JP2004300110A - Method for producing thioester compound - Google Patents

Method for producing thioester compound Download PDF

Info

Publication number
JP2004300110A
JP2004300110A JP2003097813A JP2003097813A JP2004300110A JP 2004300110 A JP2004300110 A JP 2004300110A JP 2003097813 A JP2003097813 A JP 2003097813A JP 2003097813 A JP2003097813 A JP 2003097813A JP 2004300110 A JP2004300110 A JP 2004300110A
Authority
JP
Japan
Prior art keywords
general formula
organic residue
integer
aliphatic
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097813A
Other languages
Japanese (ja)
Other versions
JP4210541B2 (en
Inventor
Hideo Yamamoto
英生 山本
Norihiko Fukatsu
典彦 深津
Mamoru Tanaka
守 田中
Seiichi Kobayashi
誠一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003097813A priority Critical patent/JP4210541B2/en
Publication of JP2004300110A publication Critical patent/JP2004300110A/en
Application granted granted Critical
Publication of JP4210541B2 publication Critical patent/JP4210541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for the industrial production of a thioester compound useful as an intermediate for a polythiol having high sulfur content and indispensable for achieving high refractive index in high production efficiency at a low cost. <P>SOLUTION: The thioester compound expressed by general formula (III) (m and n are each 0 or an integer of ≥1 and m+n is an integer of ≥1; and R1 is an aliphatic group, an alicyclic group, a heterocyclic group, an aromatic organic residue or an aliphatic organic residue having sulfur atom in the chain) is produced by reacting a thiocarboxylic acid compound expressed by general formula (I) (R1 is an aliphatic group, an alicyclic group, a heterocyclic group, an aromatic organic residue or an aliphatic organic residue containing sulfur atom) with a halogen compound expressed by general formula (II) (X1 and X2 are each independently a halogen atom; m and n are each 0 or an integer of ≥1 and m+n is an integer of ≥1; and R2 is a univalent or polyvalent organic residue) in the presence of an organic base. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高屈折率及び高い透明性を要求される光学材料等の樹脂分野の中間体として好適に使用されるチオエステル化合物の製造方法に関する。
【0002】
【従来の技術】
プラスチックレンズは無機ガラスレンズに比べて軽量で割れ難く、染色が可能なため近年、眼鏡レンズ、カメラレンズ等の光学材料に急速に普及してきている。これらプラスチックレンズに要求され続けている性能は高屈折率、高アッベ数、高耐熱性、低比重である。
【0003】
これらの性能のうち、高耐熱性、低比重については現在の高屈折率プラスチックレンズでも高いレベルで実現されてきている。
【0004】
高屈折率を与えるレンズとして、既に含硫ポリウレタンレンズが開示されている。例えば、特許文献1においては、ポリイソシアナート化合物とポリチオール化合物の重合物からなるポリウレタンレンズが提案されており、眼鏡レンズなどの光学用レンズとして広く普及している。ここではポリチオウレタンに使用される硫黄含有率を上げることにより屈折率を向上させる事に成功した。また、更に屈折率の高いポリウレタンレンズとしては、例えば、特許文献2では、トリチオール化合物1,2−ビス[(2−メルカプトエチル)チオ]−3−メルカプトプロパンとポリイソシアナート化合物との重合体からなるポリウレタン系レンズが提案された。
【0005】
その後、 ポリチオウレタンの更なる高屈折率化が求められ、更に硫黄含有率を上げる事が必要となった。そこで本発明者らは高硫黄含有率のポリチオールの容易な製造法を提案した(特許文献3)。その中でチオエステル化合物が有用な中間体として取り上げられているが、チオエステル化合物の製造法に関しては必ずしも工業的に適用されるものでは無かった。チオエステル化合物の製造法としては、例えばジブロモメタンとチオ酢酸ソーダを反応させ、チオエステル化合物を得る方法(特許文献3)があるが、更なる選択率、反応時間の短縮が望まれていた。
【0006】
【特許文献1】
特開昭63−46213号
【特許文献2】
特開平2−270859号公報
【特許文献3】
特開2001−342172号公報
【0007】
【発明が解決しようとする課題】
そこで高屈折率化に不可欠な高硫黄含有率のポリチオールの有用な中間体であるチオエステル化合物を効率的に低コストで工業的に製造する方法を開発する必要があった。
【0008】
【課題を解決するための手段】
本発明者らは上述の課題を解決するために、鋭意検討した結果、チオカルボン酸化合物を有機塩基の存在下にハロゲン化合物と反応させる事によりチオエステル化合物を高収率且つ簡便に得る工業的製造方法を見出し、本発明を完成するに至った。
【0009】
即ち、本発明は以下の構成からなる。
【0010】
〔1〕下記一般式(I)で表されるチオカルボン酸化合物を一般式(II)で表されるハロゲン化合物と有機塩基存在下反応させる事を特徴とする一般式(III)で表されるチオエステル化合物の製造方法。
【0011】
【化4】

Figure 2004300110
(式中、 R1は脂肪族、脂環族、複素環、芳香族有機残基または硫黄原子を有する脂肪族有機残基を示す。)
【0012】
【化5】
Figure 2004300110
(式中、X1、X2はそれぞれ独立にハロゲン原子を表し、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。 R2は1価以上の有機残基を示す。)
【0013】
【化6】
Figure 2004300110
(式中、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。R1は脂肪族、脂環族、複素環、芳香族有機残基、もしくは鎖中に硫黄原子を有する脂肪族有機残基を示す。)
【0014】
〔2〕有機塩基としてトリエチルアミンを使用する〔1〕記載の製造方法。
【0015】
〔3〕一般式(I)で表される化合物がチオ酢酸であり、一般式(II)で表される化合物が塩化メチレンである〔2〕記載の製造方法。
【0016】
〔4〕請求項3において、塩化メチレンとトリエチルアミンを装入した後にチオ酢酸を装入する〔3〕記載の製造方法。
【0017】
〔5〕トリエチルアミンの使用量はチオカルボン酸化合物に対して1.0当量以上2.0当量以下とする〔4〕記載の製造方法
【0018】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0019】
本発明では下記一般式(I)で表されるチオカルボン酸化合物を塩基存在下で下記一般式(II)で表されるハロゲン化合物と反応させる事により一般式(III)で表されるチオエステル化合物を得る事を特徴としている。
【0020】
【化7】
Figure 2004300110
(式中、 R1は脂肪族、脂環族、複素環、芳香族有機残基または硫黄原子を有する脂肪族有機残基を示す。)
【0021】
【化8】
Figure 2004300110
(式中、X1、X2はそれぞれ独立にハロゲン原子を表し、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。 R2は1価以上の有機残基をす。)
【0022】
【化9】
Figure 2004300110
(式中、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。R1は脂肪族、脂環族、複素環、芳香族有機残基、もしくは鎖中に硫黄原子を有する脂肪族有機残基を示す。)
【0023】
一般式(I)中R1にあたる有機残基としては、たとえばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、エチレン、プロピレン、1−ブテン、2−ブテン、ブタジエン、等の直鎖状脂肪族から誘導される有機残基、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、1,2−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、シクロヘキセン、1,3−シクロヘキサジエン、1,4−シクロヘキサジエン、ノルボルナン、2,3−ジメチルノルボルナン、2,5−ジメチルノルボルナン、2,6−ジメチルノルボルナン等の環状脂肪族から誘導される1価の有機残基、
【0024】
シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、1,2−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、シクロヘキセン、1,3−シクロヘキサジエン、1,4−シクロヘキサジエン、ノルボルナン、2,3−ジメチルノルボルナン、2,5−ジメチルノルボルナン、2,6−ジメチルノルボルナン等の環状脂肪族から誘導される1価の有機残基、
【0025】
チオラン、2,5−ジメチルチオラン、3,4−ジメチルチオラン、2,3−ジメチルチオラン、2,5−ジエチルチオラン、3,4−ジエチルチオラン、2,3−ジエチルチオラン、1,3−ジチオレン、2,4−ジメチル1,3−ジチオレン、4,5−ジメチル1,3−ジチオレン、2,4−ジエチル1,3−ジチオレン、4,5−ジエチル1,3−ジチオレン、1,3−ジチオラン、2,4−ジメチル1,3−ジチオラン、4,5−ジメチル1,3−ジチオラン、2,4−ジエチル1,3−ジチオラン、4,5−ジエチル1,3−ジチオラン、チオフェン、2,5−ジメチルチオフェン、1,4−ジチアン、2,6−ジメチル1,4−ジチアン、2,3−ジメチル1,4−ジチアン、2,5−ジエチル1,4−ジチアン、2,6−ジエチル1,4−ジチアン、2,3−ジエチル1,4−ジチアン、1,3,5−トリチアン、2,4−ジメチル−1,3,5−トリチアン、2,4−ジエチル−1,3,5−トリチアン、チアゾール、1,3,4−チアジアゾール、1,3−ジチエタン、2,4−ジメチル−1,3−ジチエタン、2,4−ジエチル−1,3−ジチエタン、等の複素環から誘導される1価の有機残基、
【0026】
ベンゼン、o−キシレン、m−キシレン、p−キシレン、ナフタレン、ビフェニール、アントラセン、ペリレン、スチレン、エチルベンゼン、等の芳香族から誘導される1価の有機残基、
【0027】
ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2−メルカプトエチルチオ)メタン、1,2−ビス(3−メルカプトプロピル)エタン、1,3−ビス(メルカプトエチルチオ)プロパン、1,3−ビス(3−メルカプトプロピルチオ)プロパン、1,2,3−トリス(メルカプトメチルチオ)プロパン、1,2,3−トリス(2−メルカプトエチルチオ)プロパン、1,2,3−トリス(3−メルカプトプロピルチオ)プロパン、1、2−ビス[(2−メルカプトエチル)チオ]−3−メルカプトプロパン、等の硫黄を有する化合物から誘導される一般に入手可能な1価の有機残基等があるが、これらに限定されるものではない。
【0028】
本発明に使用される一般式(II)のX1、X2はフッ素、塩素、臭素、ヨウ素などのハロゲン原子である。R2としては一価以上の有機残基であり、たとえばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、エチレン、プロピレン、1−ブテン、2−ブテン、ブタジエン、等の直鎖状脂肪族から誘導される有機残基、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、1,2−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、シクロヘキセン、1,3−シクロヘキサジエン、1,4−シクロヘキサジエン、ノルボルナン、2,3−ジメチルノルボルナン、2,5−ジメチルノルボルナン、2,6−ジメチルノルボルナン等の環状脂肪族から誘導されるm+n価の有機残基、
【0029】
チオラン、2,5−ジメチルチオラン、3,4−ジメチルチオラン、2,3−ジメチルチオラン、2,5−ジエチルチオラン、3,4−ジエチルチオラン、2,3−ジエチルチオラン、1,3−ジチオレン、2,4−ジメチル1,3−ジチオレン、4,5−ジメチル1,3−ジチオレン、2,4−ジエチル1,3−ジチオレン、4,5−ジエチル1,3−ジチオレン、1,3−ジチオラン、2,4−ジメチル1,3−ジチオラン、4,5−ジメチル1,3−ジチオラン、2,4−ジエチル1,3−ジチオラン、4,5−ジエチル1,3−ジチオラン、チオフェン、2,5−ジメチルチオフェン、1,4−ジチアン、2,6−ジメチル1,4−ジチアン、2,3−ジメチル1,4−ジチアン、2,5−ジエチル1,4−ジチアン、2,6−ジエチル1,4−ジチアン、2,3−ジエチル1,4−ジチアン、1,3,5−トリチアン、2,4−ジメチル−1,3,5−トリチアン、2,4−ジエチル−1,3,5−トリチアン、チアゾール、1,3,4−チアジアゾール、1,3−ジチエタン、2,4−ジメチル−1,3−ジチエタン、2,4−ジエチル−1,3−ジチエタン、等の複素環から誘導されるm+n価の有機残基、
【0030】
ベンゼン、o−キシレン、m−キシレン、p−キシレン、ナフタレン、ビフェニール、アントラセン、ペリレン、スチレン、エチルベンゼン、等の芳香族から誘導されるm+n価の有機残基、
【0031】
ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2−メルカプトエチルチオ)メタン、1,2−ビス(3−メルカプトプロピル)エタン、1,3−ビス(メルカプトエチルチオ)プロパン、1,3−ビス(3−メルカプトプロピルチオ)プロパン、1,2,3−トリス(メルカプトメチルチオ)プロパン、1,2,3−トリス(2−メルカプトエチルチオ)プロパン、1,2,3−トリス(3−メルカプトプロピルチオ)プロパン、1、2−ビス[(2−メルカプトエチル)チオ]−3−メルカプトプロパン、等の硫黄原子を有する脂肪族から誘導されるm+n価の有機残基等が挙がられるが、これらは一般に入手可能な試薬である。
【0032】
本発明における反応は無溶媒、即ち一般式(II)で表されるハロゲン化合物を反応基質兼溶媒として使用する事がこのましい。溶媒を使用する場合は反応を阻害しない溶媒であれば特に限定しないが、水、またはメタノール、エタノール、イソプロパノール、ブタノール、メトキシエタノール等アルコール類、トルエン、キシレン等の芳香族炭化水素系溶媒が好ましく用いられる。この内2種以上を混合して使用しても何ら差し支えない。
【0033】
本発明では、上記一般式(II)で表される有機ハロゲン化合物を有機塩基存在下、上記一般式(I)で表されるチオカルボン酸化合物と反応させるが、その反応方法としては、一般式(II)で表されるハロゲン化合物を有機塩基存在下に一般式(I)で表されるチオカルボン酸化合物を滴下する方法と、一般式(I)で表されるチオカルボン酸化合物に有機塩基存在下に一般式(II)で表されるハロゲン化合物滴下する方法があり、いずれの方法も可能であるが、一般式(II)で表されるハロゲン化合物を有機塩基存在下に一般式(I)で表されるチオカルボン酸化合物を滴下する方法が特に好ましい。
【0034】
本発明では、上記一般式(II)で表される有機ハロゲン化合物を有機塩基存在下、上記一般式(I)で表されるチオカルボン酸化合物と反応させるがその有機塩基の量はチオカルボン酸化合物に対して1.0〜1.2当量が好ましく、1.02〜1.15当量で反応を行う事が更に好ましい。また一般式(II)で表されるハロゲン化合物の量は一般式(I)で表されるチオカルボン酸化合物に対して1.0〜10.0当量で反応を行う事が好ましく、4.0〜8.0当量で行うの事が更に好ましい。
【0035】
本発明では、有機塩基存在下一般式(II)で表されるハロゲン化合物に上記一般式(I)で表されるチオカルボン酸化合物を反応させるが、その滴下温度は5〜80℃の範囲で滴下を行うのが好ましく、10〜20℃の範囲で行うのが更に好ましい。更に熟成は30〜80℃の範囲で行うのが好ましく、40〜50℃の範囲が更に好ましい。熟成時間はチオカルボン酸化合物の消費時間で決めているが、その範囲は滴下終了直後から100時間の範囲であり、3〜10時間で終了させるのが更に好ましい。
【0036】
本発明では後処理方法としては反応マスを酸洗、水洗を行った後、濃縮、トッピングを行うだけで高純度のチオエステル化合物を得たが、もちろんこれら以外の後処理も可能であり、蒸留やカラム精製など一般的な方法を取る事が可能である。
【0037】
【実施例】
以下本発明を具体的に実施例を用いて示す。
実施例1 チオ酢酸滴下法
攪拌機を備えたガラス製反応容器にトリエチルアミン334.3g(3.3mol)と塩化メチレン768.2g(9.0mol)を室温約25℃にて装入した後、攪拌混合し、その還流温度(約45℃)まで30分かけて昇温した。この反応混合物にチオ酢酸228.8g(3.0mol)を還流下45℃から48℃で5時間かけて滴下装入した。更に反応混合物を還流温度(48℃)で3時間熟成した後、3.16重量%塩酸水344.7gを加えて約40℃で30分間攪拌して酸洗浄を行い、30分静置した後分液操作にて有機層と水層を分離した。その有機層を反応器に戻しイオン交換水314.4gを加え、40℃で30分間攪拌して水洗を行った後、30分静置分液を行い、有機層と水層を分離した。下層の有機層を60℃/0.6kPaにて減圧濃縮を行った後80℃/0.6kPaにてトッピングを行い、99.9重量%のビスアセチルチオメタン236.2gを得た。収率はチオ酢酸2molに対して95.6mol%であった。
【0038】
実施例2 有機塩基造塩法
攪拌機を備えたガラス製反応容器にチオ酢酸228.8g(3.0mol)とシクロヘキサンを室温約25℃にて装入した後、攪拌混合し、10℃まで冷却した。そこへトリエチルアミン334.3g(3.3mol)を冷却しながら5〜10℃で2.5時間かけて滴下して造塩を行った。その後温度を20℃まで昇温しジクロロメタン1019.2g(12.0mol)を2.5時間かけて20〜25℃で滴下した。更に30℃まで昇温を行ない、30〜35℃で10時間熟成した。イオン交換水380gを加え、約25℃で30分間攪拌して水洗を行った後、30分静置分液を行い、有機層と水層を分離した。下層の有機層を60℃/0.6kPaにて減圧濃縮を行った後80℃/0.6kPaにてトッピングを行い、92.7重量%のビスアセチルチオメタン210.8gを得た。収率はチオ酢酸2molに対して79.3mol%であった。
【0039】
比較例1 ジブロモメタンとチオ酢酸ソーダによる合成法
攪拌機を備えた反応容器にチオ酢酸228.8g(3.0mol)とメタノール100ml(92.4g)を25℃にて装入、攪拌混合し20℃に冷却した後ナトリウムメトキシドの28%メタノール溶液を636.7(3.3mol)を15から25℃の範囲で約3時間かけて滴下した。滴下終了後造塩マスを20〜30℃で約1時間造塩して、これを造塩マスとする。これとは別にジブロモメタン521.5g(3.0mol)を室温でメタノール150ml(138.7g)に溶解したマスに、先程の造塩マスを3時間かけて60〜65℃で滴下する。その後昇温を行い、反応マスを60〜65℃で4時間熟成を行った後、反応混合物を25℃まで冷却した後濾過を行い、濾塊をメタノール100gでリンスし、濾塊(NaBr)170.3gを除去し、濾液1135.4gを得た。濾液を濃縮・脱溶媒を行った後、濃縮マス360.2gを得た。これを更に純水300mlにて水洗を行った後、上層の有機層を減圧濃縮して純度90.4重量%のビスアセチルチオメタン189.1gを得た。その時の収率はチオ酢酸2当量に対して69.4mol%であった。
【0040】
実施例1と比較すると収率、純度は共にややに劣っている上に、工業的にはナトリウムメトキシドの使用が難しく、操作も煩雑であった。
【0041】
比較例2 無機塩基造塩法
攪拌機を備えた反応容器にチオ酢酸228.8g(3.0mol)とメタノール600mlを25℃にて装入した後、攪拌混合し5〜10℃に冷却した後水酸化カリウム217.7g(3.3mol)を5〜10℃の範囲で約4時間かけて滴下し造塩を行った。その造塩マスを5〜10℃の範囲で30分間熟成した後40℃まで昇温を行い、塩化メチレン768.2g(9.0mol)を35〜45℃の範囲で約2時間かけて滴下後40℃で40時間熟成を行った。その反応混合物を25℃まで冷却後濾過し水酸化カリウム414.1gを除去した。濾液を更に濃縮した後、純水500mlにて水洗を行ったい上層の有機層を減圧濃縮してビスアセチルチオメタンを純度80.7重量%、179.2gを得た。収率はチオ酢酸2当量に対して58.7mol%であった。
【0042】
実施例1と比較すると収率、純度共に劣っていた上に反応時間も長かった。
【0043】
【発明の効果】
本発明によりチオエステル化合物を簡便かつ高収率で得る工業的製造が可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a thioester compound suitably used as an intermediate in the field of resins such as optical materials that require a high refractive index and high transparency.
[0002]
[Prior art]
Plastic lenses are lighter and harder to break than inorganic glass lenses and can be dyed, and have recently been rapidly used in optical materials such as spectacle lenses and camera lenses. The performances required of these plastic lenses are high refractive index, high Abbe number, high heat resistance and low specific gravity.
[0003]
Among these performances, high heat resistance and low specific gravity have been realized at a high level even with current high refractive index plastic lenses.
[0004]
As a lens giving a high refractive index, a sulfur-containing polyurethane lens has already been disclosed. For example, Patent Document 1 proposes a polyurethane lens made of a polymer of a polyisocyanate compound and a polythiol compound, and is widely used as an optical lens such as an eyeglass lens. Here, they succeeded in improving the refractive index by increasing the sulfur content used in polythiourethane. Further, as a polyurethane lens having a higher refractive index, for example, Patent Document 2 discloses a polyurethane lens obtained from a polymer of a trithiol compound 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane and a polyisocyanate compound. Polyurethane lenses have been proposed.
[0005]
After that, it was required to further increase the refractive index of polythiourethane, and it was necessary to further increase the sulfur content. Therefore, the present inventors have proposed a method for easily producing polythiol having a high sulfur content (Patent Document 3). Among them, a thioester compound is taken up as a useful intermediate, but the production method of the thioester compound has not always been industrially applied. As a method for producing a thioester compound, for example, there is a method of reacting dibromomethane with sodium thioacetate to obtain a thioester compound (Patent Document 3). However, further reduction in selectivity and reaction time has been desired.
[0006]
[Patent Document 1]
JP-A-63-46213 [Patent Document 2]
Japanese Patent Laying-Open No. 2-270859 [Patent Document 3]
JP 2001-342172 A
[Problems to be solved by the invention]
Therefore, it was necessary to develop a method for industrially producing a thioester compound, which is a useful intermediate of polythiol having a high sulfur content, which is indispensable for increasing the refractive index, efficiently and at low cost.
[0008]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-described problems, and as a result, have found that an industrial production method for obtaining a thioester compound in a high yield and simply by reacting a thiocarboxylic acid compound with a halogen compound in the presence of an organic base. And completed the present invention.
[0009]
That is, the present invention has the following configurations.
[0010]
[1] A thiocarboxylic acid compound represented by the following general formula (III), wherein a thiocarboxylic acid compound represented by the following general formula (I) is reacted with a halogen compound represented by the general formula (II) in the presence of an organic base. A method for producing a compound.
[0011]
Embedded image
Figure 2004300110
(In the formula, R1 represents an aliphatic, alicyclic, heterocyclic, aromatic organic residue or an aliphatic organic residue having a sulfur atom.)
[0012]
Embedded image
Figure 2004300110
(Wherein, X1 and X2 each independently represent a halogen atom, m and n each represent 0 or an integer of 1 or more, and m + n represents an integer of 1 or more. R2 represents an organic residue having a valence of 1 or more. )
[0013]
Embedded image
Figure 2004300110
(In the formula, m and n each represent 0 or an integer of 1 or more, and m + n is an integer of 1 or more. R1 is an aliphatic, alicyclic, heterocyclic, aromatic organic residue, or a sulfur atom in the chain. Represents an aliphatic organic residue having the formula:
[0014]
[2] The production method according to [1], wherein triethylamine is used as the organic base.
[0015]
[3] The production method according to [2], wherein the compound represented by the general formula (I) is thioacetic acid, and the compound represented by the general formula (II) is methylene chloride.
[0016]
[4] The method according to [3], wherein thioacetic acid is charged after charging methylene chloride and triethylamine.
[0017]
[5] The production method according to [4], wherein the amount of triethylamine used is 1.0 equivalent or more and 2.0 equivalents or less based on the thiocarboxylic acid compound.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0019]
In the present invention, a thiocarboxylic acid compound represented by the following general formula (I) is reacted with a halogen compound represented by the following general formula (II) in the presence of a base to form a thioester compound represented by the following general formula (III). It is characterized by gaining.
[0020]
Embedded image
Figure 2004300110
(In the formula, R1 represents an aliphatic, alicyclic, heterocyclic, aromatic organic residue or an aliphatic organic residue having a sulfur atom.)
[0021]
Embedded image
Figure 2004300110
(Wherein, X1 and X2 each independently represent a halogen atom, m and n each represent 0 or an integer of 1 or more, and m + n is an integer of 1 or more. R2 represents a monovalent or more organic residue. )
[0022]
Embedded image
Figure 2004300110
(In the formula, m and n each represent 0 or an integer of 1 or more, and m + n is an integer of 1 or more. R1 is an aliphatic, alicyclic, heterocyclic, aromatic organic residue, or a sulfur atom in the chain. Represents an aliphatic organic residue having the formula:
[0023]
Examples of the organic residue corresponding to R1 in the general formula (I) include those derived from straight-chain aliphatics such as methane, ethane, propane, butane, pentane, hexane, ethylene, propylene, 1-butene, 2-butene, and butadiene. Organic residues, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane, cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, norbornane, 2, A monovalent organic residue derived from a cycloaliphatic such as 3-dimethylnorbornane, 2,5-dimethylnorbornane, 2,6-dimethylnorbornane,
[0024]
Cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane, cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, norbornane, 2,3-dimethylnorbornane, 2 Monovalent organic residues derived from cycloaliphatic groups such as 2,5-dimethylnorbornane and 2,6-dimethylnorbornane;
[0025]
Thiolane, 2,5-dimethylthiolane, 3,4-dimethylthiolane, 2,3-dimethylthiolane, 2,5-diethylthiolane, 3,4-diethylthiolane, 2,3-diethylthiolane, 1,3-dithiolene, 2,4-dimethyl-1,3-dithiolene, 4,5-dimethyl-1,3-dithiolene, 2,4-diethyl-1,3-dithiolene, 4,5-diethyl-1,3-dithiolene, 1,3-dithiolane, 2,4-dimethyl-1,3-dithiolane, 4,5-dimethyl-1,3-dithiolane, 2,4-diethyl-1,3-dithiolane, 4,5-diethyl-1,3-dithiolane, Thiophene, 2,5-dimethylthiophene, 1,4-dithiane, 2,6-dimethyl-1,4-dithiane, 2,3-dimethyl-1,4-dithiane, 2,5-diethyl-1,4-dithiane, 2, 6-je 1,4-dithiane, 2,3-diethyl-1,4-dithiane, 1,3,5-trithiane, 2,4-dimethyl-1,3,5-trithiane, 2,4-diethyl-1,3 Derived from heterocycles such as 5-trithiane, thiazole, 1,3,4-thiadiazole, 1,3-dithiethane, 2,4-dimethyl-1,3-dithiethane, 2,4-diethyl-1,3-dithiethane, and the like. A monovalent organic residue,
[0026]
Monovalent organic residues derived from aromatics such as benzene, o-xylene, m-xylene, p-xylene, naphthalene, biphenyl, anthracene, perylene, styrene, ethylbenzene,
[0027]
Bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) methane, bis (2-mercaptoethylthio) Methane, 1,2-bis (3-mercaptopropyl) ethane, 1,3-bis (mercaptoethylthio) propane, 1,3-bis (3-mercaptopropylthio) propane, 1,2,3-tris (mercapto Methylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3-mercaptopropylthio) propane, 1,2-bis [(2-mercaptoethyl) thio] -3- Compounds having sulfur such as mercaptopropane There is generally a monovalent organic residue available such induced, but not limited thereto.
[0028]
X1 and X2 in the general formula (II) used in the present invention are halogen atoms such as fluorine, chlorine, bromine and iodine. R2 is a monovalent or higher valent organic residue, and is derived from a linear aliphatic group such as methane, ethane, propane, butane, pentane, hexane, ethylene, propylene, 1-butene, 2-butene, butadiene and the like. Organic residues, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane, cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, norbornane, 2,3 An m + n-valent organic residue derived from a cycloaliphatic such as dimethylnorbornane, 2,5-dimethylnorbornane, 2,6-dimethylnorbornane,
[0029]
Thiolane, 2,5-dimethylthiolane, 3,4-dimethylthiolane, 2,3-dimethylthiolane, 2,5-diethylthiolane, 3,4-diethylthiolane, 2,3-diethylthiolane, 1,3-dithiolene, 2,4-dimethyl-1,3-dithiolene, 4,5-dimethyl-1,3-dithiolene, 2,4-diethyl-1,3-dithiolene, 4,5-diethyl-1,3-dithiolene, 1,3-dithiolane, 2,4-dimethyl-1,3-dithiolane, 4,5-dimethyl-1,3-dithiolane, 2,4-diethyl-1,3-dithiolane, 4,5-diethyl-1,3-dithiolane, Thiophene, 2,5-dimethylthiophene, 1,4-dithiane, 2,6-dimethyl-1,4-dithiane, 2,3-dimethyl-1,4-dithiane, 2,5-diethyl-1,4-dithiane, 2, 6-je 1,4-dithiane, 2,3-diethyl-1,4-dithiane, 1,3,5-trithiane, 2,4-dimethyl-1,3,5-trithiane, 2,4-diethyl-1,3 Derived from heterocycles such as 5-trithiane, thiazole, 1,3,4-thiadiazole, 1,3-dithiethane, 2,4-dimethyl-1,3-dithiethane, 2,4-diethyl-1,3-dithiethane, and the like. M + n-valent organic residues to be
[0030]
M + n-valent organic residues derived from aromatics such as benzene, o-xylene, m-xylene, p-xylene, naphthalene, biphenyl, anthracene, perylene, styrene and ethylbenzene;
[0031]
Bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) methane, bis (2-mercaptoethylthio) Methane, 1,2-bis (3-mercaptopropyl) ethane, 1,3-bis (mercaptoethylthio) propane, 1,3-bis (3-mercaptopropylthio) propane, 1,2,3-tris (mercapto Methylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3-mercaptopropylthio) propane, 1,2-bis [(2-mercaptoethyl) thio] Fat having sulfur atom such as -3-mercaptopropane Although m + n valent organic residue such as is derived is diminishing return from, which are commonly available reagents.
[0032]
The reaction in the present invention preferably uses no solvent, that is, a halogen compound represented by the general formula (II) is used as a reaction substrate and a solvent. When a solvent is used, the solvent is not particularly limited as long as the solvent does not inhibit the reaction, but water or an alcohol such as methanol, ethanol, isopropanol, butanol, methoxyethanol, an alcohol such as toluene, or xylene is preferably used. Can be Two or more of these may be used in combination.
[0033]
In the present invention, the organic halogen compound represented by the general formula (II) is reacted with the thiocarboxylic acid compound represented by the general formula (I) in the presence of an organic base. A method of dropping a thiocarboxylic acid compound represented by the general formula (I) into a halogen compound represented by the formula (I) in the presence of an organic base; There is a method of dropping a halogen compound represented by the general formula (II), and any of the methods is possible. However, the halogen compound represented by the general formula (II) is represented by the general formula (I) in the presence of an organic base. The method of dropping the thiocarboxylic acid compound to be used is particularly preferred.
[0034]
In the present invention, the organic halogen compound represented by the general formula (II) is reacted with the thiocarboxylic acid compound represented by the general formula (I) in the presence of an organic base. The reaction is preferably performed in an amount of 1.0 to 1.2 equivalents, more preferably 1.02 to 1.15 equivalents. The amount of the halogen compound represented by the general formula (II) is preferably 1.0 to 10.0 equivalents to the thiocarboxylic acid compound represented by the general formula (I), and it is preferably 4.0 to 10.0. More preferably, the reaction is carried out at 8.0 equivalents.
[0035]
In the present invention, the thiocarboxylic acid compound represented by the general formula (I) is reacted with the halogen compound represented by the general formula (II) in the presence of an organic base. And more preferably in the range of 10 to 20 ° C. Further, the aging is preferably performed in the range of 30 to 80 ° C, more preferably in the range of 40 to 50 ° C. The aging time is determined by the consumption time of the thiocarboxylic acid compound, but the range is from immediately after the completion of the dropping to 100 hours, more preferably 3 to 10 hours.
[0036]
In the present invention, as a post-treatment method, a high-purity thioester compound is obtained simply by performing acid washing, water washing, concentration and topping of the reaction mass, but of course, other post-treatments are also possible, such as distillation and General methods such as column purification can be used.
[0037]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples.
Example 1 Thioacetic acid dropping method In a glass reactor equipped with a stirrer, 334.3 g (3.3 mol) of triethylamine and 768.2 g (9.0 mol) of methylene chloride were charged at room temperature of about 25 ° C. Thereafter, the mixture was stirred and mixed, and the temperature was raised to the reflux temperature (about 45 ° C.) over 30 minutes. To this reaction mixture, 228.8 g (3.0 mol) of thioacetic acid was added dropwise at 45 ° C. to 48 ° C. under reflux over 5 hours under reflux. The reaction mixture was further aged at reflux temperature (48 ° C.) for 3 hours, added with 344.7 g of 3.16% by weight hydrochloric acid aqueous solution, stirred at about 40 ° C. for 30 minutes, washed with acid, and allowed to stand for 30 minutes. An organic layer and an aqueous layer were separated by a liquid separation operation. The organic layer was returned to the reactor, 314.4 g of ion-exchanged water was added, and the mixture was stirred at 40 ° C. for 30 minutes, washed with water, and allowed to stand still for 30 minutes to separate the organic layer from the aqueous layer. The lower organic layer was concentrated under reduced pressure at 60 ° C./0.6 kPa and then topped at 80 ° C./0.6 kPa to obtain 236.2 g of 99.9% by weight bisacetylthiomethane. The yield was 95.6 mol% based on 2 mol of thioacetic acid.
[0038]
Example 2 Organic base salt formation method 228.8 g (3.0 mol) of thioacetic acid and cyclohexane were charged into a glass reactor equipped with a stirrer at room temperature of about 25 ° C, and then stirred and mixed. Cooled to ° C. 334.3 g (3.3 mol) of triethylamine was added dropwise thereto at 5 to 10 ° C. over 2.5 hours while cooling to form a salt. Thereafter, the temperature was raised to 20 ° C, and 1019.2 g (12.0 mol) of dichloromethane was added dropwise at 20 to 25 ° C over 2.5 hours. The temperature was further raised to 30 ° C., and the mixture was aged at 30 to 35 ° C. for 10 hours. After adding 380 g of ion-exchanged water and stirring at about 25 ° C. for 30 minutes to wash with water, the liquid was allowed to stand for 30 minutes to separate the organic layer and the aqueous layer. The lower organic layer was concentrated under reduced pressure at 60 ° C./0.6 kPa and then topped at 80 ° C./0.6 kPa to obtain 210.8 g of 92.7% by weight of bisacetylthiomethane. The yield was 79.3 mol% based on 2 mol of thioacetic acid.
[0039]
Comparative Example 1 Synthesis method using dibromomethane and sodium thioacetate In a reaction vessel equipped with a stirrer, 228.8 g (3.0 mol) of thioacetic acid and 100 ml (92.4 g) of methanol were charged at 25 ° C and stirred. After mixing and cooling to 20 ° C., 636.7 (3.3 mol) of a 28% methanol solution of sodium methoxide was added dropwise over a period of about 3 hours in the range of 15 to 25 ° C. After completion of the dropping, the salt-forming mass is subjected to salt formation at 20 to 30 ° C. for about 1 hour, and this is used as a salt-forming mass. Separately, the salt-forming mass is dropped at 60 to 65 ° C. over 3 hours to a mass in which 521.5 g (3.0 mol) of dibromomethane is dissolved in 150 ml (138.7 g) of methanol at room temperature. Thereafter, the temperature was raised, and the reaction mass was aged at 60 to 65 ° C for 4 hours. After cooling the reaction mixture to 25 ° C, filtration was performed. The filter cake was rinsed with 100 g of methanol, and the filter cake (NaBr) 170 was removed. 0.3 g was removed to obtain 1135.4 g of a filtrate. After the filtrate was concentrated and desolvated, 360.2 g of a concentrated mass was obtained. This was further washed with 300 ml of pure water, and the upper organic layer was concentrated under reduced pressure to obtain 189.1 g of bisacetylthiomethane having a purity of 90.4% by weight. The yield at that time was 69.4 mol% based on 2 equivalents of thioacetic acid.
[0040]
Compared with Example 1, both the yield and the purity were somewhat inferior, and industrially it was difficult to use sodium methoxide, and the operation was complicated.
[0041]
Comparative Example 2 Inorganic base salt- forming method 228.8 g (3.0 mol) of thioacetic acid and 600 ml of methanol were charged into a reaction vessel equipped with a stirrer at 25 ° C, followed by stirring and mixing to 5 to 10 ° C. After cooling, 217.7 g (3.3 mol) of potassium hydroxide was added dropwise at a temperature in the range of 5 to 10 ° C. over about 4 hours to form a salt. After aging the salt-forming mass in the range of 5 to 10 ° C. for 30 minutes, the temperature was raised to 40 ° C., and 768.2 g (9.0 mol) of methylene chloride was dropped in the range of 35 to 45 ° C. over about 2 hours. Aging was performed at 40 ° C. for 40 hours. The reaction mixture was cooled to 25 ° C. and filtered to remove 414.1 g of potassium hydroxide. After further concentrating the filtrate, the upper organic layer to be washed with 500 ml of pure water was concentrated under reduced pressure to obtain bisacetylthiomethane having a purity of 80.7% by weight and 179.2 g. The yield was 58.7 mol% based on 2 equivalents of thioacetic acid.
[0042]
Compared with Example 1, both the yield and the purity were inferior and the reaction time was longer.
[0043]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention has enabled industrial production of a thioester compound to be easily and in high yield.

Claims (5)

下記一般式(I)で表されるチオカルボン酸化合物と下記一般式(II)で表されるハロゲン化合物を有機塩基存在下に反応させる事を特徴とする一般式(III)で表されるチオエステル化合物の製造方法。
Figure 2004300110
(式中、 R1は脂肪族、脂環族、複素環、芳香族有機残基または硫黄原子を有する脂肪族有機残基を示す。)
Figure 2004300110
(式中、X1、X2はそれぞれ独立にハロゲン原子を表し、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。 R2は1価以上の有機残基を表す。 )
Figure 2004300110
(式中、m、nは0または1以上の整数を示し且つm+nは1以上の整数である。R1は脂肪族、脂環族、複素環、芳香族有機残基、もしくは鎖中に硫黄原子を有する脂肪族有機残基を示す。)
A thioester compound represented by the general formula (III), characterized by reacting a thiocarboxylic acid compound represented by the following general formula (I) with a halogen compound represented by the following general formula (II) in the presence of an organic base. Manufacturing method.
Figure 2004300110
(In the formula, R1 represents an aliphatic, alicyclic, heterocyclic, aromatic organic residue or an aliphatic organic residue having a sulfur atom.)
Figure 2004300110
(Wherein, X1 and X2 each independently represent a halogen atom, m and n each represent 0 or an integer of 1 or more, and m + n is an integer of 1 or more. R2 represents an organic residue having a valence of 1 or more. )
Figure 2004300110
(In the formula, m and n each represent 0 or an integer of 1 or more, and m + n is an integer of 1 or more. R1 is an aliphatic, alicyclic, heterocyclic, aromatic organic residue, or a sulfur atom in the chain. Represents an aliphatic organic residue having the formula:
有機塩基としてトリエチルアミンを使用する事を特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein triethylamine is used as the organic base. 一般式(I)で表される化合物がチオ酢酸であり、一般式(II)で表される化合物が塩化メチレンである事を特徴とする請求項2記載の製造方法。The method according to claim 2, wherein the compound represented by the general formula (I) is thioacetic acid, and the compound represented by the general formula (II) is methylene chloride. 塩化メチレンとトリエチルアミンを装入した後、チオ酢酸を滴下する事を特徴とする請求項3記載の製造方法。4. The process according to claim 3, wherein thioacetic acid is added dropwise after charging methylene chloride and triethylamine. トリエチルアミンの使用量をチオカルボン酸化合物に対して1.0当量以上2.0当量以下使用する事を特徴とする請求項3記載の製造方法。4. The method according to claim 3, wherein the amount of triethylamine is from 1.0 to 2.0 equivalents based on the thiocarboxylic acid compound.
JP2003097813A 2003-04-01 2003-04-01 Method for producing thioester compound Expired - Fee Related JP4210541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097813A JP4210541B2 (en) 2003-04-01 2003-04-01 Method for producing thioester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097813A JP4210541B2 (en) 2003-04-01 2003-04-01 Method for producing thioester compound

Publications (2)

Publication Number Publication Date
JP2004300110A true JP2004300110A (en) 2004-10-28
JP4210541B2 JP4210541B2 (en) 2009-01-21

Family

ID=33409504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097813A Expired - Fee Related JP4210541B2 (en) 2003-04-01 2003-04-01 Method for producing thioester compound

Country Status (1)

Country Link
JP (1) JP4210541B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152105A (en) * 2004-11-29 2006-06-15 Jsr Corp Photo-curable resin composition and optical component
JP2006282636A (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Inc Method for producing thioester compound, thioester compound obtained by the method, and mercapto group-containing compound and resin obtained by using the compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152105A (en) * 2004-11-29 2006-06-15 Jsr Corp Photo-curable resin composition and optical component
JP2006282636A (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Inc Method for producing thioester compound, thioester compound obtained by the method, and mercapto group-containing compound and resin obtained by using the compound
JP4756894B2 (en) * 2005-04-05 2011-08-24 三井化学株式会社 Method for producing thioester compound, thioester compound obtained thereby, and mercapto group-containing compound and resin obtained using the same

Also Published As

Publication number Publication date
JP4210541B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5358182B2 (en) Method for producing (poly) thiol compound for optical material and polymerizable composition containing the same
EP2840082B1 (en) Method for producing sulfur-containing epoxy compound
WO2014027428A1 (en) Production method for polythiol compound, polymerizable composition for optical material and use therefor
JP6306403B2 (en) Transparent member forming composition and transparent member comprising cured product thereof
JP6128124B2 (en) Process for producing bis (β-epoxypropyl) sulfide and bis (β-epoxypropyl) polysulfide
WO2002023230A1 (en) Composition for optical material
JPH0959248A (en) New sulfur compound and its production
JP6724780B2 (en) Polythiol composition and method for producing the same
JP4210541B2 (en) Method for producing thioester compound
JP5319037B1 (en) Method for producing polythiol compound
JPH0665193A (en) Polyisocyanate compound and optical material and optical production produced therefrom
JP5412760B2 (en) New metal-containing compounds
JPH11140046A (en) New selenium-containing aliphatic compound
KR101779472B1 (en) Novel diaryl sulfone compound, and manufacturing method for same
JP3929143B2 (en) Novel selenium-containing alicyclic compounds
JP4641407B2 (en) Method for purifying 4,5-dimercapto-1,3-dithiolane
JP2018058772A (en) Production method of polythiol compound for optical material
JP3053177B2 (en) Polyisocyanate compound and method for producing the same
JP2010043145A (en) Novel metal-containing compound
JP2003128666A (en) Production method of poly epithio-ethyl compound
JPH0925264A (en) Production of thio(meth)acrylate compound
JP4708373B2 (en) Novel selenium-containing alicyclic compounds
KR20130030257A (en) Novel diaryl sulfone compound, and manufacturing method for same
JP2019178081A (en) Thiol compound production method and novel thiating agent
JP2002226453A (en) Method for producing thiol compound and polymerizable composition containing the resultant thiol compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees