve cell action potential feature amount detecting means for detecting a feature amount from action potentials of a plurality of nerve cells from an output thereof, and a feature amount of a nerve cell action potential for each nerve based on output data thereof. Short-term neuron action potential classification means for sequentially classifying each cell, and using the results obtained from short-term before and after time among the neuron action potential classification results, the correspondence of feature values for each nerve cell Means for tracking changes in action potential over time by calculating the relationship; means for tracking changes in feature values of nerve cells over time; and using the output result to reclassify action potentials in all sections. Configured as a combination of classification means.

更に、別発明は、上記装置の分類行程をコンピュータに実行させる分類プログラムを構成する。 Further, another invention constitutes a classification program for causing a computer to execute a classification process of the above-mentioned device.

このような神経細胞活動電位分類装置は、脳神経組織に挿入された微小電極の記録点と神経細胞の相対的な位置変化によって生じる神経細胞活動電位の振幅や持続時間などの特徴量の変化を追跡し、神経細胞活動電位の分類を精度良く行うことができる。これにより、呼吸、心拍、体動、電極挿入時の脳組織のひずみ量の変化に伴う微小電極と神経細胞との位置関係の変化に伴って生じる神経細胞活動電位の振幅や持続時間などの特徴量の変化による誤分類を生じにくい神経細胞活動電位分類結果を得ることができ、長時間にわたって安定した神経細胞活動が観測できる。   Such a nerve cell action potential classifier tracks changes in features such as the amplitude and duration of nerve cell action potential caused by the relative position change of the nerve cell and the recording point of the microelectrode inserted in the brain nerve tissue. In addition, the classification of the nerve cell action potential can be performed with high accuracy. As a result, the characteristics such as the amplitude and duration of the nerve cell action potential caused by the change in the positional relationship between the microelectrode and the nerve cell due to the change in the amount of strain of the brain tissue during respiration, heartbeat, body movement, and electrode insertion It is possible to obtain a nerve cell action potential classification result in which misclassification hardly occurs due to a change in the amount, and it is possible to observe a stable nerve cell activity for a long time.

以上に説明したように、本発明によれば、呼吸、心拍、体動、電極挿入時の脳組織のひずみ量の変化に伴う微小電極と神経細胞との位置関係の変化の影響を抑えて神経細胞活動データを安定に長時間観測することができる。これにより、脳表近くの神経細胞、動脈の近くにある神経細胞、体動を伴う行動中、あるいは微小電極刺入直後での神経電気生理学実験に本発明は有効である。また、特許文献2のような機械制御部分を含む特殊な装置を必要としないため、生体への埋め込み型電極での神経細胞活動計測にも適用可能である。 As described above, according to the present invention, the effects of changes in the positional relationship between microelectrodes and nerve cells due to changes in the amount of strain in the brain tissue during respiration, heartbeat, body movement, and electrode insertion are suppressed, and nerves are suppressed. Cell activity data can be observed stably for a long time. Thus, the present invention is effective for nerve cells near the surface of the brain, nerve cells near an artery, neuroelectrophysiological experiments during behavior involving body movement, or immediately after microelectrode insertion. In addition, since a special device including a mechanical control unit as in Patent Literature 2 is not required, the present invention can be applied to measurement of nerve cell activity using an implantable electrode in a living body.

本発明の装置及び観測プログラムの実施例を図面を参照して説明する。図1は本発明の神経細胞活動電位分類装置を、同装置の微小電極を神経細胞組織に刺入した状態で概念的に示す。図中、1は神経細胞活動観測用微小電極(以下、微小電極)、2a〜2gは微小電極の先端の記録点(ただし、記録点2a,2b,2gは図では隠れている。ch.1〜ch.7は各記録点2a〜2gの観測出力信号、3はch.1〜ch.7の活動電位波形信号を各々増幅する多チャネル信号増幅器、4は複数神経細胞活動電位特徴量検出手段、5は短区間神経細胞活動電位分類手段、6は神経細胞活動電位特徴量変化追跡手段、7は細胞活動電位再分類手段を表す。1〜7の構成は本発明の装置を構成し、4〜7はコンピュータでも構成できる。10a、10bは神経細胞を表す。 An embodiment of an apparatus and an observation program according to the present invention will be described with reference to the drawings. FIG. 1 conceptually shows a nerve cell action potential classifying apparatus of the present invention in a state where microelectrodes of the apparatus are inserted into nerve cell tissue. In the figure, reference numeral 1 denotes a microelectrode for observing nerve cell activity (hereinafter, microelectrode), and 2a to 2g denote recording points at the tips of the microelectrodes (note that recording points 2a, 2b, and 2g are hidden in the figure. 7 are observation output signals of the recording points 2a to 2g, 3 is a multichannel signal amplifier for amplifying the action potential waveform signals of ch.1 to ch.7, and 4 is a plurality of nerve cell action potential feature amount detecting means. Reference numeral 5 denotes a short section neuron action potential classifying unit, 6 denotes a neuron action potential feature change tracking unit, 7 denotes a cell action potential reclassification unit, and 1 to 7 constitute the apparatus of the present invention. 7 can also be configured by a computer, and 10a and 10b represent nerve cells.

微小電極1は、プラチナタングステン合金製のワイヤ7本を石英ガラスに封入して先端を研磨した直径約120ミクロンの7芯電極の尖端の記録点を用いる例である。神経細胞10a,10b,・・の活動電位は記録点2a〜2gで観測し、多チャネル信号ch.1〜ch.7で出力され、多チャネル信号増幅器3でそれぞれ活動電位波形信号を増幅する。 The microelectrode 1 is an example in which seven platinum-tungsten alloy wires are sealed in quartz glass and the tips are polished to use the recording points at the tips of a seven-core electrode having a diameter of about 120 microns. The action potentials of the nerve cells 10a, 10b,... Are observed at the recording points 2a to 2g, and the multi-channel signals ch. 1 to ch. The multi-channel signal amplifier 3 amplifies the action potential waveform signal.

図2はラットの大脳皮質体性感覚野ヒゲ領域に刺入した微小電極1上の各記録点とラット頭部皮下に埋め込んだプラチナ線(基準電極)との電位差として観測された多チャネル増幅器3の出力信号(ch.1〜ch.6)を示す(但し,ch.7は断線していたため計測不能であったので省いた)。横軸方向は時間、縦軸は電位振幅である。nは観測された神経細胞活動電位(スパイク)を観測順に番号を付けたスパイク番号、tnは同波形のスパイク発火時刻を表す。スパイク発火時刻はスパイク波形の振幅が負の方向に最大となる時刻である。スパイク発火時刻の前後2ミリ秒まで(図2の四角の枠内)をスパイク波形とし検出した。 FIG. 2 shows a multichannel amplifier 3 observed as a potential difference between each recording point on the microelectrode 1 pierced into the somatosensory area of the cortex of the rat and a platinum wire (reference electrode) implanted under the rat head. (Ch.1 to ch.6) (however, ch.7 was omitted because it was impossible to measure because it was disconnected). The horizontal axis represents time, and the vertical axis represents potential amplitude. n is a spike number obtained by numbering the observed nerve cell action potentials (spikes) in the order of observation, and tn represents a spike firing time of the same waveform. The spike firing time is a time at which the amplitude of the spike waveform becomes maximum in the negative direction. Up to two milliseconds before and after the spike firing time (within the square frame in FIG. 2) were detected as spike waveforms.

複数神経細胞活動電位特徴量検出手段4は、多チャネル信号増幅器3から送られてくる神経細胞活動電位波形を入力処理し、テンプレート波形との相関値が0.7以上となるものをある神経細胞の1回の発火によって生じたスパイク波形として検出し、スパイク番号(n)を付ける。次に、特定した波形から活動電位の特徴量として振幅(負のスパイク電位)を算出し、スパイク振幅(ベクトル)とその発火時刻(tn)をメモリに記録する。テンプレート波形は微小電極と神経細胞が十分に近く、信号対雑音比が高い状況で観測されたスパイク波形を複数回加算平均したものを用いる。   A plurality of nerve cell action potential feature amount detection means 4 performs input processing of a nerve cell action potential waveform sent from the multi-channel signal amplifier 3 and outputs a nerve cell having a correlation value with a template waveform of 0.7 or more. Is detected as a spike waveform generated by one firing of, and a spike number (n) is assigned. Next, an amplitude (negative spike potential) is calculated from the specified waveform as a feature amount of the action potential, and the spike amplitude (vector) and its firing time (tn) are recorded in the memory. The template waveform is obtained by averaging a plurality of spike waveforms observed in a situation where the microelectrodes and the nerve cells are sufficiently close and the signal-to-noise ratio is high.

神経細胞活動電位分類手段5は、複数神経細胞活動電位特徴量検出手段4により検出された活動電位振幅データを分析して神経細胞活動電位の振幅分布に見られる集団(以下、クラスタと呼ぶ)毎に活動電位を分類する。観測された神経細胞活動電位の振幅が微小電極の記録点と神経細胞との相対的距離に応じて異なることから、活動電位の振幅が同じ集団に属する活動電位は、同一の神経細胞から発生した活動電位と見なせる。 The nerve cell action potential classifying means 5 analyzes the action potential amplitude data detected by the plurality of nerve cell action potential feature quantity detection means 4 and collects each group (hereinafter referred to as a cluster) found in the amplitude distribution of nerve cell action potentials. Are classified into action potentials. Since the amplitude of the observed nerve cell action potentials varies depending on the relative distance between the recording point of the microelectrode and the nerve cells, the action potentials belonging to the same population were generated from the same nerve cell It can be considered as an action potential.

図4(a)は、図1のch.3,ch.4により所定計測期間観測された活動電位の振幅をそれぞれ横軸、縦軸とする空間にプロットした図例を示す。図より観測された活動電位の振幅は4個のクラスタI,II,III,IVに分類され、この計測期間に4つの神経細胞が発火しているのが分かる。例えば、クラスタIは神経細胞10aの活動電位振幅に対応する。これら4つの神経細胞は記録点2c,2dからの距離が各々異なるため、活動電位振幅値の分布も異なっている。つまり、神経細胞活動電位振幅値の分布から発火した神経細胞の位置を特定できる(ただし、微小電極の位置変動の修正が必要)。 FIG. 4 (a) shows the ch. 3, ch. 4 shows an example in which the amplitudes of action potentials observed for a predetermined measurement period are plotted in a space with a horizontal axis and a vertical axis. From the figure, the amplitude of the observed action potential is classified into four clusters I, II, III, and IV, and it can be seen that four nerve cells are firing during this measurement period. For example, cluster I corresponds to the action potential amplitude of nerve cell 10a. Since these four nerve cells have different distances from the recording points 2c and 2d, the distribution of the action potential amplitude values is also different. In other words, the position of the firing neuron can be specified from the distribution of the nerve cell action potential amplitude value (however, it is necessary to correct the position fluctuation of the microelectrode).

図1の微小電極の6個の記録点で観測された活動電位は、6軸の空間ベクトルの点で表すことができる。短区間神経細胞活動電位分類手段5ではこの活動電位の振幅分布に見られるクラスタごとに活動電位を分類し、各クラスタに含まれる活動電位に同一のクラスタ番号を与える。 The action potentials observed at the six recording points of the microelectrode in FIG. 1 can be represented by the points of the six-axis space vector. The short section neuron action potential classifying means 5 classifies action potentials for each cluster found in the amplitude distribution of the action potentials, and gives the same cluster number to action potentials included in each cluster.

具体的には、各クラスタに含まれる活動電位振幅ベクトルの分布をガウス分布(Gaussian distribution)で近似し、全てのクラスタ間でマハラノビス距離(Mahalanobis distance,統計学的なクラスタ間距離)が標準偏差の2.5倍以上となるまでクラスタ同士の連結を繰り返す階層型クラスクリング法によって分類する。 Specifically, the distribution of the action potential amplitude vector included in each cluster is approximated by a Gaussian distribution, and the Mahalanobis distance (statistical intercluster distance) between all clusters is the standard deviation. 2. Classification is performed by the hierarchical class cling method in which clusters are connected repeatedly until the number of clusters becomes 5 times or more.

この手続きの初期状態では、各活動電位を1つのクラスタとして全データ区間を通して固有のクラスタ番号を与え、クラスタ同士が連結されてクラスタに含まれる活動電位の数が記録点の数よりも大きくなるまでは各記録点と基準電極の間で観測される波形のノイズ振幅の分散をクラスタの分散とした。また、クラスタ同士の連結は連結しようとする2つのクラスタのクラスタ番号のうち小さい値をこれら2つのクラスタに含まれる各活動電位のクラスタ番号とすることで行う。 In the initial state of this procedure, each action potential is regarded as one cluster, a unique cluster number is given throughout the entire data section, and the clusters are connected to each other until the number of action potentials included in the cluster becomes larger than the number of recording points. Indicates the variance of the noise amplitude of the waveform observed between each recording point and the reference electrode as the variance of the cluster. The clusters are connected by setting a smaller value among the cluster numbers of the two clusters to be connected as the cluster number of each action potential included in the two clusters.

神経細胞活動電位特徴量変化追跡手段6は短区間神経細胞活動電位分類手段5によって時間的に前後する2つの短時間区間データから得られた短区間活動電位分類結果の間での神経細胞同士の対応関係を算出する。 The nerve cell action potential characteristic amount change tracking means 6 is a means for classifying nerve cells between short-term action potential classification results obtained from two short-term data obtained by the short-term neuron action potential classification means 5 in time. Calculate the correspondence.

電極の刺入に伴って電極と神経細胞との位置関係が図5(a)のように変化し、それに伴って2つの記録点で計測される活動電位振幅(クラスタ中心)は図5(b)のように変化することから、電極移動量が十分に小さければ各記録点で観測された活動電位振幅の変化も小さいので、それら活動電位振幅をベクトル化した神経細胞活動電位振幅ベクトルの変化も小さい。 With the insertion of the electrode, the positional relationship between the electrode and the nerve cell changes as shown in FIG. 5A, and the action potential amplitude (cluster center) measured at two recording points is shown in FIG. ), The change in the action potential amplitude observed at each recording point is small if the electrode movement amount is sufficiently small, so that the change in the nerve cell action potential amplitude vector obtained by vectorizing the action potential amplitudes is also small. small.

したがって、電極と神経細胞との位置の変化が十分に小さければ同一の神経細胞から生じた活動電位の振幅ベクトルはほぼ等しいから、電極移動前後のクラスタ間での活動電位振幅ベクトル分布のマハラノビス距離の最小となるもの同士は同一の神経細胞から生じた活動電位と見なせ、図6(a)のように神経細胞活動電位振幅の微小変化に対応して追跡できる。図6(a)は、図5(b)の活動電位振幅の変動から算出された活動電位振幅(ch.3,ch.4)のクラスタ(中心の)軌跡を表している。 Therefore, if the change in the position of the electrode and the nerve cell is sufficiently small, the amplitude vector of the action potential generated from the same nerve cell is almost the same, and the Mahalanobis distance of the action potential amplitude vector distribution between the clusters before and after the electrode movement is calculated. The smallest one can be regarded as an action potential generated from the same nerve cell, and can be tracked in response to a minute change in the nerve cell action potential amplitude as shown in FIG. FIG. 6A shows a cluster (center) locus of the action potential amplitudes (ch. 3 and ch. 4) calculated from the fluctuation of the action potential amplitude in FIG.

実施例では、短区間活動電位分類結果(短区間でのクラスタ結果)で得られる各クラスタの活動電位振幅ベクトルをガウス分布で近似し、電極移動前後のクラスタ間でマハラノビス距離が最小となるもの同士を同一の神経細胞から生じた活動電位と見なした。 In the embodiment, the action potential amplitude vector of each cluster obtained from the short section action potential classification result (the cluster result in the short section) is approximated by a Gaussian distribution, and those having the minimum Mahalanobis distance between the clusters before and after the electrode movement are compared. Was considered as an action potential originating from the same nerve cell.

図7は短区間活動電位分類による活動電位振幅の追跡を説明する図である。図7(a)のように短区間神経細胞活動電位分類手段5のクラスタリング区間T1,T2,・・を時間の前後するもの同士(短区間T1とT2,T2とT3,・・)で重なり合うようにする。図中、A,B,C,・・は1つの細胞の活動電位振幅分類データを表し、これらが1つに結びつくように追跡すべきところのものである。 FIG. 7 is a diagram for explaining the tracking of the action potential amplitude by the short section action potential classification. As shown in FIG. 7 (a), the clustering sections T1, T2,... Of the short section neuron action potential classifying means 5 overlap each other before and after time (short sections T1 and T2, T2 and T3,...). To In the figure, A, B, C,... Represent action potential amplitude classification data of one cell, which should be tracked so as to be linked to one.

まず、T1区間で短区間神経細胞活動電位分類を行うことにより、クラスタAとBのマハラノビス距離が標準偏差の2.5倍未満なので同一クラスタに分類される。次にT2区間の短区間神経細胞活動電位分類を行うと同様にクラスタBとCが同一クラスタに分類される。以上の処理を区間T5まで繰り返し行えば、AとB,BとC,CとD,・・がそれぞれ同一クラスタに分類される。 First, by performing short-section neuron action potential classification in the T1 section, the Mahalanobis distance between the clusters A and B is less than 2.5 times the standard deviation, so that they are classified into the same cluster. Next, the clusters B and C are classified into the same cluster in the same manner as when the short-range nerve cell action potential classification of the T2 section is performed. By repeating the above processing up to the section T5, A and B, B and C, C and D,.

ところで、短区間神経細胞活動電位分類手段5の区間長は上記の説明のみによれば、クラスタAとBのマハラノビス距離が標準偏差の2.5倍未満となるようであれば良い。しかし、別の神経細胞の活動電位が成すクラスタとも区別されるようでなければならない。 By the way, according to only the above description, the section length of the short section nerve cell action potential classifying means 5 may be such that the Mahalanobis distance between clusters A and B is less than 2.5 times the standard deviation. However, it must be distinguished from clusters formed by action potentials of other nerve cells.

すなわち、別の神経細胞の活動電位が短区間T2で成すクラスタB’を仮定したときに、AとBのマハラノビス距離がAとB’のマハラノビス距離よりも短くなければならない。BとB’の距離が2.5であるとき、AとBの距離をdとすれば、AとB’のマハラノビス距離は最も近くて2.5−dである。したがって、2.5−d>dとなるにはdが1.25未満になるように区間長を決定する必要がある。実施例で用いたデータでは区間長を65秒とすることで、どのクラスタに関してもd<0.25を満たしていた。 That is, assuming a cluster B 'formed by the action potential of another nerve cell in the short section T2, the Mahalanobis distance between A and B must be shorter than the Mahalanobis distance between A and B'. When the distance between B and B 'is 2.5, and the distance between A and B is d, the Mahalanobis distance between A and B' is the closest and is 2.5-d. Therefore, in order to satisfy 2.5-d> d, it is necessary to determine the section length so that d is less than 1.25. In the data used in the embodiment, the section length was set to 65 seconds, so that d <0.25 was satisfied for any cluster.

神経細胞活動電位特徴量変化追跡手段6は短区間神経細胞活動電位分類手段5が出力した短区間の振幅データを基に神経細胞活動電位の振幅値の経時的な変化の対応関係を検出する。すなわち、クラスタBは短区間T1とT2に属しており,短区間T1での短区間神経細胞活動電位分類ではクラスタAと連結され、区間T2ではクラスタCと連結されたことから、クラスタA,B,Cが同一の神経細胞から発生した活動電位によるものと判定する。これを前後する区間(短区間T2とT3,T3とT4,・・)に繰り返し適用すると、一連のクラスタの連鎖A,B,C,・・が得られる。このようにして神経細胞毎にクラスタ連鎖1(A1,B1,C1,...)、クラスタ連鎖2(A2,B2,B3,...)、...を得る。神経細胞活動電位特徴量変化追跡手段6はスパイク番号を付してこのクラスタの連鎖に関する情報(クラスタ連鎖1、クラスタ連鎖2,...)を神経細胞活動電位再分類手段7に出力する。 The neuron action potential feature value change tracking means 6 detects the correspondence of the temporal change of the amplitude value of the nerve cell action potential based on the short-term amplitude data output from the short-term nerve cell action potential classification means 5. That is, the cluster B belongs to the short sections T1 and T2, and is connected to the cluster A in the short section nerve cell action potential classification in the short section T1, and connected to the cluster C in the section T2. , C are determined to be due to action potentials generated from the same nerve cell. When this is repeatedly applied to the preceding and following sections (short sections T2 and T3, T3 and T4,...), A series of clusters A, B, C,. Thus, the cluster chain 1 (A1, B1, C1,...), The cluster chain 2 (A2, B2, B3,...),. . . Get. The nerve cell action potential feature amount change tracking means 6 outputs information about the cluster chain (cluster chain 1, cluster chain 2,...) To the nerve cell action potential re-classification means 7 with a spike number.

神経細胞活動電位再分類手段7は、神経細胞活動電位特徴量変化追跡手段6によるクラスタの連鎖に関する情報に基づいて、全データ区間に共通のクラスタ番号を各活動電位に与えなおす。具体的には、神経細胞活動電位特徴量変化追跡手段6で得られたクラスタの連鎖情報、すなわちクラスタ連鎖1(A1,B1,C1,...)、クラスタ連鎖2(A2,B2,B3,...)、...を用いて各クラスタの連鎖に含まれる各活動電位のクラスタ番号をこれらクラスタ番号のうち最小のものに与え直す。 The nerve cell action potential reclassification means 7 reassigns a cluster number common to all data sections to each action potential on the basis of the information on the chain of the clusters by the nerve cell action potential feature amount change tracking means 6. Specifically, the chain information of the clusters obtained by the neuron action potential feature amount change tracking means 6, that is, cluster chain 1 (A1, B1, C1,...), Cluster chain 2 (A2, B2, B3, ...),. . . Is used to reassign the cluster number of each action potential included in the chain of each cluster to the smallest of these cluster numbers.

これによって、短区間神経細胞活動電位分類手段5の出力では同一の活動電位でも短区間毎に異なるクラスタ番号が与えられていたのに対し、各クラスタ連鎖に全データ区間で統一されたクラスタ番号が与えられる。
さらに、神経細胞活動電位再分類手段7は、複数神経細胞活動電位特徴量検出手段4の活動電位の発火時刻(tn)を取り込み、活動電位を時系列で記録、表示できる。
As a result, in the output of the short section neuron action potential classifying means 5, a different cluster number is given for each short section even for the same action potential, but a cluster number unified in all data sections is used for each cluster chain. Given.
Further, the nerve cell action potential reclassification means 7 can capture the firing time (tn) of the action potential of the multiple nerve cell action potential feature amount detection means 4 and record and display the action potential in time series.

実施例では、クラスタ番号の初期値としてデータ番号を与え,短区間神経細胞活動電位分類手段5によって2つのクラスタを結合する際には結合しようとするクラスタに含まれる活動電位のデータ番号のうち最小値を結合後のクラスタ番号として与え直している。これによって、既にクラスタ番号が全データ区間で統一され、かつ、神経細胞活動電位振幅変化の追跡も行われた状態での神経細胞活動電位の分類結果が得られ、短区間神経細胞活動電位特徴量分類手段5が全短区間に亘り繰り返し用いた結果をそのまま神経細胞活動電位の再分類結果とすることができる。以上により、記録点と神経細胞の相対的位置関係が変動しても、神経細胞が特定できる。 In the embodiment, a data number is given as an initial value of a cluster number, and when two clusters are combined by the short-range nerve cell action potential classifying means 5, the smallest of the data numbers of the action potentials included in the cluster to be combined The value is re-assigned as the cluster number after merging. As a result, the classification result of the nerve cell action potential in a state where the cluster number is already unified in all data sections and the change of the nerve cell action potential amplitude is also obtained, is obtained. The result repeatedly used by the classification means 5 over the entire short section can be directly used as the re-classification result of the nerve cell action potential. As described above, even if the relative positional relationship between the recording point and the nerve cell changes, the nerve cell can be specified.

本発明による神経細胞活動電位分類装置の効果を調べるため、本発明の中心をなす活動電位特徴量追跡機能を有効にした場合と無効にした場合とで観測される神経細胞の数が時間とともに減少してゆく様子を比較する。活動電位特徴量追跡機能を有効にするのは先に説明してきたような処理を行えば良く、活動電位特徴量追跡機能を無効にするには図7(b)のように短区間神経細胞活動電位分類手段5でのクラスタリング処理区間長をデータの得られた全時間長(観測時間)と同じ長さに設定することで実現した。 In order to investigate the effect of the nerve cell action potential classifier according to the present invention, the number of nerve cells observed with and without the action potential feature tracking function, which is the core of the present invention, decreases with time. Compare how they do it. The action potential feature tracking function may be enabled by performing the processing described above. To disable the action potential feature tracking function, the short-term neuronal activity may be disabled as shown in FIG. This is realized by setting the length of the clustering processing section in the potential classifying means 5 to the same length as the total time length (observation time) in which the data was obtained.

図8は、麻酔下のサル下側頭葉皮質に微小電極1を刺入して得られた長時間複数神経細胞の活動電位波形データに対して活動電位分類装置の処理結果を示したものである。これによれば、活動電位特徴量追跡機能を有効にした方が観測できる神経細胞数の減少を抑えることができることが分かる。したがって、本発明による神経細胞活動電位分類装置を用いれば、長時間での複数神経細胞活動電位の観測が可能となる。 FIG. 8 shows the processing results of the action potential classifier for action potential waveform data of a plurality of long-term neurons obtained by inserting the microelectrode 1 into the monkey lower temporal cortex under anesthesia. is there. According to this, it can be understood that a decrease in the number of observable nerve cells can be suppressed by activating the action potential feature amount tracking function. Therefore, the use of the nerve cell action potential classifying device according to the present invention makes it possible to observe a plurality of nerve cell action potentials for a long time.

実施例では、活動電位の特徴量として振幅情報を用いたが、持続時間を特徴量として用いることが可能である。なぜならば、持続時間でも図5(c)のような電極位置に応じた変化が観測でき、図4(b)のようなクラスタが形成され、クラスタ中心は図6(b)のように次第に変化しているからである。さらに、振幅や持続時間、及びこれらを組み合わせて得られる量のように、電極位置に応じて次第に変化するような量であれば、特徴量として用いることが可能である。 In the embodiment, the amplitude information is used as the feature value of the action potential. However, the duration can be used as the feature value. This is because a change according to the electrode position as shown in FIG. 5C can be observed even during the duration, a cluster as shown in FIG. 4B is formed, and the center of the cluster gradually changes as shown in FIG. 6B. Because they do. Further, any amount that gradually changes in accordance with the electrode position, such as the amplitude, the duration, and the amount obtained by combining these, can be used as the feature amount.

更に、本発明の装置の分類行程をコンピュータに実行させる分類プログラムを作成して本発明の装置を実現できる。神経細胞活動電位を分類するためにコンピュータを、観測された神経細胞活動電位波形信号を入力する手段、観測された神経細胞活動電位波形の入力信号から神経細胞活動の特徴量データを得る手段、特徴量データを短期間分について各神経細胞ごとに分類して分類信号を出力する手段、上記分類して出力された信号を前短期間で算出した分類して出力された信号との関係を求め、同じ分類に属する活動電位特徴量信号の変化を追跡する信号を出力する手段、および上記複数神経細胞活動電位分類信号と上記神経細胞活動電位特徴量の変化を追跡する信号から神経細胞活動電位を全区間に亘って再分類する手段として機能させるための神経細胞活動電位を分類する分類プログラムを提供する。 Furthermore, a classification program that causes a computer to execute the classification process of the device of the present invention can be created to realize the device of the present invention. Means for inputting an observed nerve cell action potential waveform signal to a computer for classifying the nerve cell action potential, means for obtaining feature data of nerve cell activity from the input signal of the observed nerve cell action potential waveform, Means for classifying the amount of data for each short term for each neuron and outputting a classification signal, determining the relationship between the classified and output signals calculated in the previous short period and the classified and output signals, A means for outputting a signal for tracking a change in an action potential feature signal belonging to the same classification; and a method for outputting all of the nerve cell action potentials from the plurality of nerve cell action potential classification signals and the signal for tracking the change in the nerve cell action potential feature. Provided is a classification program for classifying a nerve cell action potential for functioning as a means for reclassification over a section.

また、上記分類プログラムを記録媒体にコンピュータに読みとり可能に格納させて、記録媒体をコンピュータに入力することができる。更に、分類プログラムを伝送キャリアでユーザのコンピュータに伝送することも可能である。 In addition, the above classification program can be stored in a recording medium so that the computer can read it, and the recording medium can be input to the computer. Furthermore, it is also possible to transmit the classification program to the user's computer on a transmission carrier.

本発明の全体構成を示したものである。1 shows the overall configuration of the present invention. 微小電極で観測された神経細胞活動電位の多チャネル信号の1例を示す。1 shows an example of a multi-channel signal of a nerve cell action potential observed by a microelectrode. 神経細胞活動電位の特徴量の例を示す。4 shows an example of a feature amount of a nerve cell action potential. 神経細胞活動電位の振幅や持続時間の分布に基づいた分類例を示す。4 shows a classification example based on the distribution of the amplitude and duration of a nerve cell action potential. 微小電極と神経細胞との相対的距離の変化による活動電位の振幅と持続時間の変化を示した図である。FIG. 9 is a diagram showing changes in the amplitude and duration of the action potential due to changes in the relative distance between the microelectrode and the nerve cell. 神経細胞活動電位の振幅や持続時間の分布によって形成されたクラスタの中心を追跡した結果の例を示す。4 shows an example of the result of tracking the center of a cluster formed by the distribution of the amplitude and duration of a nerve cell action potential. 本発明の短区間活動電位分類による活動電位特徴量追跡法を説明する図を示す。FIG. 3 is a diagram illustrating an action potential feature amount tracking method based on short section action potential classification according to the present invention. 本発明による神経細胞活動電位分類結果の例を示したものである。5 shows an example of a classification result of a nerve cell action potential according to the present invention.

符号の説明Explanation of reference numerals

1 神経細胞活動電位観測用微小電極
2a〜2g 微小電極の記録点
10a,10b・・ 神経細胞
3 多チャネル信号増幅器
4 複数神経細胞活動電位特徴量検出手段
5 短区間神経細胞活動電位分類手段
6 神経細胞活動電位特徴量変化追跡手段
7 神経細胞活動電位再分類手段
T,T1〜T5 クラスタリング区間
DESCRIPTION OF SYMBOLS 1 Microelectrode 2a-2g for neuron action potential observation Microelectrode recording points 10a, 10b ... Nerve cell 3 Multi-channel signal amplifier 4 Plural neuron action potential feature amount detection means 5 Short section neuron action potential classification means 6 Nerve Cell action potential feature amount change tracking means 7 Neuron action potential reclassification means T, T1 to T5 Clustering section

Claims (2)

神経細胞活動観測用微小電極と、
該微小電極の記録点が観測した神経細胞の活動電位波形信号を入力して、活動電位の特徴量データを取り出す複数神経細胞活動電位特徴量検出手段と、
上記特徴量データを短期間分について各神経細胞ごとに分類して出力する短区間神経細胞活動電位分類手段と、
上記のように分類して出力された信号と前の短期間で分類して出力された信号との対応関係を求め、同一の神経細胞から生じた活動電位の特徴量の変化を追跡する神経細胞活動電位特徴量変化追跡手段と、
複数神経細胞活動電位特徴量検出手段と神経細胞活動電位特徴量変化追跡手段の出力信号から神経細胞活動電位を再分類する神経細胞活動電位再分類手段と
を含むことを特徴とする神経細胞活動電位分類装置。
A microelectrode for observing nerve cell activity,
A plurality of nerve cell action potential feature amount detecting means for inputting an action potential waveform signal of a nerve cell observed by the recording point of the microelectrode and extracting feature amount data of the action potential;
Short-section neuron action potential classification means for classifying and outputting the feature amount data for each neuron for a short period,
Nerve cells that determine the correspondence between the signals output as classified as described above and the signals output as classified in the previous short period, and track changes in feature amounts of action potentials generated from the same neuron Action potential feature change tracking means;
A neural cell action potential reclassifying means for reclassifying a neural cell action potential from an output signal of a plurality of nerve cell action potential feature amount detecting means and a nerve cell action potential feature amount change tracking means; Classifier.
神経細胞活動電位を分類するためにコンピュータを、
観測された神経細胞活動電位波形信号を入力する手段、
観測された神経細胞活動電位波形の入力信号から神経細胞活動の特徴量データを得る手段、
特徴量データを短期間分について各神経細胞ごとに分類して分類信号を出力する手段、
上記のように分類して出力された信号を前の短期間で分類して出力された信号との関係を求め、同一の神経細胞から生じた活動電位の特徴量の変化を追跡する信号を出力する手段、および
上記複数神経細胞活動電位特徴量検出信号と上記神経細胞活動電位特徴量の変化を追跡した信号から神経細胞活動電位を再分類する手段
として機能させるための神経細胞活動電位を分類するプログラム。
A computer to classify nerve cell action potentials,
Means for inputting the observed nerve cell action potential waveform signal,
Means for obtaining feature data of nerve cell activity from the input signal of the observed nerve cell action potential waveform,
Means for classifying the feature data for a short period for each nerve cell and outputting a classification signal;
Classify the signal output as described above in the previous short period to determine the relationship with the output signal, and output a signal that tracks the change in the feature value of the action potential generated from the same nerve cell Means for classifying a nerve cell action potential for functioning as a means for reclassifying a nerve cell action potential from the plurality of nerve cell action potential feature amount detection signals and a signal obtained by tracking a change in the nerve cell action potential feature amount. program.
JP2003372038A 2003-03-24 2003-10-31 Nerve cell action potential classifier and its classification program Expired - Lifetime JP3931238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372038A JP3931238B2 (en) 2003-03-24 2003-10-31 Nerve cell action potential classifier and its classification program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003081067 2003-03-24
JP2003372038A JP3931238B2 (en) 2003-03-24 2003-10-31 Nerve cell action potential classifier and its classification program

Publications (2)

Publication Number Publication Date
JP2004305704A true JP2004305704A (en) 2004-11-04
JP3931238B2 JP3931238B2 (en) 2007-06-13

Family

ID=33478130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372038A Expired - Lifetime JP3931238B2 (en) 2003-03-24 2003-10-31 Nerve cell action potential classifier and its classification program

Country Status (1)

Country Link
JP (1) JP3931238B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121567A (en) * 2017-01-31 2018-08-09 株式会社Lsiメディエンス Machine learning apparatus, classification apparatus, method and program
KR20210103924A (en) * 2020-11-20 2021-08-24 한국과학기술원 Computer system for profiling neural firing data and extracting content, and method thereof
WO2022019429A1 (en) * 2020-07-22 2022-01-27 울산과학기술원 Method and apparatus for extracting motion-related network characteristics between cranial nerve cells for decoding motion information
KR20220034376A (en) * 2020-09-11 2022-03-18 한국기계연구원 Real time decoding system for multi-channel neural activity and real time decoding method using the same
JP2022532958A (en) * 2019-07-12 2022-07-20 ニューラリンク コーポレーション Real-time nerve spike detection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121567A (en) * 2017-01-31 2018-08-09 株式会社Lsiメディエンス Machine learning apparatus, classification apparatus, method and program
JP2022532958A (en) * 2019-07-12 2022-07-20 ニューラリンク コーポレーション Real-time nerve spike detection
JP7158622B2 (en) 2019-07-12 2022-10-21 ニューラリンク コーポレーション Real-time neural spike detection
WO2022019429A1 (en) * 2020-07-22 2022-01-27 울산과학기술원 Method and apparatus for extracting motion-related network characteristics between cranial nerve cells for decoding motion information
KR20220012099A (en) * 2020-07-22 2022-02-03 울산과학기술원 Method and apparatus for extracting neuronal networking properties related to kinematic parameters for decoding process
KR102459296B1 (en) 2020-07-22 2022-10-27 울산과학기술원 Method and apparatus for extracting neuronal networking properties related to kinematic parameters for decoding process
KR20220034376A (en) * 2020-09-11 2022-03-18 한국기계연구원 Real time decoding system for multi-channel neural activity and real time decoding method using the same
KR102458459B1 (en) 2020-09-11 2022-10-26 한국기계연구원 Real time decoding system for multi-channel neural activity and real time decoding method using the same
KR20210103924A (en) * 2020-11-20 2021-08-24 한국과학기술원 Computer system for profiling neural firing data and extracting content, and method thereof
KR102558169B1 (en) 2020-11-20 2023-07-24 한국과학기술원 Computer system for profiling neural firing data and extracting content, and method thereof

Also Published As

Publication number Publication date
JP3931238B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
Chapin et al. Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations
Makeig et al. ERP features and EEG dynamics: an ICA perspective
Busse et al. Representation of concurrent stimuli by population activity in visual cortex
Walker et al. Multiplexed and robust representations of sound features in auditory cortex
Lewicki A review of methods for spike sorting: the detection and classification of neural action potentials
Oweiss Statistical signal processing for neuroscience and neurotechnology
US6804661B2 (en) Drug profiling apparatus and method
US20050124863A1 (en) Drug profiling apparatus and method
US9452289B2 (en) Method for identification of retinal cell types intrinsic properties
JP2008522713A (en) Brain stem disorder diagnosis system and method
Darian-Smith et al. Touching textured surfaces: cells in somatosensory cortex respond both to finger movement and to surface features
JPH0924031A (en) Single nerve action potential measuring device
CN106175757A (en) Behaviour decision making prognoses system based on brain wave
Xydas et al. Revealing ensemble state transition patterns in multi-electrode neuronal recordings using hidden Markov models
JP3931238B2 (en) Nerve cell action potential classifier and its classification program
Erim et al. Decomposition of intramuscular EMG signals using a heuristic fuzzy expert system
Habraken et al. Identification of peak V in brainstem auditory evoked potentials with neural networks
Chou et al. Multi-channel algorithms for epileptic high-frequency oscillation detection
Emery et al. Rich experience boosts functional connectome and high-dimensional coding in hippocampal network
Szymanska et al. Source location as a feature for the classification of multi-sensor extracellular action potentials
Ziskind et al. Neurons in cat V1 show significant clustering by degree of tuning
Lu et al. Total sleep deprivation-induced electrophysiological activities changes in rat hippocampal CA1 detected by microelectrode arrays
US20230172513A1 (en) Flexible, insertable, transparent microelectrode array for detecting interactions between different brain regions
Ashtiyani et al. EEG Classification using Neural networks and Independent component analysis
Fu et al. Human single neuron recordings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3931238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term