JP2004300904A - Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor - Google Patents

Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor Download PDF

Info

Publication number
JP2004300904A
JP2004300904A JP2003127570A JP2003127570A JP2004300904A JP 2004300904 A JP2004300904 A JP 2004300904A JP 2003127570 A JP2003127570 A JP 2003127570A JP 2003127570 A JP2003127570 A JP 2003127570A JP 2004300904 A JP2004300904 A JP 2004300904A
Authority
JP
Japan
Prior art keywords
water
well
stage
sampling
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003127570A
Other languages
Japanese (ja)
Inventor
Tasuku Katsuta
翼 勝田
Masao Fukuda
将男 福田
Norio Nomura
教雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2003127570A priority Critical patent/JP2004300904A/en
Publication of JP2004300904A publication Critical patent/JP2004300904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a well-boring artery simultaneous multi-stage water intake and distribution system, and an apparatus therefor. <P>SOLUTION: According to the well-boring artery simultaneous multi-stage water intake and distribution system, and the apparatus therefor, in water intake wells each having a plurality of or multi-stage arteries as intake-enabled water-bearing layers, at least two-stage intake areas are secured, and water is taken in individually. Next the intake water is directly delivered, or delivered after treatment as needed. At this time the quality of raw water collected from intake wells of the plurality of or multi-stage arteries is controlled and the resultant ionized water is supplied or city water is supplied, so that a substitutive water supply system is ensured in order to cope with unexpected events of the wells designated for water intake. To form a water feeding device from the multi-stage well, the well-boring artery simultaneous multi-stage water intake and distribution apparatus is applicable. The apparatus employs well pipes each formed of an irregular pipe body corresponding to the respective water collecting areas, and pump casings which are housed in the pipe bodies and function to separately seal the respective water-bearing areas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、採水可帯水層として複数乃至多段水脈を有する少なくとも一本の井戸より、目的別の水質を有する用水を同一或いは複数の水帯より得る、資源水の有効利用に関する新規な常時採水配水システム及びその装置に関する。
【0002】
【従来の技術】
従来、建設工事などでの湧水対策として、複数の井戸を掘り揚水を行うディープウエル工法、或いは比較的浅い地層の水位を対象とするウエルポイント工法など土木工事などで仮設工事手段として慣用されている。
一方、同様な目的とするが揚水コスト軽減などの面で複数の帯水層より層別揚水の装置として、特開平7−62696号公報には、従来この分野ではフィルターやスクリーンが泥水などの細粒度分の付着による目詰まりなどに対するメンテナンス手段で対策面からの改良方法が提案されている。
【0003】
一方、地下水のサンプリング方法として、単一井戸の複数の帯水層から選択的にサンプリングする施工法が特開平9−41869号公報に発表されている。
この公報によれば、地下水の水質調査において従来深度の異なる帯水層からのサンプリングが多大の手間を要したが、この提案によればこれを容易にするために採水ケーシングの改良を施した内容である。
更に、地下水の汚染調査、地下水の保有熱エネルギーの調査並びに地盤掘削工事に伴う地下水処理などを目的として、地中に存在する複数の帯水層から地下水を個別に揚水する装置で、その中で採水時の遮水機構にも工夫が施された提案として、特開平10−259797号公報に報じられている。
【0004】
以上に例示を交え説明したとおり、これらはいずれも複数の地下水帯水層からの採水例を示しているものの、その目的は地下水の調査か土木工事絡みの揚水を対象としての提案であり、本発明はその目的及び構成並びに着眼点において基本的に異なる分野である。
即ち、本発明は水需要の多様化の時代、省エネ・省資源の見地から地下水を有効に活用するために、少なくとも1本の元井戸が保持する複数の地下水帯水層から目的を異にする利用水分野を開拓し、これを有効に資源として活用する新規な配水システム及びその装置に関するものである。
【0005】
【課題を解決するための手段】
本発明者等は、このような観点から上記目的を達成するため鋭意研究し、各用水の要求水質を検討し、例えば飲料水用水分野、中水用水分野、緑化・庭園用水分野と定めて、各帯水層からの用途分野別採水を第一の目的とするものである。即ち、飲料水用水分野としては水質的に有利な地下深度150〜200mに存在する深層水帯の地下水、中水用水分野としては地下深度100〜120mに存在する中間層水帯の地下水、緑化・庭園用水としては地下深度50〜80mに存在する表流水帯の地下水などが基本的には夫々好ましいことを突き止めた。
【0006】
本発明の第二の目的は、上記の通り地下深度が異なれば地下水の水帯により有効採水量が異なり且つ水質も変動するが、適宜な方策による水処理を施し目標とする水質に改善することにより、使用目的範囲を拡大する事が出来る。また、同時に自己バックアップ体制を構築する事が可能となる。
即ち、これら夫々の地下水帯水層より得られる各種の地下水の中で、例えば適切な水処理手段を施す事により飲料水レベルにグレードアップする事により、少なくとも一つの同一起点で採水可能な複数の原水を活用して、自己バックアップ体制を構築出来る利点がある。
この様な目標の基に条件を取り入れ、且つ夫々の配水システムの基幹として組み込み、総合的な検討を全うした後に本願発明を完成した。
【0007】
即ち、本発明の要旨とするところは、採水可帯水層として複数乃至多段水脈を備えた採水井戸に於いて、少なくとも二段の採水域を設けて個々に採水し、次いで直接配水するか或いは必要に応じ処理を施した後、配水することを特徴とする井戸水同時多段採水配水システム及びその装置にある。
【0008】
また、上記採水域で少なくとも一段の飲料水適質可域及び/又は不適質域から同時に採水することを特徴とし、更には該採水域より個々に採水するに際し、特定部取水ストレーナー機能を設けた井戸管を採用することを特徴とする井戸水同時多段採水配水システムとするものである。
一方、上記複数乃至多段水脈よりの夫々の採水井戸より得られる原水は、水質に応じ適切な処理を施す事により他の目的の供給水に代替して供給可能であり、予め代替供給体制に設営した市水の供給とも相俟って、予め定めた目的採水井戸の不測事態に対応出来る緊急配水体制を備えることも本発明の特徴である。
【0009】
本発明に於いて、採水可帯水層として複数乃至多段水脈を備えた採水井戸とは、対象となる採水可能な帯水層が存在する事が重要である。このために、予め地下深度のボーリング地質調査を行い、少なくとも電気検層器などによる探査で透水層と遮水層が明確に確認出来る事を前提とする。
通常の場合、水源として活用出来る地層の確認には、探査対象地点にてボーリングを行い地質調査と各深度における地質の比抵抗値(Ω・m)を測定して作成したボーリング地質柱状図により採水可能な帯水層を類推することになる。
【0010】
本発明で飲料水適質可域とは、対象とする採水可帯水層より採水した水質でそのまま飲用適質の水質が具備されている原水もあるが、何らかの水処理を施す事により飲用適質となる原水も存在する。本発明では、この様な飲用適質可の原水が採水出来る場合には何れも本発明の対象となる。
これと併行して、飲用適質可でない原水に於いては飲用不適質域の原水として飲用目的外の用水として活用するものである。更に、水処理を施さない飲用適質可原水についても、同様に飲用不適質な分野の用水として活用する事が出来る。
【0011】
また本発明に於いては、複数乃至多段水脈よりの夫々の採水井戸より得られた原水水質を制御して得た製水を、当初の目的分野以外の用水に援用する事が出来る。この事は、言い換えれば例えば本来適当な水処理を施せば飲用適質可水と出来る採水原水であれば、例えば緊急時には処理水として目的以外である飲料水分野の用水に振り向ける事が出来る。
この様に、一本の採水井戸に於いても多段の有効水脈を活用することにより、水質面特に飲料水の分野で同一の井戸管内の採水範囲内で自己バックアップ体制を完備出来る点に本発明の特徴の一つがある。
【0012】
本発明で、飲用適質可能な採水原水より飲料水を製水するには各種方式が採用されるがその代表例を示すと、微細孔濾過膜を主体とした濾材を組み込んだ精密濾過フィルターを採用した濾過装置により対処できる点に本発明の特徴の一つがある。
本発明で、飲用適質可能な採水原水より飲料水を製水するには各種方式が採用されるがその代表例を示すと、微細孔濾過膜を主体とした濾材を組み込んだ精密濾過フィルターを採用した濾過装置により対処できる。
具体的には、濾過膜の代表として有機膜ではポリスルホン、ポリプロピレン、ポリアクリロニトリルなどの素材を使用し、0.05ないし0.3ミクロンの微細孔を有する各種中空糸膜やメンブレン膜などで構成されたフィルターユニットを対象とする事が出来る。
更に、必要に応じ低圧水銀ランプなどによる紫外線照射、オゾンや二酸化塩素による殺菌などの手段と併用することも可能で、場合により活性炭吸着システムを設けることも本願の対象となる。
【0013】
【発明の実施の形態】
以上に述べた本発明の井戸水脈同時多段採水並びに配水システムを、その代表構成例を図1乃至図5に示す手順を参照しながら以下の如く説明する。
図1は、地中に掘削したボーリング孔に異型井戸管を埋設した断面図の全体像と周辺地層模式図を示している。本図面に示すとおり、予め取得した調査ボーリ

Figure 2004300904
ングマシーンにて地下深度130m(L4)のボーリング孔(H)を確保した。
これに層別取水を目的として、夫々の部分井戸管径として段階的に最上部内径
Figure 2004300904
(T3)鉄管とし、予め調査した各層長に調整加工し管体異型部に接合テーパー加工を施した。
一方、予め異型管体各部に装着する揚水管を挿入し固着した内部遮水プレート(図3に示すK1、K2)を収納可能とする為に、必要な付帯加工を管体内部に施した夫々の異径管体部分(C1、C2、C3)を逐次嵌着溶接で接続固定し、本発明の異径ケーシング(C)を構成した。
【0014】
図1に於いて、符号アは第1水帯部、イは第2水帯部、ウは第3水帯部の夫々独立の水帯部を示す。
異径ケーシング(C)の周辺は、遮水処置とし第1水帯部深度方向に漸次第3水帯部に掛け地面表層埋め戻し部(1−0’)、遮水埋め戻し部として主としてベントナイト材を使用して第1遮水加工(1−1’)、第2遮水加工(1−2’)、第3遮水加工(1−3’)を施している。
また、透水処置としては砂利埋め戻しとし、第1透水加工(2−1’)、第2透水加工(2−2’)、第3透水加工(2−3’)を施した。
【0015】
又、図1に於いて示される記号は、地表面(GL)表層部(1−0)、第1遮水層(1−1)、第2遮水層(1−2)、第3遮水層(1−3)を示し、帯水層としては第1帯水層(2−1)、第2帯水層(2−2)、第3帯水層(2−3)、第4帯水層(2−4)を夫々示している。
更に、図1に於いて、地下深度方向に第1層目の遮水層(1−1)は地下約40m(L1)に位置し、層の厚さは約6m、第2層目の遮水層(1−2)は地下約76m(L2)に位置し、厚の厚さは約10m、第3層目の遮水層(1−3)地下約114mに位置し、層の厚さは約16mを示した。
同図で異型ケーシング(C)のC1部(ア)はストレーナ(G1)を通じ帯水層(2−1)内の自由水にて充満される。C2部(イ)及びC3部(ウ)には夫々のストレーナ(G2及びG3)を通じ帯水層(2−2及び2−3)内の被圧水にて充満される。
【0016】
図2は、揚水ポンプケーシングとポンプの設置施工断面図と周辺地層模式図を示す。
図2では、遮水シール盤(K1及びK2)に井戸管(N1、N2、N3)を挿入し、異型ケーシング(C)との間隙を水管シール剤(S1及びS2)にて内管部を処置した。
この各異径管体部分(C1、C2、C3)には夫々導入水口としてストレーナー(G1、G2、G3)を設け、夫々各井戸管内に水中ポンプ(P1、P2、P3)を設営した。
かくして、1本の井戸より夫々独立の三段にわたる取水域としてア、イ、ウを形成した。
【0017】
この設定で、夫々の各水域にて採水される用水を、本実施例で以下に示す5図で説明する通り、アは深度50m深度水帯より無濾過の散水用水とし、ウは100m深度水帯より前濾過処理を施した後に中水用水とし、ウは150m深度水帯より高度処理後飲料用水に活用する事が出来た。
図3は、本発明の実施例で、異型ケーシング(C)内に挿入する3本の各揚水ポンプケーシングをセットした状態の斜視図を示したものである。同図に於いて、3本の揚水ポンプケーシングは、第1水帯部の揚水ポンプケーシング(N1)、第2揚水ポンプケーシング(N2)、第3揚水ポンプケーシング(N3)でこれらのケーシングを束ねたものを示している。
【0018】
図4の(イ)図は、第3図に於けるI−I’断面図を示し、(ロ)図は第3図に於けるII−II’断面図を示す。
図3に於いて示される部分図は、揚水ケーシングを予め遮水シール盤(K1、K2)に固定してプレハブ機材としたものである。
Figure 2004300904
図5は本発明の実施例で、(イ)図は第1水帯部(ア)の深度50m深度水帯より散水用水を得る為に原水を無濾過にて使用する例、(ロ)図は第2水帯部(イ)100m深度水帯より中水用水を得る為に前濾過処理を施して使用する例を示したものである。
(ハ)図は、第3水帯部(ウ)150m深度水帯より飲料用水を得る為に高度処理を施して使用する例を示したものである。
【0019】
図5に於いて、ケーシング(C)内の各水帯部に設置した井戸ポンプ(P1、P2、P3)により揚水された原水a、b、cは、夫々一旦原水バルブ(V)にて調整した後、用途目的に応じて(イ)、(ロ)、(ハ)に示す模式図にある如く水処理或いは無処理にて夫々に適応する水質である製水a’、b’、c’を得た。
図5で、Cは異型ケーシング、Vは原水バルブ、P1は第1水帯部井戸ポンプ、P2は第2水帯部井戸ポンプ、P3は第3水帯部井戸ポンプを示している。P5、P6はいずれも原水ポンプを示し、P4、P7、P8は夫々配水ポンプを示している。
また、5図に於いて30は原水槽、31は濾過塔、32は膜濾過装置、33は濾過水槽、34は滅菌剤注入器を夫々指称している。
上記の設営に基ずき、此れを活用して以下の通り本発明を実施した。
【0020】
【実施例】
実施例1
図2に示す夫々の井戸ポンプP1に5.5KWの水中ポンプ、P2に5.5KWの水中ポンプ、P3に5.5KWの水中ポンプを取り付け、夫々毎分100L/分、100L/分、80L/分にて夫々の井戸原水を汲み上げた。いずれも外見では透明な原水が得られている。図5のフローシートに示すシステムに従い、いずれの工程にも200リットルの薬品タンクに12%の次亜塩素酸ソーダ溶液を用意し、16Wの薬品注入ポンプにて夫々の原水ポンプに連動して滅菌剤が注入されるようにセットされている。
第1水帯の原水以外は、滅菌処理と併行して水処理を施した。従って、第1水帯部(ア)の原水は、井戸ポンプ(P1)にて汲み上げた後原水槽に受け1.5KWの配水ポンプ(P4)にて送水した。
【0021】
又、第2水帯部(イ)の原水は、井戸ポンプ(P2)にて汲み上げた後原水槽に受け、更に1.5KWの原水ポンプ(P5)にて砂濾過槽に移送して濾過処理後、処理水槽に導入し1.5KWの配水ポンプ(P7)にて送水した。この状態にて連続24時間運転を行い処理前後のサンプル水を採取した。
更に、第3水帯部(ウ)の原水は、井戸ポンプ(P3)にて汲み上げた後原水槽に受け、更に1.5KWの原水ポンプ(P6)にて砂濾過槽並びに膜処理装置に移送して連続的に粗濾過及び精密高度濾過処理後、処理水槽に導入し1.5KWの配水ポンプ(P8)にて送水した。
この状態にていずれも連続24時間運転を行い、第1水帯部を除き原水処理前後のサンプル水を採取し夫々サンプル水を分析した結果を下記の表1に示した。
【0022】
【表1】
Figure 2004300904
上記表1に於いて、*520は第1水帯(50m)域の汲み上げ時の原水水質を示したものであるが、原水槽にて滅菌処理を施した後の一般細菌は0を示した。
【0023】
表1の結果から、本発明の第1の目的とする飲料水用水分野、中水用水分野、緑化・庭園用水が1本の井戸水で達成出来る事、しかも例えば飲料水分野の水質の給水に於いても、同一井戸の複数水帯域よりの採水により交互に代替可能であることをも確認する事が出来た。
これらの実態は1本の井戸により、本発明の第2の目的とする緊急時のバックアップ体制を組める可能性を示している点で十分に達成可能であり、更には従来行われていない水資源を有効に活用出来る点で極めて有用な発明である。
【0024】
本発明の第一の特徴は、省エネ省資源にして小スペースながら大量の多目的井戸水の供給が可能となる点にあり、従来では行われていない1本の井戸にて数本の井戸に匹敵する利点がある。
更に、第二の特徴として同一系内にて互いの原水水質を予め検討し、代替可能な処理体制を構築する事により緊急時にも有用な自己バックアップが可能となる点である。
【0025】
【発明の効果】
本発明は、新規な井戸水供給システムに関するもので、1本の基井戸にて複数の帯水域を設け、夫々独立に採水し必要に応じ水処理を施し配水するものである。
この方式により、複数の目的別需要に対応出来る点に特徴を有する。例えば、飲料水と散水用とか、中水用と散水用など原水の水質により設定出来、必要に応じ適切な水処理を施し上位の水質に改善し供給する事が可能となる。
また、同一井戸からの供給水間で水質のコントロール範囲内で当初の目的外の用途に変更可能となれば緊急時のバックアップ体制が可能となる。
天然資源としての井戸水を有効に活用出来る点で極めて有用な発明である。
従って、本発明の効用は工業的に極めて著大であるものと確信する。
【図面の簡単な説明】
【図1】本発明の実施例で、地中に掘削したボーリング孔に異型井戸管を埋設した断面図の全体像と周辺地層模式図を示したものである。
【図2】本発明の実施例で、揚水ポンプケーシングとポンプの設置施工断面図と周辺地層模式図を示したものである。
【図3】本発明の実施例で、異型ケーシング内に挿入する3本の各揚水ポンプケーシングをセットした状態の斜視図を示したものである。
【図4】イ図は、第3図に於けるI−I’断面図を示し、ロ図は第3図に於けるII−II’断面図を示す。
【図5】本発明の実施例で、イ図は50m深度水帯より散水用水を得る為に原水を無濾過にて使用する例、ロ図は100m深度水帯より中水用水を得る為に前濾過処理を施して使用する例を示し、ハ図は、150m深度水帯より飲料用水を得る為に高度処理を施して使用する例を示したフローシートである。
【符号の説明】
a、b、c 原水
a’、b’、c’ 製水
C 異型ケーシング
C1、C2、C3 異径管体部分
D 掘削径
GL 地表面
G1、G2、G3 ストレーナー
H ボーリング孔
K1、K2 遮水シール盤
L1、L2、L3、L4 地下深度
N1、N2、N3 揚水ポンプケーシング
P1、P2、P3 井戸ポンプ
P5、P6 原水ポンプ
P4、P7、P8 配水ポンプ
S1、S2 水管シール剤
T1、T2、T3 鉄製井戸管径
t ポンプケーシング径
V 原水バルブ
1−0 表層部
1−0’ 表層埋め戻し部
1−1、1−2、1−3 遮水層
1−1’、1−2’、1−3’ 遮水加工
2−1、2−2、2−3、2−4 帯水層
2−1’、2−2’、2−3’、2−4’ 透水加工
30 原水槽
31 濾過塔
32 濾過装置
33 濾過水槽
34 滅菌剤注入器
ア 第1水帯部
イ 第2水帯部
ウ 第3水帯部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel constant use method for effectively using resource water, which obtains service water having different water qualities from the same or a plurality of water zones from at least one well having a plurality of multistage water veins as a sampling aquifer. The present invention relates to a water sampling and distribution system and a device thereof.
[0002]
[Prior art]
Conventionally, as a countermeasure against spring water in construction work, it is commonly used as a temporary construction method in civil engineering work such as the deep well method of digging and pumping multiple wells or the well point method targeting the water level of relatively shallow stratum. I have.
On the other hand, Japanese Patent Application Laid-Open No. 7-62669 discloses a device for pumping by stratification from a plurality of aquifers in order to reduce the pumping cost for the same purpose. There has been proposed an improvement method from a countermeasure side in maintenance means for clogging due to adhesion of a particle size.
[0003]
On the other hand, Japanese Patent Application Laid-Open No. 9-41869 discloses a construction method for selectively sampling groundwater from a plurality of aquifers in a single well.
According to this publication, sampling from aquifers with different depths conventionally required a great deal of time in groundwater quality surveys, but according to this proposal, the sampling casing was improved to facilitate this. Content.
Furthermore, for the purpose of groundwater pollution survey, investigation of groundwater retained thermal energy, and groundwater treatment accompanying ground excavation work, etc., it is a device that individually pumps groundwater from multiple aquifers existing underground. Japanese Patent Application Laid-Open No. Hei 10-259797 is reported as a proposal in which the water shielding mechanism at the time of water sampling is devised.
[0004]
As described above with examples, all of them show examples of water sampling from multiple groundwater aquifers, but the purpose is to propose groundwater investigation or pumping involving civil engineering work, The present invention is a field that is fundamentally different in its purpose and configuration, and in its point of view.
That is, in the era of diversification of water demand, in order to effectively utilize groundwater from the viewpoint of energy saving and resource saving, the purpose is different from a plurality of groundwater aquifers held by at least one former well. The present invention relates to a new water distribution system and a device for cultivating a water use field and utilizing the water effectively as resources.
[0005]
[Means for Solving the Problems]
The present inventors have studied diligently to achieve the above-mentioned object from such a viewpoint, and examined the required water quality of each water, for example, a drinking water field, an intermediate water field, a greening / garden water field, The primary purpose is to collect water from each aquifer by application field. That is, in the field of drinking water, groundwater in the deep water zone existing at a depth of 150 to 200 m, which is advantageous in terms of water quality, and in the field of medium water, groundwater in the middle water zone existing at a depth of 100 to 120 m, greening and It has been found that, as garden water, groundwater in a surface water zone existing at a depth of 50 to 80 m is basically preferable.
[0006]
The second object of the present invention is to improve the target water quality by performing water treatment by an appropriate measure, although the effective water extraction amount differs depending on the groundwater zone and the water quality fluctuates when the underground depth differs as described above. Thereby, the intended use range can be expanded. At the same time, a self-backup system can be established.
That is, among various types of groundwater obtained from each of these groundwater aquifers, for example, by upgrading to a drinking water level by applying an appropriate water treatment means, a plurality of water that can be sampled from at least one same starting point is obtained. There is an advantage that a self-backup system can be built by utilizing raw water.
The present invention was completed after taking into account the conditions based on such a goal and incorporating it as the backbone of each water distribution system and completing a comprehensive study.
[0007]
That is, the gist of the present invention is that in a sampling well having a plurality of multistage water veins as a sampling aquifer, at least two stages of sampling areas are provided to individually sample water, and then directly to water distribution. Or a water distribution system after simultaneous treatment, if necessary, and then water distribution.
[0008]
In addition, in the above water sampling area, at least one stage of drinking water quality and / or unsuitable water quality is simultaneously sampled, and further, when water is individually sampled from the water sampling area, a specific part water strainer function is provided. A well water simultaneous multi-stage water sampling and distribution system characterized by employing the well pipes provided.
On the other hand, the raw water obtained from each of the sampling wells from the plurality of multi-stage water veins can be supplied in place of another intended supply water by performing an appropriate treatment in accordance with the water quality. It is also a feature of the present invention to provide an emergency water distribution system that can cope with an unforeseen situation of a predetermined target water sampling well, in conjunction with the established city water supply.
[0009]
In the present invention, it is important that a sampling aquifer having a plurality or multi-stage water veins as a sampling aquifer has a target aquifer capable of sampling. For this purpose, it is assumed that a drilling geological survey at the underground depth is conducted in advance, and at least the permeable layer and the impermeable layer can be clearly confirmed by exploration using an electric logging device.
In normal cases, the geological formation that can be used as a water source is checked by drilling at the site to be explored, conducting a geological survey and measuring the specific resistance (Ω · m) of the geological material at each depth using a boring geological column map created. An analogy of an aquifer that can be watered.
[0010]
In the present invention, the drinking water suitable area is raw water that is directly provided with drinking water quality in the water quality collected from the target water collecting aquifer, but by performing some kind of water treatment. There is also raw water that is potable. In the present invention, any case in which such drinking-quality raw water can be collected is an object of the present invention.
At the same time, raw water that is not suitable for drinking is utilized as non-potable water as non-potable raw water. In addition, potable quality raw water that is not subjected to water treatment can be similarly used as non-potable water.
[0011]
Further, in the present invention, the water production obtained by controlling the quality of the raw water obtained from each of the water sampling wells from the plural or multi-stage water veins can be used for water other than the originally intended field. This means, in other words, for example, that if it is a raw water that can be made into drinking-quality water by applying appropriate water treatment, for example, it can be diverted to drinking water in the field of drinking water other than the purpose as treated water in an emergency. .
In this way, by utilizing the multi-stage effective water vein even in a single sampling well, in the field of water quality, especially in the field of drinking water, it is possible to complete a self-backup system within the sampling range within the same well pipe. There is one of the features of the present invention.
[0012]
In the present invention, various methods are employed for producing drinking water from raw water that can be taken for drinking. A typical example is a precision filtration filter incorporating a filter medium mainly composed of a microporous filtration membrane. One of the features of the present invention is that it can be dealt with by a filtration device that employs.
In the present invention, various methods are employed for producing drinking water from raw water that can be taken for drinking. A typical example is a precision filtration filter incorporating a filter medium mainly composed of a microporous filtration membrane. Can be dealt with by a filtration device employing
Specifically, as a representative of a filtration membrane, an organic membrane uses a material such as polysulfone, polypropylene, or polyacrylonitrile, and is composed of various hollow fiber membranes or membrane membranes having fine pores of 0.05 to 0.3 microns. Filter unit.
Furthermore, if necessary, it can be used in combination with means such as ultraviolet irradiation by a low-pressure mercury lamp or the like, and sterilization with ozone or chlorine dioxide. In some cases, an activated carbon adsorption system is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The above-described well water vein simultaneous multi-stage sampling and water distribution system of the present invention will be described below with reference to a typical configuration example with reference to the procedures shown in FIGS.
FIG. 1 shows an overall image of a cross-sectional view in which a modified well pipe is buried in a borehole drilled in the ground and a schematic diagram of a surrounding stratum. As shown in this drawing, the survey
Figure 2004300904
A boring hole (H) with a depth of 130 m (L4) was secured at the Ning Machine.
For the purpose of stratified water intake, the inner diameter of the upper part is gradually increased as the diameter of each partial well pipe.
Figure 2004300904
(T3) An iron tube was prepared, adjusted to each layer length examined in advance, and subjected to a joining taper process at an irregular portion of the tube.
On the other hand, in order to be able to store internal water-blocking plates (K1 and K2 shown in FIG. 3) to which the pumping tubes to be attached to the respective sections of the modified pipes are inserted and fixed in advance, the pipes are subjected to necessary additional processing. Of different diameters (C1, C2, C3) were connected and fixed by successive fitting welding to constitute a different diameter casing (C) of the present invention.
[0014]
In FIG. 1, reference symbol a indicates a first water zone, a indicates a second water zone, and c indicates an independent water zone of a third water zone.
The periphery of the casing (C) having a different diameter is treated as a water-impervious treatment, gradually covering the three water-containers in the depth direction of the first water-container part, and a ground-surface backfill part (1-0 '), mainly bentonite as a water-impervious backfill part. The first water-impervious processing (1-1 '), the second water-impervious processing (1-2'), and the third water-impervious processing (1-3 ') are performed using materials.
In addition, as the water permeation treatment, gravel was backfilled, and the first water permeation processing (2-1 '), the second water permeation processing (2-2'), and the third water permeation processing (2-3 ') were performed.
[0015]
The symbols shown in FIG. 1 are the surface portion (1-0) of the ground surface (GL), the first impermeable layer (1-1), the second impermeable layer (1-2), and the third impermeable layer. Aquifer (1-3); aquifers include a first aquifer (2-1), a second aquifer (2-2), a third aquifer (2-3), and a fourth aquifer (2-3). Each shows an aquifer (2-4).
Further, in FIG. 1, in the depth direction of the underground, the first-layer impermeable layer (1-1) is located at about 40m (L1) underground, the layer thickness is about 6m, and the second-layer impermeable layer (1-1). The water layer (1-2) is located about 76m (L2) underground, the thickness is about 10m, the third layer (1-3) is located about 114m underground, and the layer thickness is Showed about 16 m.
In the figure, the portion C1 (a) of the modified casing (C) is filled with free water in the aquifer (2-1) through the strainer (G1). Part C2 (a) and part C3 (c) are filled with pressurized water in aquifers (2-2 and 2-3) through respective strainers (G2 and G3).
[0016]
FIG. 2 shows a sectional view of installation of the pump pump casing and the pump and a schematic diagram of the surrounding stratum.
In FIG. 2, the well pipes (N1, N2, N3) are inserted into the water-tight sealing boards (K1 and K2), and the gap between the well casing (C) and the inner pipe portion is formed with a water pipe sealing agent (S1 and S2). Treated.
Strainers (G1, G2, G3) were provided as inlet ports for each of the different diameter pipe portions (C1, C2, C3), and submersible pumps (P1, P2, P3) were installed in the respective well pipes.
Thus, a, i, and u were formed as three independent water intake areas each consisting of one well.
[0017]
In this setting, the water to be collected in each of the water areas is, as described with reference to FIG. 5 shown below in the present embodiment, a: unfiltered sprinkling water from a 50 m depth water zone; After being subjected to pre-filtration treatment from the water zone, it was used as intermediate water, and the cormorant could be used as drinking water after advanced treatment from a 150 m depth water zone.
FIG. 3 is a perspective view showing a state in which three pumping pump casings to be inserted into the modified casing (C) are set in the embodiment of the present invention. In the figure, three pumping pump casings are bundled by a pumping pump casing (N1), a second pumping pump casing (N2), and a third pumping pump casing (N3) in a first water zone. Are shown.
[0018]
FIG. 4A is a sectional view taken along the line II ′ in FIG. 3, and FIG. 4B is a sectional view taken along the line II-II ′ in FIG.
In the partial view shown in FIG. 3, the pumping casing is pre-fixed to the impervious sealing boards (K1, K2) to obtain prefabricated equipment.
Figure 2004300904
Fig. 5 shows an embodiment of the present invention. Fig. 5 (a) shows an example in which raw water is used without filtration to obtain water for sprinkling from a 50m deep water zone in the first water zone (a). Shows an example in which a pre-filtration treatment is performed to obtain intermediate water from the 100 m depth water zone in the second water zone (a).
(C) The figure shows an example in which an advanced treatment is performed to obtain drinking water from the third water zone (c) 150 m depth water zone.
[0019]
In FIG. 5, raw waters a, b, and c pumped by well pumps (P1, P2, P3) installed in respective water zones in the casing (C) are respectively adjusted once by a raw water valve (V). After that, according to the purpose of use, as shown in the schematic diagrams (a), (b), and (c), water production a ', b', and c ', each of which has water quality adapted to water treatment or no treatment, respectively. Got.
In FIG. 5, C denotes a modified casing, V denotes a raw water valve, P1 denotes a first water well pump, P2 denotes a second water well pump, and P3 denotes a third water well pump. P5 and P6 each represent a raw water pump, and P4, P7, and P8 each represent a water distribution pump.
In FIG. 5, reference numeral 30 denotes a raw water tank, 31 denotes a filtration tower, 32 denotes a membrane filtration device, 33 denotes a filtration water tank, and 34 denotes a sterilant injector.
Based on the above-mentioned construction, this invention was utilized and the present invention was implemented as follows.
[0020]
【Example】
Example 1
A 5.5 KW submersible pump is attached to each well pump P1 shown in FIG. 2, a 5.5 KW submersible pump is attached to P2, and a 5.5 KW submersible pump is attached to P3, and each is 100 L / min, 100 L / min, 80 L / min. Minutes were pumped from each well. In all cases, the raw water is transparent in appearance. According to the system shown in the flow sheet of FIG. 5, a 12-liter sodium hypochlorite solution was prepared in a 200-liter chemical tank for each process, and sterilized in conjunction with each raw water pump by a 16-W chemical injection pump. It is set so that the agent is injected.
Except for the raw water in the first water zone, water treatment was performed in parallel with the sterilization treatment. Therefore, the raw water in the first water zone (a) was pumped up by the well pump (P1) and then received in the raw water tank and sent by the 1.5 KW water distribution pump (P4).
[0021]
In addition, the raw water in the second water zone (a) is pumped by a well pump (P2), received in a raw water tank, and further transferred to a sand filter tank by a 1.5 kW raw water pump (P5) for filtration. Thereafter, the water was introduced into a treatment water tank and water was supplied by a 1.5 KW water distribution pump (P7). In this state, operation was performed continuously for 24 hours, and sample water before and after the treatment was collected.
Further, the raw water in the third water zone (c) is pumped up by a well pump (P3), received in a raw water tank, and further transferred to a sand filtration tank and a membrane treatment device by a 1.5 kW raw water pump (P6). Then, after the rough filtration and the high-precision filtration treatment, the mixture was introduced into a treated water tank and fed with a 1.5 kW water distribution pump (P8).
In this state, each of them was operated continuously for 24 hours, sampled water was sampled before and after raw water treatment except for the first water zone, and the sampled water was analyzed. The results are shown in Table 1 below.
[0022]
[Table 1]
Figure 2004300904
In Table 1 above, * 520 indicates the raw water quality at the time of pumping the first water zone (50 m), and the number of general bacteria after sterilization in the raw water tank was 0. .
[0023]
From the results shown in Table 1, it can be seen that the first objective of the present invention is that drinking water, drinking water, and greening / garden water can be achieved with one well water. However, it was also confirmed that it can be alternately replaced by sampling water from multiple water zones in the same well.
These facts can be sufficiently achieved in that a single well shows the possibility of establishing an emergency backup system as the second object of the present invention. This is an extremely useful invention in that it can be used effectively.
[0024]
A first feature of the present invention is that a large amount of multipurpose well water can be supplied in a small space while saving energy and resources, and one well that has not been conventionally performed is equivalent to several wells. There are advantages.
Furthermore, as a second feature, useful self-backup is possible even in an emergency by examining each other's raw water quality in the same system in advance and constructing an alternative treatment system.
[0025]
【The invention's effect】
The present invention relates to a novel well water supply system, in which a plurality of aquifers are provided in a single base well, and water is independently collected, subjected to water treatment as needed, and distributed.
This method is characterized in that it can respond to a plurality of demands by purpose. For example, it can be set according to the quality of the raw water such as drinking water and watering, or medium water and watering, and it is possible to perform appropriate water treatment as needed to improve and supply the higher quality water.
Also, if it is possible to change the use of water supplied from the same well to a purpose other than the intended purpose within the range of water quality control, an emergency backup system will be possible.
This is an extremely useful invention in that well water as a natural resource can be effectively used.
Therefore, it is believed that the utility of the present invention is extremely great industrially.
[Brief description of the drawings]
FIG. 1 shows an overall image of a cross-sectional view in which a modified well pipe is buried in a borehole excavated in the ground and a schematic diagram of a surrounding stratum in an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a construction of a pump pump and a pump, and a schematic diagram of a surrounding stratum in an embodiment of the present invention.
FIG. 3 is a perspective view showing a state where three pumping pump casings to be inserted into a modified casing are set in the embodiment of the present invention.
4 is a sectional view taken along the line II ′ in FIG. 3, and FIG. 4 is a sectional view taken along the line II-II ′ in FIG.
FIG. 5 is an embodiment of the present invention, wherein FIG. A is an example in which raw water is used without filtration in order to obtain water for sprinkling from a water zone at a depth of 50 m, and FIG. An example in which pre-filtration treatment is performed and used is shown, and FIG. 3 is a flow sheet showing an example in which advanced treatment is performed to obtain drinking water from a 150 m depth water zone.
[Explanation of symbols]
a, b, c Raw water a ', b', c 'Water production C Deformed casing C1, C2, C3 Different diameter pipe part D Excavation diameter GL Ground surface G1, G2, G3 Strainer H Boring hole K1, K2 Watertight seal Boards L1, L2, L3, L4 Underground depths N1, N2, N3 Pumping pump casings P1, P2, P3 Well pumps P5, P6 Raw water pumps P4, P7, P8 Water distribution pumps S1, S2 Water pipe sealants T1, T2, T3 Iron wells Pipe diameter t Pump casing diameter V Raw water valve 1-0 Surface layer 1-0 'Surface backfill 1-1, 1-2, 1-3 Water barrier 1-1', 1-2 ', 1-3' Water impermeable processing 2-1 2-2, 2-3, 2-4 Aquifer 2-1 ', 2-2', 2-3 ', 2-4' Water permeability processing 30 Raw water tank 31 Filtration tower 32 Filtration Apparatus 33 Filtration tank 34 Sterilizer injector A First water zone A Second water zone C Third water zone

Claims (7)

採水可帯水層として複数乃至多段水脈を備えた採水井戸に於いて、少なくとも二段の採水域を設けて個々に採水し、次いで直接配水するか或いは必要に応じ処理を施した後、配水することを特徴とする井戸水同時多段採水配水システム。In a sampling well equipped with multiple or multi-stage water veins as sampling possible aquifers, at least two stages of sampling areas are provided to individually sample water, and then directly distributed or treated as necessary And simultaneous multi-stage water sampling and distribution system. 該採水域で少なくとも一段の飲料水適質可域及び/又は不適質域から同時に採水することを特徴とする請求項1記載の井戸水同時多段採水配水システム。2. The simultaneous multi-stage well water sampling / distribution system according to claim 1, wherein water is simultaneously sampled from at least one stage in the water quality zone and / or in the inappropriate zone in the water sampling zone. 該採水域より個々に採水するに際し、特定部取水ストレーナー機能を設けた井戸管を採用することを特徴とする請求項1ないし2記載の井戸水同時多段採水配水システム。3. The simultaneous multi-stage well water dispensing and distribution system according to claim 1, wherein a well pipe provided with a specific-part intake strainer function is employed when individually collecting water from the water sampling area. 該複数乃至多段水脈よりの夫々の採水井戸より得られた原水の水質を制御して得た製水を供給するか或いは市水の供給により、予め定めた採水目的井戸の不測事態に対応し代替供給体制を備えることを特徴とする請求項1ないし3記載井戸水同時多段採水配水システム。It responds to the unforeseen situation of a predetermined sampling purpose well by supplying raw water obtained by controlling the quality of raw water obtained from each sampling well from the plurality of multistage water veins or by supplying city water. 4. The simultaneous multistage water sampling and distribution system according to claim 1, further comprising an alternative supply system. 上記請求項1ないし4に記載の各システムを用いるに際し、夫々の採水域に対応してなる異型管体より構成される井戸管を採用することを特徴とする井戸水同時多段採水配水装置。5. A simultaneous multi-stage well water dispensing and distributing apparatus, wherein each of the systems according to claim 1 to 4 employs a well pipe composed of a modified pipe body corresponding to each water sampling area. 上記請求項1ないし4に記載の各システムを用いるに際し、夫々の採水域に対応してなる異型管体より構成される井戸管と且つ此れに収容され各水帯域を隔離封着せるポンプケーシングよりなることを特徴とする井戸水同時多段採水配水装置。In using each of the systems according to claims 1 to 4, a well pipe constituted by a modified pipe body corresponding to each water sampling area, and a pump casing accommodated therein for isolating and sealing each water zone. A simultaneous multi-stage water sampling and distribution system for well water. 上記請求項5ないし6に記載の各装置に於いて、夫々の採水域に対応してなる異型管体より構成される井戸管であって、且つ該管体内部に少なくとも1ケの周縁嵌着部を設け、此れに予め揚水管を挿入し固着した収着可能な内部遮水プレートを封着せしめることを特徴とする井戸水同時多段採水配水装置。In each of the devices according to claims 5 and 6, a well tube composed of a deformed tube corresponding to each water sampling area, and at least one peripheral fitting is fitted inside the tube. A well water simultaneous multi-stage water sampling and distribution apparatus, wherein a water absorption pipe is inserted thereinto and a sorbable internal water-blocking plate fixed thereto is sealed therein.
JP2003127570A 2003-03-28 2003-03-28 Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor Pending JP2004300904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127570A JP2004300904A (en) 2003-03-28 2003-03-28 Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127570A JP2004300904A (en) 2003-03-28 2003-03-28 Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004300904A true JP2004300904A (en) 2004-10-28

Family

ID=33410421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127570A Pending JP2004300904A (en) 2003-03-28 2003-03-28 Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2004300904A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194033A (en) * 2014-03-31 2015-11-05 株式会社 林物産発明研究所 Emergency underground water tank
CN105040775A (en) * 2015-08-21 2015-11-11 山东省水利科学研究院 Deep-layer pressure-bearing artesian well plugging system and method
JP2018087491A (en) * 2018-03-02 2018-06-07 国立研究開発法人農業・食品産業技術総合研究機構 Groundwater pumped storage system and water pumping method using thereof
CN109187103A (en) * 2018-11-20 2019-01-11 美丽国土(北京)生态环境工程技术研究院有限公司 A kind of layering sealing sampler
CN109469474A (en) * 2018-12-05 2019-03-15 中国矿业大学(北京) Based on the lower device and method for measuring multiple seam gas pressure simultaneously to layer-through drilling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194033A (en) * 2014-03-31 2015-11-05 株式会社 林物産発明研究所 Emergency underground water tank
CN105040775A (en) * 2015-08-21 2015-11-11 山东省水利科学研究院 Deep-layer pressure-bearing artesian well plugging system and method
CN105040775B (en) * 2015-08-21 2016-08-24 山东省水利科学研究院 Deep layer pressure-bearing artesian well plugging system and method
JP2018087491A (en) * 2018-03-02 2018-06-07 国立研究開発法人農業・食品産業技術総合研究機構 Groundwater pumped storage system and water pumping method using thereof
CN109187103A (en) * 2018-11-20 2019-01-11 美丽国土(北京)生态环境工程技术研究院有限公司 A kind of layering sealing sampler
CN109469474A (en) * 2018-12-05 2019-03-15 中国矿业大学(北京) Based on the lower device and method for measuring multiple seam gas pressure simultaneously to layer-through drilling

Similar Documents

Publication Publication Date Title
CN104671385B (en) A kind of sulfate contamination place underground water pollution control and soil remediation method
CN105960507A (en) Apparatus, systems, and methods for downhole fluid filtration
US20030230535A1 (en) Downhole desalination of aquifer water
CN1910117B (en) On-site desalination device
CN111705871A (en) Underground water recharging treatment system, construction method and mine water recharging method
ES2251874B1 (en) HORIZONTAL DRAIN INSTALLATION PROCEDURE FOR MARINE WATER CAPTURE.
JP2004300904A (en) Well-boring artery simultaneous multi-stage water intake and distribution system and apparatus therefor
Barnett et al. Aquifer storage and recharge: innovation in water resources management
CN113404121A (en) Natural river bed percolation water taking integrated system and design method thereof
CN103880142B (en) Method for plating iron and in situ removing arsenic for regional aquifer
US20230407617A1 (en) Systems and methods for underground storage of storm and other water sources
US8353341B1 (en) Well system
KR101653806B1 (en) System for treating a riverbank filtration on situ by using an inclined injection pipe
KR101145836B1 (en) Apparatus and method for gathering river bed water
AU2014271193C1 (en) Apparatus, system and method for desalination of groundwater
KR20160039772A (en) Underground dam structure and construction method of the same having water purification and virus sterilizaton system
JP2006322155A (en) Soldier pile lagging method capable of processing subsoil water or the like
CN105804155B (en) A kind of method of Arid&semi-arid area influent well water intaking
CN217105328U (en) Natural riverbed infiltration water intaking integrated system
US11598194B1 (en) Stimulation and continuous recovery of biogenic gas from coal beds
RU2465076C1 (en) Buried waste storage and method of its creation
Grischek et al. Case Study 8: Managed Aquifer Recharge by riverbank filtration and infiltration basins for drinking water supply at Dresden-Hosterwitz, Germany
Morris et al. Design, installation, and operation challenges of large-scale aquifer storage and recovery wells in San Antonio, South Texas
Williams Design and Construction of Subsurface Intakes
CN107254870B (en) Method for carrying out seepage filtration drainage on deep sand gravel layer by utilizing seepage filtration drainage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Effective date: 20080118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512