JP2004301793A - X-ray thickness measuring instrument - Google Patents

X-ray thickness measuring instrument Download PDF

Info

Publication number
JP2004301793A
JP2004301793A JP2003097717A JP2003097717A JP2004301793A JP 2004301793 A JP2004301793 A JP 2004301793A JP 2003097717 A JP2003097717 A JP 2003097717A JP 2003097717 A JP2003097717 A JP 2003097717A JP 2004301793 A JP2004301793 A JP 2004301793A
Authority
JP
Japan
Prior art keywords
ray
tube current
tube
ray source
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097717A
Other languages
Japanese (ja)
Other versions
JP2004301793A5 (en
JP4087274B2 (en
Inventor
Masamitsu Nishikawa
政光 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003097717A priority Critical patent/JP4087274B2/en
Publication of JP2004301793A publication Critical patent/JP2004301793A/en
Publication of JP2004301793A5 publication Critical patent/JP2004301793A5/ja
Application granted granted Critical
Publication of JP4087274B2 publication Critical patent/JP4087274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for setting and controlling a leakage dosage in an X-ray thickness measuring instrument. <P>SOLUTION: This instrument is provided with an X-ray source 3 and an X-ray detector 6 for detecting a transmission X-ray arranged with a space to be opposed with a measured object 2 therebetween, a tube voltage control means 13b and a tube current control means 13a for the X-ray source 3, a reference plate setting means 5 and a reference plate driving means12 for setting a plate thickness reference in calibration, a thickness computing part 11 for computing a thickness of the measured object 2 based on an output signal from the detector 6, and a tube current setting part 14 for controlling the leakage dosage leaked from the X-ray source. A distance from the X-ray source to a prescribed position and the leakage dosage in the prescribed position are input by the tube current setting part 14, a tube current is found from a tube current setting table preliminarily stored, and the tube current is controlled to be brought into a prescribed leakage dosage in the prescribed position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、X線厚さ測定装置に係わり、特に漏洩線量を制御できる手段を備えて管理区域、漏洩線量の変更を容易に設定できるようにしたX線厚さ測定装置に関する。
【0002】
【従来の技術】
鋼板の圧延工程では、圧延され金属シートに放射線を照射してその放射線の透過量から厚さを測定する放射線厚さ測定装置が使用されている。放射線厚さ測定装置には、ガンマ線源等の放射線同位元素を使用したガンマ線厚さ測定装置や、X線源を使用したX線厚さ測定装置があるが、照射エネルギーを制御できるX線厚さ測定装置は、特に高精度で応答速度を要求されるプロセスにおいて使用されている。
【0003】
これらの放射線厚さ測定装置における作業者の放射線防護管理は、国際放射線防護委員会(ICRP)の勧告にしたがって進められ、各国の監督官庁によって放射線防護基準が定められている。最新のICRP勧告としては、1990年に発行されたICRP Pub60があり、これに伴い日本国内法令の改定がなされ、2001年4月より施工されている。
【0004】
X線厚さ測定装置の使用者に対しては、放射線障害防止法の対象ではないが、労働基準法、電離放射線障害防止規則第46条によって、X線作業主任者の選任と、X線源の照射中は装置周囲に立ち入りが出来ない管理区域を設けることが義務付けられている。
【0005】
X線厚さ測定装置の測定原理は、照射X線が物質を通過すると、物質内での散乱、吸収によって透過X線が減衰することを利用している。物質を透過後の透過X線の強度Iは、物質の厚みtの関数になることが知られている。即ち、I=I・e μt ・・・ (1)
の関係が成立する。したがって、両辺の対数をとって次式より被測定対象物の厚さが求められる。
【0006】
t=1/μ・(logI−logI) ・・・ (2)
ここで、吸収係数μは物質固有の値であるので、照射X線の強度Iと物質を透過する透過X線の強度Iを測定することにより物質の厚さtを(2)式から演算によって求めることが出来る。
【0007】
以下、図8を参照して、従来のX線厚さ測定装置について説明する。
【0008】
このX線厚さ測定装置は、被測定対象物102のX線透過量を検出する検出部101と、検出された検出信号から被測定対象物102の厚さtを演算により求める制御部110とから構成される。
【0009】
検出部101は、被測定対象物102を挟み、C型フレーム200の腕の一方の下部に配置されX線を照射するX線源103と、他方の上部に配置され、透過したX線を検出する検出器106と、検出器106の信号を増幅する前置増幅器107及び校正時に使用される基準板設定部105とから構成される。
【0010】
また、制御部110は、検出器107からの検出信号から被測定対象物102の厚さtを求める演算部111と、校正時に基準板設定部105を駆動する基準板駆動部112及びX線源103から照射する照射X線104の強度を安定化し、制御するX線制御部113とから構成される。
【0011】
このようなX線厚さ測定装置は、被測定対象物102の厚さtを測定する測定モードと厚さtの測定精度を校正するモードがあり、演算部111はこの測定モードの設定と、測定モードによって図示しない演算部111に内蔵するプログラムにしたがって、検出部101及び制御部110の各部を制御している。
【0012】
X線厚さ測定装置として使用される場合には、図9に示すようなX線の散乱強度分布図(以後漏洩分布図と言う)を作成し、この装置が設置される現場において、管理区域を設定する。
【0013】
例えば、図9において、同図(a)は検出部101の平面図、同図(B)は正面図で、照射X線104の照射センターPeを中心として、被測定対象物102を透過した透過X線104tの散乱X線による漏洩分布を示したものである。同図の破線104dは、X線源103が最大出力時の漏洩分布図を図示したものである。
【0014】
破線104dは、管理すべき所定の漏洩X線の強度が同一となる空間位置を示し、3次元x、y、z方向に対して表示される。
【0015】
このX線厚さ測定装置を鉄鋼の圧延ライン等に設置して、圧延される被測定対象物102の厚さtを測定する応用例が多数知られている。例えば、冷間圧延ラインにおける圧延機の間に設置される場合の例がある(例えば、特許文献1参照。)。
【0016】
このような小空間に設置される場合にも、X線厚さ測定装置を使用する場合には漏洩分布を測定し、法令に基づく管理区域を設定し、X線の照射中は作業者が管理区域内に立ち入らないようにしておく必要がある。また、このような小空間において、粉塵や熱等が有る悪環境におかれる場合の信頼性向上の技術も知られている(例えば、特許文献2参照。)。
【0017】
【特許文献1】
特公昭63−52964号公報
【0018】
【特許文献2】
実公平4−29365号公報
【0019】
【発明が解決しようとする課題】
近年、設備の統廃合などの機会が増え、X線厚さ測定装置の移設の要求が増えている。この場合、使用中のX線厚さ測定装置も移設される設置場所において、防護基準を満たす必要がある。さらに、防護基準の改定があれば、この改定された防護基準を満たす管理区域を設定し直す必要がある。
【0020】
従来は、こうした移設や防護基準の変更があると、移設場所において防護壁を追加したり、防護基準に対応できる様に管理区域を大きく変更したりする必要があった。
【0021】
このように、X線厚さ測定装置の設置後に、設置場所の設備の変更、被測定対象物の測定範囲の変更等が発生した場合、管理区域の設定を変更する必要が発生し、防護壁の追加や、管理区域の大きさの変更が発生する。
【0022】
しかしながら、従来の測定装置は、このような設置条件の変更があった場合、法令に適合する防護基準を満足する設備の変更を容易に行えるものが知られていなかった。
【0023】
本発明は上記問題点を解決するためになされたもので、被測定対象物の変更、装置の設置場所の変更、さらには、防護基準の変更等があった場合においても、防護壁の増設や、管理区域の変更を容易に行うことが可能なX線厚さ測定装置を提供することを目的とする。
【0024】
【課題を解決するための手段】
上記目的を達成するために、本発明のX線厚さ測定装置は、被測定対象物を挟んで離間して対向配置され、前記被測定対象物にX線を照射するX線源並びに前記被測定対象物を透過した透過X線を検出する検出手段と、前記X線源のX線管の管電圧を制御する管電圧制御手段と、前記X線源のX線管の管電流を制御する管電流制御手段と、前記X線源と前記検出手段との間にあって、厚さ基準を設定する基準板設定手段と、前記検出手段の出力信号から前記被測定対象物の厚さを演算する演算手段と、前記X線源から漏洩される漏洩線量を制御する管電流設定手段とを備え、前記漏洩線量の制御は、前記X線源の照射口を原点とする所定位置までの設定距離または所定位置における設定漏洩線量を前記管電流設定手段に入力するとともに、所定の管電流を演算して前記管電流制御手段に入力することにより、所定位置において所定の漏洩線量となるように管電流を制御するようにしたことを特徴とする。
【0025】
したがって、本発明によれば、管電流設定手段により容易に漏洩X線を制御、設定できるので、X線厚さ測定装置の設置場所の変更や、防護基準の変更等が合った場合においても、防護壁の増設や、管理区域の変更が容易に行えるX線厚さ測定装置を提供することができる。
【0026】
【発明の実施の形態】
以下、本発明による実施の形態について図1乃至図7を参照して説明する。図1は、本は本発明のX線厚さ測定装置に係わる実施の形態の構成を示すブロック図である。
【0027】
同図において、X線厚さ測定装置は、被測定対象物2からの透過X線を検出する検出部1と検出された透過X線の検出信号から被測定対象物2の厚さtを演算する制御部10とから構成される。
【0028】
検出部1は、被測定対象物2を挟み、C型フレーム100の腕の一方の下部に配置され、X線を照射するX線源3と、他方の上部に配置され、X線源3からの照射X線4が被測定対象物2を透過したX線を検出する検出器6と、検出器6によって検出された透過X線の信号を増幅する前置増幅器7及び校正時に厚さ基準となる基準板を照射X線4の光路上に設定する基準板設定部5とから構成される。
【0029】
また、制御部10は、前置増幅器7の検出信号から被測定対象物2の厚さtを求める演算部11と、校正時に基準板設定部5を駆動する基準板駆動部12と、詳細を後述するX線源3から照射される照射X線強度が一定になるようにX線管の管電圧と管電流を安定化するX線制御部13及び照射X線4からの散乱X線によってこの検出部1の周囲に漏洩される散乱X線を制御するための詳細を後述する管電流設定部14とから構成される。
【0030】
通常、X線厚さ測定装置は、少なくとも2種類の運転モードを備えている。一つは、被測定対象物2の厚さを測定する測定モード、もう一つはX線厚さ測定装置の厚さ測定精度を校正する校正モードである。校正モードは、被測定対象物2が存在しないアイドル時間を使用して行われる。
【0031】
この装置は、透過X線を直接計測する測定であるので、高精度の厚さ計測のためには、照射X線4及び検出部1の各構成要素の温度ドリフトを抑える必要があるので、精度を維持するための校正は頻繁に且つ短時間のインターバルで行われる。
【0032】
これらの制御は、演算部11内に内蔵される図示しない演算CPUとこの装置の制御プログラムによって、検出部1及び制御部10の上述した校正要素各部を制御して行われる。
【0033】
次に、X線厚さ測定装置の照射X線4の設定と散乱X線の漏洩分布の制御について、例えば、鉄鋼圧延ラインにおける鋼材の厚さ測定に使用される場合について説明する。図2は照射X線4を設定制御する構成を示す。
【0034】
同図において、X線源3は、X線管球3aと照射口4aにおいて照射X線4のビーム径を決めるコリメータ3b及びこれらを固定配置するケース3cとから構成される。このX線管3aの陽極3a1には、定電圧回路13bから所定の管電圧eが高圧ケーブルを介して印加され、またカソード3a2には、定電流回路13aから所定の定電流iが印加されるように接続されている。
【0035】
また、この定電流回路13aと、定電圧回路13bには演算部11が接続され、被測定対象物2の厚さtの測定範囲により、所定の管電圧e、管電流iが予め設定される。さらに、定電流回路13aには、管電流設定部14が接続され、検出部1周囲の所定の位置における散乱X線の量を制御するように設定される。
【0036】
次に、この照射X線4の設定について説明する。被測定対象物2の厚さtと材質が決まると、所定の透過X線の強度が得られるようなX線源3からの照射X線4の強度とビーム径が設定される。
【0037】
X線強度Ixは、一般的にX線管3aに印加される管電圧eと管電流iによって決まり、下記の関係式が知られている。ここでkは比定数とする。
【0038】
Ix=k・i・e ・・・ (3)
例えば、被測定対象物2が10mm程度以下の鋼板である場合、所定の検出信号を得るためにX線管3aとしては、定格管電圧が100kv、定格管電流が2mA程度のものが選択される。
【0039】
このX線管3aから照射される連続X線のエネルギー分布特性と波長分布特性の例を、夫々図3と図4に示す。図3、図4においてE1、E2、E3は夫々管電圧eが、60kv、80kv、100kvの時の特性を示し、図3に示す様に管電圧Eを大きくすると電離する光量子(Photon)数も増し、総エネルギーも増える。また、波長分布特性は、管電圧が高くなると短波長成分が増える。
【0040】
このような連続X線強度Ixの特性から、図5に示す様に、所定の検出信号が得られるように、被測定対象物2の厚さ測定範囲によってX線管3aの管電圧eを変え、透過X線が減少する被測定対象物2の厚さtの厚いほうでは、管電圧を高く設定して使用される。
【0041】
照射X線4のX線強度Ixが、所定の値に設定されると、次に、検出部1の周囲における散乱X線の漏洩分布図の作成と管電流設定テーブルの作成が行われる。この漏洩分布の測定と管電流設定テーブルの作成について図6乃至図7を参照して説明する。
【0042】
先ず、図6を参照してX線厚さ測定装置の散乱X線の漏洩分布の測定について説明する。同図(a)はX線厚さ測定装置の漏洩分布の平面図、同図(b)はその正面図である。
【0043】
被測定対象物2を挟むC型フレーム100の腕の下部にはX線源3が配置され、ここから照射される照射X線4が被測定対象物2の下部に照射され、被測定対象物2を透過した透過X線4tがCフレーム上部腕部に配置された検出器6に入射する。
【0044】
このとき、照射X線4は被測定対象物2内で吸収されると同時に、一部は散乱X線として輻射され、検出部1の周囲に分布する。このX線の強度分布をサーベイメータ等で測定したものが漏洩分布図である。
【0045】
4d1、4d2は照射X線4の照射口4aのPe点を起点とする漏洩分布図で、同じ管電圧において、管電流iをid1(mA)からid2(mA)に減少変更し、所定の同一の吸収線量Sm(μS:マイクロシーベルト)となる位置をプロットしたものである。なお、漏洩分布測定の単位は、管理区域設定のため吸収線量(μS:マイクロシーベルト)としている。
【0046】
同図に示す様に、同じ管電圧eにおいて管電流iをid1からid2減少させた場合には、その漏洩分布の形状は、ほぼ相似形に変化することを示す。
【0047】
即ち、図3、図4で説明したように管電圧eを変えると、照射X線4のエネルギー分布と波長分布が変るため、散乱X線の分布形状は大きく変化するが、管電圧eが同じであれば、式(3)に示したように、照射X線4の強度は、管電流iに比例し、散乱X線の強度のみが変化する。
【0048】
この漏洩分布図は、X線厚さ測定装置に固有の特性であるため、装置の最大管電圧、最大電流の使用範囲において予め測定し、この漏洩分布図を管電流設定テーブルとして管電流設定部14に格納しておく。
【0049】
次に、再び図1、図7を参照して管電流設定テーブルの作成方法について説明する。管電流設定テーブルは、管電流設定部14で作成される。図1において、管電流設定部14は、管電流設定値を入力する入力部14a、管電流設定テーブルを記憶するメモリ14b、及び管電流設定部14と演算部11及びX線制御部13とのインタフェースを行う管電流演算回路14cとから構成される。
【0050】
図7は、管電流設定テーブルの作成方法を説明する図である。同図において、x、y、zは図6に示したx、y、zと同じく、検出部1の照射X線4の照射口4aのPe点を座標の原点とする漏洩分布を示している。
【0051】
4dは、最大管電圧Emにおいて、管電流ipが最大管電流Ipm時及び最大管電流のα%とするIpn時の、夫々について所定の吸収線量となる漏洩分布を3次元空間において表示したものである。このように、制御する管電圧と管電流の範囲において、予め漏洩分布の形状を確認しておくことが望ましい。
【0052】
このような3次元漏洩分布図を予め測定し、プロットしたデータを使用する所定の管電圧毎にメモリ14bに格納しておく。このようにして作られる管電流設定テーブルは、次のように使用される。
【0053】
同図において、このX線厚さ測定装置の管理区域をPm点から照射口4aのPe点を結ぶ直線状にあるPx点に変更する場合、Px点において同一の吸収線量(μS)とするためには、管電流ipをIpmからIpxに変更すれば良い。このときPx点において所定の吸収線量(μS)にする管電流Ipxは、照射口4aのPe点からPm点までの距離をlm、照射口4aのPe点からPx点までの距離をlxとすると、下記式で表される。
【0054】
Ipx=Ipm・(lx/lm) ・・・ (4)
したがって、所定の位置Px点における吸収線量(μS)は、(4)式によって求めたIpxに変更することによって可能となる。
【0055】
また、Px点での吸収線量を当初設定されていたSm(μS)からSx(μS)に変更する場合の管電流Ipsの設定は、
Ipx=Ipm・Sx/Sm ・・・ (5)
で表されるので、所定の位置において管理する漏洩線量(μS)を変更する場合は、(5)式によって求めた管電流Ipxに変更することによって可能となる。
【0056】
即ち、管理区域の変更が生じた場合にはその位置までの距離lxを、管理する吸収線量(μS)の変更が発生した場合には、吸収線量Sxを入力部14aで設定し、管電流演算回路14cにおいて(4)式、(5)式により相当する管電流を演算によって求める。そして、この値を管電流演算回路14cから定電流回路13aに設定することによって変更が可能となる。
【0057】
次に、このように漏洩分布の測定と管電流設定テーブルが作成されたX線厚さ測定装置の動作について説明する。この装置は通常2つの運転モード、測定もードと校正モードがあることを説明したが、管電流の変更を行うための管電流設定モードを追加することが望ましい。
【0058】
そして、管電流の変更を行う場合には、管電流設定モードを演算部11から指令して管電流演算回路14cに入力する。
【0059】
管電流演算回路14cは、設定された距離lxや、吸収線量Sxから管電流設定テーブルに格納された(4)式、(5)式に示す演算パラメータを抽出して、演算された管電流を定電流回路13aに入力する。
【0060】
管電流設定モードの処理が完了すると、演算部11は、校正モードの処理を行う。この処理は変更された管電流において、基準板を設定して厚さ測定の校正と、この時の検出信号に含まれる雑音成分を演算部11で処理し、図示しない演算部11の表示部に出力する。
【0061】
基準板の設定は、演算部11から基準板駆動部12に基準板設定を指示し、基準板駆動部12から基準板設定部5に内蔵された基準板の設定を指示し、所定の校正処理を行う。
【0062】
以上が完了すると、演算部11は測定モードに入る。被測定対象物2の厚さ測定範囲に基づき、照射X線4のX線強度Iを演算部13からX線制御部13を介して設定する。そして、被測定対象物2が検出部1に挿通されると、その透過X線Iが検出される。演算部11では、この透過X線Iから前述した式(2)に基づく厚さ演算を行い被測対象物2の厚さを求める。
【0063】
このように、予め漏洩分布を測定し、管電流設定テーブルを作成しておくことにより、防護基準の変更や管理区域の変更が発生した場合においても、新たな防護壁の製作や、設置される設備環境の変更を行うことなく装置の使用が可能となる。
【0064】
また、変更後には検出信号の雑音をモニタするようにしているので,所定の測定精度で厚さ測定が可能なことを確認できる。
【0065】
【発明の効果】
以上説明したように、本発明によれば、X線源の管電流を設定、制御する漏管電流設定手段を備えたので、管理区域、漏洩線量の変更を容易に設定できるX線厚さ測定装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態による構成を示す図。
【図2】X線源とX線源を制御するX線制御部の構成を示す図。
【図3】X線源のエネルギー分布の説明図。
【図4】X線源の波長分布の説明図。
【図5】被測定対象物の厚さによって管電圧を切替えることを説明する図。
【図6】X線厚さ測定装置の漏洩線量分布を説明する図。
【図7】X線源の管電流設定テーブルを説明する図。
【図8】従来のX線厚さ測定装置の説明図。
【図9】従来のX線厚さ測定装置の漏洩分布の説明図。
【符号の説明】
1 検出部
2 被測定対象物
3 X線源
3a X線管
3a1 アノード
3a2 カソード
4 照射X線
4t 透過X線
4d、4d1、4d2 漏洩分布
5 基準板設定部
6 検出器
7 前置増幅器
10 制御部
11 演算部
12 基準板駆動部
13 X線制御部
13a 定電流回路
13b 低電圧回路
14 管電流設定部
14a 入力部
14b メモリ
14c 管電流演算回路
101 検出部
102 被測定対象物
103 X線源
104 照射X線
104t 透過X線
104d 漏洩分布
105 基準板設定部
106 検出器
107 前置増幅器
110 制御部
111 演算部
112 基準板駆動部
113 X線制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray thickness measuring apparatus, and more particularly to an X-ray thickness measuring apparatus provided with a means for controlling a leakage dose so that a control area and a change of a leakage dose can be easily set.
[0002]
[Prior art]
In the rolling process of a steel sheet, a radiation thickness measuring device that irradiates a rolled metal sheet with radiation and measures the thickness from the amount of transmitted radiation is used. There are gamma-ray thickness measuring devices that use radioisotopes such as gamma-ray sources and X-ray thickness measuring devices that use X-ray sources. The measuring device is used particularly in a process that requires a high-accuracy response speed.
[0003]
The radiation protection management of workers in these radiation thickness measuring devices is carried out in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and radiation protection standards are set by regulatory authorities in each country. The latest ICRP recommendation is ICRP Pub60 issued in 1990, and the laws and regulations in Japan have been revised accordingly.
[0004]
The use of X-ray thickness measurement equipment is not subject to the Radiation Hazard Prevention Law, but the appointment of the chief of X-ray work and the X-ray source It is obligatory to provide a controlled area around the equipment that is inaccessible during the irradiation.
[0005]
The measurement principle of the X-ray thickness measuring apparatus utilizes that when transmitted X-rays pass through a substance, transmitted X-rays are attenuated by scattering and absorption in the substance. It is known that the intensity I of transmitted X-rays after passing through a substance is a function of the thickness t of the substance. In other words, I = I 0 · e - μt ··· (1)
Is established. Therefore, the thickness of the object to be measured is obtained from the following equation by taking the logarithm of both sides.
[0006]
t = 1 / μ · (logI 0 −logI) (2)
Here, since the absorption coefficient μ is a value inherent to the substance, the thickness t of the substance is calculated from the equation (2) by measuring the intensity I 0 of the irradiated X-ray and the intensity I of the transmitted X-ray transmitted through the substance. Can be obtained by
[0007]
Hereinafter, a conventional X-ray thickness measuring apparatus will be described with reference to FIG.
[0008]
The X-ray thickness measuring device includes a detection unit 101 that detects an X-ray transmission amount of an object to be measured 102, and a control unit 110 that calculates a thickness t of the object to be measured 102 from a detected detection signal. Consists of
[0009]
The detection unit 101 detects an X-ray source 103, which is disposed below one of the arms of the C-shaped frame 200 and irradiates X-rays, and is disposed above the other of the arms of the C-shaped frame 200, and detects transmitted X-rays. , A preamplifier 107 for amplifying the signal of the detector 106, and a reference plate setting unit 105 used for calibration.
[0010]
The control unit 110 includes a calculation unit 111 that calculates the thickness t of the measured object 102 from a detection signal from the detector 107, a reference plate driving unit 112 that drives the reference plate setting unit 105 during calibration, and an X-ray source An X-ray control unit 113 for stabilizing and controlling the intensity of the irradiated X-rays 104 emitted from 103.
[0011]
Such an X-ray thickness measuring apparatus has a measurement mode for measuring the thickness t of the measurement target object 102 and a mode for calibrating the measurement accuracy of the thickness t. The arithmetic unit 111 sets the measurement mode, Each unit of the detection unit 101 and the control unit 110 is controlled according to a program incorporated in the calculation unit 111 (not shown) depending on the measurement mode.
[0012]
When used as an X-ray thickness measuring device, an X-ray scattering intensity distribution diagram (hereinafter referred to as a “leakage distribution diagram”) as shown in FIG. 9 is created. Set.
[0013]
For example, in FIG. 9, FIG. 9A is a plan view of the detection unit 101, and FIG. 9B is a front view of the detection unit 101. It shows a leakage distribution due to scattered X-rays of X-rays 104t. A dashed line 104d in the figure shows a leakage distribution diagram when the X-ray source 103 has the maximum output.
[0014]
A broken line 104d indicates a spatial position where the intensity of the predetermined leaked X-ray to be managed is the same, and is displayed in the three-dimensional x, y, and z directions.
[0015]
There are many known applications in which the X-ray thickness measuring device is installed on a steel rolling line or the like to measure the thickness t of the measured object 102 to be rolled. For example, there is an example in which it is installed between rolling mills in a cold rolling line (for example, see Patent Document 1).
[0016]
Even when installed in such a small space, when using an X-ray thickness measuring device, measure the distribution of leakage, set up a controlled area based on laws and regulations, and control by an operator during X-ray irradiation. It is necessary to keep out of the area. In addition, a technique for improving reliability in such a small space in a bad environment having dust, heat, and the like is also known (for example, see Patent Document 2).
[0017]
[Patent Document 1]
Japanese Patent Publication No. 63-52964
[Patent Document 2]
Japanese Utility Model Publication No. 4-29365
[Problems to be solved by the invention]
In recent years, opportunities such as consolidation and abolition of equipment have increased, and demands for relocation of an X-ray thickness measuring device have increased. In this case, it is necessary to satisfy the protection standard at the installation location where the X-ray thickness measuring device in use is also relocated. In addition, if there is a revision of the protection standard, it is necessary to re-establish a controlled area that satisfies the revised protection standard.
[0020]
Conventionally, when such relocation or changes in protection standards have been made, it has been necessary to add a protective wall at the relocation site or to significantly change the management area so as to comply with the protection standards.
[0021]
As described above, when the equipment at the installation place is changed or the measurement range of the object to be measured is changed after the installation of the X-ray thickness measuring device, the setting of the management area needs to be changed, and the protection wall is required. And the size of the management area changes.
[0022]
However, there has not been known a conventional measuring device that can easily change equipment that satisfies a protection standard complying with laws and regulations when such installation conditions are changed.
[0023]
The present invention has been made in order to solve the above-described problems.Changes of the object to be measured, changes in the installation location of the device, and even when there is a change in the protection standard, etc. It is an object of the present invention to provide an X-ray thickness measuring device capable of easily changing a management area.
[0024]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray thickness measuring apparatus of the present invention is arranged so as to be opposed to and spaced apart from an object to be measured, and an X-ray source for irradiating the object to be measured with X-rays and the X-ray thickness measuring apparatus. Detecting means for detecting transmitted X-rays transmitted through the object to be measured, tube voltage control means for controlling the tube voltage of the X-ray tube of the X-ray source, and controlling the tube current of the X-ray tube of the X-ray source A tube current control unit, a reference plate setting unit between the X-ray source and the detection unit for setting a thickness reference, and a calculation for calculating a thickness of the object to be measured from an output signal of the detection unit Means, and a tube current setting means for controlling a leak dose leaked from the X-ray source, wherein the control of the leak dose is performed by setting a predetermined distance or a predetermined distance to a predetermined position with the irradiation port of the X-ray source as an origin. While inputting the set leakage dose at the position to the tube current setting means, By the tube current calculated and inputted to the tube current control means, characterized by being adapted to control the tube current to a predetermined leak dose at a predetermined position.
[0025]
Therefore, according to the present invention, since the leak X-ray can be easily controlled and set by the tube current setting means, even when the installation location of the X-ray thickness measuring device is changed or the protection standard is changed, It is possible to provide an X-ray thickness measuring device capable of easily adding a protective wall and changing a management area.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing a configuration of an embodiment relating to an X-ray thickness measuring apparatus of the present invention.
[0027]
In the figure, an X-ray thickness measuring device calculates a thickness t of a measured object 2 from a detection unit 1 for detecting a transmitted X-ray from the measured object 2 and a detection signal of the detected transmitted X-ray. And a control unit 10.
[0028]
The detection unit 1 is disposed below one of the arms of the C-shaped frame 100 with the object 2 to be measured sandwiched therebetween, and is provided with an X-ray source 3 for irradiating X-rays and an X-ray source 3 above the other. A detector 6 for detecting X-rays transmitted through the object 2 to be measured by the irradiated X-rays 4, a preamplifier 7 for amplifying the transmitted X-ray signal detected by the detector 6, and a thickness reference for calibration. And a reference plate setting section 5 for setting a reference plate on the optical path of the irradiated X-rays 4.
[0029]
The control unit 10 further includes a calculation unit 11 for obtaining the thickness t of the DUT 2 from the detection signal of the preamplifier 7, a reference plate driving unit 12 for driving the reference plate setting unit 5 during calibration, and An X-ray controller 13 for stabilizing the tube voltage and the tube current of the X-ray tube so that the intensity of the irradiated X-ray emitted from the X-ray source 3 to be described later becomes constant, and the scattered X-rays from the irradiated X-rays 4 It comprises a tube current setting unit 14, which will be described in detail later, for controlling scattered X-rays leaking around the detection unit 1.
[0030]
Usually, the X-ray thickness measuring device has at least two types of operation modes. One is a measurement mode for measuring the thickness of the object 2 to be measured, and the other is a calibration mode for calibrating the thickness measurement accuracy of the X-ray thickness measuring device. The calibration mode is performed using an idle time when the measured object 2 does not exist.
[0031]
Since this apparatus is a measurement for directly measuring transmitted X-rays, it is necessary to suppress the temperature drift of the irradiated X-rays 4 and each component of the detection unit 1 for high-accuracy thickness measurement. Calibration to maintain is performed frequently and at short intervals.
[0032]
These controls are performed by controlling each of the above-described calibration elements of the detection unit 1 and the control unit 10 by a calculation CPU (not shown) incorporated in the calculation unit 11 and a control program of this device.
[0033]
Next, the setting of the irradiated X-rays 4 and the control of the leakage distribution of the scattered X-rays of the X-ray thickness measuring device will be described, for example, in a case where the X-ray thickness measuring device is used for measuring the thickness of a steel material in a steel rolling line. FIG. 2 shows a configuration for setting and controlling the irradiation X-ray 4.
[0034]
In the figure, an X-ray source 3 is composed of an X-ray tube 3a, a collimator 3b for determining a beam diameter of the irradiated X-ray 4 at an irradiation port 4a, and a case 3c in which these are fixedly arranged. A predetermined tube voltage e is applied to the anode 3a1 of the X-ray tube 3a from the constant voltage circuit 13b via a high voltage cable, and a predetermined constant current i is applied to the cathode 3a2 from the constant current circuit 13a. Connected.
[0035]
The arithmetic unit 11 is connected to the constant current circuit 13a and the constant voltage circuit 13b, and a predetermined tube voltage e and a predetermined tube current i are set in advance according to a measurement range of the thickness t of the object 2 to be measured. . Further, a tube current setting unit 14 is connected to the constant current circuit 13a, and is set so as to control the amount of scattered X-rays at a predetermined position around the detection unit 1.
[0036]
Next, the setting of the irradiation X-ray 4 will be described. When the thickness t and the material of the object 2 to be measured are determined, the intensity and the beam diameter of the irradiation X-rays 4 from the X-ray source 3 are set so as to obtain a predetermined transmitted X-ray intensity.
[0037]
The X-ray intensity Ix is generally determined by a tube voltage e and a tube current i applied to the X-ray tube 3a, and the following relational expression is known. Here, k is a ratio constant.
[0038]
Ix = kie 2 (3)
For example, when the measured object 2 is a steel plate having a diameter of about 10 mm or less, an X-ray tube 3a having a rated tube voltage of 100 kv and a rated tube current of about 2 mA is selected to obtain a predetermined detection signal. .
[0039]
FIGS. 3 and 4 show examples of energy distribution characteristics and wavelength distribution characteristics of continuous X-rays emitted from the X-ray tube 3a. In FIGS. 3 and 4, E1, E2, and E3 indicate characteristics when the tube voltage e is 60 kv, 80 kv, and 100 kv, respectively. As shown in FIG. And total energy. In the wavelength distribution characteristics, as the tube voltage increases, short wavelength components increase.
[0040]
From such a characteristic of the continuous X-ray intensity Ix, as shown in FIG. 5, the tube voltage e of the X-ray tube 3a is changed according to the thickness measurement range of the object 2 so that a predetermined detection signal can be obtained. On the other hand, the tube voltage is set to be higher in the case where the thickness t of the measured object 2 in which the transmitted X-rays decrease is larger.
[0041]
When the X-ray intensity Ix of the irradiated X-rays 4 is set to a predetermined value, next, a leak distribution diagram of the scattered X-rays around the detection unit 1 and a tube current setting table are created. The measurement of the leakage distribution and creation of the tube current setting table will be described with reference to FIGS.
[0042]
First, the measurement of the leakage distribution of scattered X-rays by the X-ray thickness measuring device will be described with reference to FIG. FIG. 1A is a plan view of the leakage distribution of the X-ray thickness measuring device, and FIG. 1B is a front view thereof.
[0043]
An X-ray source 3 is arranged below the arm of the C-shaped frame 100 sandwiching the object 2 to be measured, and irradiation X-rays 4 radiated from the X-ray source 3 are radiated to the lower part of the object 2 to be measured. The transmitted X-ray 4t transmitted through the C-frame 2 is incident on the detector 6 arranged in the upper arm of the C frame.
[0044]
At this time, the irradiated X-rays 4 are absorbed in the object 2 to be measured, and at the same time, some are radiated as scattered X-rays and distributed around the detection unit 1. A leakage distribution diagram is obtained by measuring the X-ray intensity distribution with a survey meter or the like.
[0045]
Reference numerals 4d1 and 4d2 denote leakage distribution diagrams starting from the Pe point of the irradiation port 4a of the irradiation X-ray 4. At the same tube voltage, the tube current i is reduced from id1 (mA) to id2 (mA) and changed to a predetermined same value. Is plotted at a position where the absorbed dose Sm (μS: microsievert) is obtained. The unit of the leak distribution measurement is the absorbed dose (μS: microsievert) for setting the control area.
[0046]
As shown in the figure, when the tube current i is reduced from id1 to id2 at the same tube voltage e, the shape of the leakage distribution changes substantially similar.
[0047]
That is, as described with reference to FIGS. 3 and 4, when the tube voltage e is changed, the energy distribution and the wavelength distribution of the irradiated X-rays 4 are changed, so that the distribution shape of the scattered X-rays is largely changed, but the tube voltage e is the same. Then, as shown in Expression (3), the intensity of the irradiated X-rays 4 is proportional to the tube current i, and only the intensity of the scattered X-rays changes.
[0048]
Since this leakage distribution diagram is a characteristic inherent to the X-ray thickness measuring device, it is measured in advance in the range of use of the maximum tube voltage and the maximum current of the device, and this leakage distribution diagram is used as a tube current setting table as a tube current setting section. 14 is stored.
[0049]
Next, a method of creating the tube current setting table will be described with reference to FIGS. 1 and 7 again. The tube current setting table is created by the tube current setting unit 14. In FIG. 1, a tube current setting unit 14 includes an input unit 14 a for inputting a tube current setting value, a memory 14 b for storing a tube current setting table, and a connection between the tube current setting unit 14, the calculation unit 11, and the X-ray control unit 13. And a tube current calculation circuit 14c for performing an interface.
[0050]
FIG. 7 is a diagram illustrating a method of creating a tube current setting table. In the same figure, x, y, and z, like x, y, and z shown in FIG. 6, indicate a leak distribution with the Pe point of the irradiation port 4a of the irradiation X-ray 4 of the detection unit 1 as the coordinate origin. .
[0051]
4d shows, in a three-dimensional space, a leakage distribution in which a predetermined absorbed dose is obtained at the maximum tube voltage Em when the tube current ip is the maximum tube current Ipm and when the tube current ip is α% of the maximum tube current. is there. Thus, it is desirable to confirm the shape of the leakage distribution in advance in the range of the tube voltage and the tube current to be controlled.
[0052]
Such a three-dimensional leakage distribution map is measured in advance, and the plotted data is stored in the memory 14b for each predetermined tube voltage using the data. The tube current setting table thus created is used as follows.
[0053]
In the same figure, when the control area of the X-ray thickness measuring device is changed from the point Pm to the linear Px point connecting the Pe point of the irradiation port 4a, the same absorbed dose (μS) is required at the Px point. In this case, the tube current ip may be changed from Ipm to Ipx. At this time, the tube current Ipx to make a predetermined absorbed dose (μS) at the point Px is as follows: lm is the distance from the Pe point to the Pm point of the irradiation port 4a, and lx is the distance from the Pe point to the Px point of the irradiation port 4a. , And is represented by the following equation.
[0054]
Ipx = Ipm · (lx / lm) 2 (4)
Therefore, the absorbed dose (μS) at the predetermined position Px can be changed by changing it to Ipx obtained by the equation (4).
[0055]
When the absorbed dose at the point Px is changed from the initially set Sm (μS) to Sx (μS), the setting of the tube current Ips is as follows.
Ipx = Ipm · Sx / Sm (5)
Thus, the leakage dose (μS) managed at a predetermined position can be changed by changing the tube current Ipx obtained by the equation (5).
[0056]
That is, when the management area is changed, the distance lx to the position is set, and when the management of the absorbed dose (μS) is changed, the absorbed dose Sx is set in the input unit 14a. In the circuit 14c, a tube current corresponding to the equations (4) and (5) is calculated. The value can be changed by setting the value from the tube current calculation circuit 14c to the constant current circuit 13a.
[0057]
Next, the operation of the X-ray thickness measuring apparatus in which the leak distribution is measured and the tube current setting table is created will be described. Although this device has been described as generally having two operation modes, measurement mode and calibration mode, it is desirable to add a tube current setting mode for changing the tube current.
[0058]
When the tube current is to be changed, a tube current setting mode is instructed from the calculation unit 11 and input to the tube current calculation circuit 14c.
[0059]
The tube current calculation circuit 14c extracts the calculation parameters shown in the equations (4) and (5) stored in the tube current setting table from the set distance lx and the absorbed dose Sx, and calculates the calculated tube current. Input to the constant current circuit 13a.
[0060]
When the processing in the tube current setting mode is completed, the calculation unit 11 performs the processing in the calibration mode. In this process, the reference plate is set for the changed tube current, the thickness measurement is calibrated, and the noise component included in the detection signal at this time is processed by the arithmetic unit 11 and displayed on the display unit of the arithmetic unit 11 (not shown). Output.
[0061]
The setting of the reference plate is performed by the arithmetic unit 11 instructing the reference plate driving unit 12 to set the reference plate, the reference plate driving unit 12 instructing the setting of the reference plate built in the reference plate setting unit 5, and performing a predetermined calibration process. I do.
[0062]
When the above is completed, the calculation unit 11 enters the measurement mode. The X-ray intensity I 0 of the irradiation X-ray 4 is set from the calculation unit 13 via the X-ray control unit 13 based on the thickness measurement range of the measurement target object 2. Then, when the measured object 2 is inserted into the detection unit 1, the transmitted X-ray I is detected. The calculation unit 11 calculates the thickness of the measured object 2 from the transmitted X-ray I based on the above-described equation (2).
[0063]
By measuring the leak distribution in advance and creating a tube current setting table in this way, even if a change in the protection standard or a change in the management area occurs, a new protection wall can be manufactured or installed. The device can be used without changing the equipment environment.
[0064]
In addition, since the noise of the detection signal is monitored after the change, it can be confirmed that the thickness can be measured with a predetermined measurement accuracy.
[0065]
【The invention's effect】
As described above, according to the present invention, since the leak current setting means for setting and controlling the tube current of the X-ray source is provided, the X-ray thickness measurement which can easily set the control area and the change of the leak dose can be easily performed. Equipment can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of an X-ray source and an X-ray control unit that controls the X-ray source.
FIG. 3 is an explanatory diagram of an energy distribution of an X-ray source.
FIG. 4 is an explanatory diagram of a wavelength distribution of an X-ray source.
FIG. 5 is a diagram illustrating switching of a tube voltage depending on the thickness of an object to be measured.
FIG. 6 is a diagram illustrating a leakage dose distribution of the X-ray thickness measuring device.
FIG. 7 is a view for explaining a tube current setting table of an X-ray source.
FIG. 8 is an explanatory view of a conventional X-ray thickness measuring device.
FIG. 9 is an explanatory diagram of a leakage distribution of a conventional X-ray thickness measuring device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detecting part 2 Object under test 3 X-ray source 3a X-ray tube 3a1 Anode 3a2 Cathode 4 Irradiation X-ray 4t Transmission X-ray 4d, 4d1, 4d2 Leakage distribution 5 Reference plate setting part 6 Detector 7 Preamplifier 10 Control part Reference Signs List 11 calculation unit 12 reference plate driving unit 13 X-ray control unit 13a constant current circuit 13b low voltage circuit 14 tube current setting unit 14a input unit 14b memory 14c tube current calculation circuit 101 detection unit 102 object to be measured 103 X-ray source 104 irradiation X-ray 104t Transmission X-ray 104d Leakage distribution 105 Reference plate setting unit 106 Detector 107 Preamplifier 110 Control unit 111 Operation unit 112 Reference plate driving unit 113 X-ray control unit

Claims (5)

被測定対象物を挟んで離間して対向配置され、前記被測定対象物にX線を照射するX線源並びに前記被測定対象物を透過した透過X線を検出する検出手段と、
前記X線源のX線管の管電圧を制御する管電圧制御手段と、
前記X線源のX線管の管電流を制御する管電流制御手段と、
前記X線源と前記検出手段との間にあって、厚さ基準を設定する基準板設定手段と、
前記検出手段の出力信号から前記被測定対象物の厚さを演算する演算手段と、前記X線源から漏洩される漏洩線量を制御する管電流設定手段とを
備え、
前記漏洩線量の制御は、前記X線源の照射口を原点とする所定位置までの設定距離または所定位置における設定漏洩線量を前記管電流設定手段に入力するとともに、所定の管電流を演算して前記管電流制御手段に入力することにより、所定位置において所定の漏洩線量となるように管電流を制御するようにしたことを特徴とするX線厚さ測定装置。
An X-ray source for irradiating the measured object with X-rays and a detecting means for detecting a transmitted X-ray transmitted through the measured object;
Tube voltage control means for controlling a tube voltage of an X-ray tube of the X-ray source;
Tube current control means for controlling the tube current of the X-ray tube of the X-ray source;
A reference plate setting unit that is provided between the X-ray source and the detection unit and sets a thickness reference;
Computing means for computing the thickness of the object to be measured from the output signal of the detecting means, and a tube current setting means for controlling a leakage dose leaked from the X-ray source,
The control of the leak dose is performed by inputting a set leak dose at a predetermined distance or a predetermined position from the irradiation port of the X-ray source to a predetermined position or at a predetermined position to the tube current setting means, and calculating a predetermined tube current. An X-ray thickness measuring apparatus characterized in that a tube current is controlled so that a predetermined leakage dose is obtained at a predetermined position by inputting to the tube current control means.
前記管電流設定手段は、前記X線源の照射口を原点とする所定位置までの距離または所定位置における漏洩線量を入力する入力手段と、
前記管電流を設定するための管電流設定テーブルを格納するメモリと、
前記入力手段によって入力された値及び前記管電流設定テーブルからも求めた所定の管電流値を設定する管電流演算手段とを
備えたことを特徴とする請求項1に記載のX線厚さ測定装置。
The tube current setting means, input means for inputting a distance to a predetermined position or a leakage dose at a predetermined position with the irradiation port of the X-ray source as an origin,
A memory for storing a tube current setting table for setting the tube current,
2. The X-ray thickness measurement according to claim 1, further comprising: a tube current calculation unit configured to set a value input by the input unit and a predetermined tube current value obtained from the tube current setting table. apparatus.
前記管電流設定テーブルは、前記X線源の照射口を原点とする漏洩分布を、前記X線源のX線管の管電圧と管電流をパラメータとして測定し、テーブル化したものであることを特徴とする請求項1または請求項2に記載のX線厚さ測定装置。The tube current setting table is a table obtained by measuring a leakage distribution with the irradiation port of the X-ray source as an origin, using a tube voltage and a tube current of an X-ray tube of the X-ray source as parameters, and tabulating the table. The X-ray thickness measuring device according to claim 1 or 2, wherein: 前記管電流設定テーブルは、前記X線源の照射口を原点とした3次元空間における漏洩分布を前記X線源のX線管の管電圧と管電流をパラメータとしてテーブル化したものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載のX線厚さ測定装置。The tube current setting table is a table in which a leakage distribution in a three-dimensional space with the irradiation port of the X-ray source as an origin is tabulated using a tube voltage and a tube current of an X-ray tube of the X-ray source as parameters. The X-ray thickness measuring device according to any one of claims 1 to 3, wherein: 前記演算手段は、前記管電流設定手段からの管電流設定毎に、前記基準板設定手段により厚さ校正処理を行うとともに、この時の検出信号に含まれるノイズ値を出力するものである請求項1項に記載のX線厚さ測定装置。The calculation means performs a thickness calibration process by the reference plate setting means every time the tube current setting means sets the tube current, and outputs a noise value included in the detection signal at this time. Item 2. The X-ray thickness measuring device according to item 1.
JP2003097717A 2003-04-01 2003-04-01 X-ray thickness measuring device Expired - Fee Related JP4087274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097717A JP4087274B2 (en) 2003-04-01 2003-04-01 X-ray thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097717A JP4087274B2 (en) 2003-04-01 2003-04-01 X-ray thickness measuring device

Publications (3)

Publication Number Publication Date
JP2004301793A true JP2004301793A (en) 2004-10-28
JP2004301793A5 JP2004301793A5 (en) 2006-04-13
JP4087274B2 JP4087274B2 (en) 2008-05-21

Family

ID=33409431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097717A Expired - Fee Related JP4087274B2 (en) 2003-04-01 2003-04-01 X-ray thickness measuring device

Country Status (1)

Country Link
JP (1) JP4087274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107650A (en) * 2012-09-10 2014-09-04 가부시끼가이샤 도시바 X ray thickness meter
WO2015125178A1 (en) * 2014-02-24 2015-08-27 株式会社 東芝 X-ray thickness gauge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162062A (en) * 1974-11-28 1976-05-29 Nippon Electron Optics Lab Banzaino atsumi sokuteihoho oyobi sochi
JP2000162160A (en) * 1998-11-30 2000-06-16 Matsushita Electric Ind Co Ltd X-ray substrate inspecting device
JP2000249770A (en) * 1999-03-01 2000-09-14 Taiichi Tsuwano Ionizing radiation measurement diagram and formation thereof
JP2002263097A (en) * 2001-03-09 2002-09-17 Hitachi Medical Corp Radiographic tomograph
JP2003033346A (en) * 2001-07-09 2003-02-04 Ge Medical Systems Global Technology Co Llc X-ray ct system and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162062A (en) * 1974-11-28 1976-05-29 Nippon Electron Optics Lab Banzaino atsumi sokuteihoho oyobi sochi
JP2000162160A (en) * 1998-11-30 2000-06-16 Matsushita Electric Ind Co Ltd X-ray substrate inspecting device
JP2000249770A (en) * 1999-03-01 2000-09-14 Taiichi Tsuwano Ionizing radiation measurement diagram and formation thereof
JP2002263097A (en) * 2001-03-09 2002-09-17 Hitachi Medical Corp Radiographic tomograph
JP2003033346A (en) * 2001-07-09 2003-02-04 Ge Medical Systems Global Technology Co Llc X-ray ct system and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107650A (en) * 2012-09-10 2014-09-04 가부시끼가이샤 도시바 X ray thickness meter
KR101666470B1 (en) 2012-09-10 2016-10-14 가부시끼가이샤 도시바 X ray thickness meter
WO2015125178A1 (en) * 2014-02-24 2015-08-27 株式会社 東芝 X-ray thickness gauge
JP2015158405A (en) * 2014-02-24 2015-09-03 株式会社東芝 X-ray thickness gauge

Also Published As

Publication number Publication date
JP4087274B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP6132521B2 (en) Subcriticality measuring method and apparatus
TWI643647B (en) Neutron capture therapy system and treatment planning system for neutron capture therapy
JP4831829B2 (en) Method, program, and radiation measuring apparatus for determining radioactivity conversion coefficient or detection limit
US20180311513A1 (en) Dose distribution calculation device, particle beam therapy system, and dose distribution calculation method
KR101326003B1 (en) Radiation measuring system based on optimal measurement geometry and method for measuring radiation
CN104155671A (en) Radiation safety monitoring equipment detection system and design method thereof
KR20190130097A (en) Monitoring system for radiation dose
Klimpki et al. A beam monitoring and validation system for continuous line scanning in proton therapy
JP6686939B2 (en) X-ray inspection device
Siksin Measurements of Bragg Peak Profiles by the DTeT Detector
JP4087274B2 (en) X-ray thickness measuring device
Prisciandaro et al. Utilizing an electronic portal imaging device to monitor light and radiation field congruence
JP2020091293A (en) Dose distribution monitor and radiation irradiation system
JP6249715B2 (en) X-ray diagnostic equipment
JP2008157669A (en) Method, program and instrument for measuring degree of subcriticality
JP7430057B2 (en) Calibration device, treatment planning device and calibration method
EP3035082B1 (en) Method for measuring x-ray energy of an accelerator in an inspection system
JP7378729B2 (en) Neutron beam measurement device and neutron beam measurement method
JP2001033407A (en) X-ray analyzing device
Groppo et al. Determination of the penumbra width of Elekta SRS cone collimator for 6 MV FF and 6 MV FFF energies using gradient-based edge detection
CN102109605A (en) Method for measuring energy of accelerator
KR101875120B1 (en) Apparatus and method for 2 dimension radiation map
JP7083994B2 (en) Neutron beam measuring device and neutron beam measuring method
Yamazaki et al. Method of calculating the amount by which the Z-axis collimator reduces the overranging
JP2011053000A (en) System and program for computing radiation shielding

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees