JP2004301614A - Radiation temperature measuring apparatus - Google Patents

Radiation temperature measuring apparatus Download PDF

Info

Publication number
JP2004301614A
JP2004301614A JP2003094033A JP2003094033A JP2004301614A JP 2004301614 A JP2004301614 A JP 2004301614A JP 2003094033 A JP2003094033 A JP 2003094033A JP 2003094033 A JP2003094033 A JP 2003094033A JP 2004301614 A JP2004301614 A JP 2004301614A
Authority
JP
Japan
Prior art keywords
measurement target
light
rod
measurement
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094033A
Other languages
Japanese (ja)
Other versions
JP4052514B2 (en
Inventor
Toshifusa Suzuki
利房 鈴木
Akio Nakanishi
亮夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2003094033A priority Critical patent/JP4052514B2/en
Publication of JP2004301614A publication Critical patent/JP2004301614A/en
Application granted granted Critical
Publication of JP4052514B2 publication Critical patent/JP4052514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation temperature measuring apparatus capable of highly accurately measuring radiation temperatures. <P>SOLUTION: In the radiation temperature measuring apparatus, light having a measuring wavelength not transmitting through an object to be measured 3 is projected from a light source 16 to the object to be measured, and reflected light from the object to be measured is captured at two different solid angles or more. On the basis of the differences in the moduli of capturing reflected light among them, the n of an approximate expression cos<SP>n</SP>θ of a bi-directional reflectance distribution function is computed to estimate directional hemispherical reflectance and determine emissivity. Then the temperature of the object to be measured is computed by an arithmetic means 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
測定対象の放射率および温度を測定する放射温度測定装置に関するものである。特にシリコンなど半導体基板の放射率および温度のその場測定に有用な放射温度測定装置に関するものである。
【0002】
【従来の技術】
シリコン基板等の測定対象を各種処理中に、その表面温度を測定することは、プロセス上重要なことである。CVD(化学蒸着)等の各種処理が行われるため、表面の粗さ、付着物が変化するなど、状態が変化して、放射率が変動する測定対象の放射温度測定装置が知られている。例えば本出願人による特公平6−76922のように、測定対象(Siウェハ)に光(I)を照射し、その反射光Iを測定しr=I/Iより反射率rを求め、キルヒホッフの法則よりε=1−rとし、放射率εを求め、放射率補正を行い測定対象の温度Tを決定していた。より具体的には、測定対象の裏面からの放射エネルギーに基づいて放射率を演算して、以後この放射率を用いて測定対象の温度を演算手段で演算するようにした放射温度測定装置がある。
【0003】
【発明が解決しようとする課題】
しかし、前記の方法では拡散反射の場合のみ正しい放射率を求めることができる。測定表面が鏡面性の測定対象では(削除)反射光を捕捉できないため測定温度誤差が大きくなるという問題点があった。また、測定対象が加熱される場合、加熱前に測定した放射率を加熱途中においても用いるため、加熱中に放射率が大きく変化した場合は、温度誤差が大きくなるという問題点があった。一方で半導体製造プロセスにおいては精密な温度制御の目的から、放射率、温度のその場測定が要求されている。本発明はかかる問題点を解決するためのもので、放射率および表面状態が未知の測定対象、特にシリコン基板などの表面状態が変動する半導体用基板であっても、その場測定により放射率を求めて高精度な放射測温が可能な放射温度測定装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
この発明は測定対象に測定対象を透過しない測定波長の光を投光する光源と、測定対象からの反射光を異なる2つ以上の立体角で捕捉し、各々の反射光捕捉率の違いから、2方向反射率分布関数の近似式cosθのnを算出して方向半球反射率を推定し、放射率を求め、測定対象の温度を演算手段で演算するようにした放射温度測定装置である。
【0005】
異なる2つ以上の立体角を得るために、請求項1の発明では、測定対象からの反射光を捕捉する受光径の異なる少なくとも2つの石英ロッドを設ける。
【0006】
また、請求項2の発明では、測定対象からの反射光を捕捉するロッドと、ロッドと測定対象との距離を可変する可変手段を設ける。
【0007】
請求項3の発明は、測定対象がシリコン基板であり、測定波長がシリコン基板を透過しない0.9μmであることを特徴とする放射温度測定装置である。
【0008】
請求項4の発明は、ロッドと検出器との間で投光、受光の2つの光信号を伝送する光ファイバを備えたの放射温度測定装置である。
【0009】
請求項5の発明は、集光精度を高めるためにロッドを先端がレンズ状に加工されたロッドレンズとした放射温度測定装置である。
【0010】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成説明図である。図1において、3はシリコン基板等の測定対象物で、加熱装置4で加熱され所定のプロセス温度に制御される。1、2は測定対象に近接して照射光、反射光の光伝送手段を行うロッドで本実施例では石英ロッドを用いており、測定対象から所定の距離に位置する。5は光ファイバーで石英ロッドと光コネクタ6間で光信号を伝送する。7は反射光の光を集光させるためのレンズである。8はレンズ7とフォトダイオードなどの検出素子からなる検出器10の間に設けられ、光を反射させるビームスプリッター等の光路切換手段であり、光路切換手段8と検出器10の間には測定波長の光を透過するフィルター9が設けられている。検出器10からの信号を増幅する増幅器11、アナログ/デジタル信号変換器13間には、幾つかの入力信号を、各々の入力信号に再生できるような方法で一つの出力信号にするマルチプレクサ12が設けられ、演算手段14はデジタル信号に基づいて、後述する演算方法で測定対象の放射率、温度を算出する。演算手段14はマイクロプロセッサ等の制御回路15に接続されており、測定対象に光を照射する光源16のオンオフ制御などを行うようになっている。図1は受光径の異なる2つの石英ロッド1、2を用いた例である。
【0011】
図2は図1の拡大図で測定対象と異なる2つの径(d、d)の石英ロッドにより2つの立体角θ、θが設定される。測定波長は測定対象を透過しない波長を使用する。シリコン基板の場合は測定波長λe=0.9μmを使用する。光源としては、例えばLED(発光ダイオード)、LD(レーザダイオード)、タングステンランプを使用する。測定対象のシリコン基板からの輻射を測定するために光源は点滅可能あるいは測定波長を遮蔽可能としてある。以下に本発明の放射率、温度の算出について石英ロッドが2つの場合を例に説明する。
【0012】
石英ロッド1,2を介して受光し演算手段に入力される信号は、光源がオフ(OFF)の時、入力信号V、測定対象の放射率ε、放射エネルギーL(λ、T)は以下の式で表される。λは測定波長、Tは測定対象の温度である。
石英ロッド1 V10=α・εL(λ、T) 式(1)
石英ロッド2 V20=α・εL(λ、T) 式(2)
光源がオン(ON)の時、
石英ロッド1 V11=α{εL(λ、T)+(1−ε)F(θ)β・I
石英ロッド2 V21=α{εL(λ、T)+(1−ε)F(θ)β・I
F(θ)、F(θ)は幾何学的諸量と測定対象面の2方向反射率分布によって決まる量であり、反射光の捕捉率とよばれる。α、α、β、βは光学的定数で、Iは照射エネルギーである。
【0013】
入力信号の差の比Rは以下の式となる。

Figure 2004301614
式(3)
【0014】
一方、2方向反射率分布係数をf=kcosθで近似(第22回SICE学術講演会(昭和58年)予稿集192頁)する。n、kは定数である。n=0の場合が完全拡散面であり、鏡面反射の場合はn≫1である。θは測定部に対するロッドの立体角で、石英ロッドの径および測定距離lは既知であるので見込み角θは容易に算出可能である。よって入力信号の差の比Rと定数nの関係は一義的に決定できn=G(R)となる。図4は入力信号の差の比Rと定数nの関係を示すグラフである。
【0015】
入力信号の差の比Rは計測量から算出できるので、Rから定数nを求めることができ、次式でF(θ)を算出できる。
Figure 2004301614
式(4)
F(θ)が求まることから、
Figure 2004301614
式(5)
Figure 2004301614
式(6)
の式から温度Tを求めることができる。
【0016】
図3は、距離可変手段により、1つの石英ロッド1と測定対象3の距離を異なるようにしたときの説明図である。距離可変手段は測定対象3をあるいは石英ロッド1を移動させる。距離l、lにおいて、2つの立体角θ、θが設定される。放射率、温度の算出は上述の手順でと同様に行われる。
【0017】
図5は、石英ロッド1、2の先端をレンズ状に加工したロッドレンズ11、12としたときの説明図である。ロッドレンズを用いることにより、ロッド内で散乱する光の集光精度を高められ、より高精度の温度測定が可能となる。
【0018】
【発明の効果】
拡散反射面、鏡面反射面によらず、測定対象の表面状態を予め知ることなしに、その場測定により方向半球反射率を推定して、高精度の放射率測定、放射温度測定が可能となる。また、測定対象基板内に温度分布があったり、表面状態が部分的に異なる場合には、基板を回転(回転信号より)、あるいは移動させて同一個所を受光径の異なる2つのロッドで測定することで温度測定が可能である。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成説明図。
【図2】立体角の説明図。
【図3】この発明の他の実施の形態を示す説明図。
【図4】入力信号の差の比Rと定数nの関係を示すグラフ。
【図5】この発明の他の実施の形態を示す説明図.
【符号の説明】
1,2 石英ロッド
3 測定対象
5 光ファイバ
8 光路切換手段
10 検出器
14 演算手段
16 光源[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiation temperature measuring device for measuring emissivity and temperature of a measurement object. In particular, the present invention relates to a radiation temperature measuring device useful for in-situ measurement of emissivity and temperature of a semiconductor substrate such as silicon.
[0002]
[Prior art]
It is important in a process to measure the surface temperature of a measurement object such as a silicon substrate during various kinds of processing. Since various processes such as CVD (Chemical Vapor Deposition) are performed, a radiation temperature measuring device of a measurement object whose emissivity fluctuates due to a change in state such as a change in surface roughness or a deposit is known. For example, as shown in Japanese Patent Publication No. 6-69922 by the present applicant, a measurement object (Si wafer) is irradiated with light (I 0 ), its reflected light Ir is measured, and the reflectance r is calculated from r = I r / I 0. According to Kirchhoff's law, ε = 1−r, emissivity ε was obtained, emissivity correction was performed, and the temperature T of the measurement object was determined. More specifically, there is a radiation temperature measuring device in which an emissivity is calculated based on radiant energy from a back surface of a measurement target, and thereafter, the temperature of the measurement target is calculated by a calculation unit using the emissivity. .
[0003]
[Problems to be solved by the invention]
However, in the above method, the correct emissivity can be obtained only in the case of diffuse reflection. There is a problem that the measurement temperature error is increased because the measurement object whose mirror surface is a mirror surface cannot capture (delete) reflected light. In addition, when the object to be measured is heated, the emissivity measured before heating is used even during heating, so that if the emissivity greatly changes during heating, there is a problem that a temperature error increases. On the other hand, in the semiconductor manufacturing process, in-situ measurement of emissivity and temperature is required for the purpose of precise temperature control. The present invention is intended to solve such a problem, and the emissivity and the surface state of an object to be measured are unknown, in particular, even for a semiconductor substrate having a fluctuating surface state such as a silicon substrate, the emissivity is measured by in-situ measurement. It is an object of the present invention to provide a radiation temperature measuring device capable of performing highly accurate radiation temperature measurement.
[0004]
[Means for Solving the Problems]
The present invention captures reflected light from a measurement target at two or more different solid angles, and a light source that emits light of a measurement wavelength that does not pass through the measurement target to the measurement target. This is a radiation temperature measuring device that calculates the approximate expression cos n θ of the two-way reflectance distribution function, estimates the directional hemispherical reflectance, obtains the emissivity, and calculates the temperature of the measurement target by the calculating means. .
[0005]
In order to obtain two or more different solid angles, at least two quartz rods having different light receiving diameters for capturing the reflected light from the object to be measured are provided.
[0006]
Further, in the invention of claim 2, a rod for capturing the reflected light from the object to be measured and a variable means for changing the distance between the rod and the object to be measured are provided.
[0007]
A third aspect of the present invention is the radiation temperature measuring apparatus, wherein the object to be measured is a silicon substrate, and the measurement wavelength is 0.9 μm which does not transmit through the silicon substrate.
[0008]
According to a fourth aspect of the present invention, there is provided a radiation temperature measuring apparatus including an optical fiber for transmitting two optical signals, ie, light emission and light reception, between a rod and a detector.
[0009]
A fifth aspect of the present invention is a radiation temperature measuring device in which a rod is a rod lens whose tip is processed into a lens shape in order to enhance the light-collecting accuracy.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration explanatory view showing an embodiment of the present invention. In FIG. 1, reference numeral 3 denotes an object to be measured such as a silicon substrate, which is heated by a heating device 4 and controlled at a predetermined process temperature. Numerals 1 and 2 denote rods for transmitting light and reflected light in proximity to the object to be measured, which are quartz rods in this embodiment and are located at a predetermined distance from the object to be measured. An optical fiber 5 transmits an optical signal between the quartz rod and the optical connector 6. Reference numeral 7 denotes a lens for collecting the reflected light. Reference numeral 8 denotes an optical path switching means such as a beam splitter that is provided between the lens 7 and a detector 10 such as a photodiode and reflects light, and a measurement wavelength is provided between the optical path switching means 8 and the detector 10. Is provided. Between an amplifier 11 for amplifying a signal from the detector 10 and an analog / digital signal converter 13, a multiplexer 12 for converting several input signals into one output signal in such a manner as to be able to reproduce each input signal is provided. The calculating means 14 calculates the emissivity and the temperature of the object to be measured based on the digital signal by a calculating method described later. The calculation means 14 is connected to a control circuit 15 such as a microprocessor, and performs on / off control of a light source 16 that irradiates light to a measurement target. FIG. 1 shows an example in which two quartz rods 1 and 2 having different light receiving diameters are used.
[0011]
FIG. 2 is an enlarged view of FIG. 1 in which two solid angles θ 1 and θ 2 are set by quartz rods having two diameters (d 1 and d 2 ) different from those to be measured. As the measurement wavelength, a wavelength that does not transmit the measurement object is used. In the case of a silicon substrate, a measurement wavelength λe = 0.9 μm is used. As the light source, for example, an LED (light emitting diode), an LD (laser diode), or a tungsten lamp is used. In order to measure the radiation from the silicon substrate to be measured, the light source can be turned on or off or the measurement wavelength can be shielded. The calculation of the emissivity and the temperature of the present invention will be described below by taking as an example the case where there are two quartz rods.
[0012]
The signals received through the quartz rods 1 and 2 and input to the arithmetic means are as follows: when the light source is off (OFF), the input signal V, the emissivity ε of the object to be measured, and the radiant energy L (λ, T) are as follows. It is represented by an equation. λ is the measurement wavelength, and T is the temperature of the measurement target.
Quartz rod 1 V 10 = α 1 · εL (λ, T) Equation (1)
Quartz rod 2 V 20 = α 2 · εL (λ, T) Equation (2)
When the light source is on,
Quartz rod 1 V 11 = α 1 {εL (λ, T) + (1−ε) F (θ 1 ) β 1 · I 0 }
Quartz rod 2 V 21 = α 2 {εL (λ, T) + (1−ε) F (θ 2 ) β 2 · I 0 }
F (θ 1 ) and F (θ 2 ) are quantities determined by the geometrical quantities and the two-way reflectance distribution of the surface to be measured, and are called capture rates of reflected light. α 1 , α 2 , β 1 , and β 2 are optical constants, and I 0 is irradiation energy.
[0013]
The ratio R of the difference between the input signals is given by the following equation.
Figure 2004301614
Equation (3)
[0014]
On the other hand, the two-way reflectance distribution coefficient is approximated by f = kcos n θ (192 pages of proceedings of the 22nd SICE Academic Lecture (1983)). n and k are constants. The case of n = 0 is a perfect diffusion surface, and the case of specular reflection is n≫1. θ is the solid angle of the rod with respect to the measuring unit, and the expected angle θ can be easily calculated because the diameter of the quartz rod and the measurement distance l are known. Therefore, the relationship between the ratio R of the difference between the input signals and the constant n can be uniquely determined, and n = G (R). FIG. 4 is a graph showing the relationship between the ratio R of the difference between the input signals and the constant n.
[0015]
Since the ratio R of the difference between the input signals can be calculated from the measured amount, the constant n can be obtained from R, and F (θ) can be calculated by the following equation.
Figure 2004301614
Equation (4)
Since F (θ 1 ) is obtained,
Figure 2004301614
Equation (5)
Figure 2004301614
Equation (6)
The temperature T can be obtained from the following equation.
[0016]
FIG. 3 is an explanatory diagram when the distance between one quartz rod 1 and the measuring object 3 is made different by the distance varying means. The distance varying means moves the measuring object 3 or the quartz rod 1. At the distances l 1 and l 2 , two solid angles θ 1 and θ 2 are set. Calculation of emissivity and temperature is performed in the same manner as in the above-described procedure.
[0017]
FIG. 5 is an explanatory view when the ends of the quartz rods 1 and 2 are formed into lens lenses 11 and 12 formed into lenses. By using a rod lens, the accuracy of condensing light scattered in the rod can be increased, and more accurate temperature measurement can be performed.
[0018]
【The invention's effect】
Irrespective of the diffuse reflection surface and the specular reflection surface, it is possible to estimate the directional hemispherical reflectivity by in-situ measurement without knowing the surface condition of the measurement object in advance, and it is possible to measure the emissivity and radiation temperature with high accuracy . If there is a temperature distribution in the substrate to be measured or the surface state is partially different, the substrate is rotated (from a rotation signal) or moved to measure the same portion with two rods having different light receiving diameters. This enables temperature measurement.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a solid angle.
FIG. 3 is an explanatory view showing another embodiment of the present invention.
FIG. 4 is a graph showing a relationship between a ratio R of a difference between input signals and a constant n.
FIG. 5 is an explanatory view showing another embodiment of the present invention.
[Explanation of symbols]
Reference numerals 1 and 2 Quartz rod 3 Measurement target 5 Optical fiber 8 Optical path switching means 10 Detector 14 Operation means 16 Light source

Claims (5)

測定対象に測定対象を透過しない測定波長の光を投光する光源と、測定対象からの反射光を捕捉する受光径の異なる少なくとも2つの石英ロッドと、受光した反射光を検出する検出器と、異なる少なくとも2つの石英ロッドの捕捉率の違いから2方向反射率分布関数の近似式cosθのnを算出して方向半球放射率を推定し、放射率を求め、測定対象の温度を演算する演算手段を備えた放射温度測定装置。A light source that emits light having a measurement wavelength that does not pass through the measurement target to the measurement target, at least two quartz rods having different light receiving diameters that capture reflected light from the measurement target, and a detector that detects the received reflected light, Calculate n of the approximate expression cos n θ of the two-way reflectance distribution function from the difference in the capture rates of at least two different quartz rods, estimate the directional hemispherical emissivity, obtain the emissivity, and calculate the temperature of the measurement target. A radiation temperature measuring device provided with a calculating means. 測定対象に測定対象を透過しない測定波長の光を投光する光源と、測定対象からの反射光を捕捉するロッドと、ロッドと測定対象との距離を可変する可変手段と、受光した反射光を検出する検出器と、少なくとも2つの異なる距離における反射光捕捉率の違いから、2方向反射率分布関数の近似式cosθのnを算出して方向半球反射率を推定し、放射率を求め、測定対象の温度を演算する演算手段とを、備えた放射温度測定装置。A light source that emits light of a measurement wavelength that does not pass through the measurement target to the measurement target, a rod that captures reflected light from the measurement target, a variable unit that changes a distance between the rod and the measurement target, and receives the reflected light. From the detector to be detected and the difference in the capture ratio of the reflected light at at least two different distances, n of the approximate expression cos n θ of the two-way reflectance distribution function is calculated to estimate the directional hemispherical reflectance, and the emissivity is determined. And a calculating means for calculating the temperature of the object to be measured. 前記測定対象がシリコン基板であり、前記測定波長が0.9μmであることを特徴とする請求項1または請求項2記載の放射温度測定装置。The radiation temperature measuring device according to claim 1, wherein the measurement target is a silicon substrate, and the measurement wavelength is 0.9 μm. 前記ロッドと前記検出器との間で投光、受光の2つの光信号を伝送する光ファイバを備えたことを特徴とする請求項1乃至請求項3記載の放射温度測定装置。4. The radiation temperature measuring device according to claim 1, further comprising an optical fiber for transmitting two optical signals of light emission and light reception between the rod and the detector. 前記ロッドを先端がレンズ状に加工されたロッドレンズとした請求項1乃至請求項4記載の放射温度測定装置。The radiation temperature measuring device according to claim 1, wherein the rod is a rod lens whose tip is processed into a lens shape.
JP2003094033A 2003-03-31 2003-03-31 Radiation temperature measuring device Expired - Fee Related JP4052514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094033A JP4052514B2 (en) 2003-03-31 2003-03-31 Radiation temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094033A JP4052514B2 (en) 2003-03-31 2003-03-31 Radiation temperature measuring device

Publications (2)

Publication Number Publication Date
JP2004301614A true JP2004301614A (en) 2004-10-28
JP4052514B2 JP4052514B2 (en) 2008-02-27

Family

ID=33406689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094033A Expired - Fee Related JP4052514B2 (en) 2003-03-31 2003-03-31 Radiation temperature measuring device

Country Status (1)

Country Link
JP (1) JP4052514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697638A (en) * 2013-12-06 2015-06-10 北京智朗芯光科技有限公司 MOCVD equipment real-time temperature measurement system self-calibration method
CN104697636A (en) * 2013-12-06 2015-06-10 北京智朗芯光科技有限公司 film growth self-calibration real-time temperature measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697639B (en) * 2013-12-06 2018-12-07 北京智朗芯光科技有限公司 A kind of MOCVD device real-time temperature measurement system self-calibrating device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697638A (en) * 2013-12-06 2015-06-10 北京智朗芯光科技有限公司 MOCVD equipment real-time temperature measurement system self-calibration method
CN104697636A (en) * 2013-12-06 2015-06-10 北京智朗芯光科技有限公司 film growth self-calibration real-time temperature measurement device

Also Published As

Publication number Publication date
JP4052514B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP3516922B2 (en) Method and apparatus for active pyrometry of the temperature of an object whose emissivity varies with wavelength
KR100630025B1 (en) A sensor for measuring a substrate temperature
US5310260A (en) Non-contact optical techniques for measuring surface conditions
US5769540A (en) Non-contact optical techniques for measuring surface conditions
JP2912157B2 (en) Object temperature measurement method
JP4736007B2 (en) Method and apparatus for determining emissivity of semiconductor wafer
WO1992019944A1 (en) Non-contact optical techniques for measuring surface conditions
US7837383B2 (en) Apparatus and method for real time measurement of substrate temperatures for use in semiconductor growth and wafer processing
JP2007108183A (en) Self-calibrating temperature probe
TW202001208A (en) Method and apparatus for measuring temperature
TW201300746A (en) Compensation of stray light interference in substrate temperature measurement
KR20150021119A (en) Reduction of radiation thermometry bias errors in a cvd reactor
KR20200097788A (en) Wafer surface curvature determination system
WO2009028956A1 (en) Method and device for inspection of object surfaces
TWI628730B (en) Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction
JP4052514B2 (en) Radiation temperature measuring device
JP4918949B2 (en) Apparatus and method for determining the amount of stray radiation in a heat treatment furnace
US10731973B2 (en) Apparatus for automatically and quickly detecting two-dimensional morphology for wafer substrate in real time
US20140152841A1 (en) Method and system for emissivity determination
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP2004020337A (en) Temperature measuring instrument
US7742171B2 (en) Reflectivity/emissivity measurement probe insensitive to variations in probe-to-target distance
JP2000105152A (en) Method and apparatus for measurement of temperature
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
TW202130969A (en) Optical measurement device and optical measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees