JP2004300520A - Steel for vacuum carburizing, and method for producing vacuum carburized component - Google Patents

Steel for vacuum carburizing, and method for producing vacuum carburized component Download PDF

Info

Publication number
JP2004300520A
JP2004300520A JP2003094988A JP2003094988A JP2004300520A JP 2004300520 A JP2004300520 A JP 2004300520A JP 2003094988 A JP2003094988 A JP 2003094988A JP 2003094988 A JP2003094988 A JP 2003094988A JP 2004300520 A JP2004300520 A JP 2004300520A
Authority
JP
Japan
Prior art keywords
carburizing
aln
steel
treatment
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094988A
Other languages
Japanese (ja)
Other versions
JP4350968B2 (en
Inventor
Yasuhiro Fukuda
康弘 福田
Takumi Kozuka
巧 小塚
Isao Sumita
庸 住田
Kinsei Kino
欣成 嬉野
Koichi Fukuda
耕一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP2003094988A priority Critical patent/JP4350968B2/en
Publication of JP2004300520A publication Critical patent/JP2004300520A/en
Application granted granted Critical
Publication of JP4350968B2 publication Critical patent/JP4350968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely prevent abnormal grain growth in the surface part generated in the case a carburizing gas is introduced into an evacuated atmosphere so as to be a pulse shape, and high temperature carburizing treatment is performed. <P>SOLUTION: The steel in which a carburizing gas is introduced so as to be a pulse shape and which is subjected to vacuum carburizing has a composition comprising, by weight, 0.10 to 0.30% C, 0.05 to 0.50% Si, 0.30 to 1.50% Mn, 0.30 to 2.00% Cr, 0.005 to 0.050% Al, 0.01 to 0.10% Nb, 0.0080 to 0.0250% N and ≤0.01% V, and, if required, comprising ≤0.80% Mo, and the balance Fe with impurity elements. The amount of AlN to be precipitated is ≤100 ppm, the number of Nb(C, N) to be precipitated is 1 to 10 pieces/μm<SP>2</SP>, and among the Nb(C, N) precipitates within 0.5 mm from the surface, the precipitated grains with a size of 10 to 50 nm are present by ≥1 piece/μm<SP>2</SP>, and the precipitated grains of >50 nm are present by ≤1 piece/μm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱間鍛造後に1000℃以上の高温であり、かつ減圧された雰囲気下で浸炭処理される場合において、浸炭処理後の結晶粒異常成長(混粒の発生)を抑制するための減圧浸炭用鋼及び減圧浸炭部品の製造方法に関する。
【0002】
【従来の技術】
自動車、建設車両、建設機器等に使用される歯車やシャフト等の動力伝達に使用される鋼部品には、浸炭処理により表面に硬化層を形成する肌焼鋼が多用される。これは、前記部品には優れた耐摩耗性と高靭性を同時に要求されるため、表面は浸炭処理により硬い組織として耐摩耗性を確保し、内部は低Cのままとして高い靭性をもたせるためである。
【0003】
最近、これらの部品の高強度化と共に大幅な製造コスト低減が大きな課題になっている。部品の製造コストは、材料自体のコストと浸炭等の熱処理コストに大きく分けることができるが、前者については、特に高価な成分元素が多量に添加されていない肌焼鋼の場合、大きなコスト低減は困難であり、後者の熱処理コストの削減方法の研究が盛んに検討されている。
【0004】
その中でも、最近検討が進められている方法は高温浸炭処理である。現在肌焼鋼の浸炭処理は、その大部分がガス浸炭処理法により行われており、所定の硬化深さを得るために、4〜20時間程度もの長時間の処理が実施されている。その結果、生産性の面でも問題になるとともに、多大なエネルギーを消費するため、改善が強く要望されていた。高温浸炭処理は、浸炭温度を高く設定して反応を促進させることにより、短時間でより多くの炭素原子を侵入及び拡散させて処理時間の短縮を図る方法で、時間短縮に最も効果的な方法として古くから知られている。
【0005】
また、最近では減圧された炉内にエチレン等の炭化水素ガスを導入することによる真空(大気圧より低いという意味で使用)浸炭法(以下、減圧浸炭法と記載)が適用されることが多くなってきた。減圧浸炭法は、通常のガス浸炭とは異なりキャリアガスを必要としないので、キャリアガス製造に必要なエネルギーを節約できるとともに、ガス浸炭に比べ同一温度での処理でも時間を短縮化することができ、かつ浸炭異常層の原因となる粒界酸化を防止できるという優れた特徴を有している。そして、前記した処理温度の高温度化と組み合わせて実施することによって大幅な処理時間短縮が可能となるため、大きく期待されている技術である。
【0006】
しかしながら、高い浸炭温度での処理は、処理時間の短縮には効果的な方法であるが、一方で大きな問題が生じる。すなわち、浸炭処理後にオーステナイト粒が粗大化したり混粒が生じることである。浸炭処理後においてこのようなオーステナイト粒の粗大化や混粒が生じると、強度が低下したり、熱処理歪のバラツキが生じる。通常、浸炭処理後は研磨等の必要最小限の機械加工を施すだけであるのが普通であり、このような歪のバラツキは製品寸法不良の原因となり、問題となる。そのため、実際には浸炭温度を高めて処理時間の短縮を進めることが十分にできていないのが現状である。
【0007】
このような浸炭処理時におきる結晶粒粗大化と混粒化現象はかなり以前から知られており、様々な対策が検討され、新しい技術が提案されており、多数の特許出願がされている。
【0008】
その中でも最も良く知られている方法は、AlNを微細分散させてピン止め効果により粗大化を防止する方法であり、例えば、特許文献1、2に示される鋼が提案されている。
【0009】
また、AlNのピン止め効果よりもより高温での結晶粒の安定化を図るため、Nbを添加して粗大化防止を図るという提案もされている。例えば、特許文献3、4に示される鋼が提案されている。
【0010】
しかしながら、AlNやNb(C、N)を析出させることは、確かに結晶粒粗大化防止に効果を示すことが確認されているが、単純なAl、N、Nbの添加量の調整だけでは、十分な効果が得られないことが判明し、AlNやNb炭窒化物をよりピン止め効果の大きい状態に析出させた状態とするための熱処理を行って、粗大化防止を図るという提案もされている。例えば、特許文献5〜7に示される熱処理方法が提案されている。この3件の文献に記載された内容は、対象とする鋼成分に差異はあるが、全て浸炭処理前に600℃〜A1変態点の温度域に加熱してAlN、Nb(C、N)の析出状態を浸炭処理時に粗大化しにくい状態に変化させることを特徴とするものである。
【0011】
また、特許文献8、9には、圧延、熱間鍛造時の加熱及び仕上温度を適切に調整し、800〜500℃の間を1℃/秒以下の速度で冷却することによって、Nb(C、N)を多量に微細分散するとともに、AlNの析出量を抑制し、粗大化を抑制する技術について記載されている。
【0012】
【特許文献1】
特開昭56−75551号公報
【特許文献2】
特開昭59−123714号公報
【特許文献3】
特開昭49−125220号公報
【特許文献4】
特開平6−299241号公報
【特許文献5】
特開昭58−16022号公報
【特許文献6】
特開昭62−205229号公報
【特許文献7】
特開平10−121128号公報
【特許文献8】
再公表特許99/05333号公報
【特許文献9】
特開2001−303174号公報
【0013】
【発明が解決しようとする課題】
しかしながら、前記した今までに提案された方法には、次の問題がある。
即ち、特許文献1、2に記載されているAlNによるピン止め効果は、980℃未満の浸炭処理ではある程度の効果を得ることができるものの980℃以上の浸炭温度になると微細分散させたAlNのかなりの割合が固溶してしまいピン止め効果による結晶粒粗大化防止効果が十分に得られなくなる。従って、本発明で狙いとしている1000℃以上の高温での浸炭処理においては、その効果は非常に小さいものとなり、粗大化を完全に防止することができない。
【0014】
また、AlNに比べ高温での結晶粒安定化効果を期待してNbを添加したことを特徴とする特許文献3、4に記載の発明は、添加量についてしか検討されておらず、どのような状態に析出させた場合に大きな粗大化防止効果が得られるかについての検討がほとんどされていない。本発明者等が検討した結果によると、熱間鍛造材を浸炭処理する場合、析出状態を最適に調整しないと混粒の発生を防止することが難しいことが判明した。特にAlNの析出状態に注意する必要があるが、特許文献3、4には、その点について全く記載されていない。
【0015】
また、浸炭処理前の熱処理によって、混粒発生を防止することを特徴とする特許文献5〜7の発明についても以下の問題がある。すなわち、特許文献5は、Nbを含有しない鋼を対象とした発明であり、特許文献6もNbについて全く記載がなく、浸炭処理する前のAlN、Nb(C、N)の最適な析出状態について全く検討されていない。また、特許文献7は、Nb炭窒化物の析出状態については、かなり詳細に検討されているが、同時に存在しているAlNの影響について考慮されていない。また、熱間鍛造後にNb炭窒化物を析出させ、その後の熱処理により凝集させることが特徴となっているが、本発明者等が調査した結果、AlNが多く存在した状態で、前記熱処理を行うと、AlNの影響で炭窒化物が凝集しやすくなるとともに、AlNを多く含むNb炭窒化物が多く存在した状態となり、1000℃以下の温度での浸炭処理には効果があるが、高温で浸炭処理した場合には、十分に粗大化を防止できなくなることが判明した。
【0016】
さらに、特許文献8、9には、AlNの析出量を抑制して粗大化を防止する技術について記載されているが、特許文献8は、圧延後の析出状態しか記載されておらず、特許文献9にも記載されているように、熱間鍛造後に焼準することが前提となっており、最も問題となる浸炭直前の析出状態を熱間鍛造品の場合にいかなる手段で達成すれば良いかについて、全く記載されていない。また、特許文献9は、本発明と同様に熱間鍛造後のAlN、Nb(C、N)の析出状態を鍛造条件、鍛造後の冷却条件の指定によって達成するものであるが、鍛造後の冷却条件が徐冷と記載されているものの、この文献で記載の徐冷という意味は単純な空冷に比べて遅く冷却するという意味であり、Nb(C、N)の析出に必要な時間と比較するとかなり早く(記載されている0.1〜1℃/秒の冷却速度では、本発明で指定の620〜700℃をわずか80〜800秒で通過することになる。)、温度も析出させるのに適した温度のみに限定されていないため、十分な微細析出がされない場合が多いことがわかった。
【0017】
また、前記した減圧浸炭処理は、浸炭ガスを炉内に導入して、所定の浸炭圧力まで高め、かつ維持する工程(浸炭期)と、炉内から浸炭ガスを排気して、処理品表面より内部に炭素を拡散させていく工程(拡散期)とを交互に繰返して処理するというパルス浸炭と呼ばれる方法が広く行われている。
【0018】
しかしながら、このパルス浸炭を行った場合の処理品を詳しく調査した結果、通常のガス浸炭を行った処理品と比較すると、炭素が侵入する浸炭層の部分(表面から0.5mm程度以内の部分)において、かなり高い確率で部分的な結晶粒異常成長が起きやすいことが判明した。さらに、前記した特許文献1〜9には、減圧浸炭の場合のこのような現象に対する対応策について全く検討がされていない。
【0019】
本発明は、以上記載した問題点を解決するために成されたものであり、1050℃程度の高温であって、かつ減圧下でパルス浸炭した場合でも異常な粒成長を防止することができ、浸炭処理の生産性を大幅に改善可能とすることを可能とする減圧浸炭用鋼及び減圧浸炭部品の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
請求項1の発明は、パルス状に浸炭ガスが導入され、減圧浸炭される鋼であって、重量比でC:0.10〜0.30%、Si:0.05〜0.50%、Mn:0.30〜1.50%、Cr:0.30〜2.00%、 Al:0.005〜0.050%、Nb:0.01〜0.10%、N:0.0080〜0.0250%、V:0.01%以下を含有し、残部Fe及び不純物元素からなり、AlN析出量が100ppm以下、Nb(C、N)の析出数が1〜10個/μmであり、表面から0.5mm以内のNb(C、N)析出物のうち、10〜50nmの大きさの析出粒子が1個/μm以上であり、50nm超の析出粒子が1個/μm以下であることを特徴とする減圧浸炭用鋼である。
【0021】
本発明において注目すべきことは、上記特定組成の肌焼鋼を用いて熱間加工後浸炭処理する際において、従来の結晶粒粗大化防止鋼のように、AlNやNbの炭窒化物を単純に微細析出させるのではなく、AlN析出量を100ppm以下に抑制し、特にNb(C、N)等と複合していない単独のAlNの析出数を抑制するとともに、鋼全体でのNb(C、N)の析出個数を一定以上確保し、表面の実際に浸炭される領域(表面から0.5mm以内)において、特定サイズ内(10〜50nm)のNb(C、N)の析出物を所定の個数以上確保して、確実にピンニング効果を確保するとともに、大きなNb(C、N)(50nm超)は逆に数を抑制することによって、高温かつ減圧下でのパルス浸炭を行った場合でも、混粒発生の抑制を可能にした点にある。
【0022】
従来は、AlN、Nb(C、N)が共に結晶粒微細化に効果が大きいと考えられており、両者共に微細分散させることが結晶粒の粗大化防止に効果が大きいと考えられてきた。しかしながら、AlNがNb(C、N)に比較して固溶しやすく高温での結晶粒粗大化への効果が大きく期待できないことが判明するにつれて、Nb(C、N)を中心とした微細化対策が中心に考えられるようになった。しかしながら、その場合でもAlNの存在が異常粒成長防止にとって弊害となるという考え方は、前記した特許文献8、9等ごく一部を除いて皆無であった。
【0023】
それに対し、本発明者等が詳細に調査した結果、単独のAlNが多量に析出した状態からなる鋼は、下記の点で問題があることが判明した。
(1)単独のAlNが多量に析出した鋼を浸炭処理すると、結晶粒はAlNのピンニング効果によって微細となるが、微細であるため、逆に粒成長の駆動力が大きくなる。
【0024】
(2)比較的低い温度で浸炭処理する場合には、浸炭時もAlNの析出物が残留してピンニング効果を得ることができるため、粒成長の駆動力は大きいものの、粗大化防止に大きな効果を得ることができる。
【0025】
(3)しかしながら、浸炭処理温度が高くなると、析出していたAlNの固溶が進み、AlN析出量の少ない領域が生じはじめる。その結果、部分的にピンニング効果が十分に得られない領域が生じ、粒成長の駆動力を抑制することができなくなり、部分的な異常粒成長(混粒)が発生する。
【0026】
本発明は、上記のAlNを積極的に利用した結晶粒粗大化防止技術の問題点を解決するために成されたもので、以下の知見を得ることにより成されたものである。
(1)単独のAlNの析出を抑制し、主なピンニング粒子としてNb(C、N)を析出させた鋼を加熱して達成される浸炭初期粒度は、単独のAlNの析出を抑制していないNb添加鋼に比べかなり粗粒になり、粒成長の駆動力を小さく抑えることができる。1000℃を超える温度での浸炭処理中において、Nb炭窒化物は従来のNb添加鋼でも固溶せずに存在するが、本発明鋼は、比較的粗粒となった状態を得ることができるので、従来のNb添加鋼では十分に抑制できなかった部分的な異常粒成長を確実に防止することができる。
【0027】
(2)単独のAlN析出の抑制を図った本発明鋼でも、1050℃の高温浸炭処理の加熱途中には、AlNが析出するが、この析出は加熱前に既に析出しているNb(C、N)の周囲に優先的に析出する。従って、浸炭処理前だけでなく、浸炭昇温中においても単独のAlN析出物の生成を抑制することができるため、前記した通り比較的粗粒の結晶粒からなる組織となる。そして、温度が1000℃を超えるとAlNの固溶が進んでいくが、このような高温状態でもNb(C、N)は残存するため、十分なピンニング効果が確保できる。また、粗粒であるため粒成長の駆動力が小さいことから、混粒の発生を防止することが可能になる。
【0028】
また、パルス浸炭時に表面を中心に起きる混粒発生のメカニズム及びそれを防止する技術に対しては、以下の知見を得ることにより解決し、本発明を完成したものである。
【0029】
(1)パルス状に浸炭ガスを導入して浸炭処理する場合、ガス圧の高い浸炭期においては、表面に炭素の侵入が進むため、既に存在しているNb(C、N)を核として、析出物が成長する。また、ガス圧の低い拡散期においては、高温に加熱された状態で炭素濃度が低下するため、Nb(C、N)が逆に固溶し、比較的大きなNb(C、N)はサイズが小さくなるものの残存し、微細なNb(C、N)は完全に固溶して消失してしまうという現象が起きる。実際のパルス浸炭では、この繰返しが非常に多数回継続して行われるため、その結果浸炭処理前に存在していたNb(C、N)のうち、サイズの大きいものはさらに成長して大きくなるとともに、微細なものは消失するため、析出粒子の個数が浸炭処理前に比べ大幅に減少し、ピンニング効果が低下する。
【0030】
(2)この結果残存するNb(C、N)は、成長して大きくなっており、粗大化防止効果が低下していること、この現象が表面に集中して起きることが、表面に集中して混粒状態が発生する原因と考えられる。
【0031】
(3)浸炭期と拡散期が繰返し行われる浸炭処理が実施されても、浸炭処理終了時まで必要なピンニング効果を維持するための浸炭処理前の析出粒子の粒度分布について詳細に調査した結果、10〜50nmの大きさの析出物がピンニング効果の維持のために適当であり、50nm超の析出物は逆に数を抑制する必要がある。
【0032】
次に、請求項1の発明における減圧浸炭用鋼の化学成分の限定理由について説明する。
C:0.10〜0.30%
浸炭処理を行った部品に要求される強度、内部硬さを確保するためには、0.10%以上のCを含有する必要がある。しかし、0.30%を超えて含有させると内部の靱性が劣化し、さらには被削性を低下させるため、上限を0.30%とした。
【0033】
Si:0.05〜0.50%
Siは鋼の製造時において脱酸のために必要な元素であり、最低でも0.05%以上の含有が必要である。しかしながら、Siは浸炭処理時、浸炭雰囲気中の酸素と反応して酸化物を形成する。このため被処理品の表層付近は焼入性が低下し、いわゆる浸炭異常層を形成する。従って、多量に含有させると浸炭異常層の生成による悪影響が大きくなって強度が低下するとともに、被削性が低下するので、上限を0.50%とした。
【0034】
Mn:0.30〜1.50%
Mnは、必要な焼入性を確保して内部まで強度を確保するのに必要な硬さを保証するためには、0.30%以上のMnを含有する必要がある。しかしながら、多量に含有させると、残留オーステナイトが増加して、硬さ低下、内部の靭性が劣化するとともに、被削性が低下するので、上限を1.50%とした。
【0035】
P:0.035%以下
Pは製造時に混入が避けられない不純物である。本発明では特に必須の条件としては限定していないが、粒界の強度を低下させ、疲労特性を悪化させる原因となる元素であるので、その上限を0.035%以下とすることが好ましい。
【0036】
S:0.030%以下
SはPと同様に製造時に少量の混入が避けられない不純物であり、例えばMnS等のような硫化物系介在物となって存在している。しかし、この介在物は、疲労破壊の起点となったり、耐ピッチング性を低下させたり、鋼材の異方性が大きくなる原因となる元素である。従って、本発明では、必須では限定していないが、理想的には極力低減することが好ましく、上限を0.030%とした方がより好ましい。
【0037】
Cr:0.30〜2.00%
Crは、焼入性を向上させ、必要な強度を確保し、本発明により製造した鋼の性能を向上させるために必要な元素であり、0.30%以上の含有が必要である。しかしながら、多量に含有させると靭性が劣化するとともに被削性が低下するため、上限を2.00%とした。
【0038】
Al:0.005〜0.050%、
Alは、Siと同様に脱酸に必要な元素であるとともに、AlNとして存在し、ピン止め効果により浸炭処理後の異常粒成長防止に効果のある元素である。従って、最低でも脱酸に必要な量を添加する必要があり、下限を0.005%とした。しかしながら、本発明では従来の結晶粒粗大化防止鋼とは異なり、AlNの析出を抑制しており、全くピンニング効果を期待していないわけではないが、主となるピンニング効果は、Nb(C、N)により得ている。また、Alを多量に含有していると、浸炭処理前の単独のAlN析出数が増加し、AlN析出数を抑制することが難しくなるので、上限を0.050%とした。
【0039】
N:0.0080〜0.0250%
Nは上述の通り、AlやNbと結合し、AlNやNb(C、N)となって鋼中に存在し、浸炭処理後の異常粒成長を防止するために効果のある元素である。この効果を十分に得るためには、0.0080%以上のNを含有させる必要がある。しかしながら、AlNやNb(C、N)の析出量には適量があり、多すぎると浸炭初期粒径が細かくなって却って異常粒成長が起きやすくなってしまうため、上限を0.0250%とした。
【0040】
Nb:0.01〜0.10%
Nbは本発明において最も重要な元素であり、炭窒化物となって鋼中に存在し、特にAlに比べ高温度での浸炭処理における結晶粒異常成長を防止する効果の大きい元素である。Nb添加量が少ない場合、特に1050℃以上の浸炭では浸炭処理前に析出していた炭窒化物の一部が固溶し、ピン止め効果に寄与するNb炭窒化物の量が不足して粗粒化抑制作用が十分に得られなくなるので、下限を0.01%とした。一方、多量に含有させると、熱間鍛造時の加熱によってNb(C、N)が十分に固溶した状態とならず、粗大なNb(C、N)の析出物が残存した状態となって、ピンニング効果が低下するので、上限を0.10%に規定した。
【0041】
V:0.01%以下
VはNbと同様に炭窒化物を形成し、ピン止め効果により結晶粒成長の防止に寄与する元素であるが、Vの炭窒化物はNbの炭窒化物に比べ高温で固溶しやすく、1000℃以上の高温浸炭の場合、浸炭加熱によって固溶して浸炭中にピン止め効果が消失し、結晶粒成長抑制効果が得られなくなるので、高温浸炭される場合には、Vよりも高温浸炭処理温度において固溶しにくい炭窒化物を形成する元素に、鋼中のC、Nを優先的に結合させておく必要がある。Vが含有していると、鋼中のC、Nの一部がVと結合し、浸炭初期粒径を微細化する作用が生じ、かつ1000℃以上の浸炭中にそれらが固溶して、ピン止め効果を消失させるので、異常粒成長を助長する。従って、高温浸炭時にはVが存在すると逆に異常粒成長が起きやすくなる。Vは積極添加しなくても鋼の製造時に使用するスクラップ等から少量混入する可能性のある元素であるため、不純物として含有するV量を少なく抑える必要があり、上限を0.01%に規制した。
【0042】
次に、請求項1の発明におけるAlN、Nb(C、N)の析出状態の限定理由について、以下に説明する。
AlN析出量の上限を100ppmとしたのは、前記した通り単独のAlNが多数析出してしまうと、浸炭処理時に得られる初期結晶粒度が微細になり、粒成長の駆動力が増加し、Nb(C、N)を適量析出させても混粒発生の防止が難しくなるためである。但し、100ppmという数字は、単独で存在しているAlNの析出量のみではない。しかし、後述の実施例に示すように、全AlNの析出量を抑制することによって、単独のAlNを優先的に低減することができるのである。すなわち、AlNの析出量を抑制すれば、自動的に単独のAlNを抑制することができるものである。
【0043】
また、本発明では、析出処理後浸炭処理前におけるNb(C、N)の素地中の析出個数を1〜10個/μmに限定している。これは、下限を1個/μmとしたのは、必要とするピンニング効果を確保するために最低限必要な個数であるからであり、上限を10個/μmとしたのは、個数が多すぎると浸炭初期の結晶粒径は小さくなって、粒成長の駆動力が大きくなり、混粒が発生しやすくなるためである。
【0044】
なお、本発明で言うNb(C、N)とは、Nb(C、N)単独の析出物と、Nb(C、N)とAlNの複合析出物の両方のことであり、単独のAlNとは、Nb(C、N)等他の組成を含まないAlNのことを意味している。
【0045】
また、Nb炭窒化物の個数は、TEM、FESEMを用いることにより容易に測定することができる。なお、使用する測定機器の精度によって同じ試験片を測定した場合の測定結果の誤差を防止するため、ここで対象とする炭窒化物は、大きさ(最も長い部分の長さ)が10nm以上のものに限定する。存在する炭窒化物のうち10nm以上の大きさの個数が、1〜10個/μmとする。
【0046】
なお、10nmの析出物を確認するには、少なくとも5万倍、好ましくは10万倍程度に拡大して観察する(10nmの析出物が10万倍で1mmとなる。)ことが必要である。低倍率で観察すると、小さい析出物を見落とす可能性があるので、個数測定時は注意が必要である。
【0047】
また、本発明では、パルス浸炭した場合の表面における混粒発生を防止するために、表面から0.5mm以内の領域については、前記した個数の限定とは別の規定を設けている。なお、表面から0.5mmとは、浸炭処理による影響が直接及ぶ領域(浸炭硬化層)であり、実際に混粒発生が集中している領域である。以下、その限定理由について説明する。
【0048】
10〜50nmの大きさの析出個数を1個/μm以上としたのは、前記した浸炭期、拡散期の繰返しが行われた時に最も効率的にピンニング効果の得られる析出粒子の大きさが10〜50nmであるため、混粒防止をするためにこの範囲の大きさの析出粒子をできるだけ多く析出させておく必要があるからである。もし、析出個数が1個/μm未満となった場合は、パルス浸炭の途中にピンニング効果が十分に得られなくなって、表面における混粒発生を防止することが困難になるためである。
【0049】
また、50nm超の大きさの析出個数を10〜50nmの析出粒子とは逆に1個/μm以下に個数を抑制したのは、このような大きな析出物が多量に存在すると、拡散期にこの大きな析出物が核となって、優先的に成長し、浸炭処理後半においては大きな析出粒子が非常に多く残存する状態となり、結果的にピンニング効果が低下して、混粒発生を防止できなくなるためである。
なお,析出物の大きさは,最も長い部分の長さで決定されるものとすることは前記したとおりである。
【0050】
次に以上説明した析出状態を達成するための製造方法について説明する。
本発明鋼は、熱間鍛造によって製造される。AlNの析出を抑制するには、熱間鍛造時にNb(C、N)を十分に固溶させた後、室温に冷却することなく冷却途中に後述の析出処理を行うことにより達成することができる。室温に冷却した後再加熱して析出処理した場合には、単独のAlN析出数が大幅に増加するので注意が必要である。
【0051】
いかなる理由で、前記方法で行うことによって単独のAlNの析出が抑制できるのかについては、明確ではない。しかし、熱間鍛造時の加熱で鋼中Nbを十分固溶させているため、後述する析出処理時においてはNbが極端な過飽和状態になっており、Nb(C、N)が析出しやすい状態となっていること、析出処理の温度領域がAlNに比べNb(C、N)の析出に有利な温度領域となっていること等がAlNの析出抑制に影響していると推察される。
【0052】
次に、熱間鍛造時の加熱温度は、Nb(C、N)を十分に固溶(具体的には析出個数で0.3個/μm以下)させるために、1150〜1350℃と比較的高い温度とする必要がある。この高い温度はNb(C、N)が十分に固溶した状態を維持するために、鍛造の仕上時まで維持する必要がある。従って、熱間鍛造仕上温度を1100〜1300℃とする必要がある。
【0053】
そして、Nb(C、N)を必要な個数、微細に析出させた状態とするために、熱間鍛造が終了した後室温まで冷却する途中の620〜700℃の温度域において、一定時間保持すると良い。前記した熱間鍛造時において、Nb(C、N)は十分に固溶した状態となっており、その後この温度域で保持するため、既に析出物が多数存在している場合のように、析出物が核となって成長するということが少なく、微細かつ多数のNb(C、N)が析出した状態とすることができる。
【0054】
なお、析出処理の温度範囲の下限を620℃としたのは、この温度より低い温度で保持してもNb(C、N)の析出が効率良く進まないためであり、上限を700℃としたのは、温度が変態温度を超えて2相域に入ってしまうと、変態が析出処理の後に起きることになり、その後の冷却によってベイナイトやマルテンサイトが部分的に生成し、その影響で粗大化を防止することが難しくなるためである。
【0055】
但し、保持時間を長くしすぎると析出物の成長が進んで50nm超の大きさの析出物が増加すること、あまりの長時間の保持は生産性の点からも適切でないことから、保持時間は15分〜2時間程度の範囲で実施するのが良い。
以上説明した方法で製造することにより、浸炭前において最適な状態でNb(C、N)が析出した状態を達成することができ、減圧浸炭時の表面における混粒発生を防止可能となる。
【0056】
析出処理が終了した後は、室温まで冷却する。なお、析出処理は変態点より低い温度での熱処理であるため、析出処理の終了時点で既に変態は終了している。従って、得られる組織が室温までの冷却条件に左右されることはなく、実施する場所の設備の都合に応じて適切に選択すれば良い。但し500℃までの冷却はAlNの析出する時間的余裕を与えないようにするために、25℃/分以上で冷却するのが望ましい。
以上説明した手順で熱間鍛造、析出処理を行うことにより、請求項1に記載した適切な析出状態を得て、混粒発生を確実に防止することが可能となる。
【0057】
次に、請求項2の発明のように、請求項1に記載の鋼に加え、Moを0.80%以下含有させた鋼を用いることもできる。以下、その限定理由を記載する。
Mo:0.80%以下
Moは、焼入性およひ靱性を向上させるとともに、浸炭異常層を抑制して強度を向上させる効果を有する元素であり、必要に応じ少量添加して使用することができる元素である。しかしながら、多量に添加すると、残留オーステナイトが増加し、浸炭硬さの低下の原因になるとともに、内部の靭性、被削性を低下させるため、0.80%を上限とした。
【0058】
また、請求項3の発明は、請求項1、2に記載の鋼を3kPa以下の雰囲気下において、パルス状に浸炭ガスを導入する方法で浸炭処理し、再加熱処理することなく室温まで冷却することを特徴とする減圧浸炭部品の製造方法である。
減圧浸炭による減圧の効果は、雰囲気圧を低下すればするほど促進される。従って、本発明では、時間短縮による効果をより大きくするために、雰囲気圧を3kPa以下とした。
【0059】
再加熱処理とは、減圧浸炭では前記したような結晶粒異常成長の問題が確実に回避することが困難であったため、従来から減圧浸炭後の焼入時において、浸炭温度から一度A1変態点以下に冷却した後、再度加熱してから焼入れする方法によって対策がとられており、その方法のことを指す。本発明は、減圧浸炭時の混粒発生を確実に防止できるので、このような再加熱処理を省略することができる。従って、前記した時間短縮と合わせて、一層のエネルギーコスト削減の達成が可能となる。
【0060】
【発明の実施の形態】
次に、本発明の効果を実施例を示すことにより明らかにする。表1は準備した供試鋼の化学成分を示すものである。表1に示す供試鋼のうち、1〜6鋼は本発明の条件を満足する鋼、7〜9鋼は一部の成分が本発明の条件を満足しない比較鋼、10鋼は従来鋼であるSCM420Hである。
【0061】
【表1】

Figure 2004300520
【0062】
各供試鋼は、電気炉で溶解し、圧延してφ20の丸棒を製造した。そして、その丸棒から直径10mm、高さ15mmの試験片を作製した。この試験片を富士電波工機(株)製熱間加工再現試験装置(商品名サーメックマスター)にて1250℃で加熱後、仕上温度が1200℃となる条件で70%の据込み加工を行い、その後670℃となるまで空冷した。そして670℃で40分間保持するという析出処理を行った後、室温まで空冷した。この試験片を雰囲気圧2kPaの環境で浸炭ガスをパルス状に導入する浸炭処理(950℃、1000℃、1050℃、浸炭時間2時間)を行い、混粒状態となっている部分がないか調査した。なお、一部の試験片は、単独のAlN析出数の差の影響を調査するため、据込み加工後一度室温まで空冷してから再加熱して析出処理するという条件で試験を実施した。
【0063】
各試験片の結晶粒異常成長の判定は、光学顕微鏡(倍率は100倍)でランダムに10視野観察することにより評価した。そして、通常異常粒成長が起きていない箇所の粒度番号は8〜10程度であるため、10視野観察した範囲内において、結晶粒度番号が4番以下となっている場合に異常粒成長が生じたとみなすこととした。なお、結晶粒度の測定は全てJISG0551の基準に準拠した方法で行った。そして、この基準で評価した結果、異常粒成長が認められた領域の面積率が20%以上の場合を×、0%超〜20%未満のものを△、0%のものを○で示した。
【0064】
また、異常粒成長の発生状況とAlN、Nb(C、N)の析出状態との関係を調査するために、異常粒成長発生状況を調査した試験片と同時に準備した浸炭処理前の試験片を用いて、Nb(C、N)の析出数(Nb(C、N)については、析出処理前と析出処理後の両方)を測定した。個数の測定はTEMを用いて行った。測定は、析出処理前のものは、前記した据込み加工終了後、直ちに窒素ガスで急冷することにより、析出する時間的余裕を与えずに冷却した試験片を用いて行った。析出処理後のNb(C、N)の個数の測定は、前記した析出処理後、室温まで冷却した試験片を用いて行った。測定は、表面と内部で分けて実施した。表面部の個数の測定は、据込み試験片の軸心を含む断面で切断した面で表面から0.5mm以内の部分を複数箇所観察することにより実施した。内部の析出数の測定は、軸心と表面の中間位置付近の複数箇所を測定することにより実施した。AlN析出量は、化学分析(よう素メタノール溶解−蒸留中和滴定法)により求めた。結果を表2に示す。
【0065】
【表2】
Figure 2004300520
【0066】
表2から明らかなように、成分とNb(C、N)の析出状態が共に本発明の範囲内である1〜6鋼は、1050℃という高い温度でも、異常粒成長をすることがなかった。それに対し、一部の成分が本発明の条件を満足しない比較鋼は従来鋼SCM420Hに比べれば優れた結果が得られたが、本発明鋼に比べ劣るものであった。このうち、7鋼は、ピン止め効果を得るために必要な元素であるNb含有率が低いためNb(C、N)の析出数が減少してピン止め効果が十分に得られず、1000℃以上の温度で異常粒成長が生じたものであり、8鋼はNb含有率が高いため、鍛造時の加熱によって十分に炭窒化物を固溶させることができず、その影響で1050℃での異常粒成長が防止できなかったものである。また、従来鋼SCM420Hである10鋼は、著しく劣り、950℃以上の温度で異常粒成長が発生した。
【0067】
なお、V含有率が高い9鋼は析出物数が本発明の範囲内であるにもかかわらず1050℃の加熱で異常粒が発生したが、これは組織内に析出していたV炭窒化物が1050℃の加熱により固溶してしまい、組織の一部において炭窒化物の少ない領域が生じ異常粒成長が起きたものと推定される。
【0068】
次に、前記実施例で行った条件を基本に前記供試鋼のうち、本発明の成分範囲の条件を満足する1、2鋼を使用して、熱間鍛造条件、析出処理条件を種々変化させた場合の別の実施例を示す。実験した条件(鍛造条件、析出処理条件)は表3に示す通りである。評価した項目及び評価方法は、鍛造条件、析出処理時の温度条件を変更した以外は、前記実施例と同様である。試験結果を表4に示す。
【0069】
【表3】
Figure 2004300520
【0070】
【表4】
Figure 2004300520
【0071】
表3、4から明らかなように、本発明で規定した成分範囲内の鋼であっても、加熱温度、仕上温度、析出処理温度等の条件が適切でないことが原因で、本発明で規定した析出物の個数の範囲外となった試験No.2〜6、8〜12は、優れた結果が得られないことが分かった。このうち、試験No.2、8は仕上温度が低く、5、11は、加熱温度、仕上温度の両方が低いため、据込み加工直後のNb(C、N)の固溶が不十分となって、析出処理後のNb(C、N)のサイズが大きくなってピンニング効果が減少したものであり、No.3、9は析出処理時間が長いため、析出処理中に析出物の成長、粗大化が進み、表面部における混粒発生を防止できなかったものであり、No.4、10は、析出処理温度が高くニ相域での熱処理となったため、析出処理後の冷却時にベイナイトが生成し、その影響で混粒が生じたものであり、No.6、12は一度室温まで冷却し、再度加熱した影響からAlN析出量が大幅に増加し、AlNによるピン止め効果がほぼ完全に消失する1050℃加熱の場合において、混粒が発生したものである。
【0072】
これらの結果より、減圧された雰囲気下でパルス浸炭される場合には、表面部の析出物のうち、50nmを超える大きさの析出物を抑制することにより、1050℃という高温で浸炭処理する場合でも異常粒成長を生じないことが確認できた。
これら結果より、従来異常粒成長の完全防止が難しいために実施されてきた浸炭処理後の再加熱処理(浸炭処理後1度A1変態点以下の温度に冷却し、再加熱してから行う焼入焼もどし処理)を省略することができないかと考え、さらに実部品に対し繰り返し試作実験を実施した。その結果、再加熱処理しなくても、異常粒成長を防止した鍛造品の製造が可能であることが確認できた。
【0073】
次に、単独のAlNの析出状態を調査した別の実施例を示す。
前記した実施例では、AlNの析出量のみ示したが、この数値は、AlNとNb(C、N)との複合析出物中のAlNも含まれているので、このデータのみでは、単独のAlN析出が抑制されていると判断することはできない。そこで、前記した表2のデータ測定で試験No.7、12に使用した加熱実験直前の供試材を用い、走査型電子顕微鏡を用いて、二次電子像と反射電子像を試験片の全く同じ位置で撮影した結果を図1(試験No.7)、図2(試験No.12)に示す。
【0074】
ここで、AlNは、反射電子像に撮影されるが、二次電子像には撮影されないことがわかっているため、この2枚の写真を比較することにより、単独のAlNの有無を正確に把握することができる。なお、倍率は4枚共に50000倍である。
【0075】
まず図2は、AlN析出量が非常に多い比較例No.12のSEM写真を示したもので、(a)が二次電子像、(b)が、反射電子像である。この図の(b)から明らかなように、AlNの析出物(丸で囲んだ部分の薄い灰色部分)を観察することができる。そして、試験片の同じ位置で撮影した反射電子像(a)には、(b)で析出物が観察された位置と同位置には何も観察されない。このことは、単独のAlNが多数析出していることを意味している。
なお、図2(a)、(b)ともに、斜方向に2つの黒色部分が見られるが、これは窪みであり、AlN析出物ではない。
【0076】
それに対し、本発明の範囲内である試験No.7のSEM写真(図1)をみると、(a)、(b)共に何も析出物が観察されないことがわかる。この傾向は、ここで示した視野以外の場所でも同様であった。この結果は前記したNo.12とは全く逆であり、単独のAlNがほとんど析出していないことを意味している。
以上説明した図は、単独のAlNの有無を明確にするため、あえてNb(C、N)が析出していない箇所を選択して撮影した。従って、Nb(C、N)が析出している箇所を選択して撮影すれば、(a)、(b)共にNb(C、N)の析出物が撮影されることは勿論である。
【0077】
また、明細書には示していないが、表3、4の評価に使用した他の本発明の供試材についても同様に調査したが、全く同様の結果であった。
従って、この観察結果より、本発明鋼では、単独のAlNの析出が抑制されており、その結果高温浸炭時の粒成長が抑制されていることがわかる。
【0078】
【発明の効果】
本発明による減圧浸炭用鋼では、Nbを少量添加した鋼を用い、高温で加熱及びで熱間鍛造した後、適切な条件で処理することによって、Nb(C、N)と単独のAlNの析出数を適切な範囲に調整するとともに、特に表面部(表面から0.5mm以内)については、Nb(C、N)の析出物の大きさまで適切に調整している。この結果、パルス浸炭という減圧浸炭特有の方法で浸炭処理される場合でも、異常粒成長を防止することができるとともに、従来の減圧浸炭で省略が困難であった浸炭処理後の再加熱処理を省略することができる。
【0079】
減圧浸炭処理は、通常のガス浸炭に比べ処理時間を短縮することができるという特徴があり、本発明によってこの処理を高温かつ再加熱処理を省略するという条件での実施が可能になったため、従来に比べ大幅なエネルギーコストの削減と生産性の向上を達成でき、自動車等の部品のうち浸炭処理される部品の製造コストを大幅に低減することが可能になる。
【図面の簡単な説明】
【図1】実施例における本発明鋼、試験No.7の炭窒化物析出状態を説明する、図面代用電子顕微鏡写真(倍率50000倍)であり、(a)が二次電子像、(b)が反射電子像である。
【図2】比較例試験No.12における、AlN析出量が増加した場合の炭窒化物析出状態を説明する、図面代用電子顕微鏡写真(倍率50000倍)であり、(a)が二次電子像、(b)が反射電子像である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for reducing the abnormal growth (generation of mixed grains) of crystal grains after carburizing when the steel is carburized at a high temperature of 1000 ° C. or more after hot forging and in a reduced-pressure atmosphere. The present invention relates to a method for producing carburizing steel and a reduced-pressure carburized part.
[0002]
[Prior art]
For steel parts used for power transmission, such as gears and shafts used in automobiles, construction vehicles, construction equipment, and the like, case hardened steel, which forms a hardened layer on the surface by carburizing, is frequently used. This is because the parts are required to have excellent wear resistance and high toughness at the same time, so the surface is hardened by carburizing to secure the wear resistance, and the inside remains low C to give high toughness. is there.
[0003]
Recently, significant reduction in manufacturing cost as well as high strength of these parts has become a major issue. The cost of manufacturing parts can be broadly divided into the cost of the material itself and the cost of heat treatment such as carburization.However, in the former case, especially in case hardening steel to which a large amount of expensive component elements are not added, significant cost reduction is not possible. It is difficult, and studies on the latter heat treatment cost reduction method are being actively studied.
[0004]
Among them, a method being studied recently is high-temperature carburizing treatment. At present, most of the carburizing treatment of case hardening steel is performed by gas carburizing treatment, and a long time treatment of about 4 to 20 hours is performed to obtain a predetermined hardening depth. As a result, productivity has become a problem, and a great deal of energy has been consumed. The high-temperature carburizing treatment is a method that sets the carburizing temperature high and promotes the reaction, thereby invading and diffusing more carbon atoms in a short time to shorten the treatment time, and is the most effective method for reducing the time. It has been known for a long time.
[0005]
In recent years, a vacuum carburizing method (hereinafter, referred to as a vacuum carburizing method) by introducing a hydrocarbon gas such as ethylene into a depressurized furnace is often applied. It has become. Unlike normal gas carburizing, the reduced pressure carburizing method does not require a carrier gas, so the energy required for carrier gas production can be saved, and the time required for processing at the same temperature can be reduced compared to gas carburizing. In addition, it has an excellent feature that it can prevent grain boundary oxidation which causes an abnormal carburizing layer. This is a technology that is greatly expected because it is possible to greatly reduce the processing time by performing the processing in combination with the above-described processing temperature increase.
[0006]
However, treatment at a high carburizing temperature is an effective method for shortening the treatment time, but causes a serious problem. That is, austenite grains are coarsened or mixed after carburizing. If such austenite grains are coarsened or mixed after carburizing, the strength is reduced or the heat treatment strain varies. Usually, after the carburizing treatment, only the minimum necessary mechanical processing such as polishing is usually performed, and such a variation in distortion causes a defective product size, which is a problem. Therefore, in reality, it has not been possible to sufficiently increase the carburizing temperature to reduce the processing time.
[0007]
The phenomenon of coarsening and mixing of grains during carburizing has been known for quite some time, various measures have been studied, new technologies have been proposed, and numerous patent applications have been filed.
[0008]
Among them, the most well-known method is a method in which AlN is finely dispersed to prevent coarsening by a pinning effect. For example, steels disclosed in Patent Documents 1 and 2 have been proposed.
[0009]
Further, in order to stabilize crystal grains at a higher temperature than the pinning effect of AlN, it has been proposed to add Nb to prevent coarsening. For example, steels disclosed in Patent Documents 3 and 4 have been proposed.
[0010]
However, it has been confirmed that the precipitation of AlN or Nb (C, N) has an effect on the prevention of coarsening of crystal grains. However, simply adjusting the addition amounts of Al, N, and Nb is not enough. It has been found that a sufficient effect cannot be obtained, and it has been proposed to perform a heat treatment to precipitate AlN or Nb carbonitride in a state having a larger pinning effect, thereby preventing coarsening. I have. For example, heat treatment methods disclosed in Patent Documents 5 to 7 have been proposed. Although the contents described in these three documents differ in the target steel components, they are all heated to a temperature range of 600 ° C. to the A1 transformation point before the carburizing treatment to form AlN, Nb (C, N). The present invention is characterized in that the precipitation state is changed to a state in which it is difficult to coarsen during carburizing treatment.
[0011]
Patent Documents 8 and 9 disclose Nb (C) by appropriately adjusting the heating and finishing temperature during rolling and hot forging, and cooling between 800 to 500 ° C. at a rate of 1 ° C./sec or less. , N) are described in detail, in which a large amount of fine particles are finely dispersed, the amount of AlN precipitated is suppressed, and coarsening is suppressed.
[0012]
[Patent Document 1]
JP-A-56-75551
[Patent Document 2]
JP-A-59-123714
[Patent Document 3]
JP-A-49-125220
[Patent Document 4]
JP-A-6-299241
[Patent Document 5]
JP-A-58-16022
[Patent Document 6]
JP-A-62-205229
[Patent Document 7]
JP-A-10-121128
[Patent Document 8]
RE-Publication No. 99/05333
[Patent Document 9]
JP 2001-303174 A
[0013]
[Problems to be solved by the invention]
However, the above-mentioned proposed methods have the following problems.
That is, although the pinning effect of AlN described in Patent Documents 1 and 2 can be obtained to a certain extent by carburizing treatment at a temperature of less than 980 ° C., the carburizing temperature of 980 ° C. or more significantly reduces the finely dispersed AlN. Is dissolved, and the effect of preventing crystal grain coarsening due to the pinning effect cannot be sufficiently obtained. Therefore, in the carburizing treatment at a high temperature of 1000 ° C. or more, which is aimed at in the present invention, the effect is very small, and the coarsening cannot be completely prevented.
[0014]
In addition, the inventions described in Patent Documents 3 and 4 in which Nb is added in expectation of a crystal grain stabilizing effect at a higher temperature than AlN have been studied only with respect to the amount of addition. Almost no studies have been made as to whether a large coarsening prevention effect can be obtained when precipitated in a state. According to the results of studies by the present inventors, it has been found that when carburizing a hot forged material, it is difficult to prevent the generation of mixed grains unless the precipitation state is adjusted optimally. In particular, attention should be paid to the precipitation state of AlN, but Patent Documents 3 and 4 do not disclose that point at all.
[0015]
Further, the inventions of Patent Documents 5 to 7, which are characterized in that generation of mixed grains is prevented by heat treatment before carburizing, also have the following problems. That is, Patent Literature 5 is an invention directed to steel containing no Nb, and Patent Literature 6 does not describe Nb at all, and describes the optimal precipitation state of AlN and Nb (C, N) before carburizing. Not considered at all. In addition, Patent Document 7 considers the deposition state of Nb carbonitride in considerable detail, but does not consider the influence of AlN that is present at the same time. Further, it is characterized in that Nb carbonitride is precipitated after hot forging and agglomerated by subsequent heat treatment. However, as a result of investigation by the present inventors, the heat treatment is performed in a state where a large amount of AlN is present. In addition, the carbonitride tends to agglomerate under the influence of AlN, and a large amount of Nb carbonitride containing a large amount of AlN is present. It has been found that when the treatment is performed, coarsening cannot be sufficiently prevented.
[0016]
Further, Patent Documents 8 and 9 describe a technique for suppressing the amount of AlN precipitation to prevent coarsening, but Patent Document 8 describes only the precipitation state after rolling. As described in No. 9, it is assumed that normalization is performed after hot forging, and what means should be used to achieve the most problematic precipitation state immediately before carburizing in the case of a hot forged product. Is not described at all. Patent Document 9 discloses that the precipitation state of AlN and Nb (C, N) after hot forging is achieved by designating forging conditions and cooling conditions after forging, as in the present invention. Although the cooling condition is described as slow cooling, the slow cooling described in this document means that cooling is slower than simple air cooling, and the time required for the precipitation of Nb (C, N) is compared with the time required for precipitation. Then, it is quite fast (at the stated cooling rate of 0.1-1 ° C./sec, it passes through the 620-700 ° C. specified in the present invention in only 80-800 seconds), and the temperature also precipitates. It has been found that the temperature is not limited only to the temperature suitable for the method, and that sufficient fine precipitation is not often performed.
[0017]
Further, the above-mentioned reduced-pressure carburizing treatment includes a step of introducing a carburizing gas into a furnace, increasing and maintaining a predetermined carburizing pressure (a carburizing period), and a step of exhausting the carburizing gas from the furnace to remove the carburizing gas from the surface of the treated product. A method called pulse carburization, in which the process of diffusing carbon inside (diffusion period) is alternately and repeatedly performed, is widely used.
[0018]
However, as a result of a detailed investigation of the treated product in the case of performing the pulse carburizing, a portion of the carburized layer into which carbon penetrates (a portion within about 0.5 mm from the surface) as compared with a treated product subjected to normal gas carburizing It was found that partial abnormal growth of crystal grains was likely to occur with a considerably high probability. Further, in Patent Documents 1 to 9 described above, no countermeasure against such a phenomenon in the case of reduced-pressure carburizing is examined at all.
[0019]
The present invention has been made to solve the above-described problems, and can prevent abnormal grain growth even at a high temperature of about 1050 ° C. and pulse carburization under reduced pressure. An object of the present invention is to provide a method for producing a steel for reduced pressure carburization and a reduced pressure carburized part that can significantly improve the productivity of carburizing treatment.
[0020]
[Means for Solving the Problems]
The invention according to claim 1 is a steel in which a carburizing gas is introduced in a pulse shape and carburized under reduced pressure, wherein C: 0.10 to 0.30%, Si: 0.05 to 0.50% by weight. Mn: 0.30 to 1.50%, Cr: 0.30 to 2.00%, Al: 0.005 to 0.050%, Nb: 0.01 to 0.10%, N: 0.0080 to 0.0250%, V: 0.01% or less, with the balance being Fe and impurity elements, the amount of AlN deposited is 100 ppm or less, and the number of Nb (C, N) deposited is 1 to 10 / μm. 2 And among the Nb (C, N) precipitates within 0.5 mm from the surface, one precipitate particle having a size of 10 to 50 nm / μm 2 And the number of precipitated particles exceeding 50 nm is 1 / μm 2 A vacuum carburizing steel characterized by the following.
[0021]
It should be noted in the present invention that when carburizing after hot working using the case hardening steel having the above specific composition, the carbonitride of AlN or Nb is simply removed as in the conventional steel for preventing grain coarsening. Instead of fine precipitation, the amount of AlN precipitation is suppressed to 100 ppm or less, and particularly the number of single AlN not complexed with Nb (C, N) or the like is suppressed, and Nb (C, The number of deposited Nb (C, N) within a specific size (10 to 50 nm) in a region (within 0.5 mm from the surface) of the surface that is actually carburized is secured by a predetermined number or more of Nb (C, N). More than the number, the pinning effect is surely ensured, and large Nb (C, N) (more than 50 nm) is conversely suppressed in number, so that even when pulse carburizing is performed under high temperature and reduced pressure, Enables suppression of mixed particle generation There in the points.
[0022]
Conventionally, both AlN and Nb (C, N) have been considered to have a large effect on crystal grain refinement, and it has been considered that finely dispersing both of them has a large effect on preventing crystal grain coarsening. However, as it turns out that AlN is more likely to form a solid solution than Nb (C, N) and cannot greatly expect an effect on crystal grain coarsening at a high temperature, miniaturization centering on Nb (C, N) has been realized. Measures have come to be considered mainly. However, even in such a case, there is no idea that the presence of AlN is harmful to the prevention of abnormal grain growth, except for a very small portion such as Patent Documents 8 and 9 described above.
[0023]
On the other hand, as a result of a detailed investigation by the present inventors, it has been found that a steel composed of a state in which a single amount of AlN is precipitated has the following problems.
(1) When the steel in which a large amount of single AlN is precipitated is carburized, the crystal grains become fine due to the pinning effect of AlN. However, since they are fine, the driving force for grain growth increases.
[0024]
(2) In the case of carburizing treatment at a relatively low temperature, AlN precipitates remain even during carburization and a pinning effect can be obtained, so that although the driving force for grain growth is large, a large effect for preventing coarsening is obtained. Can be obtained.
[0025]
(3) However, when the carburizing temperature is increased, the solid solution of the precipitated AlN proceeds, and a region where the amount of precipitated AlN is small starts to be generated. As a result, a region where the pinning effect is not sufficiently obtained partially occurs, so that the driving force for grain growth cannot be suppressed, and partial abnormal grain growth (mixed grain) occurs.
[0026]
The present invention has been made in order to solve the above-described problems of the crystal grain coarsening prevention technology that positively utilizes AlN, and has been made by obtaining the following knowledge.
(1) Precipitation of single AlN is suppressed, and the initial carburizing grain size achieved by heating steel on which Nb (C, N) is precipitated as main pinning particles does not suppress single AlN precipitation. The grains become considerably coarser than the Nb-added steel, and the driving force for grain growth can be suppressed small. During the carburizing process at a temperature exceeding 1000 ° C., Nb carbonitride exists without solid solution even in the conventional Nb-added steel, but the steel of the present invention can obtain a relatively coarse-grained state. Therefore, partial abnormal grain growth, which could not be sufficiently suppressed by the conventional Nb-added steel, can be reliably prevented.
[0027]
(2) Even in the steel of the present invention in which the precipitation of AlN alone is suppressed, AlN precipitates during heating during the high-temperature carburizing treatment at 1050 ° C., but this precipitation is caused by Nb (C, N) preferentially precipitates around. Therefore, the formation of a single AlN precipitate can be suppressed not only before the carburizing treatment but also during the heating of the carburizing, so that the structure has relatively coarse crystal grains as described above. If the temperature exceeds 1000 ° C., the solid solution of AlN proceeds, but even in such a high temperature state, Nb (C, N) remains, so that a sufficient pinning effect can be secured. Further, since the driving force for grain growth is small due to coarse grains, it is possible to prevent generation of mixed grains.
[0028]
Further, the mechanism of the generation of mixed grains occurring mainly at the surface during pulse carburization and the technique for preventing the same have been solved by obtaining the following knowledge, and the present invention has been completed.
[0029]
(1) When carburizing is performed by introducing a carburizing gas in a pulsed manner, in the carburizing period in which the gas pressure is high, the intrusion of carbon into the surface proceeds. A precipitate grows. Further, in the diffusion period in which the gas pressure is low, since the carbon concentration decreases in a state where the gas is heated to a high temperature, Nb (C, N) reversely forms a solid solution and relatively large Nb (C, N) has a size. A phenomenon occurs in which finer Nb (C, N) remains, although it becomes smaller, and is completely dissolved in fine Nb (C, N). In actual pulse carburization, this repetition is performed continuously for a very large number of times, and as a result, of Nb (C, N) existing before the carburizing treatment, the larger Nb (C, N) further grows and becomes larger. At the same time, since fine particles disappear, the number of precipitated particles is significantly reduced as compared with that before the carburizing treatment, and the pinning effect is reduced.
[0030]
(2) As a result, the remaining Nb (C, N) grows and grows, and the effect of preventing coarsening is reduced. This phenomenon is concentrated on the surface. This is considered to be the cause of the occurrence of a mixed particle state.
[0031]
(3) Even if a carburizing treatment in which a carburizing period and a diffusion period are repeatedly performed is carried out, as a result of a detailed investigation on the particle size distribution of precipitated particles before the carburizing treatment to maintain the necessary pinning effect until the end of the carburizing treatment, Precipitates having a size of 10 to 50 nm are appropriate for maintaining the pinning effect, and precipitates having a size of more than 50 nm need to suppress the number.
[0032]
Next, the reasons for limiting the chemical components of the vacuum carburizing steel according to the first aspect of the present invention will be described.
C: 0.10 to 0.30%
In order to secure the strength and internal hardness required for a carburized part, it is necessary to contain 0.10% or more of C. However, when the content exceeds 0.30%, the internal toughness is deteriorated and the machinability is further reduced. Therefore, the upper limit is set to 0.30%.
[0033]
Si: 0.05 to 0.50%
Si is an element necessary for deoxidation during the production of steel, and must be contained at least 0.05% or more. However, Si reacts with oxygen in a carburizing atmosphere during carburizing to form an oxide. Therefore, the hardenability decreases near the surface layer of the article to be treated, and a so-called abnormal carburizing layer is formed. Therefore, when a large amount is contained, the adverse effect due to the formation of the abnormal carburized layer is increased and the strength is reduced, and the machinability is also reduced. Therefore, the upper limit is set to 0.50%.
[0034]
Mn: 0.30 to 1.50%
Mn must contain 0.30% or more of Mn in order to ensure the necessary hardenability and the hardness required to secure the strength to the inside. However, when contained in a large amount, the retained austenite increases, the hardness decreases, the internal toughness deteriorates, and the machinability decreases. Therefore, the upper limit was set to 1.50%.
[0035]
P: 0.035% or less
P is an impurity which cannot be avoided during production. The present invention is not particularly limited as an essential condition, but since it is an element that lowers the strength of grain boundaries and deteriorates fatigue properties, its upper limit is preferably made 0.035% or less.
[0036]
S: 0.030% or less
S, like P, is an impurity inevitably mixed in a small amount during production, and exists as a sulfide-based inclusion such as MnS. However, this inclusion is an element that becomes a starting point of fatigue fracture, lowers pitting resistance, and causes anisotropy of the steel material to increase. Therefore, in the present invention, although not necessarily limited, it is ideally preferably reduced as much as possible, and the upper limit is more preferably set to 0.030%.
[0037]
Cr: 0.30 to 2.00%
Cr is an element necessary for improving hardenability, securing necessary strength, and improving the performance of the steel produced according to the present invention, and it is necessary to contain 0.30% or more. However, if contained in a large amount, the toughness is deteriorated and the machinability is reduced. Therefore, the upper limit is set to 2.00%.
[0038]
Al: 0.005 to 0.050%,
Al is an element necessary for deoxidation like Si, and is an element that exists as AlN and is effective in preventing abnormal grain growth after carburizing due to a pinning effect. Therefore, it is necessary to add at least an amount necessary for deoxidation, and the lower limit is set to 0.005%. However, unlike the conventional steel for preventing grain coarsening in the present invention, the precipitation of AlN is suppressed and the pinning effect is not expected at all, but the main pinning effect is Nb (C, N). Further, when Al is contained in a large amount, the number of single AlN precipitates before the carburizing treatment increases, and it becomes difficult to suppress the number of AlN precipitates. Therefore, the upper limit is set to 0.050%.
[0039]
N: 0.0080 to 0.0250%
As described above, N is combined with Al and Nb, becomes AlN and Nb (C, N), exists in the steel, and is an element effective in preventing abnormal grain growth after carburizing. In order to obtain this effect sufficiently, it is necessary to contain 0.0080% or more of N. However, there is an appropriate amount of AlN or Nb (C, N) to be precipitated, and if the amount is too large, the initial carburizing particle size becomes small and abnormal grain growth tends to occur, so the upper limit is made 0.0250%. .
[0040]
Nb: 0.01 to 0.10%
Nb is the most important element in the present invention, and is present in steel as a carbonitride, which is an element having a large effect of preventing abnormal growth of crystal grains in carburizing at a high temperature, particularly in comparison with Al. When the amount of Nb added is small, particularly in carburizing at 1050 ° C. or more, a part of the carbonitride precipitated before the carburizing treatment becomes a solid solution, and the amount of Nb carbonitride contributing to the pinning effect is insufficient, and the amount of Nb is insufficient. Since the effect of suppressing granulation cannot be sufficiently obtained, the lower limit is set to 0.01%. On the other hand, if a large amount is contained, Nb (C, N) is not brought into a sufficiently solid solution state by heating during hot forging, and coarse Nb (C, N) precipitates remain. Since the pinning effect decreases, the upper limit is set to 0.10%.
[0041]
V: 0.01% or less
V is an element that forms a carbonitride like Nb and contributes to the prevention of crystal grain growth by a pinning effect. However, carbonitride of V easily forms a solid solution at a higher temperature than carbonitride of Nb. In the case of high-temperature carburization at 1000 ° C. or more, carburizing heating causes a solid solution and the pinning effect disappears during carburization, so that the effect of suppressing the growth of crystal grains cannot be obtained. It is necessary to preferentially bind C and N in steel to elements that form carbonitrides that are hardly dissolved at the processing temperature. When V is contained, a part of C and N in the steel is combined with V, an action of reducing the initial particle size of carburizing occurs, and they form a solid solution during carburizing at 1000 ° C. or more, Since the pinning effect is lost, abnormal grain growth is promoted. Therefore, when V is present during high-temperature carburizing, abnormal grain growth tends to occur. V is an element that may be mixed in a small amount from scrap used in the production of steel even if not actively added, so it is necessary to reduce the amount of V contained as an impurity, and the upper limit is restricted to 0.01%. did.
[0042]
Next, the reason for limiting the precipitation state of AlN and Nb (C, N) in the first aspect of the invention will be described below.
The reason for setting the upper limit of the amount of AlN precipitation to 100 ppm is that, as described above, if a large number of single AlNs precipitate, the initial crystal grain size obtained during carburizing treatment becomes fine, the driving force for grain growth increases, and Nb ( This is because, even when an appropriate amount of C and N) is precipitated, it is difficult to prevent the generation of mixed grains. However, the number of 100 ppm is not only the amount of AlN that is present alone. However, as shown in the examples described below, by suppressing the total amount of AlN precipitated, single AlN can be preferentially reduced. That is, if the amount of AlN deposited is suppressed, single AlN can be automatically suppressed.
[0043]
In the present invention, the number of Nb (C, N) precipitated in the substrate after the precipitation treatment and before the carburizing treatment is 1 to 10 / μm. 2 Limited to. This means that the lower limit is 1 piece / μm 2 The reason for this is that the number is the minimum required to secure the required pinning effect, and the upper limit is 10 / μm. 2 The reason for this is that if the number is too large, the crystal grain size in the early stage of carburizing becomes small, the driving force for grain growth becomes large, and mixed grains are likely to be generated.
[0044]
In the present invention, Nb (C, N) means both a precipitate of Nb (C, N) alone and a composite precipitate of Nb (C, N) and AlN. Means AlN which does not contain other compositions such as Nb (C, N).
[0045]
Further, the number of Nb carbonitrides can be easily measured by using TEM and FESEM. In addition, in order to prevent an error in the measurement result when the same test piece is measured depending on the accuracy of the measuring device used, the target carbonitride has a size (length of the longest portion) of 10 nm or more. Limited to those. The number of carbon nitrides having a size of 10 nm or more is 1 to 10 / μm. 2 And
[0046]
In addition, in order to confirm the precipitate of 10 nm, it is necessary to observe at least 50,000 times, preferably about 100,000 times (observation of a precipitate of 10 nm becomes 1 mm at 100,000 times). When observed at low magnification, small precipitates may be overlooked, so care must be taken when counting the number.
[0047]
Further, in the present invention, in order to prevent the generation of mixed grains on the surface when pulse carburization is performed, a different rule from the above-mentioned limitation is provided for a region within 0.5 mm from the surface. Note that 0.5 mm from the surface is a region directly affected by the carburizing treatment (a carburized hardened layer), and is a region where the generation of mixed grains is actually concentrated. Hereinafter, the reason for limitation will be described.
[0048]
The number of precipitates having a size of 10 to 50 nm is 1 / μm 2 The reason for the above is that the size of the precipitated particles for which the pinning effect can be obtained most efficiently when the carburizing period and the diffusion period are repeated is 10 to 50 nm. This is because it is necessary to deposit as many precipitated particles as possible in the range. If the number of precipitates is 1 / μm 2 If it is less than 3, the pinning effect cannot be sufficiently obtained during pulse carburization, and it becomes difficult to prevent the generation of mixed grains on the surface.
[0049]
In addition, the number of precipitates having a size of more than 50 nm is 1 / μm in contrast to the precipitate particles of 10 to 50 nm. 2 The reason why the number was suppressed below is that when such large precipitates are present in a large amount, these large precipitates become nuclei during the diffusion period and grow preferentially, and large precipitate particles become extremely large in the latter half of the carburizing treatment. This is because a large amount of particles remains, and as a result, the pinning effect decreases, and it becomes impossible to prevent the generation of mixed grains.
As described above, the size of the precipitate is determined by the length of the longest part.
[0050]
Next, a manufacturing method for achieving the above-described precipitation state will be described.
The steel of the present invention is manufactured by hot forging. In order to suppress the precipitation of AlN, it can be achieved by sufficiently dissolving Nb (C, N) during hot forging and then performing a precipitation treatment described below during cooling without cooling to room temperature. . Care must be taken when cooling to room temperature and then reheating to perform the precipitation treatment, since the number of single AlN precipitates increases significantly.
[0051]
It is not clear why the above method can suppress the precipitation of single AlN. However, since Nb in the steel is sufficiently dissolved by heating at the time of hot forging, Nb is in an extremely supersaturated state during the precipitation treatment described later, and Nb (C, N) tends to precipitate. It is presumed that the fact that the temperature range of the precipitation treatment is a temperature range advantageous for the precipitation of Nb (C, N) as compared with AlN, etc., is affecting the suppression of the precipitation of AlN.
[0052]
Next, the heating temperature at the time of hot forging is such that Nb (C, N) is sufficiently dissolved in solid (specifically, the number of precipitates is 0.3 / μm). 2 Below), it is necessary to set the temperature to a relatively high temperature of 1150 to 1350 ° C. This high temperature needs to be maintained until the forging finish in order to maintain a state in which Nb (C, N) is sufficiently dissolved. Therefore, the hot forging finish temperature needs to be 1100 to 1300 ° C.
[0053]
Then, in order to keep the required number of Nb (C, N) in a finely precipitated state, after the hot forging is completed, in a temperature range of 620 to 700 ° C. in the middle of cooling to room temperature, the temperature is held for a certain time. good. At the time of the above-described hot forging, Nb (C, N) is in a sufficiently solid-solution state, and is kept in this temperature range. It is unlikely that the substance grows as a nucleus, and a state in which many and fine Nb (C, N) are deposited can be obtained.
[0054]
The lower limit of the temperature range of the precipitation treatment was set to 620 ° C. because the precipitation of Nb (C, N) did not proceed efficiently even when the temperature was kept lower than this temperature, and the upper limit was set to 700 ° C. The reason is that if the temperature exceeds the transformation temperature and enters the two-phase region, transformation occurs after the precipitation treatment, and bainite and martensite are partially formed by the subsequent cooling, which results in coarsening This is because it becomes difficult to prevent the problem.
[0055]
However, if the holding time is too long, the growth of the precipitates proceeds and the precipitates having a size of more than 50 nm increase, and holding for too long a time is not appropriate from the viewpoint of productivity. It is good to carry out in the range of about 15 minutes to 2 hours.
By manufacturing according to the method described above, it is possible to achieve a state in which Nb (C, N) is precipitated in an optimum state before carburizing, and it is possible to prevent generation of mixed grains on the surface during reduced-pressure carburizing.
[0056]
After completion of the precipitation treatment, the mixture is cooled to room temperature. Since the precipitation treatment is a heat treatment at a temperature lower than the transformation point, the transformation has already been completed at the end of the precipitation treatment. Therefore, the obtained tissue is not affected by the cooling condition to room temperature, and may be appropriately selected according to the convenience of the facility at the place where the operation is performed. However, cooling to 500 ° C. is desirably performed at a rate of 25 ° C./min or more so as not to give a time margin for precipitation of AlN.
By performing the hot forging and the precipitation treatment according to the procedure described above, the appropriate precipitation state described in claim 1 can be obtained, and the occurrence of mixed grains can be reliably prevented.
[0057]
Next, as in the second aspect of the invention, in addition to the steel of the first aspect, a steel containing 0.80% or less of Mo can be used. Hereinafter, the reasons for the limitation will be described.
Mo: 0.80% or less
Mo is an element having the effect of improving hardenability and toughness, and also suppressing the abnormal carburizing layer and improving the strength, and can be used by adding a small amount as necessary. However, when added in a large amount, retained austenite increases, which causes a reduction in carburized hardness and lowers internal toughness and machinability. Therefore, the upper limit is set to 0.80%.
[0058]
According to a third aspect of the present invention, the steel according to the first or second aspect is carburized by a method of introducing a carburizing gas in a pulsed manner under an atmosphere of 3 kPa or less, and cooled to room temperature without reheating. A method for producing a reduced pressure carburized part, characterized in that:
The effect of reduced pressure by reduced pressure carburization is promoted as the atmospheric pressure is reduced. Therefore, in the present invention, the atmosphere pressure is set to 3 kPa or less in order to further increase the effect of shortening the time.
[0059]
The reheating treatment means that it has been difficult to reliably avoid the problem of abnormal growth of crystal grains as described above in vacuum carburization. Therefore, conventionally, at the time of quenching after vacuum carburization, the carburization temperature is once lower than the A1 transformation point. After cooling, the steel is heated again and then quenched. According to the present invention, generation of mixed grains during reduced-pressure carburization can be reliably prevented, and thus such reheating treatment can be omitted. Therefore, it is possible to further reduce the energy cost in addition to the above-described time reduction.
[0060]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the effects of the present invention will be clarified by showing examples. Table 1 shows the chemical components of the prepared test steels. Of the test steels shown in Table 1, 1 to 6 steels satisfy the conditions of the present invention, 7 to 9 steels are comparative steels whose components do not satisfy the conditions of the present invention, and 10 steels are conventional steels. There is a certain SCM420H.
[0061]
[Table 1]
Figure 2004300520
[0062]
Each test steel was melted and rolled in an electric furnace to produce a φ20 round bar. Then, a test piece having a diameter of 10 mm and a height of 15 mm was prepared from the round bar. This test piece was heated at 1250 ° C. with a hot working reproduction test device (trade name: Cermec Master) manufactured by Fuji Denki Koki Co., Ltd., and then subjected to 70% upsetting under the condition that the finishing temperature was 1200 ° C. Then, the mixture was air-cooled to 670 ° C. Then, after performing a precipitation treatment of holding at 670 ° C. for 40 minutes, the resultant was air-cooled to room temperature. The test piece was subjected to a carburizing treatment (950 ° C., 1000 ° C., 1050 ° C., carburizing time: 2 hours) in which a carburizing gas was introduced in a pulsed manner in an environment of an atmospheric pressure of 2 kPa, and an examination was made to see if there were any mixed particles. did. In addition, in order to investigate the influence of the difference in the number of precipitation of a single AlN, some of the test pieces were subjected to a test under the condition that they were air-cooled to room temperature once after upsetting, then reheated and then subjected to a precipitation treatment.
[0063]
The determination of abnormal growth of crystal grains of each test piece was evaluated by observing 10 visual fields randomly using an optical microscope (magnification: 100 times). Since the grain size number of the portion where the abnormal grain growth does not usually occur is about 8 to 10, it is considered that the abnormal grain growth occurs when the crystal grain size number is 4 or less within the range observed in 10 visual fields. I decided to consider it. In addition, the measurement of the crystal grain size was all performed by the method based on the standard of JISG0551. As a result of the evaluation based on this criterion, a case where the area ratio of the region where abnormal grain growth was observed was 20% or more was indicated by x, a case where the area ratio was more than 0% to less than 20% was indicated by Δ, and a case where 0% was observed was indicated by ○. .
[0064]
Further, in order to investigate the relationship between the occurrence state of abnormal grain growth and the precipitation state of AlN, Nb (C, N), a test piece before carburizing treatment prepared at the same time as the test piece in which the occurrence state of abnormal grain growth was investigated was examined. The number of Nb (C, N) deposited (both before and after the deposition treatment) was measured for Nb (C, N). The number was measured using a TEM. The measurement before the precipitation treatment was performed using a test piece which was immediately cooled with nitrogen gas immediately after the end of the upsetting process and cooled without giving a sufficient time for precipitation. The number of Nb (C, N) after the precipitation treatment was measured using a test piece cooled to room temperature after the above-mentioned precipitation treatment. The measurement was performed separately on the surface and inside. The measurement of the number of the surface portions was performed by observing a plurality of portions within 0.5 mm from the surface on a cross section including the axis of the upsetting test piece. The internal precipitation number was measured by measuring a plurality of locations near an intermediate position between the axis and the surface. The amount of AlN deposited was determined by chemical analysis (iodine methanol dissolution-distillation neutralization titration method). Table 2 shows the results.
[0065]
[Table 2]
Figure 2004300520
[0066]
As is clear from Table 2, 1 to 6 steels in which the components and the precipitation state of Nb (C, N) are both within the scope of the present invention did not undergo abnormal grain growth even at a high temperature of 1050 ° C. . On the other hand, the comparative steel in which some of the components did not satisfy the conditions of the present invention obtained excellent results as compared with the conventional steel SCM420H, but was inferior to the steel of the present invention. Among them, Steel 7 has a low content of Nb, which is an element necessary for obtaining the pinning effect, so that the precipitation number of Nb (C, N) is reduced and the pinning effect is not sufficiently obtained. Abnormal grain growth occurred at the above temperature, and steel 8 had a high Nb content, so that it was not possible to sufficiently dissolve carbonitride by heating during forging. The abnormal grain growth could not be prevented. Further, the conventional steel SCM420H, 10 steel, was remarkably inferior, and abnormal grain growth occurred at a temperature of 950 ° C. or higher.
[0067]
In addition, although the number of precipitates was within the range of the present invention, abnormal grains were generated by heating at 1050 ° C. in the 9 steels having a high V content, but this was due to the V carbonitride precipitated in the structure. Is presumed to be dissolved by heating at 1050 ° C., causing a region with a small amount of carbonitrides in a part of the structure to cause abnormal grain growth.
[0068]
Next, hot forging conditions and precipitation treatment conditions were variously changed using one or two steels satisfying the conditions of the composition range of the present invention among the test steels based on the conditions performed in the above examples. Another embodiment will be described. The experimental conditions (forging conditions, precipitation treatment conditions) are as shown in Table 3. The evaluated items and the evaluation method are the same as those in the above-mentioned Example except that the forging conditions and the temperature conditions during the precipitation treatment were changed. Table 4 shows the test results.
[0069]
[Table 3]
Figure 2004300520
[0070]
[Table 4]
Figure 2004300520
[0071]
As is clear from Tables 3 and 4, even steels within the component range specified in the present invention are specified in the present invention because the conditions such as heating temperature, finishing temperature, and precipitation temperature are not appropriate. Test No. which was out of the range of the number of precipitates. Nos. 2 to 6 and 8 to 12 did not provide excellent results. Test No. 2, 8 have a low finishing temperature and 5, 11 have a low heating temperature and a low finishing temperature, so that the solid solution of Nb (C, N) immediately after the upsetting is insufficient, and No. Nb (C, N) increased in size and reduced the pinning effect. Nos. 3 and 9 are those in which the precipitation treatment time was long, and the growth and coarsening of precipitates proceeded during the precipitation treatment, and the generation of mixed grains on the surface could not be prevented. In Nos. 4 and 10, since the precipitation treatment temperature was high and the heat treatment was performed in the two-phase region, bainite was generated during cooling after the precipitation treatment, and mixed grains were generated due to the influence. In Nos. 6 and 12, the amount of AlN was greatly increased due to the effect of cooling once to room temperature and heating again, and the mixed particles were generated in the case of heating at 1050 ° C. where the pinning effect of AlN almost completely disappeared. .
[0072]
From these results, when pulse carburizing is performed in a reduced-pressure atmosphere, the case where the carburizing treatment is performed at a high temperature of 1050 ° C. by suppressing the precipitates having a size exceeding 50 nm among the precipitates on the surface. However, it was confirmed that abnormal grain growth did not occur.
From these results, reheating treatment after carburizing treatment, which was conventionally performed because it was difficult to completely prevent abnormal grain growth (it is cooled to a temperature below the A1 transformation point once after carburizing treatment, and then reheated and then quenched) We thought that it was possible to omit the tempering process, and repeated trial production experiments on actual parts. As a result, it was confirmed that it was possible to manufacture a forged product in which abnormal grain growth was prevented without performing reheating treatment.
[0073]
Next, another example of investigating the precipitation state of a single AlN will be described.
In the above-described embodiment, only the amount of AlN deposited is shown. However, this value includes AlN in the composite precipitate of AlN and Nb (C, N). It cannot be determined that precipitation is suppressed. Therefore, in the data measurement of Table 2 described above, Test No. Using the test material immediately before the heating experiment used in Examples 7 and 12, a secondary electron image and a reflected electron image were taken at exactly the same position on the test piece using a scanning electron microscope. 7) and FIG. 2 (Test No. 12).
[0074]
Here, it is known that AlN is photographed in a reflected electron image, but not in a secondary electron image. Therefore, by comparing these two photographs, the presence or absence of a single AlN can be accurately grasped. can do. The magnification is 50,000 times for all four sheets.
[0075]
First, FIG. 2 shows Comparative Example No. 1 in which the amount of AlN precipitated was very large. 12 shows SEM photographs, (a) is a secondary electron image, and (b) is a reflected electron image. As is apparent from FIG. 3B, a precipitate of AlN (a light gray portion surrounded by a circle) can be observed. In the backscattered electron image (a) taken at the same position on the test piece, nothing is observed at the same position as the position where the precipitate was observed in (b). This means that a large number of single AlNs are precipitated.
In both FIGS. 2 (a) and 2 (b), two black portions are obliquely seen, but these are depressions and are not AlN precipitates.
[0076]
On the other hand, the test Nos. 7 shows that no precipitate is observed in both (a) and (b). This tendency was the same in places other than the visual field shown here. This result is the same as that of No. This is the opposite of 12 and means that almost no single AlN is deposited.
In the figures described above, in order to clarify the presence or absence of a single AlN, a place where Nb (C, N) is not deposited is selected and photographed. Therefore, if a part where Nb (C, N) is precipitated is selected and photographed, a deposit of Nb (C, N) is naturally photographed in both (a) and (b).
[0077]
Although not shown in the specification, other test materials of the present invention used in the evaluations of Tables 3 and 4 were examined in the same manner, and the results were exactly the same.
Therefore, from the observation results, it is understood that in the steel of the present invention, the precipitation of single AlN is suppressed, and as a result, the grain growth during high-temperature carburizing is suppressed.
[0078]
【The invention's effect】
In the steel for reduced pressure carburization according to the present invention, Nb (C, N) and single AlN are precipitated by using a steel to which a small amount of Nb is added, heating at a high temperature and hot forging, and then processing under appropriate conditions. The number is adjusted to an appropriate range, and particularly for the surface portion (within 0.5 mm from the surface), the size of the Nb (C, N) precipitate is appropriately adjusted. As a result, even when carburizing is performed by a method peculiar to vacuum carburization called pulse carburizing, abnormal grain growth can be prevented, and reheating treatment after carburizing, which was difficult to omit with conventional vacuum carburizing, is omitted. can do.
[0079]
The reduced-pressure carburizing treatment is characterized in that the treatment time can be shortened as compared with normal gas carburizing treatment, and the present invention makes it possible to carry out this treatment at a high temperature and omitting the reheating treatment. It is possible to achieve a significant reduction in energy cost and an improvement in productivity as compared with the above, and it is possible to greatly reduce the manufacturing cost of carburized parts among parts of automobiles and the like.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 is an electron micrograph (magnification: 50,000 times) used in place of a drawing to explain the carbonitride precipitation state of No. 7, (a) is a secondary electron image, and (b) is a reflected electron image.
FIG. 12 is a drawing substitute electron micrograph (magnification: 50,000 times) illustrating the carbonitride precipitation state when the amount of AlN precipitation increases in (12), (a) is a secondary electron image, and (b) is a reflected electron image. is there.

Claims (3)

パルス状に浸炭ガスが導入され、減圧浸炭される鋼であって、重量比でC:0.10〜0.30%、Si:0.05〜0.50%、Mn:0.30〜1.50%、Cr:0.30〜2.00%、Al:0.005〜0.050%、Nb:0.01〜0.10%、N:0.0080〜0.0250%、V:0.01%以下を含有し、残部Fe及び不純物元素からなり、AlN析出量が100ppm以下、Nb(C、N)の析出数が1〜10個/μmであり、表面から0.5mm以内のNb(C、N)析出物のうち、10〜50nmの大きさの析出粒子が1個/μm以上であり、50nm超の析出粒子が1個/μm以下であることを特徴とする減圧浸炭用鋼。It is a steel in which a carburizing gas is introduced in a pulsed form and carburized under reduced pressure. The weight ratio of C: 0.10 to 0.30%, Si: 0.05 to 0.50%, Mn: 0.30 to 1 .50%, Cr: 0.30 to 2.00%, Al: 0.005 to 0.050%, Nb: 0.01 to 0.10%, N: 0.0080 to 0.0250%, V: Contains 0.01% or less, the balance being Fe and impurity elements, the amount of AlN deposited is 100 ppm or less, the number of deposited Nb (C, N) is 1 to 10 / μm 2 , and within 0.5 mm from the surface Of Nb (C, N) precipitates having a size of 1 / μm 2 or more and 10/50 nm or more, and 1 / μm 2 or less of particles exceeding 50 nm. Vacuum carburizing steel. 請求項1記載の鋼に加えてさらにMo:0.80%以下を含有することを特徴とする減圧浸炭用鋼。A steel for reduced pressure carburization characterized by further containing Mo: 0.80% or less in addition to the steel according to claim 1. 請求項1、2に記載の鋼を3kPa以下の雰囲気中で、パルス状に浸炭ガスを導入する方法で浸炭処理し、再加熱処理することなく室温まで冷却することを特徴とする減圧浸炭部品の製造方法。3. A reduced-pressure carburized part characterized in that the steel according to claim 1 or 2 is carburized by a method of introducing a carburizing gas in a pulsed manner in an atmosphere of 3 kPa or less and cooled to room temperature without reheating. Production method.
JP2003094988A 2003-03-31 2003-03-31 Steel for vacuum carburizing and manufacturing method of vacuum carburized parts Expired - Lifetime JP4350968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094988A JP4350968B2 (en) 2003-03-31 2003-03-31 Steel for vacuum carburizing and manufacturing method of vacuum carburized parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094988A JP4350968B2 (en) 2003-03-31 2003-03-31 Steel for vacuum carburizing and manufacturing method of vacuum carburized parts

Publications (2)

Publication Number Publication Date
JP2004300520A true JP2004300520A (en) 2004-10-28
JP4350968B2 JP4350968B2 (en) 2009-10-28

Family

ID=33407425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094988A Expired - Lifetime JP4350968B2 (en) 2003-03-31 2003-03-31 Steel for vacuum carburizing and manufacturing method of vacuum carburized parts

Country Status (1)

Country Link
JP (1) JP4350968B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107042A (en) * 2005-10-13 2007-04-26 Sumitomo Metal Ind Ltd Steel for high temperature carburizing
JP2008069436A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Component carburized under reduced pressure and its production method
JP2008133501A (en) * 2006-11-28 2008-06-12 Sumitomo Metal Ind Ltd Steel for gear to be vacuum-carburized
JP2008189989A (en) * 2007-02-05 2008-08-21 Sumitomo Metal Ind Ltd Steel material for high temperature carburizing
JP2012158827A (en) * 2011-02-03 2012-08-23 Sumitomo Metal Ind Ltd Hot-worked steel product for surface hardening
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
JP2015160967A (en) * 2014-02-26 2015-09-07 愛知製鋼株式会社 Forged component for pressure-reduced high-temperature carburization treatment, and production method thereof
JP2015160966A (en) * 2014-02-26 2015-09-07 愛知製鋼株式会社 Forged component for pressure-reduced high-temperature carburization treatment, and production method thereof
CN116065005A (en) * 2023-03-07 2023-05-05 中国机械总院集团北京机电研究所有限公司 Vacuum heat treatment composite process development equipment and treatment process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
WO2013109415A1 (en) 2012-01-20 2013-07-25 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107042A (en) * 2005-10-13 2007-04-26 Sumitomo Metal Ind Ltd Steel for high temperature carburizing
JP2008069436A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Component carburized under reduced pressure and its production method
JP2008133501A (en) * 2006-11-28 2008-06-12 Sumitomo Metal Ind Ltd Steel for gear to be vacuum-carburized
JP2008189989A (en) * 2007-02-05 2008-08-21 Sumitomo Metal Ind Ltd Steel material for high temperature carburizing
JP2012158827A (en) * 2011-02-03 2012-08-23 Sumitomo Metal Ind Ltd Hot-worked steel product for surface hardening
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
JP2015160967A (en) * 2014-02-26 2015-09-07 愛知製鋼株式会社 Forged component for pressure-reduced high-temperature carburization treatment, and production method thereof
JP2015160966A (en) * 2014-02-26 2015-09-07 愛知製鋼株式会社 Forged component for pressure-reduced high-temperature carburization treatment, and production method thereof
CN116065005A (en) * 2023-03-07 2023-05-05 中国机械总院集团北京机电研究所有限公司 Vacuum heat treatment composite process development equipment and treatment process

Also Published As

Publication number Publication date
JP4350968B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2008056552A1 (en) Process for producing high-concentration carburized steel
WO1999005333A1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP6401143B2 (en) Method for producing carburized forging
JP2010163671A (en) Steel for soft nitriding
WO2014017074A1 (en) Nitrocarburizable steel, nitrocarburized part, and methods for producing said nitrocarburizable steel and said nitrocarburized part
JP4350968B2 (en) Steel for vacuum carburizing and manufacturing method of vacuum carburized parts
JPWO2015098528A1 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
JP5533712B2 (en) Hot-worked steel for surface hardening
JP5644483B2 (en) Hot-worked steel for surface hardening
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
EP3279360B1 (en) Case-hardened steel component
JP4681160B2 (en) Manufacturing method of high temperature carburizing steel and high temperature carburizing steel manufactured by the method
JP2015189987A (en) Case hardening steel having excellent cold forgeability with suppressable abnormal grain growth upon carburizing
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP3329210B2 (en) Method for producing case hardened steel and case hardened steel manufactured by the method
JP4617783B2 (en) Manufacturing method of hot forged parts for high temperature carburizing
JP4322093B2 (en) Method for producing hot forged parts subjected to high-pressure carburization under reduced pressure
JP4212941B2 (en) Method for manufacturing hot forged parts for high temperature carburizing and hot forged parts for high temperature carburizing manufactured by the method
JP5402711B2 (en) Steel product having carbonitriding layer and method for producing the same
JP2005163168A (en) Production method for high-temperature carburizing steel capable of omitting normalizing after hot forging
CN113403527B (en) Blank for vacuum carburization and method for manufacturing same
WO2018061396A1 (en) Forged heat-treated product of case hardening steel
JP2005256142A (en) Method for producing high temperature carburized steel excellent in grain-coarsening resistance and machinability
JP7010320B2 (en) Rough material for vacuum carburizing and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4350968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140731

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term