JP2004300098A - Treatment method for organ for grafting - Google Patents

Treatment method for organ for grafting Download PDF

Info

Publication number
JP2004300098A
JP2004300098A JP2003096722A JP2003096722A JP2004300098A JP 2004300098 A JP2004300098 A JP 2004300098A JP 2003096722 A JP2003096722 A JP 2003096722A JP 2003096722 A JP2003096722 A JP 2003096722A JP 2004300098 A JP2004300098 A JP 2004300098A
Authority
JP
Japan
Prior art keywords
organ
bilirubin
graft
transplantation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096722A
Other languages
Japanese (ja)
Inventor
Makoto Suematsu
誠 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OXYGENIX KK
Original Assignee
OXYGENIX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OXYGENIX KK filed Critical OXYGENIX KK
Priority to JP2003096722A priority Critical patent/JP2004300098A/en
Publication of JP2004300098A publication Critical patent/JP2004300098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clarify the mechanism of reperfusion injury, such as organ dysfunction, after organ grafting; to provide a safe and simple treatment method for an organ for grafting which method improves biliation action, prevents the initial graft dysfunction due to reperfusion injury after grafting, and makes a treatment against virus infection unnecessary; and to provide a treating agent for cleaning an organ graft, an organ grafting method, and an organ storage method used therefor. <P>SOLUTION: In the treatment method for an organ for grafting, an organ graft is preserved at a low temperature for a specified time by using an organ preservative liquid. Before grafting, the preserved organ graft is cleaned by reperfusion with a liquid containing a fat-soluble low-molecular antioxidant, e.g. bilirubin, having an endocellular osmotic performance. A preferable organ for grafting is a liver, a heart, a kidney, a pancreas, or a lung. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、移植用臓器の処理方法やこれに用いる臓器移植片洗浄用処理剤や、臓器の移植方法、臓器の保存方法に関する。
【0002】
【従来の技術】
臓器移植、特に死体臓器移植においては、ドナー臓器移植片の洗浄、臓器移植片への保存液の潅流、臓器移植片の冷保存及び移植前の保存液をリンスする温洗浄液の再潅流、レシピエントへの移植の手順で行われるが、臓器移植片の冷保存及び再潅流は移植後の移植片機能回復を妨げる不可避、且つ有害な過程とされている。生体肝移植、死体肝移植等いずれにおいても冷虚血再潅流(CI/R)が誘発する急性胆肝機能不全を抑制することは移植後の結果をさらに改善するために解決すべき重要な課題である(例えば、非特許文献1、2参照。)。CI/Rが誘発する胆肝機能不全の深刻な形態の一例として初期移植片の機能不全が知られている(例えば、非特許文献3参照。)。その原因の一つとして、酸素フリーラジカルや、炎症性サイトカイン等のCI/Rで産生した炎症誘発性の介在物質が肝細胞や肝非実質細胞に損傷を引き起こすことが推測されており、それを示唆する数多くの一連の証拠が挙げられている(例えば、非特許文献4。)。一方、ドナー肝臓の冷虚血前調整処理によって、肝移植片が再潅流傷害に対する抵抗性を獲得することが実験的に示されており、かかる移植片の冷虚血前調整処理として、星細胞不活性化又は欠乏(例えば、非特許文献5、6参照。)、熱ショックタンパク質の誘導(例えば、非特許文献7、8参照。)、冷保存に先立つ短期虚血(例えば、非特許文献9参照。)等が有効であると考えられている。
【0003】
更に、最近の研究により、遺伝子導入又は酵素誘発剤によるヘムオキシゲナーゼ1(HO−1)の過剰発現が動物における移植後の肝移植片の生存の改善に有効であることが報告されている(例えば、非特許文献10、11参照。)。かかる酵素はプロトヘムIX(プロトポルフィリンIX)のα−メチレンブリッジを切断することにより遊離2価鉄、一酸化炭素(CO)、及び、ビリベルジン−IXαに分解するヘムオキシゲナーゼのアイソザイムであり、ビリベルジン−IXαは、更に、ビリベルジン還元酵素により分解されビリルビン−IXαを産生する基質である(例えば、非特許文献12、13参照。)。かかるプロトポルフィリンIXから産生される物質は生物的に活性を有し、即ち、2価鉄はフェリチンの内因性誘導物質として働き、その結果、遊離鉄を細胞内に貯蔵する働きを助け(例えば、非特許文献14、15参照。)、COは正常条件及び疾病条件下で類洞毛細血管の血流と開存性を維持するために必要な物質であり(例えば、非特許文献16〜18。)、ビリベルジン及びビリルビンはin vitroで活性酸素種を除去する作用を有することが報告されている(例えば、非特許文献19参照。)。金属プロトポルフィリン等のHO−1誘導剤を用いて遺伝的に肥満のズッカー(Zucker)ラットを前処理すると、移植片生着性が顕著に改善されたことが報告されており、HO−1遺伝子導入は動物の肝臓及び心臓移植後の長期移植片生着性を裏付けている。
【0004】
HO−1タンパク質の発現をウェスタンブロット分析法により測定する方法(例えば、非特許文献20参照。)や、胆汁サンプル中のビリルビン−IXα濃度を測定する方法(例えば、非特許文献21、22参照。)や、胆汁サンプル中の全胆汁酸塩及びリン脂質量を測定する方法(例えば、非特許文献23参照。)や、試料中の乳酸脱水素酵素(LDH)量を測定する方法(例えば、非特許文献24参照。)や、ラットの肝移植の方法(例えば、非特許文献25参照。)や、ヒト血漿タンパク質画分(PPF)を含む冷保存後の再循環に用いる洗浄液(例えば、非特許文献26参照。)や、抗ビリベルジン−IXαモノクローナル抗体24G7を用いてビリルビンの免疫組織学的検出を行う方法(例えば、非特許文献27参照。)や、肝移植片を16時間冷保存した後30分再潅流した移植片におけるビリルビン分泌量(例えば、非特許文献28参照。)や血漿ビリルビン濃度(例えば、非特許文献29参照。)が知られている。その他、生体内へ侵入した細菌が好中球によって貪食されること等により発生する生体内の酸素フリーラジカル等の活性酸素は炎症、組織傷害等の要因となり、これを消去するため水溶性の薬物では、経口投与されたときは消化管や肝臓の代謝を受けて分解され、非経口投与では血中には移行しても細胞内に取り込まれることがなく、標的部位に薬物を有効濃度で到達させることが困難であるところから、ユーカリ油、タイム油等の精油成分を経皮的に投与してリンパ移行性を高くした、複数の脂溶性低分子化合物を含有する少なくとも1種以上の精油を有効成分とするフリーラジカル消去用組成物が報告されている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
国際公開第98/13055号パンフレット
【非特許文献1】
Clavien PA, Harvey PRC, Strasberg SM. Transplantation 1992;53:957−978.
【非特許文献2】
Lemasters JJ, Bunzendahl H, Thurman RG. Liver Transpl Surg 1995;1:124−138.
【非特許文献3】
Greig PD,Woolf GM, Sinclair SB, Abecassis M, Strasberg SM, Taylor BR, Blendis LM, Superina RA, Glynn MFX, Langer B, Levy GA. E1. Transplantation 1989;48:447−453.
【非特許文献4】
Kumamoto Y, Suematsu M, Shimazu M, Kato Y, Sano T, Makino N, Hirano K, Naito M, Wakabayashi G, Ishimura Y, Kitajima M. Hepatology 1999;30:1454−1463.
【非特許文献5】
Nakamura T, Arii S, Monden K, Sasaoki T, Adachi Y, Ishiguro S, Fujita S, Mizumoto M, Imamura M. J Surg Res 1996;62:207−215.
【非特許文献6】
Kukan M, Vajdova K, Horecky J, Nagyova A, Mehendale HM, Trnovec T. Hepatology 1997;26:1250−1257.
【非特許文献7】
Takahashi Y, Tamaki T, Tanaka M, Konoeda Y, Kawamura A, Katori M, Kakita A. Transplant Proc 1998;30:3700−3702.
【非特許文献8】
Matsumoto K, Honda K, Kobayashi N. Protective Transplantation 2001;71:862−868.
【非特許文献9】
Yin DP, Sankary HN, Chong ASF, Ma LL, Shen J, Foster P, Williams JW. Transplantation 1998;66:152−157.
【非特許文献10】
Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melineck J, Lassman CR, Kolls JK, Alam J, Ritter T, Volk HD, Farmer DG, Ghobrial RM, Busuttil RW, Kupiec−Weglinski JW. J Clin Invest 1999;104:1631−1639.
【非特許文献11】
Soares MP,LinY, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD, Bach FH. Nature Med 1998;4:1073−1077.
【非特許文献12】
Maines MD. FASEB J 1988;2:2557−2568.
【非特許文献13】
Maines MD, Trakshel GM, Kutty RK. J Biol Chem 1986;261:411−419.
【非特許文献14】
Ponka P, Beaumont C, Richardson DR. J Biol Chem 1998;35:35−54
【非特許文献15】
Poss KD, Tonegawa S. Proc Natl Acad Sci USA 1997;94:10919−10924.
【非特許文献16】
Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y. J Clin Invest 1995;96:2431−2437.
【非特許文献17】
Wakabayashi Y, Takamiya R, Mizuki A, Kyokane T, Goda N, Yamaguchi T, Takeoka S, Tsuchida E, Suematsu M, Ishimura Y. Am J Physiol Gastrointest Liver Physiol 1999;277:G1088−G1096.
【非特許文献18】
Suematsu M, Ishimura Y. Hepatology 2000;31:3−6
【非特許文献19】
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Science 1987;235:1043−1046.
【非特許文献20】
Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M. J Clin Invest 1998;101:604−612.
【非特許文献21】
Shimizu S, Izumi Y, Yamazaki M, Shimizu K, Yamaguchi T, Nakajima H. Biochim Biophys Acta 1988;967:255−260.
【非特許文献22】
Izumi Y, Yamazaki M, Shimizu S, Shimizu K, Yamaguchi T, Nakajima H. Biochim Biophys Acta 1988;967:261−266.
【非特許文献23】
Tanaka A, Katagiri K, Hoshino M, Hayakawa T, Tsukada K, Takeuchi T. Am J Physiol Gastrointest Liver Physiol 1994;266:G324−G329.
【非特許文献24】
Morikawa N, Suematsu M, Kyokane T, Goda N, Kumamoto Y, Okitsu T, Ishimura Y, Kitajima M. Hepatology 1998;28:1289−1299.
【非特許文献25】
Kamada N, Calne RY. Transplantation 1979;28:47−50.
【非特許文献26】
Todo S, Nery J, Yanaga K, Podesta L, Gordon RD, Starzl TE. JAMA 1989;261:711−714.
【非特許文献27】
Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y, Suematsu M. J Clin Invest 2002;109:457−467.
【非特許文献28】
Yamaguchi T, Wakabayashi Y, Tanaka M, Sano T, Ishikawa H, Nakajima H, Suematsu M, Ishimura Y. Am J Physiol Gastrointest Liver Physiol 1996;270:G1028−G1032.
【非特許文献29】
Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, Kitajima M, Makino N, Ishimura Y, Suematsu M. Circ Res 1999;85:663−671.
【発明が解決しようとする課題】
【0006】
HO−1によるプレコンディショニングは、肝移植片に対する保護作用を有することから、使用可能なドナー肝の供給の拡大を図ることが可能である。しかし、HO−1の保護作用を裏付けるこれらの実験データにもかかわらず、ex vivoでの移植片生存度に対するCO潅流の有益作用を示す最近の研究以外には、移植片損傷を改善する反応産物の役割はまだよく知られていない。従来、ヒトの肝臓移植において、移植片のリンス液として高濃度血漿タンパクを含有する液体が慣例的に使用されているが、このリンス液によるリンスでは、細胞損傷を抑制することができるが、胆汁分泌作用が改善されず、また、血漿製剤のためウイルス感染やコスト面で問題があった。このため、臓器移植における移植後の臓器機能不全等、移植後の再潅流傷害に対する移植保護を図り、初期移植片機能不全を抑制できるより安全且つ簡便な移植臓器処理方法が希求されていた。
【0007】
本発明の課題は、臓器移植における移植後の臓器機能不全等、移植後の再潅流傷害の生ずる機構を明らかにし、胆汁分泌作用の改善を図り移植後の再潅流傷害による初期移植片機能不全を抑制でき、ウイルス感染に対する処理を不要としてより安全且つ簡便な移植用臓器の処理方法やこれに用いる臓器移植片洗浄用処理剤や、臓器の移植方法、臓器の保存方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、in vivoでの冷虚血再潅流(CI/R)が誘発する肝移植片機能不全に対するHO−1のプレコンディショニングの効果の作用機構を明らかにすべく鋭意研究し、肝臓の冷虚血保存傷害は類洞毛細血管内皮細胞の傷害と考えられていたが、肝実質細胞の傷害であることを明らかにし、CI/Rが誘発する胆肝機能不全に対し、COよりも胆汁色素であるビリルビン−IXαが改善のための重要な要因となることを確認し、ビリルビン5〜10μmol/L程度を単に添加した乳酸リンゲル液等の洗浄液で再潅流した後に移植すると、HO−1のプレコンディショニングを行わなくとも、HO−1のプレコンディショニングを行ったのと同等の臓器保護効果が得られ、in vivoでCI/Rが誘発する機能不全を著しく抑制し、移植24時間後における肝臓の組織傷害と胆汁分泌が顕著に改善できることを見い出し、本発明を完成するに至った。
【0009】
すなわち本発明は、臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄することを特徴とする移植用臓器の処理方法(請求項1)や、細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項1記載の移植用臓器の処理方法(請求項2)や、ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項2記載の移植用臓器の処理方法(請求項3)や、ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項2又は3記載の移植用臓器の処理方法(請求項4)や、臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項1〜4のいずれか記載の移植用臓器の処理方法(請求項5)や、臓器保存液を潅流した後所定時間冷保存されている臓器移植片を移植前に再潅流して洗浄する際に用いられる臓器移植片洗浄用処理剤であって、細胞内に取り込まれる抗酸化物質含有液を有効成分として含有することを特徴とする臓器移植片洗浄用処理剤(請求項6)や、細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項6記載の臓器移植片洗浄用処理剤(請求項7)や、ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項7記載の臓器移植片洗浄用処理剤(請求項8)や、臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項6〜8のいずれか記載の臓器移植片洗浄用処理剤(請求項9)に関する。
【0010】
また本発明は、臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液で再潅流して洗浄した後、移植することを特徴とする臓器の移植方法(請求項10)や、同種同系移植であることを特徴とする請求項10記載の臓器の移植方法(請求項11)や、細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項10又は11記載の臓器の移植方法(請求項12)や、ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項12記載の臓器の移植方法(請求項13)や、ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項12又は13記載の臓器の移植方法(請求項14)や、臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項10〜14のいずれか記載の臓器の移植方法(請求項15)や、臓器に臓器保存液を潅流した後所定時間冷保存し、使用前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄することを特徴とする臓器の保存方法(請求項16)や、細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項16記載の臓器の保存方法(請求項17)や、ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項17記載の臓器の保存方法(請求項18)や、ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項17又は18記載の臓器の保存方法(請求項19)や、臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項16〜19のいずれか記載の臓器の保存方法(請求項20)に関する。
【0011】
【発明の実施の形態】
本発明の移植用臓器の処理方法としては、臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄(リンス)する方法であれば特に制限されるものではなく、本発明の臓器移植片洗浄用処理剤としては、臓器保存液を潅流した後所定時間冷保存されている臓器移植片を移植前に再潅流して洗浄する際に用いられる臓器移植片洗浄用処理剤であって、細胞内に取り込まれる抗酸化物質含有液を有効成分として含有する処理剤であれば特に制限されるものではなく、本発明の臓器の移植方法としては、臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液で再潅流して洗浄した後、移植する方法であれば特に制限されるものではなく、本発明の臓器の保存方法としては、臓器に臓器保存液を潅流した後所定時間冷保存し、使用前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄する方法であれば特に制限されるものではなく、これら本発明における上記移植用臓器としては、生体臓器、生着能を有する死体臓器であってもよく、その種類としては、肝臓、心臓、腎臓、肺臓、膵臓等を例示することができ、中でも肝臓が好ましく、特に生着能を有する死体肝を好適に例示することができ、また、移植片としては上記臓器の全体であってもその一部であってもよい。
【0012】
上記臓器保存液としては、公知の臓器保存液をも含め特に限定されないが、適用する臓器の種類等によって最適なものを選択して使用することができ、例えば、移植用臓器が死体肝の場合、活性酸素産生酵素の阻害剤を含む乳酸リンゲル液であり、腎臓では平均24時間、肝臓・膵臓では平均17時間、心臓では平均4時間の保存効果が臨床的に報告されているウィスコンシン大学溶液(UW solution)、ユーロ・コリンズ溶液の他、レシチン化スーパーオキシドジスムターゼを含有する臓器保存液(特開2002−060301号公報)、ヒアルロン酸類を含有する臓器保存液(特開平11−246301号公報)、平均分子量50万〜65万のヒドロキシエチル澱粉を2〜3.5%含有する臓器保存液(特開平09−328401号公報)、ジイソプロピル1,3−ジチオール−2−イリデンマロネートを有効成分として含む移植臓器保存液(特開2001−335401)等を例示することができる。これら臓器保存液は、通常ドナー臓器移植片を洗浄後、臓器移植片に潅流することにより用いられる。臓器保存液で還流された臓器移植片は、次いで所定の時間冷保存される。また、冷保存としては、個々の臓器移植片によって最適な保存温度での保存であることが好ましく、通常、4℃前後の温度での保存が好ましい。所定の時間の保存としては、特に限定されるものではなく、臓器移植片によって許容される保存時間内であればよく、保存液の種類にもよるが、肝臓移植片や膵臓移植片の場合は16時間以内、腎臓移植片の場合は24時間以内、心臓では4時間以内の保存であることが好ましい。
【0013】
本発明において、冷保存後移植前、好ましくは移植直前の臓器移植片の洗浄は、臓器移植片を肝細胞内に取り込まれる抗酸化物質含有液で再潅流する洗浄(リンス)であれば、特に制限されるものではなく、細胞内に取り込まれる抗酸化物質含有液としては、臓器組織内に還流した場合、細胞内に取り込まれる脂溶性抗酸化物質、好ましくは脂溶性低分子抗酸化物質や、トランスポーターにより細胞内に取り込まれるトランスポーター特異的基質となる抗酸化物質等の含有液であればどのようなものでもよく、ここで抗酸化物質とは、酸化物質に対して低濃度で脂質過酸化反応を抑える物質をいい、生体内で生じるスーパオキシドアニオン、ヒドロキシラジカル、過酸化水素などの活性酸素と反応しこれらを消去する物質をも含む。上記脂溶性抗酸化物質は細胞内に取り込まれ、抗酸化物質が低分子物質であれば細胞内へより容易に取り込まれる。
【0014】
このような細胞内浸透能を備えた脂溶性で低分子量の抗酸化物質としては、ビリルビン、ビリベルジン、ビタミンE、β−カロテン、リコピンを例示することができる他、種々の植物精油に含有される天然物由来の化合物、例えば、タイム油、シソ科精油、ユーカリ油等に含有されるフェノール系化合物や、ニンニク油、ワケギ油、ラッキョウ油等に含有される含硫系化合物や、レモン油、柑橘科油、ラベンダー油等に含有されるテルペン系化合物等を例示することができる。上記植物の精油に含有される抗酸化物質として、具体的に、チモール、カルバクロール、ジアリルスルフィド、ジアリルジスルフィド、アリシン、ジアリルトリスルフィド、d−又はl−カンフェン、β−オイデスモール、dl−リモネンであるジペンテン、d−リナロール、酢酸リナリル、リモネン、シトラール、テルピネオール等を挙げることができる。特に、移植される臓器が肝臓において、かかる脂溶性低分子抗酸化物質としてビリルビンを好適に例示することができる。
【0015】
上記トランスポーターにより細胞内に取り込まれるトランスポーター特異的基質となる抗酸化物質としては、腎臓で発現する有機アニオントランスポーターOAT1(J.Biol.Chem., 272, 18526−18529, 1997)が輸送する尿酸や、肝臓で発現するABCトランスポーターMRP2(Science, 271, 1126−1128, 1996)が輸送するグルタチオン等を例示することができる。
【0016】
また、上記細胞内に取り込まれる抗酸化物質は1種又は2種以上を組み合わせて用いることができる。さらに、上記細胞内に取り込まれる抗酸化物質含有液には、抗酸化物質の他、塩化ナトリウム、塩化カリウム、塩化カルシウム等の無機化合物や、乳酸等通常使用される臓器の保存液に含有される成分が含有されていてもよい。
【0017】
上記ビリルビンは、合成されたものであってもよいが、ヘモグロビンからの最終産物として得られるものであってもよい。ビリルビンはヘモグロビン成分のポリフィリン鉄(II)錯塩(ヘム)がヘムオキシゲナーゼによりαメチン位で開裂され鎖状テトラピロール誘導体(ビリベルジン)とされ、更に、ビリベルジンレダクターゼにより変換されてヘモグロビン最終産物として得られ、生成されたビリルビン−IXαは非抱合型の脂溶性である。かかるビリルビンの脂溶性低分子抗酸化物質含有液中の含有量としては、1〜20μmol/L、好ましくは5〜10μmol/Lである。
【0018】
本発明において、細胞内に取り込まれる抗酸化物質含有液を臓器移植片に再潅流して洗浄することにより、脂溶性低分子抗酸化物質等の抗酸化物質が移植片の細胞内に浸透し、冷虚血保存後の再潅流によって生じる細胞内の酸素フリーラジカル等の活性酸素を効率よく消去することができる。特に、ビリルビンは肝実質細胞内への浸透性が高く、ビリルビン含有液を使用することが好ましい。臓器移植片の再潅流による洗浄は、臓器移植片が肝臓の場合、門脈口から脂溶性低分子抗酸化物質含有液をゆっくり注入し、潅流リンスすると、細胞内に取り込まれる抗酸化物質の細胞内へ浸透を促進させることができ好ましい。再潅流時間は、細胞内に取り込まれる抗酸化物質の種類や、臓器の種類によって一概には云えないが、各臓器各抗酸化物質との組合せにおいて最適な洗浄時間を選択すればよく、例えばビリルビン含有液を肝移植片に再潅流して洗浄する場合、3〜10分間行うことが好ましい。この時間の潅流リンスにより、適量のビリルビンが細胞内に浸透し、細胞内の活性酸素を効率よく消去することができる。
【0019】
本発明の移植用臓器の処理方法は、臓器移植に際しての移植用臓器の処理として有用であり、本発明の臓器移植片洗浄用処理剤は、臓器移植に際しての移植用臓器を処理するのに有利に用いることができ、本発明の臓器の移植方法は、同種同系移植等に有利に用いられ、また、本発明の臓器の保存方法により保存されたラットなどの各種動物の臓器は、移植のための実験等の各種実験に有利に用いることができる。
【0020】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。以下の実験において、動物の飼育及び使用における総ての実験手順は慶應義塾大学医学部の機関規定により承認されたものである。また、各種実験データの群間の統計的分析は一元配置分散分析とフィッシャー多重比較検定により行った。なお、遊離ビリルビン群とアルブミン抱合ビリルビン群間のデータの統計上の相違はマンホイットニーU検定を使用してノンパラメトリック分析によって検証した。結果は平均値±標準誤差で表し、0.05以下のP値は有意とした。
【0021】
[ex vivo 実験]
実施例1:肝移植片の調製及びHO−1プレコンディショニング
重さ190gから230gまでの雄のウィスターラットに、固形飼料と水を自由摂取させ、6時間絶食させた。その後、HO−1の強力な誘発剤であるヘミン40μmol/kgを腹腔内注射した後18時間絶食させた。文献記載の方法(非特許文献17参照。)に準じてヘミン処理を行ったところ、肝静脈中のCO流量及びビリルビン−IXαの胆汁分泌が著しく増加すると同時にHO−1タンパク質の誘発が最大であった。この結果に基づいて、冷虚血後の移植片機能不全に対するHO−1誘導の効果を検証する最適の手順として上記時間を選択した。ヘミン非処理のコントロールとして、生理食塩水を注射したラットを24時間絶食後に用いた。
【0022】
上記ヘミン又は生理食塩水を注射したラットをペントバルビタールナトリウム(40mg/体重kg)を腹腔内注射して麻酔し、胆汁サンプルを採取するため総胆管にPE−10カテーテルを挿管した。門脈に16ゲージカテーテルを挿管し、4℃に保持した20mlの乳酸リンゲル液を流した。その後、肝臓を4℃の20mlのウィスコンシン大学溶液(University of Wisconsin Solution :UW溶液)20mlを用いて潅流した後、切除し、同溶液中に4℃で16時間保存した。胆汁形成の減少と同時に生じる細胞内ヒドロペルオキシド産生から判断して、急性酸化的ストレスが結果的に生じることから、上記保存期間として16時間を選択した。冷保存16時間後、肝移植片に対して、門脈を介して30μmol/Lのタウロコール酸ナトリウムの存在下に95%酸素5%二酸化炭素飽和クレブス−ヘンゼライト緩衝液(pH7.4、37℃)4ml/分/肝重gによる再潅流を行った(非特許文献4参照。)。
【0023】
実施例2:移植片のヘミン処理におけるHO−1タンパク質
実施例1で調製された移植片について、先行文献(非特許文献20参照。)記載の方法に従い、HO−1タンパク質の発現をウェスタンブロット分析法により測定した。また、肝静脈流中のCO流量を本発明者らの従前の方法(非特許文献16参照。)により分光光度計で測定した。結果を図1(A)、(B)に示す。図1(A)に、抗ラットHO−1モノクローナル抗体GTS−1を用いたウエスタンブロット分析による各移植片におけるHO−1タンパク質の発現を示す。レーンmは分子マーカー(30kDaと40kDa)、レーンa、bはヘミン注射を施さなかった移植片(ヘミン非処理)における冷保存しないもの(レーンa)及び16時間冷保存したもの(レーンb)、レーンc、d、eはヘミン注射を施した移植片(ヘミン処理)における冷保存しないもの(レーンc)、16時間冷保存したもの(レーンd)、16時間冷保存後30分再潅流したもの(レーンe)をそれぞれ示している。図1(B)に各移植片における肝静脈潅流液中のCO量を示す。ヘミン非処理移植片における冷保存しないもの(コントロール)及び16時間冷保存したもの(C16)と、ヘミン処理移植片における冷保存しないもの(コントロール)、16時間冷保存したもの(C16)、16時間冷保存後30分再潅流したもの(C16+R)について示す。
【0024】
図1から明らかなように、ヘミン非処理移植片における16時間の冷保存したもの(レーンb、C16)はHO−1の明白な発現はなく、COの産生の増加も見られなかった。ヘミン処理移植片では、ヘミン非処理移植片と比較してHO−1と共に静脈CO流量が著しく増加した。冷保存した移植片(レーンd、C16)及び冷保存後30分の再潅流した移植片(レーンe、C16+R)におけるHO−1発現量は、冷保存しない移植片(レーンc、コントロール)よりもわずかに増加した。他方、冷保存した移植片(レーンd、C16)及び冷保存後30分の再潅流した移植片(レーンe、C16+R)における肝静脈CO流量は、冷保存しない移植片(レーンc、コントロール)のそれより減少したが、ヘミン非処理移植片との比較において約3倍増加していた。上記結果から、ヘミン処理した肝移植片はHO−1誘導を介してCO産生能力を増加することが示唆された。
【0025】
実施例3:ヘミン処理による移植片の胆汁とビリルビンの産生
実施例1によるヘミン処理した肝移植片において、16時間冷保存後(Hemin/C16)、総胆管から40分間の再潅流時間中5分毎に胆汁サンプルを採取した。また、再潅流開始後30分経過時の胆汁サンプル中のビリルビン−IXα濃度を、先行文献(非特許文献21、22参照。)記載の方法に従い、抱合型及び非抱合型ビリルビン画分両方を認識するモノクローナル抗体24G7を使用して酵素結合免疫吸着検出法によって測定した。ヘミン非処理移植片で、冷保存なし(コントロール)、16時間冷保存(C16)についても同様に測定対象とした。また、再潅流が誘発する移植片機能不全の抑制におけるHO活性の役割を検証するために、強力なHO−1活性阻害剤である亜鉛プロトポルフィリン−IX(ZnPP、Porphyrin Product社製)と、HO活性を阻害しない銅プロトポルフィリン−IX(CuPP、Porphyrin Product社製)1μmol/Lを上記カルボゲン飽和クレブス−ヘンゼライト緩衝液(pH7.4、37℃)に添加した液により、ヘミン処理した後16時間冷保存後の肝移植変の再潅流を行い、移植片からの胆汁産生量と、30分潅流後の採取した胆汁サンプル中のビリルビン濃度を測定した。
【0026】
再潅流時の胆汁産生量の経時変化を図2(A)に示す。図2(A)から明らかなように、ヘミン非処理群において16時間冷保存された移植片(C16)における胆汁産出量は時間の経過と共に一定値に達するが、その値はヘミン非処理の冷保存なしの移植片(コントロール)よりも著しく低い値であった。この結果16時間冷保存された肝移植片は肝胆機能不全を引き起こすことを裏付け、本発明者らの従前の研究(非特許文献4参照。)とよく一致していた。反対に、ヘミン処理群において16時間冷保存した移植片(Hemin/C16)においては、胆汁産出量は再潅流開始後速くも10分で迅速な回復を示し、ヘミン非処理冷保存移植片(C16)の胆汁産出値よりも高い一定値に達することがわかった。
【0027】
また、図2(A)からも明らかなように、ZnPPの存在により移植片の再潅流時における胆汁産生量が低減し(Hemin/C16+ZnPP)、ヘミン非処理冷保存移植片(C16)における胆汁産生量との差は、ヘミン非処理冷保存移植片(C16)とヘミン処理冷保存移植片(Hemin/C16)間で観察された胆汁産生量の差よりも明らかに大きかった。ZnPPの替わりにCuPPを添加して再潅流した移植片(Hemin/C16+CuPP)では、胆汁産生量はヘミン処理後冷保存移植片(Hemin/C16)とほぼ同量であった。このことから、ZnPPはHO−1活性を阻害するだけではなく、移植片の細胞の機能も抑制することが推測された。かかる推測は、胆汁中のビリルビン−IXα量を測定することで十分に裏付けされた。
【0028】
上記各移植片について30分の再潅流後における胆汁中のビリルビン−IXα量を図2(B)に示す。図2(B)からも明らかなように、ZnPPが誘導する移植片におけるビリルビン流量の減少、即ち、ヘミン処理冷保存移植片のZnPPの存在下の再潅流(Hemin/C16+ZnPP)時と、ZnPP不存在下の再潅流(Hemin/C16)間のビリルビン−IXα量の差は、ヘミン処理移植片(Hemin/C16)とヘミン非処理移植片(C16)間のビリルビン−IXα量の差よりも大きい。
【0029】
さらに、ヘミン非処理で16時間冷保存した後30分再潅流した移植片(C16)は約200pmol/分/肝重gのビリルビンを分泌したが、この値は冷保存をせずに30分のコントロール潅流した移植片において分泌されたビリルビンの測定値に相当する(非特許文献28参照。)。移植片をヘミン処理し、16時間冷保存後30分再潅流した場合、ビリルビン流量は顕著に増加し、ヘミン非処理群のビリルビン流量の約1.5倍であった。しかしながら、かかる増加は同群において3倍となった静脈CO増加(図1(B))よりもかなり少ない。2種のヘム分解生産物間のこのような化学量論的不一致は、ヘミン処理した16時間冷保存移植片におけるビリルビン輸送効率の低下から生じている可能性が考えられる。また、ZnPPの替わりにCuPPとの共潅流した場合と比較して、ZnPPとの共潅流ではビリルビン量が著しく減少した。このことからZnPPのビリルビン分泌抑制効果は、ZnPPのHO活性阻害作用によることが示唆された。
【0030】
実施例4:ビリルビンによる移植片機能不全の回復
ビリルビンやCOが、強力なHO活性阻害剤であるZnPPによって抑制されたHO−1誘導効果を回復できるかどうかを検証するため、以下の実験を行った。ビリルビン(Sigma Chemical社製)及び/又はCOを、1μmol/LのZnPPと共に上記カルボゲン飽和クレブス−ヘンゼライト緩衝液(pH7.4、37℃)に添加し、移植片の再潅流を行った。ビリルビンの濃度として、ヘミン処理したラットから採取した門脈血サンプルにおける血漿ビリルビン濃度は3.2±0.8μmol/L(n=4)であり、コントロールの血漿ビリルビン濃度は1.0μmol/L以下である(非特許文献29参照。)とのデータに基づき、ヘミン処理した肝臓におけるビリルビンの生理的適性濃度(relevant concentration)は約5μmol/Lであると推定した。16時間冷保存後の移植片につき、ZnPP存在下、ビリルビン及びCO未添加(c)、ビリルビン5μmol/L添加(d)、CO5μmol/L添加(e)、ビリルビン及びCOそれぞれ5μmol/L添加(f)して30分共潅流した移植片から分泌される胆汁産出量(A)、胆汁中の胆汁酸塩量(B)、胆汁中のリン脂質量(C)を測定した。同様に、コントロールとしてZnPP不存在下、ヘミン非処理(a)、ヘミン処理(b)したものを用いた。胆汁サンプル中の全胆汁酸塩及びリン脂質量は文献(非特許文献23参照。)記載の方法に従い酵素阻害測定法によって測定した。結果を図3(A)、(B)、(C)に示す。
【0031】
図3(A)から明らかなように、ヘミン非処理(a)に比べて、ヘミン処理(b)により胆汁産生量が増加するが、ヘミン処理による効果はZnPPとの共潅流(c)により取り消され、ZnPP不存在下の潅流(a)より更に胆汁産生量が低減した。かかるZnPPによる胆汁産生量の減少はビリルビンとの共潅流(d)によって回復した。ビリルビンのかかる効果は同濃度のCOの共潅流(e)によっては代替できなかった。更に、ビリルビン及びCOとの共潅流(f)はビリルビンのみによる共潅流(d)によって得られる効果をさらに強化はしなかった。
【0032】
実施例5:ビリルビン投与量と移植片機能不全の回復
ビリルビン及び/又はCOの投与量に依存する共潅流における効果を調べてみた。ビリルビン及び/又はCOの投与量を変えた以外は実施例4と同様にして、ヘミン処理した移植片を16時間冷保存後、再潅流液中ZnPP存在下の各濃度のビリルビン及び/又はCOと共に30分再潅流を行い、移植片の胆汁中の胆汁産生量、胆汁中の胆汁酸塩量及びリン脂質の、ZnPP不存在下の再潅流における場合のこれらの産生量に対する割合をそれぞれ求めた。結果をそれぞれ図4(A)、(B)、(C)に示す。
【0033】
図4から明らかなように、16時間冷保存後、30分再潅流後の移植片の胆汁産生量、胆汁中の胆汁酸塩量及びリン脂質量の割合は、再潅流液中のビリルビン5μmol/L以下の濃度のとき著しく回復を示したが、5μmol/L以上の濃度では減少したことから、肝移植片に対するビリルビン効果は潅流液における5μmol/L濃度付近で変化することが分かった。一方、COの5μmol/L以下の濃度における30分再潅流によっては、移植片の胆汁産生量、胆汁中の胆汁酸塩量及びリン脂質量の回復はなかった。以上の結果から、COよりもビリルビンがヘミン処理した肝移植片において胆汁機能の回復に貢献していることがわかった。
【0034】
実施例6:肝細胞損傷のビリルビン投与による回復
実施例5と同様に、ヘミン処理した移植片を16時間冷保存後、再潅流液中ZnPP存在下、ビリルビンの濃度を換えて30分再潅流を行い、移植片の肝細胞損傷の指標となる、肝静脈潅流液中に放出された乳酸脱水素酵素(LDH)量を求めた。ZnPP不存在下で、ヘミン非処理で16時間再潅流したもの(C16)及びヘミン処理後16時間再潅流したもの(Hemin/C16)をコントロールとした。LDH量は先行文献(非特許文献24参照。)記載の方法に従い測定した。結果を図5に示す。
【0035】
図5から明らかなように、ヘミン非処理のコントロール(C16)において、16時間冷保存は細胞生存度の減少の指標となる静脈中LDH放出量が著しく増加した。ヘミン処理したコントロール(Hemin/C16)においてはLDH放出をほとんど完全に抑制した。再潅流時にZnPP共潅流するとLDH放出が著しく増加したが、再潅流液中のビリルビンの濃度が5μmol/LになるまでLDH放出量は減少し、ビリルビンの濃度が5μmol/LのときLDH放出量は最小値を示し、ビリルビン濃度の増加に伴いLDH放出量が増加した。即ち、ZnPPによるヘミン処理効果の抑制はビリルビンを5μmol/L以下で外因的に補充することにより濃度に応じて回復するが、10μmol/Lでの投与は本実験条件下において細胞障害性は改善されなかった。これらの結果から、細胞生存度の減少はHOの作用に依存すると思われ、ビリルビンがHO−1が介在する冷虚血後肝移植片に対する保護機構において重要な役割を果たしていることがわかった。
【0036】
実施例7:ex vivoにおけるビリルビン共潅流時間と再潅流傷害
実施例6により、ビリルビンが、HO−1が仲介する移植片保護における重要な役割を果たしていることが示唆されたことから、移植片にヘミン処理を行うことなく、胆汁色素であるビリルビンを再潅流液に単に添加することによってex vivoでの胆汁分泌及び細胞生存度回復の急性障害を防止し得るかを調べてみた。ビリルビンの高濃度投与は胆汁産生量減少と細胞生存度減少を引き起こすことが明らかであることから、ビリルビンの濃度として5μmol/Lを選択し、16時間冷保存した移植片を5μmol/L濃度となるようにビリルビンをカルボゲン飽和クレブス−ヘンゼライト緩衝液(pH7.4、37℃)に添加し、この緩衝液を門脈から、移植片の肝細胞に緩衝液が供給されるように5分間再潅流を行い、その後ビリルビン無添加で残り35分間再潅流を行う群(a)、同様にビリルビン含有緩衝液を用いて15分間再潅流を行い、その後ビリルビン無添加で残り25分間再潅流を行う群(b)、同様にビリルビン含有緩衝液を用いて40分間潅流を行う群(c)を試験群とし、ビリルビン無添加で40分間潅流を行う群(d)をコントロールとして、一方向性潅流後、それぞれの胆汁産生量を経時的に測定した。結果を図6(A)に示す。更に、ビリルビン含有緩衝液による再潅流時間と移植片からの胆汁産生量との関係、静脈中のLDH濃度との関係を、それぞれ図6(B)、(C)に示す。
【0037】
図6(A)から明らかなように、5分間のビリルビン再潅流を受けた移植片(a)はビリルビン無添加のコントロール(d)と比較して顕著に胆汁産生量が改善された。ビリルビン含有緩衝液による再潅流時間を15分(b)及び40分(c)に延長した移植片における胆汁産生量は、コントロール(d)及びビリルビン含有緩衝液による5分間の再潅流を受けた群(a)と比較して著しく減少した。更に、ビリルビン投与量に依存する肝静脈への胆汁産生量と同時に、移植片の傷害を指標するLDH放出が増加し、ビリルビン含有緩衝液による再潅流処理が長期間になると、細胞傷害が生じることが明らかになった。
上記実施例4〜6で示したように、ZnPPの存在下においてヘミン処理した移植片を16時間冷保存し、30分間5μmol/Lのビリルビンで再潅流しても、ヘミン処理した肝移植片において胆汁分泌及び細胞生存度に対し有害な効果は生じなかったことから、ヘミン処理及び非処理移植片の間で外因的ビリルビン受容度が異なることが示された。上記実施例2、3のヘミン処理移植片における静脈CO流量と胆汁ビリルビン分泌量間での不一致を示す観察を考慮すると、これらの結果は、移植片におけるHO−1を誘導する薬学的前処置がビリルビンの進入及び分泌の生理学的過程を修飾することを示唆している。
【0038】
[in vivo実験]
実施例8:肝移植モデル
HO−1プレコンディショニングのin vivoでの効果を検証するために、肝移植片の同種同系移植実験を実行した。重さ220〜280gの同系交配の雄のルイスラットに水を自由摂取させ、実験前24時間絶食させ、肝移植のドナー及びレシピエントとした。HO−1プレコンディショニング群において、ラットは実施例1におけるex vivoの場合と同様に、移植片調製の18時間前にヘミン処理を施した。多少の変更を加えたKamada開発の技術(非特許文献25参照。)に従い肝移植を行った。即ち、ドナーをペントバルビタールナトリウム(40mg/体重kg)の腹腔内注射によって麻酔し、開腹した。肝臓を含む腹腔内臓器は腹大動脈を介して速やかに4℃の乳酸リンゲル液20mLを用いて洗浄した後、4℃に保ったUW溶液10mLを用いて洗浄した。その後、門脈を介して10mlの冷却したUW溶液をゆっくりと肝臓に注入した。総胆管には胆汁サンプル採取のためPE−10カテーテルを挿管した。肝臓は周囲組織から単離してUW溶液中に4℃で16時間保存した。
【0039】
レシピエント手術において、上記16時間保存後の肝移植片中のUW溶液を各種洗浄液によりリンスした後、以下の手順で同種同系移植した。移植片肝静脈はレシピエントの肝上大静脈に7−0プロレンを用いて縫合し吻合した。門脈及び肝下大静脈はカフ技法を用いて吻合した。肝静脈の結紮時間は12〜14分の範囲内で、実験グループ中で同一とした。肝動脈は再建されなかった。胆管は吻合せず、挿管チューブは術後胆汁サンプルを採取するために体外に導出した。24時間生存したレシピエントを、血液サンプルを採取するためエーテル麻酔下で屠殺した。
【0040】
実施例9:移植後胆汁分泌停止及び損傷に対するビリルビンの保護的効果
16時間冷保存肝移植片における再潅流後鬱帯及び細胞損傷に対するビリルビンを用いた短期洗浄処理の有効性を示す実施例7から、in vivoでの冷保存移植片におけるビリルビン洗浄が移植後損傷に及ぼす効果を調べてみた。保存期間の終了時に、4℃の乳酸リンゲル液、あるいは乳酸リンゲル液にビリルビンを添加して各種濃度の4℃のビリルビン含有リンゲル液(臓器移植片洗浄用処理剤)を、それぞれ用いて移植前洗浄リンスを行った。洗浄リンスは、門脈を介して肝移植片に乳酸リンゲル液あるいはビリルビン含有リンゲル液を注入する閉鎖式循環により行い、その後、上記のようにレシピエント手術を行った。再潅流開始30分後と、再潅流開始24時間後における胆汁産生量を測定した。結果をそれぞれ図7(A)、(B)(PPF(−))に示す。また、再潅流開始24時間後における移植片損傷の程度を判定するため、アスパラギン酸アミノトランスフェラーゼ(AST)、アラニンアミノトランスフェラーゼ(ALT)及びLDHの血中濃度を常法により測定した。結果をそれぞれ図7(C)、(D)、(E)(PPF(−))に示す。
【0041】
図7(A)、(B)から明らかなように、移植前の遊離ビリルビン含有リンゲル液を門脈から注入して潅流した洗浄リンスによって、再潅流の開始30分後及び24時間後において胆汁産出量が異なっていた。また、5〜10μmol/Lのビリルビン含有リンゲル液を用いて洗浄した場合、ヘミン処理したときと同程度まで胆汁産出量が顕著に改善されたが、それ以上の高濃度のビリルビン含有リンゲル液を用いると胆汁分泌停止が生じ、50μmol/Lのビリルビン含有リンゲル液で洗浄した移植片を移植したラットはすべて移植後24時間生存できなかった(図7(B)のN.D.)。同様に、ビリルビン含有洗浄液によりリンス処理した移植24時間後の移植片におけるs(血清)AST、sALT、sLDH量は、ビリルビンの含有量に従って変化した。図7(C)、(D)、(E)に示すように、ビリルビン濃度5〜10μmol/Lでの洗浄は、ヘミン処理したときと同程度まで細胞損傷を減少させたが、それ以上のビリルビン濃度の洗浄液による洗浄は細胞損傷を悪化させた。ビリルビン濃度5〜10μmol/Lでの移植片の洗浄によるin vivoでの再潅流後胆汁鬱帯及び細胞損傷の程度からして、低濃度ビリルビンによる洗浄が移植後再潅流傷害の改善のためのヘミン処理に代替しうることがわかった。
【0042】
実施例10:in vivoでの移植片保護におけるビリルビンの効果確認
次に、移植片保護におけるビリルビンの有効性と到達性について、遊離ビリルビンを捕獲する能力をもつ血漿タンパク質の存在下におけるビリルビンの効果及び到達性の変化についても調べてみた。数個の移植片を臨床移植で通常使用されるヒト血漿タンパク質画分(PPF、Baxter Healthcare Corporation社製)を含む洗浄液(非特許文献26参照。)で処理した。PPFの主成分はアルブミン(96重量%以上)であり、その他の成分はグロブリンと電解質である。また、洗浄液中のアルブミンの濃度は約4.4g/dlとなるように調整した。ビリルビンはアルブミンと等モルで結合し得るので、PPFを含む洗浄液内の遊離ビリルビン濃度は、ビリルビン含有していても殆どゼロであると考えられる。かかるPPF添加ビリルビン含有洗浄液を用いて、閉鎖式循環に代えて開放式循環による以外は実施例9におけると同様にして、再潅流開始30分後と24時間後における胆汁産生量を測定した。結果をそれぞれ図7(A)、(B)(PPF(+))に示す。また、再潅流開始24時間後におけるsAST、sALT、sLDH量を測定した。結果をそれぞれ図7(C)、(D)、(E)(PPF(+))に示す。
【0043】
図7(A)〜(E)に示すように、PPFの存在下において10μmol/L濃度のビリルビン含有洗浄液による開放循環による洗浄リンスは、再潅流開始30分後と24時間後において、胆汁産出量の増加効果に寄与しなかったが、50μmol/L濃度のビリルビン含有洗浄液による悪影響を相殺した。一方、洗浄溶液へのPPFの添加は、細胞損傷の程度を著しく減弱せしめた。その効果は10μmol/Lでのビリルビンのみで洗浄処理した移植片に相当する値を示した。これらの結果から、ビリルビン含有洗浄液による胆汁産出量の増加効果や細胞損傷の程度の軽減はビリルビンに起因することが確認することができた。また、PPFは細胞の外周に存在して細胞死を抑制しうるが(図7(C)〜(E)のPPF(+)のビリルビン濃度がゼロ)、細胞内に浸透することができないから胆汁分泌機能の改善作用がない(図7(B)のPPF(+)のビリルビン濃度がゼロ)。これに対して、ビリルビンは脂溶性低分子抗酸化物質であり、細胞内にトランスポートされることから、細胞損傷の程度を軽減し、胆汁分泌機能を改善すると考えられ、細胞内に浸透したビリルビンが、冷保存から温洗浄するときにリンス液に含まれる酸素が活性酸素となり、この活性酸素による細胞機能(胆汁分泌)障害を抑制することが示唆された。
【0044】
実施例11:ビリルビンの移植片肝細胞内への到達性
ビリルビン洗浄による移植片組織内へのビリルビンの到達性を調べるために、本発明者らの従前の方法(非特許文献27参照。)に従い、抗ビリルビン−IXαモノクローナル抗体24G7を用いてビリルビンの免疫組織学的検出を行った。結果を図8に示す。ビリルビン不含乳酸リンゲル液を用いて潅流した移植片で見られるように(A)、モノクローナル抗体24G7の免疫反応は、クッパー細胞を含む肝非実質細胞で主に生起し、ネガティブコントロール(B)と比較すると僅かに実質細胞領域でも検出されることから、HO−1の主要細胞構成物としての内在性ビリルビンの存在が示唆された。また、ビリルビン含有リンゲル液を用いて移植片を洗浄したとき、ビリルビンは肝実質細胞に著しく吸収され免疫反応の顕著な増加を誘導していた(C)。一方、PPF添加ビリルビン含有リンゲル液を用いて移植片を洗浄したときは、ビリルビンの到達性はPPFとの共潅流によって取り消され、肝実質細胞における免疫反応がビリルビン不含乳酸リンゲル液を用いたレベルまで発現量が低減した(D)。以上の結果から、ビリルビン含有リンゲル液を用いて移植片を洗浄すると、効果的にビリルビンが移植片肝細胞内に到達し得ることがわかる。
【0045】
【発明の効果】
本発明によれば、臓器移植片を移植前に細胞内に取り込まれる抗酸化物質含有液で潅流して洗浄することにより、移植片の細胞内へ高効率で浸透し活性酸素を除去することができ、移植片の機能不全等、移植後の再潅流傷害を抑制でき、より安全且つ簡便に移植を行うことができ、しかも低価格で臓器の移植ができ、冷虚血保存後の移植であっても、再潅流傷害が抑制されるため、臓器移植の範囲の拡大を図ることができる。
【図面の簡単な説明】
【図1】肝移植片のex vivoでの再潅流におけるヘミン処理の作用結果を示す図である。(A)ウェスタンブロットで測定したHO−1タンパク質の発現
(B)静脈中のCO流量
【図2】肝移植片のヘミン処理によるex vivoでの再潅流における肝機能改善を示す図である。
(A)胆汁産生量の経時変化
(B)再潅流30分の胆汁中のビリルビン量
【図3】肝移植片のHO−1阻害剤によるex vivoでの再潅流における機能不全のビリルビンによる回復を示す図である。
(A)阻害されたヘミン処理効果のビリルビンによる胆汁産生量の回復
(B)阻害されたヘミン処理効果のビリルビンによる胆汁酸塩産生量の回復
(C)阻害されたヘミン処理効果のビリルビンによるリン脂質産生量の回復
【図4】肝移植片のHO−1阻害剤によるex vivoでの再潅流における機能不全の各種濃度のビリルビンによる回復を示す図である。
(A)阻害されたヘミン処理効果のビリルビンによる胆汁産生量の回復
(B)阻害されたヘミン処理効果のビリルビンによる胆汁酸塩産生量の回復
(C)阻害されたヘミン処理効果のビリルビンによるリン脂質産生量の回復
【図5】肝移植片のHO−1阻害剤によるex vivoでの再潅流における肝細胞損傷の各種濃度のビリルビンによる回復(静脈中のLDH濃度)を示す図である。
【図6】肝移植片のex vivoでの各種ビリルビン再潅流時間における肝機能不全及び肝細胞損傷の回復を示す図である。
(A)各種ビリルビン再潅流時間における胆汁産生量の経時変化
(B)各種ビリルビン再潅流時間における胆汁産生量
(C)各種ビリルビン再潅流時間における静脈中のLDH濃度
【図7】肝移植片の移植後in vivoでの肝機能改善及び肝細胞損傷の回復がビリルビンによることを示す図である。
(A)再潅流開始30分後の胆汁産生量
(B)再潅流開始24時間後の胆汁産生量
(C)再潅流開始24時間後の血清中のAST産生量
(D)再潅流開始24時間後の血清中のALT産生量
(E)再潅流開始24時間後の血清中のLDH産生量
【図8】肝移植片の移植後in vivoでの移植組織の実質細胞へのビリルビン到達性を示す免疫組織化学の解析結果の図である。
(A)ビリルビン不含乳酸リンゲル液を用いて潅流した移植片
(B)抗ビリルビン抗体不使用のネガティブコントロール
(C)ビリルビン含有乳酸リンゲル液を用いて潅流した移植片
(D)PPF添加ビリルビン含有乳酸リンゲル液を用いて潅流した移植片
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating an organ for transplantation, a treating agent for washing an organ graft used therein, a method for transplanting an organ, and a method for storing an organ.
[0002]
[Prior art]
In organ transplantation, particularly cadaveric organ transplantation, washing of the donor organ graft, perfusion of the preservation solution into the organ graft, cold preservation of the organ graft and reperfusion of a warm washing solution to rinse the preservation solution before transplantation, recipient However, the cold preservation and reperfusion of an organ graft are unavoidable and harmful processes that hinder the recovery of the graft function after transplantation. Suppressing acute ischemia-liver dysfunction induced by cold ischemia / reperfusion (CI / R) in living donor liver transplantation and cadaveric liver transplantation is an important issue to be solved in order to further improve the outcome after transplantation (For example, see Non-Patent Documents 1 and 2). As an example of a serious form of CI / R-induced biliary liver dysfunction, dysfunction of an initial graft is known (for example, see Non-Patent Document 3). As one of the causes, it has been speculated that proinflammatory mediators produced by CI / R such as oxygen free radicals and inflammatory cytokines cause damage to hepatocytes and non-parenchymal liver cells. Numerous sets of evidence have been suggested (for example, Non-Patent Document 4). On the other hand, it has been experimentally shown that the liver graft acquires resistance to reperfusion injury by the pre-cold ischemia preconditioning treatment of the donor liver. Inactivation or deficiency (for example, see Non-Patent Documents 5 and 6), induction of heat shock proteins (for example, see Non-Patent Documents 7 and 8), short-term ischemia prior to cold storage (for example, Non-Patent Document 9). See) is considered to be effective.
[0003]
Furthermore, recent studies have reported that overexpression of heme oxygenase 1 (HO-1) by gene transfer or enzyme inducer is effective in improving the survival of liver grafts after transplantation in animals (eg, , Non-Patent Documents 10 and 11). Such an enzyme is a heme oxygenase isozyme that degrades to free ferrous iron, carbon monoxide (CO), and biliverdin-IXα by cleaving the α-methylene bridge of protoheme IX (protoporphyrin IX), and biliverdin-IXα Is a substrate that is further degraded by biliverdin reductase to produce bilirubin-IXα (for example, see Non-Patent Documents 12 and 13). Substances produced from such protoporphyrin IX are biologically active, ie, ferrous iron acts as an endogenous inducer of ferritin, thereby helping to store free iron in cells (eg, Non-Patent Documents 14 and 15), CO is a substance necessary to maintain blood flow and patency of sinusoidal capillaries under normal conditions and disease conditions (for example, Non-Patent Documents 16 to 18). ), Biliverdin and bilirubin have been reported to have the effect of removing reactive oxygen species in vitro (see, for example, Non-Patent Document 19). It has been reported that pretreatment of genetically obese Zucker rats with a HO-1 inducer such as metal protoporphyrin significantly improved graft survival, indicating that the HO-1 gene The introduction confirms long-term graft survival after animal liver and heart transplantation.
[0004]
Methods for measuring the expression of HO-1 protein by Western blot analysis (for example, see Non-Patent Document 20) and methods for measuring bilirubin-IXα concentration in bile samples (for example, see Non-Patent Documents 21 and 22). ), A method for measuring the amount of total bile salts and phospholipids in a bile sample (for example, see Non-Patent Document 23), and a method for measuring the amount of lactate dehydrogenase (LDH) in a sample (for example, (See, for example, Patent Document 24), a method for liver transplantation into rats (see, for example, Non-Patent Document 25), and a washing solution containing human plasma protein fraction (PPF) for recirculation after cold storage (for example, Non-Patent Document 2). Reference 26), a method for immunohistological detection of bilirubin using anti-biliverdin-IXα monoclonal antibody 24G7 (for example, see Non-Patent Document 27), and liver transplantation The amount of bilirubin secretion (for example, see Non-Patent Document 28) and the concentration of plasma bilirubin (for example, see Non-Patent Document 29) in transplants that have been re-perfused for 30 minutes after the pieces have been stored cold for 16 hours are known. In addition, active oxygen such as oxygen free radicals in the living body generated by the phagocytosis of bacteria invading the living body by neutrophils may cause inflammation and tissue damage, etc. When administered orally, it is degraded by metabolism in the gastrointestinal tract and liver, and in parenteral administration it does not enter the cells even if it migrates into the blood, and reaches the target site at an effective concentration of the drug Because it is difficult to make the essential oil components such as eucalyptus oil and thyme oil transdermally administered to increase lymphatic translocation, at least one or more essential oils containing a plurality of fat-soluble low-molecular compounds are obtained. A composition for scavenging free radicals as an active ingredient has been reported (for example, see Patent Document 1).
[0005]
[Patent Document 1]
WO 98/13055 pamphlet
[Non-patent document 1]
Clavien PA, Harvey PRC, Strasberg SM. Transplantation 1992; 53: 957-978.
[Non-patent document 2]
Lemasters JJ, Bunzendahl H, Thurman RG. LiverTranspl Surg 1995; 1: 124-138.
[Non-Patent Document 3]
Greig PD, Woolf GM, Sinclair SB, Abecassis M, Strasberg SM, Taylor BR, Blendis LM, Superina RA, Glynn MFX, LangerB. E1. Transplantation 1989; 48: 447-453.
[Non-patent document 4]
Kumamoto Y, Suematsu M, Shimazu M, Kato Y, Sano T, Makino N, Hirano K, Naito M, Wakabayashi G, Ishimura M., K.K. Hepatology 1999; 30: 1454-1463.
[Non-Patent Document 5]
Nakamura T, Arii S, Monden K, Sasaki T, Adachi Y, Ishiguro S, Fujita S, Mizumoto M, Imamura M. J Surg Res 1996; 62: 207-215.
[Non-Patent Document 6]
Kukan M, Vajdova K, Horecky J, Nagyova A, Mehendale HM, Trnovec T. Hepatology 1997; 26: 1250-1257.
[Non-Patent Document 7]
Takahashi Y, Tamaki T, Tanaka M, Konoeda Y, Kawamura A, Katori M, Kakita A. Transplant Proc 1998; 30: 3700-3702.
[Non-Patent Document 8]
Matsumoto K, Honda K, Kobayashi N .; Protective Transplantation 2001; 71: 862-868.
[Non-Patent Document 9]
Yin DP, Sankary HN, Chong ASF, Ma LL, Shen J, Foster P, Williams JW. Transplantation 1998; 66: 152-157.
[Non-Patent Document 10]
Amersi F, Bulow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melineck J, Lassman CR, Kolls JK, AlmJ, RitG, RitG, RitV , Kupiec-Weglinski JW. J Clin Invest 1999; 104: 1631-1639.
[Non-Patent Document 11]
Soares MP, LinY, Antherther J, Csizmadia E, Takigami K, Sato K, Gray ST, Colvin RB, Choi AM, Poss KD, Bach FH. Nature Med 1998; 4: 1073-1077.
[Non-Patent Document 12]
Maines MD. FASEB J 1988; 2: 255-2568.
[Non-patent document 13]
Maines MD, Trakshel GM, Kutty RK. J Biol Chem 1986; 261: 411-419.
[Non-patent document 14]
Ponka P, Beaumont C, Richardson DR. J Biol Chem 1998; 35: 35-54.
[Non-Patent Document 15]
Poss KD, Tonegawa S.M. Proc Natl Acad Sci USA 1997; 94: 10919-10924.
[Non-Patent Document 16]
Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y. J Clin Invest 1995; 96: 2431-2437.
[Non-Patent Document 17]
Wakabayashi Y, Takamiya R, Mizuki A, Kyokane T, Goda N, Yamaguchi T, Takeoka S, Tsuchida E, Suemasumi M. Am J Physiol Gastrointest Liver Physiol 1999; 277: G1088-G1096.
[Non-Patent Document 18]
Suematsu M, Ishimura Y. Hepatology 2000; 31: 3-6.
[Non-Patent Document 19]
Stocker R, Yamamoto Y, McDonough AF, Glazer AN, Ames BN. Science 1987; 235: 1043-1046.
[Non-Patent Document 20]
Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M. J Clin Invest 1998; 101: 604-612.
[Non-Patent Document 21]
Shimizu S, Izumi Y, Yamazaki M, Shimizu K, Yamaguchi T, Nakajima H. Biochim Biophys Acta 1988; 967: 255-260.
[Non-Patent Document 22]
Izumi Y, Yamazaki M, Shimizu S, Shimizu K, Yamaguchi T, Nakajima H. Biochim Biophys Acta 1988; 967: 261-266.
[Non-Patent Document 23]
Tanaka A, Katagiri K, Hosino M, Hayagawa T, Tsukada K, Takeuchi T. Am J Physiol Gastrointest Liver Physiol 1994; 266: G324-G329.
[Non-Patent Document 24]
Morika N, Suematsu M, Kyokan T, Goda N, Kumamoto Y, Okitsu T, Ishimura Y, Kitajima M. Hepatology 1998; 28: 1289-1299.
[Non-Patent Document 25]
Kamada N, Calne RY. Transplantation 1979; 28: 47-50.
[Non-Patent Document 26]
Todo S, Nerry J, Yanaga K, Podesta L, Gordon RD, Starzl TE. JAMA 1989; 261: 711-714.
[Non-Patent Document 27]
Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y, Suematsu M. J Clin Invest 2002; 109: 457-467.
[Non-Patent Document 28]
Yamaguchi T, Wakabayashi Y, Tanaka M, Sano T, Ishikawa H, Nakajima H, Suematsu M, Ishimura Y. Am J Physiol Gastrointest Liver Physiol 1996; 270: G1028-G1032.
[Non-Patent Document 29]
Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamani T, Kitajima M, Makino N, Ishimura Y, Sumat. Circ Res 1999; 85: 663-671.
[Problems to be solved by the invention]
[0006]
Since preconditioning with HO-1 has a protective effect on liver transplants, it is possible to expand the supply of usable donor liver. However, despite these experimental data supporting the protective effects of HO-1, except for recent studies showing the beneficial effects of CO perfusion on graft viability ex vivo, a reaction product that improves graft damage The role of is not yet well known. Conventionally, in human liver transplantation, a liquid containing high-concentration plasma protein has been conventionally used as a rinse for transplantation. Rinsing with this rinse can suppress cell damage, but can be used for bile. The secretory action was not improved, and there were problems with viral infection and cost due to plasma preparations. Therefore, there is a need for a safer and simpler method for treating transplanted organs that can protect transplantation against reperfusion injury after transplantation, such as organ dysfunction after transplantation in organ transplantation, and can suppress initial graft dysfunction.
[0007]
An object of the present invention is to clarify the mechanism of reperfusion injury after transplantation, such as organ dysfunction after transplantation in organ transplantation, to improve the bile secretion effect, and to reduce initial graft dysfunction due to reperfusion injury after transplantation. An object of the present invention is to provide a safer and easier method for treating an organ for transplantation, a treatment agent for washing an organ graft used therefor, a method for transplanting an organ, and a method for preserving an organ that can be suppressed and eliminate the need for treatment for virus infection.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to elucidate the mechanism of action of the effect of preconditioning of HO-1 on liver graft dysfunction induced by in vivo cold ischemia reperfusion (CI / R), Was considered to be an injury to sinusoidal capillary endothelial cells, but was revealed to be an injury to hepatic parenchymal cells. It was confirmed that bilirubin-IXα, which is a bile pigment, was an important factor for improvement, and transplantation was performed after reperfusion with a washing solution such as Ringer's lactate solution to which only about 5 to 10 μmol / L of bilirubin was simply added. Even without preconditioning, an organ protection effect equivalent to that obtained by preconditioning HO-1 was obtained, and dysfunction induced by CI / R in vivo was significantly suppressed. And, tissue damage and cholestasis of the liver at 24 hours after transplantation found that can significantly improved, and have completed the present invention.
[0009]
That is, the present invention provides an organ for transplantation, wherein the organ transplant is perfused with an organ preservation solution, and then preserved in a cold for a predetermined period of time, and before transplantation, reperfused and washed with an antioxidant-containing solution taken up into cells. The method for treating an organ for transplantation according to claim 1, wherein the antioxidant-containing solution taken into cells is a bilirubin-containing solution (claim 2), 3. The method for treating an organ for transplantation according to claim 2, wherein the bilirubin-containing solution is a 5 to 10 μmol / L bilirubin-containing solution, and the bilirubin-containing solution is reperfused for 3 to 10 minutes. The method for treating an organ for transplantation according to claim 2 or 3, wherein the organ is a liver, heart, kidney, pancreas or lung. The organ for transplantation according to any one of 1 to 4, A method for cleaning organ transplants, which is used when an organ transplant which has been cold-preserved for a predetermined time after perfusing an organ preservation solution is reperfused and washed before transplantation. An agent for washing an organ graft, which contains an antioxidant-containing solution taken into cells as an active ingredient, and a solution containing bilirubin containing antioxidants taken into cells. The treatment agent for organ transplant cleaning according to claim 6, wherein the bilirubin-containing liquid is a bilirubin-containing liquid of 5 to 10 μmol / L. The organ transplant cleaning agent according to any one of claims 6 to 8, wherein the organ transplant cleaning agent according to claim 7 (claim 8) or the organ is a liver, heart, kidney, pancreas or lung. The present invention relates to a treatment agent (claim 9).
[0010]
Further, the present invention is characterized in that the organ transplant is perfused with an organ preservation solution and then stored for a predetermined period of time after cold preservation, and before transplantation, washed after reperfusion with an antioxidant-containing solution taken into cells before transplantation. The method for transplanting an organ to be transplanted (Claim 10), the method for transplanting an organ according to Claim 10 which is an allogeneic transplant (Claim 11), or a method for containing an antioxidant substance taken into cells, The method for transplanting an organ according to claim 10 or 11, wherein the bilirubin-containing liquid is a bilirubin-containing liquid, and the bilirubin-containing liquid is a bilirubin-containing liquid of 5 to 10 µmol / L. 14. The method for transplanting an organ according to claim 12 (claim 13), or the method for transplanting an organ according to claim 12 or 13, wherein the bilirubin-containing solution is reperfused for 3 to 10 minutes and washed. ) And the organ is the liver The method for transplanting an organ according to any one of claims 10 to 14, wherein the organ is a heart, a kidney, a pancreas or a lung (claim 15). A method for preserving an organ, characterized in that a solution containing an antioxidant to be taken into cells is reperfused and washed before use, and a solution containing antioxidant to be taken into cells is bilirubin. The method for preserving an organ according to claim 16, wherein the bilirubin-containing liquid is a bilirubin-containing liquid of 5 to 10 µmol / L. 19. The method for storing an organ according to claim 17 or claim 18, wherein the bilirubin-containing solution is reperfused for 3 to 10 minutes to wash the organ, Organs, liver, heart, Organ, to a method organ preservation according to any one of claims 16 to 19, which is a pancreas or lung (claim 20).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As a method for treating an organ for transplantation of the present invention, the organ preservation solution is perfused with an organ preservation solution, and then preserved in a cold state for a predetermined period of time, and a solution containing an antioxidant substance taken up into cells before transplantation is washed by rinsing (rinsing). The method for cleaning an organ graft of the present invention is not particularly limited as long as it is a method for perfusing an organ preservation solution. It is not particularly limited as long as it is a treating agent for organ transplant cleaning used when washing by washing, and contains an antioxidant-containing solution taken up into cells as an active ingredient. The method of transplanting an organ is a method of perfusing an organ preservation solution into an organ graft, storing the organ preservation solution in a cold state for a predetermined period of time, reperfusing with an antioxidant-containing solution taken up into cells before transplantation, washing, and then transplanting. Is particularly restricted Instead, the organ preservation method of the present invention is a method in which the organ is perfused with an organ preservation solution, and the organ preservation solution is cooled and stored for a predetermined time, and the antioxidant-containing solution taken into cells before use is washed by reperfusion. It is not particularly limited as long as the organ for transplantation in the present invention may be a living organ, a cadaver having viability, and the types thereof include liver, heart, kidney, lung, A pancreas and the like can be exemplified, and a liver is preferable among them, and a cadaver liver capable of engraftment can be preferably exemplified, and a transplant is a whole or a part of the above organ. You may.
[0012]
The organ preservation solution is not particularly limited, including a known organ preservation solution, and an optimal one can be selected and used depending on the type of an organ to be applied.For example, when the organ for transplantation is a cadaver liver Is a lactated Ringer's solution containing an inhibitor of an active oxygen-producing enzyme. The University of Wisconsin solution (UW), which has been clinically reported to have a preservative effect of 24 hours in the kidney, 17 hours in the liver and pancreas, and 4 hours in the heart, on average, solution), an organ preservation solution containing lecithinated superoxide dismutase (JP-A-2002-060301), an organ preservation solution containing hyaluronic acids (JP-A-11-246301), in addition to Euro Collins solution, average Organ preservation solution containing 2 to 3.5% of hydroxyethyl starch having a molecular weight of 500,000 to 650,000 (JP-A-09-32840) No. 1) and a transplanted organ preservation solution (Japanese Patent Laid-Open No. 2001-335401) containing diisopropyl 1,3-dithiol-2-ylidenemalonate as an active ingredient. These organ preservation solutions are usually used by washing a donor organ graft and then perfusing the organ graft. The organ transplant that has been refluxed with the organ preservation solution is then stored cold for a predetermined time. In addition, the cold preservation is preferably performed at an optimum preservation temperature depending on the individual organ transplant, and usually at a temperature of about 4 ° C. The storage for the predetermined time is not particularly limited, and may be within the storage time allowed by the organ transplant, and depending on the type of the preservation solution, in the case of a liver transplant or pancreas transplant, It is preferred that the storage be within 16 hours, within 24 hours for kidney grafts, and within 4 hours for heart.
[0013]
In the present invention, washing of the organ graft after cold storage and before transplantation, preferably immediately before transplantation, is particularly preferably performed by washing (rinsing) in which the organ graft is reperfused with a solution containing an antioxidant incorporated into hepatocytes. Without being limited, as the antioxidant-containing liquid taken up into cells, when refluxed into organ tissues, fat-soluble antioxidants taken up into cells, preferably fat-soluble low-molecular-weight antioxidants, Any liquid containing an antioxidant or the like which is a transporter-specific substrate to be taken up into cells by the transporter may be used. It refers to a substance that suppresses the oxidation reaction, and also includes a substance that reacts with active oxygen such as superoxide anion, hydroxyl radical, and hydrogen peroxide generated in a living body to eliminate them. The fat-soluble antioxidant is taken into cells, and if the antioxidant is a low-molecular substance, it is more easily taken into cells.
[0014]
Examples of such fat-soluble and low-molecular-weight antioxidants having intracellular penetrating ability include bilirubin, biliverdin, vitamin E, β-carotene, and lycopene, and are contained in various plant essential oils. Compounds derived from natural products, such as thyme oil, lavaceae essential oil, phenolic compounds contained in eucalyptus oil and the like, garlic oil, scallion oil, sulfur-containing compounds contained in sesame oil and the like, lemon oil, citrus Examples include terpene compounds and the like contained in family oils, lavender oils and the like. As the antioxidant contained in the essential oil of the above plant, specifically, thymol, carvacrol, diallyl sulfide, diallyl disulfide, allicin, diallyl trisulfide, d- or l-camphene, β-euidesmol, dl-limonene Certain dipentene, d-linalool, linalyl acetate, limonene, citral, terpineol and the like can be mentioned. In particular, when the organ to be transplanted is a liver, bilirubin can be preferably exemplified as such a fat-soluble low molecular weight antioxidant.
[0015]
As an antioxidant serving as a transporter-specific substrate that is taken into cells by the transporter, an organic anion transporter OAT1 (J. Biol. Chem., 272, 18526-18529, 1997) expressed in the kidney is transported. Examples include uric acid and glutathione transported by the ABC transporter MRP2 (Science, 271, 1126-1128, 1996) expressed in the liver.
[0016]
The antioxidants incorporated into the cells can be used alone or in combination of two or more. Further, the antioxidant-containing liquid taken up into the cells contains, in addition to antioxidants, inorganic compounds such as sodium chloride, potassium chloride, and calcium chloride, and preservatives of commonly used organs such as lactic acid. A component may be contained.
[0017]
The bilirubin may be synthesized or may be obtained as an end product from hemoglobin. Bilirubin is obtained by cleaving the porphyrin iron (II) complex salt (heme) of the hemoglobin component at the α-methine position by heme oxygenase to form a linear tetrapyrrole derivative (biliverdin), and further converted by biliverdin reductase to obtain a final product of hemoglobin. The bilirubin-IXα produced is unconjugated and lipophilic. The content of such bilirubin in the solution containing a fat-soluble low-molecular-weight antioxidant is 1 to 20 μmol / L, preferably 5 to 10 μmol / L.
[0018]
In the present invention, the antioxidant-containing solution taken up into the cells is reperfused into the organ graft and washed to allow an antioxidant such as a fat-soluble low molecular weight antioxidant to penetrate into the cells of the graft, Active oxygen such as oxygen free radicals in cells generated by reperfusion after cold ischemia storage can be efficiently eliminated. In particular, bilirubin has a high permeability into hepatic parenchymal cells, and it is preferable to use a bilirubin-containing solution. When the organ graft is a liver, the organ graft is washed by reperfusion.If the organ graft is a liver, a solution containing a fat-soluble low-molecular-weight antioxidant is slowly injected through the portal vein and perfused. It is preferable because it can promote penetration into the inside. The reperfusion time cannot be unconditionally determined depending on the type of antioxidant taken up into cells or the type of organ, but an optimal washing time may be selected in combination with each antioxidant in each organ, for example, bilirubin. When the solution is perfused into the liver graft and washed, it is preferably performed for 3 to 10 minutes. By the perfusion rinse during this time, an appropriate amount of bilirubin penetrates into the cells, and the active oxygen in the cells can be efficiently eliminated.
[0019]
The method for treating an organ for transplantation of the present invention is useful for treating an organ for transplantation at the time of organ transplantation, and the treating agent for washing an organ graft of the present invention is advantageous for treating an organ for transplantation at the time of organ transplantation. The method for transplanting an organ of the present invention is advantageously used for allogeneic transplantation and the like.In addition, organs of various animals such as rats preserved by the method for preserving an organ of the present invention can be used for transplantation. It can be advantageously used for various experiments such as the experiment described above.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples. In the following experiments, all experimental procedures in breeding and using animals were approved by the institutional regulations of Keio University School of Medicine. In addition, statistical analysis between groups of various experimental data was performed by one-way analysis of variance and Fisher's multiple comparison test. The statistical difference in data between the free bilirubin group and the albumin-conjugated bilirubin group was verified by non-parametric analysis using the Mann-Whitney U test. The results were expressed as mean ± standard error, and a P value of 0.05 or less was considered significant.
[0021]
[Ex vivo experiment]
Example 1 Preparation of Liver Graft and HO-1 Preconditioning
Male Wistar rats weighing 190-230 g were allowed free access to chow and water and fasted for 6 hours. Thereafter, 40 μmol / kg of hemin, a potent inducer of HO-1, was injected intraperitoneally and fasted for 18 hours. When hemin treatment was performed according to the method described in the literature (see Non-patent Document 17), the CO flow in the hepatic vein and the bilirubin-IXα bile secretion significantly increased, and the induction of HO-1 protein was maximized. Was. Based on these results, the above time was chosen as the optimal procedure to verify the effect of HO-1 induction on graft dysfunction after cold ischemia. As a control without hemin treatment, rats injected with physiological saline were used after a 24-hour fast.
[0022]
Rats injected with the above hemin or saline were anesthetized by intraperitoneal injection of sodium pentobarbital (40 mg / kg of body weight), and a PE-10 catheter was intubated into the common bile duct to collect a bile sample. A 16-gauge catheter was intubated into the portal vein, and 20 ml of Ringer's lactate solution kept at 4 ° C. was flowed. Thereafter, the liver was perfused with 20 ml of a University of Wisconsin Solution (UW solution) at 20C at 4 ° C, then excised, and stored in the same solution at 4 ° C for 16 hours. A preservation period of 16 hours was chosen because of the resulting acute oxidative stress, as judged by intracellular hydroperoxide production concomitant with reduced bile formation. After 16 hours of cold preservation, the liver graft is inoculated through the portal vein in the presence of 30 μmol / L sodium taurocholate in 95% oxygen 5% carbon dioxide saturated Krebs-Henseleit buffer (pH 7.4, 37 ° C.) Reperfusion was performed at 4 ml / min / g of liver weight (see Non-Patent Document 4).
[0023]
Example 2: HO-1 protein in hemin treatment of grafts
For the explant prepared in Example 1, the expression of HO-1 protein was measured by Western blot analysis according to the method described in the literature (see Non-Patent Document 20). Further, the CO flow rate in the hepatic venous flow was measured by a spectrophotometer according to the conventional method of the present inventors (see Non-Patent Document 16). The results are shown in FIGS. 1 (A) and (B). FIG. 1 (A) shows the expression of HO-1 protein in each graft by Western blot analysis using anti-rat HO-1 monoclonal antibody GTS-1. Lane m is a molecular marker (30 kDa and 40 kDa), lanes a and b are non-cold-preserved (lane a) and 16-hour cryopreserved (lane b) in a graft without hemin injection (hemin-untreated), Lanes c, d, and e show the non-cold preserved (lane c), the 16-hour cold preserved (lane d), and the 30-minute reperfusion after the hemin-injected graft (hemin treatment). (Lane e) is shown. FIG. 1 (B) shows the amount of CO in the hepatic venous perfusate in each graft. Hemin-untreated grafts without cold preservation (control) and 16 hours cold preservation (C16), hemin-treated grafts without cold preservation (control), 16 hours cold preservation (C16), 16 hours The figure shows the result of reperfusion (C16 + R) for 30 minutes after cold storage.
[0024]
As is evident from FIG. 1, the cryopreserved cells in hemin-untreated grafts for 16 hours (lane b, C16) had no apparent expression of HO-1 and no increase in CO production. Hemin-treated implants significantly increased venous CO flow with HO-1 compared to hemin-untreated implants. HO-1 expression levels in the cryopreserved grafts (lane d, C16) and the reperfused grafts (lane e, C16 + R) 30 minutes after cold preservation were higher than in the non-cold preserved grafts (lane c, control). Increased slightly. On the other hand, the hepatic venous CO flow rate in the cryopreserved graft (lane d, C16) and the reperfused graft (lane e, C16 + R) 30 minutes after the cold preservation was higher than that of the non-cold preserved graft (lane c, control). There was a decrease, but about a three-fold increase compared to hemin-untreated grafts. From the above results, it was suggested that hemin-treated liver grafts increase CO production ability through HO-1 induction.
[0025]
Example 3 Production of Bile and Bilirubin in Graft by Hemin Treatment
Bile samples were collected from the hemin-treated liver graft according to Example 1 after cold storage for 16 hours (Hemin / C16) every 5 minutes during a 40 minute reperfusion period from the common bile duct. In addition, the bilirubin-IXα concentration in the bile sample at 30 minutes after the start of reperfusion was recognized for both conjugated and unconjugated bilirubin fractions according to the method described in the preceding literature (see Non-Patent Documents 21 and 22). It was measured by an enzyme-linked immunosorbent detection method using the monoclonal antibody 24G7. Hemin non-treated grafts were also subjected to measurement without cold storage (control) and cold storage for 16 hours (C16). In addition, to examine the role of HO activity in suppressing reperfusion-induced graft dysfunction, zinc protoporphyrin-IX (ZnPP, Porphyrin Product), a potent inhibitor of HO-1 activity, and HO A solution in which 1 μmol / L of copper protoporphyrin-IX (CuPP, manufactured by Porphyrin Product) which does not inhibit the activity is added to the above-mentioned carbogen-saturated Krebs-Henseleit buffer (pH 7.4, 37 ° C.), and then cooled for 16 hours after hemin treatment Reperfusion of the liver transplant after storage was performed, and the amount of bile produced from the graft and the concentration of bilirubin in the collected bile sample after 30 minutes of perfusion were measured.
[0026]
FIG. 2 (A) shows the time course of bile production during reperfusion. As is clear from FIG. 2 (A), the bile output of the graft (C16) cold-preserved for 16 hours in the non-hemin-treated group reaches a constant value over time. The value was significantly lower than that of the graft (control) without storage. As a result, it was confirmed that the liver graft stored cold for 16 hours causes hepato-biliary dysfunction, which was in good agreement with the previous study of the present inventors (see Non-Patent Document 4). Conversely, in the graft (Hemin / C16) that had been cryopreserved for 16 hours in the hemin-treated group, the bile output showed a rapid recovery as early as 10 minutes after the start of reperfusion, and the hemin-untreated cryopreserved graft (C16). ) Reached a certain value higher than the bile output.
[0027]
Further, as is clear from FIG. 2 (A), the presence of ZnPP reduced the amount of bile produced during reperfusion of the graft (Hemin / C16 + ZnPP), and the bile production in the hemin-untreated cold preserved graft (C16) The difference between the amounts was clearly greater than the difference in bile production observed between the hemin-untreated cold-preserved graft (C16) and the hemin-treated cold-preserved graft (Hemin / C16). In the graft (Hemin / C16 + CuPP) in which CuPP was added instead of ZnPP and reperfused, the amount of bile produced was almost the same as that of the hemin-treated cold-preserved graft (Hemin / C16). From this, it was inferred that ZnPP not only inhibits the HO-1 activity but also suppresses the function of the cells of the graft. Such speculation was well supported by measuring the amount of bilirubin-IXα in bile.
[0028]
The amount of bilirubin-IXα in bile after 30 minutes of reperfusion for each of the above grafts is shown in FIG. 2 (B). As is clear from FIG. 2 (B), ZnPP-induced decrease in bilirubin flow in the graft, ie, reperfusion (Hemin / C16 + ZnPP) of the hemin-treated cold-preserved graft in the presence of ZnPP, and no ZnPP The difference in the amount of bilirubin-IXα between reperfusion in the presence (Hemin / C16) is greater than the difference in the amount of bilirubin-IXα between the hemin-treated graft (Hemin / C16) and the hemin-untreated graft (C16).
[0029]
Furthermore, the graft (C16) which had been cold-preserved without hemin treatment for 16 hours and then reperfused for 30 minutes secreted about 200 pmol / min / g of liver weight bilirubin. This corresponds to the measured value of secreted bilirubin in the control-perfused graft (see Non-Patent Document 28). When the grafts were treated with hemin and reperfused for 30 minutes after cold storage for 16 hours, the bilirubin flow rate was significantly increased, about 1.5 times the bilirubin flow rate of the non-hemin-treated group. However, such an increase is significantly less than the triplicate increase in venous CO in the same group (FIG. 1 (B)). It is possible that such stoichiometric discrepancies between the two heme degradation products result from reduced bilirubin transport efficiency in hemin-treated 16-hour cold-stored implants. In addition, the amount of bilirubin was remarkably reduced in the case of co-perfusion with ZnPP, as compared with the case of performing co-perfusion with CuPP instead of ZnPP. This suggested that the inhibitory effect of ZnPP on bilirubin secretion was due to the inhibitory effect of ZnPP on HO activity.
[0030]
Example 4: Recovery of graft dysfunction by bilirubin
The following experiment was performed to verify whether bilirubin and CO can restore the HO-1 inducing effect suppressed by ZnPP, which is a strong HO activity inhibitor. Bilirubin (manufactured by Sigma Chemical) and / or CO were added to the carbogen-saturated Krebs-Henseleit buffer (pH 7.4, 37 ° C.) together with 1 μmol / L ZnPP, and the graft was reperfused. As the bilirubin concentration, the plasma bilirubin concentration in the portal vein blood sample collected from the hemin-treated rat was 3.2 ± 0.8 μmol / L (n = 4), and the plasma bilirubin concentration of the control was 1.0 μmol / L or less. (See Non-Patent Document 29), it was estimated that the physiologically relevant concentration (relevant concentration) of bilirubin in hemin-treated liver was about 5 μmol / L. For the graft after cold storage for 16 hours, in the presence of ZnPP, bilirubin and CO were not added (c), bilirubin was added at 5 μmol / L (d), CO was added at 5 μmol / L (e), and bilirubin and CO were added at 5 μmol / L each (f) ) And the bile output (A), the amount of bile salts in bile (B), and the amount of phospholipids in bile (C) were measured from the graft co-perfused for 30 minutes. Similarly, a control which was not treated with hemin (a) and treated with hemin (b) in the absence of ZnPP was used as a control. The amounts of total bile salts and phospholipids in the bile samples were measured by the enzyme inhibition assay according to the method described in the literature (see Non-Patent Document 23). The results are shown in FIGS. 3 (A), (B) and (C).
[0031]
As is clear from FIG. 3 (A), the amount of bile produced is increased by the hemin treatment (b) as compared with the non-hemin treatment (a), but the effect of the hemin treatment is canceled by the coperfusion with ZnPP (c). As a result, the amount of bile produced was further reduced as compared with the perfusion (a) in the absence of ZnPP. This decrease in bile production by ZnPP was restored by coperfusion (d) with bilirubin. This effect of bilirubin could not be replaced by co-perfusion (e) of the same concentration of CO. Furthermore, co-perfusion with bilirubin and CO (f) did not further enhance the effect obtained by co-perfusion with bilirubin alone (d).
[0032]
Example 5: Bilirubin dosage and recovery of graft dysfunction
The effect on dose-dependent co-perfusion of bilirubin and / or CO was investigated. Except that the dose of bilirubin and / or CO was changed, the hemin-treated graft was cold-stored for 16 hours in the same manner as in Example 4 and then, together with bilirubin and / or CO at each concentration in the presence of ZnPP in the reperfusion solution. Reperfusion was performed for 30 minutes, and the proportion of bile production in bile, the amount of bile salt in bile, and the proportion of phospholipids to the production in the case of reperfusion in the absence of ZnPP were determined, respectively. The results are shown in FIGS. 4 (A), (B) and (C), respectively.
[0033]
As is clear from FIG. 4, the bile production amount of the graft, the bile salt amount and the phospholipid amount in the bile after the cold storage for 16 hours and the reperfusion for 30 minutes were 5 μmol / m of bilirubin in the reperfusion solution. The recovery was remarkable when the concentration was lower than L, but decreased when the concentration was higher than 5 μmol / L. Thus, it was found that the bilirubin effect on the liver graft changes around the concentration of 5 μmol / L in the perfusate. On the other hand, the amount of bile produced in the graft, the amount of bile salts in bile, and the amount of phospholipids were not recovered by reperfusion for 30 minutes at a CO concentration of 5 μmol / L or less. From the above results, it was found that bilirubin rather than CO contributed to the recovery of bile function in hemin-treated liver transplants.
[0034]
Example 6: Recovery of hepatocyte damage by bilirubin administration
In the same manner as in Example 5, the hemin-treated graft is cold-stored for 16 hours, and then subjected to reperfusion for 30 minutes while changing the concentration of bilirubin in the presence of ZnPP in the reperfusion solution, and serves as an indicator of hepatocellular damage to the graft. Then, the amount of lactate dehydrogenase (LDH) released into the hepatic venous perfusate was determined. In the absence of ZnPP, those that were reperfused for 16 hours without hemin treatment (C16) and those that were reperfused for 16 hours after hemin treatment (Hemin / C16) were used as controls. The LDH amount was measured according to the method described in a prior document (see Non-Patent Document 24). FIG. 5 shows the results.
[0035]
As is clear from FIG. 5, in the control not treated with hemin (C16), cold storage for 16 hours significantly increased the amount of intravenous LDH release, which is an indicator of a decrease in cell viability. In the hemin-treated control (Hemin / C16), LDH release was almost completely suppressed. LDH release increased remarkably when ZnPP was co-perfused during reperfusion, but LDH release decreased until the concentration of bilirubin in the reperfusion solution reached 5 μmol / L, and when the concentration of bilirubin was 5 μmol / L, the LDH release increased. It showed a minimum value, and the amount of LDH release increased with an increase in bilirubin concentration. That is, the inhibition of the hemin treatment effect by ZnPP is recovered according to the concentration by exogenously supplementing bilirubin with 5 μmol / L or less, but administration at 10 μmol / L improves the cytotoxicity under the conditions of the present experiment. Did not. These results suggest that the decrease in cell viability may depend on the action of HO, indicating that bilirubin plays an important role in the HO-1 mediated protective mechanism against liver ischemia after cold ischemia.
[0036]
Example 7: Bilirubin coperfusion time and reperfusion injury ex vivo
Example 6 suggests that bilirubin plays an important role in HO-1 mediated graft protection, thus reperfusion of the biliary pigment bilirubin without hemin treatment of the graft. It was examined whether simple addition to the solution could prevent acute damage to ex vivo bile secretion and recovery of cell viability. It is clear that high concentration administration of bilirubin causes a decrease in bile production and a decrease in cell viability. Therefore, 5 μmol / L was selected as the concentration of bilirubin, and the concentration of the transplant stored cold for 16 hours was 5 μmol / L. Bilirubin was added to carbogen-saturated Krebs-Henseleit buffer (pH 7.4, 37 ° C.) and the buffer was reperfused through the portal vein for 5 minutes to provide buffer to hepatocytes of the graft. Group (a) in which reperfusion is carried out for 35 minutes with no bilirubin added, and then reperfusion is carried out for 15 minutes with a buffer containing bilirubin in the same manner (b). ), A group (c) in which perfusion was performed for 40 minutes using a buffer containing bilirubin in the same manner as a test group, and a group (d) in which perfusion was performed for 40 minutes without addition of bilirubin was used as a control. After the unidirectional perfusion, the amount of each bile produced was measured over time. The results are shown in FIG. 6 (B) and 6 (C) show the relationship between the reperfusion time with the bilirubin-containing buffer and the amount of bile produced from the graft and the relationship with the intravenous LDH concentration, respectively.
[0037]
As is clear from FIG. 6 (A), the graft (a) that had been subjected to bilirubin reperfusion for 5 minutes had a significantly improved bile production compared to the control (d) without the addition of bilirubin. The amount of bile produced in the graft in which the reperfusion time with the bilirubin-containing buffer was extended to 15 minutes (b) and 40 minutes (c) was the same as that of the control (d) and the group that received the reperfusion with the bilirubin-containing buffer for 5 minutes. It was significantly reduced as compared with (a). Furthermore, at the same time as bilirubin dose-dependent bile production into the hepatic vein, LDH release, which indicates graft damage, increases, and prolonged reperfusion treatment with a bilirubin-containing buffer may result in cell damage. Was revealed.
As shown in Examples 4-6 above, hemin-treated grafts in the presence of ZnPP were stored cold for 16 hours and reperfused with 5 μmol / L bilirubin for 30 minutes, but the hemin-treated liver grafts did not. No detrimental effects on bile secretion and cell viability indicated that exogenous bilirubin acceptance was different between hemin-treated and untreated grafts. Considering the observations showing a discrepancy between venous CO flux and biliary bilirubin secretion in the hemin-treated grafts of Examples 2 and 3 above, these results indicate that the pharmaceutical pretreatment that induces HO-1 in the grafts It is suggested to modify the physiological processes of bilirubin entry and secretion.
[0038]
[In vivo experiment]
Example 8: Liver transplantation model
To verify the effect of HO-1 preconditioning in vivo, allograft experiments on liver grafts were performed. Inbred male Lewis rats weighing 220-280 g were allowed free access to water and fasted for 24 hours prior to the experiment to serve as donors and recipients for liver transplantation. In the HO-1 preconditioning group, the rats were treated with hemin 18 hours before the preparation of the implant, as in the case of ex vivo in Example 1. Liver transplantation was performed according to a technique of Kamada development (see Non-Patent Document 25) with some modifications. That is, the donor was anesthetized by intraperitoneal injection of sodium pentobarbital (40 mg / kg of body weight), and the abdomen was opened. The intraperitoneal organs including the liver were immediately washed through the abdominal aorta with 20 mL of lactated Ringer's solution at 4 ° C, and then washed with 10 mL of UW solution kept at 4 ° C. Thereafter, 10 ml of the cooled UW solution was slowly injected into the liver via the portal vein. The common bile duct was intubated with a PE-10 catheter for collecting bile samples. Livers were isolated from surrounding tissues and stored in UW solution at 4 ° C. for 16 hours.
[0039]
In the recipient operation, the UW solution in the liver graft after storage for 16 hours was rinsed with various washing solutions, and then allogeneic transplanted in the following procedure. The graft hepatic vein was sutured to the recipient's superior hepatic vena cava using 7-0 prolene and anastomotic. The portal vein and inferior vena cava were anastomosed using the cuff technique. The hepatic vein ligation time was the same in the experimental groups, within the range of 12-14 minutes. The hepatic artery was not reconstructed. The bile duct was not anastomosed, and the intubation tube was taken out of the body for collecting postoperative bile samples. Recipients who survived for 24 hours were sacrificed under ether anesthesia to collect blood samples.
[0040]
Example 9: Protective effect of bilirubin on bile secretion arrest and injury after transplantation
From Example 7, which shows the efficacy of short-term washing with bilirubin on post-reperfusion depression and cell damage in 16 hour cold-preserved liver grafts, bilirubin washing in cold-preserved grafts in vivo resulted in post-transplant injury I examined the effect. At the end of the storage period, pre-transplant rinsing is performed by using 4 ° C. Ringer's lactate solution or bilirubin added to lactate Ringer's solution and bilirubin-containing Ringer solution (treatment agent for organ transplant cleaning) at 4 ° C. at various concentrations. Was. The rinsing was performed by closed circulation in which a lactated Ringer's solution or a bilirubin-containing Ringer's solution was injected into the liver graft via the portal vein, and then the recipient operation was performed as described above. Bile production was measured 30 minutes after the start of reperfusion and 24 hours after the start of reperfusion. The results are shown in FIGS. 7A and 7B (PPF (−)). In order to determine the degree of graft damage 24 hours after the start of reperfusion, the blood concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and LDH were measured by a conventional method. The results are shown in FIGS. 7 (C), (D) and (E) (PPF (−)).
[0041]
As is clear from FIGS. 7 (A) and (B), the bile output was obtained 30 minutes and 24 hours after the start of reperfusion by the rinsing rinse perfused by injecting the free bilirubin-containing Ringer solution before transplantation from the portal vein. Was different. Further, when washing was performed using a Ringer solution containing bilirubin at 5 to 10 μmol / L, the bile output was remarkably improved to about the same level as when hemin treatment was performed. Secretion arrest occurred, and all the rats transplanted with the grafts washed with the Ringer's solution containing 50 μmol / L bilirubin could not survive for 24 hours after transplantation (ND in FIG. 7 (B)). Similarly, the s (serum) AST, sALT, and sLDH amounts in the graft 24 hours after transplantation, which had been rinsed with the bilirubin-containing washing solution, changed according to the bilirubin content. As shown in FIGS. 7 (C), (D) and (E), washing at a bilirubin concentration of 5 to 10 μmol / L reduced cell damage to the same degree as when hemin treatment was performed, but further bilirubin Washing with a concentration of washing solution exacerbated cell damage. Given the extent of biliary depression and cell damage after in vivo reperfusion by washing the graft at a bilirubin concentration of 5-10 μmol / L, washing with a low concentration of bilirubin may improve hemin for improvement of post-transplant reperfusion injury. It turned out that it can be substituted for processing.
[0042]
Example 10: Confirmation of the effect of bilirubin on graft protection in vivo
Next, we examined the effectiveness and reach of bilirubin in graft protection, as well as the effect of bilirubin in the presence of plasma proteins capable of capturing free bilirubin and changes in reach. Several grafts were treated with a washing solution containing a human plasma protein fraction (PPF, manufactured by Baxter Healthcare Corporation) commonly used in clinical transplantation (see Non-Patent Document 26). The main components of PPF are albumin (96% by weight or more), and the other components are globulin and electrolyte. Further, the concentration of albumin in the washing solution was adjusted to be about 4.4 g / dl. Since bilirubin can bind to albumin in an equimolar amount, the concentration of free bilirubin in the washing solution containing PPF is considered to be almost zero even if bilirubin is contained. Using the PPF-added bilirubin-containing washing solution, the amount of bile produced at 30 minutes and 24 hours after the start of reperfusion was measured in the same manner as in Example 9 except that open circulation was used instead of closed circulation. The results are shown in FIGS. 7A and 7B (PPF (+)). In addition, sAST, sALT, and sLDH levels were measured 24 hours after the start of reperfusion. The results are shown in FIGS. 7 (C), (D) and (E) (PPF (+)), respectively.
[0043]
As shown in FIGS. 7 (A) to 7 (E), in the presence of PPF, the rinsing rinse by the open circulation using the 10 μmol / L bilirubin-containing lavage solution increased the bile output 30 minutes and 24 hours after the start of reperfusion. Did not contribute to the increase effect, but offset the adverse effect of the 50 μmol / L bilirubin-containing washing solution. On the other hand, the addition of PPF to the washing solution significantly reduced the degree of cell damage. The effect showed a value corresponding to an implant washed with only bilirubin at 10 μmol / L. From these results, it was confirmed that the effect of increasing the bile output and the reduction of the degree of cell damage by the bilirubin-containing washing solution were caused by bilirubin. In addition, PPF can be present at the periphery of the cell to suppress cell death (the bilirubin concentration of PPF (+) in FIGS. 7 (C) to 7 (E) is zero), but it cannot penetrate into cells, so bile There is no effect of improving secretory function (the bilirubin concentration of PPF (+) in FIG. 7 (B) is zero). In contrast, bilirubin is a fat-soluble low-molecular-weight antioxidant and is transported intracellularly, so it is thought to reduce the degree of cell damage and improve the bile secretion function. However, it was suggested that the oxygen contained in the rinsing solution became active oxygen when cold washing was performed after warming, and that this active oxygen suppressed cell function (bile secretion) disorders.
[0044]
Example 11: Reachability of bilirubin into graft hepatocytes
In order to examine the reach of bilirubin into the graft tissue by bilirubin washing, the immune system of bilirubin using the anti-bilirubin-IXα monoclonal antibody 24G7 was used in accordance with the previous method of the present inventors (see Non-patent Document 27). Biological detection was performed. FIG. 8 shows the results. As seen in grafts perfused with bilirubin-free lactated Ringer's solution (A), the immune response of monoclonal antibody 24G7 occurs primarily in non-hepatic non-parenchymal cells, including Kupffer cells, compared to the negative control (B). As a result, the presence of endogenous bilirubin as a major cellular component of HO-1 was suggested, since it was detected even in the parenchymal cell region. When the graft was washed with Ringer's solution containing bilirubin, bilirubin was remarkably absorbed by hepatic parenchymal cells and induced a marked increase in the immune response (C). On the other hand, when the graft was washed using the bilirubin-containing Ringer's solution containing PPF, the reach of bilirubin was canceled by co-perfusion with PPF, and the immune response in hepatic parenchymal cells was expressed to the level using lactate Ringer's solution containing no bilirubin. The amount was reduced (D). From the above results, it can be seen that when the graft is washed with the bilirubin-containing Ringer's solution, bilirubin can effectively reach the graft hepatocytes.
[0045]
【The invention's effect】
According to the present invention, an organ graft is perfused with an antioxidant-containing solution that is taken up into cells before transplantation and washed, so that active organs can be efficiently penetrated into cells of the graft to remove active oxygen. It is possible to suppress reperfusion injury after transplantation such as dysfunction of the graft, to perform transplantation more safely and easily, and to perform organ transplantation at a low price, and to perform transplantation after cold ischemic preservation. Even so, since reperfusion injury is suppressed, the range of organ transplantation can be expanded.
[Brief description of the drawings]
FIG. 1 shows the results of the action of hemin treatment on ex vivo reperfusion of liver grafts. (A) Expression of HO-1 protein measured by Western blot
(B) Intravenous CO flow
FIG. 2 is a graph showing the improvement of liver function in ex vivo reperfusion by hemin treatment of a liver graft.
(A) Time course of bile production
(B) Amount of bilirubin in bile for 30 minutes of reperfusion
FIG. 3 shows the recovery by bilirubin of dysfunction in ex vivo reperfusion of liver grafts with a HO-1 inhibitor.
(A) Recovery of bile production by bilirubin with inhibited hemin treatment effect
(B) Restoration of bile salt production by bilirubin due to inhibited hemin treatment effect
(C) Recovery of phospholipid production by bilirubin due to inhibited hemin treatment effect
FIG. 4 shows the recovery of dysfunction in various concentrations of bilirubin in ex vivo reperfusion of liver grafts with HO-1 inhibitors.
(A) Recovery of bile production by bilirubin with inhibited hemin treatment effect
(B) Restoration of bile salt production by bilirubin due to inhibited hemin treatment effect
(C) Recovery of phospholipid production by bilirubin due to inhibited hemin treatment effect
FIG. 5 shows recovery of hepatocyte damage by bilirubin at various concentrations (LDH concentration in vein) during ex vivo reperfusion of liver graft with HO-1 inhibitor.
FIG. 6 is a graph showing recovery of hepatic dysfunction and hepatocellular injury at various bilirubin reperfusion times of a liver graft ex vivo.
(A) Time course of bile production during various bilirubin reperfusion times
(B) Bile production at various bilirubin reperfusion times
(C) Intravenous LDH concentration at various bilirubin reperfusion times
FIG. 7 shows that bilirubin improves liver function and recovers hepatocellular damage in vivo after transplantation of a liver graft.
(A) Bile production 30 minutes after the start of reperfusion
(B) Bile production 24 hours after the start of reperfusion
(C) AST production in serum 24 hours after the start of reperfusion
(D) Serum ALT production 24 hours after the start of reperfusion
(E) Serum LDH production 24 hours after the start of reperfusion
FIG. 8 is a diagram showing the results of immunohistochemical analysis showing the in vivo reach of bilirubin to the parenchymal cells of the transplanted tissue in vivo after transplantation of the liver graft.
(A) Grafts perfused with bilirubin-free lactated Ringer's solution
(B) Negative control without anti-bilirubin antibody
(C) Graft perfused with bilirubin-containing Ringer's lactate solution
(D) Implants perfused with PPF-added bilirubin-containing lactated Ringer's solution

Claims (20)

臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄することを特徴とする移植用臓器の処理方法。A method for treating an organ for transplantation, which comprises perfusing an organ preservation solution into an organ graft, cooling the same for a predetermined period of time, and reperfusion and washing an antioxidant-containing solution taken up into cells before transplantation. 細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項1記載の移植用臓器の処理方法。2. The method for treating an organ for transplantation according to claim 1, wherein the antioxidant-containing liquid taken into the cells is a bilirubin-containing liquid. ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項2記載の移植用臓器の処理方法。3. The method for treating an organ for transplantation according to claim 2, wherein the bilirubin-containing solution is a bilirubin-containing solution of 5 to 10 μmol / L. ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項2又は3記載の移植用臓器の処理方法。The method for treating an organ for transplantation according to claim 2 or 3, wherein the bilirubin-containing solution is washed by reperfusion for 3 to 10 minutes. 臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項1〜4のいずれか記載の移植用臓器の処理方法。The method according to any one of claims 1 to 4, wherein the organ is a liver, heart, kidney, pancreas or lung. 臓器保存液を潅流した後所定時間冷保存されている臓器移植片を移植前に再潅流して洗浄する際に用いられる臓器移植片洗浄用処理剤であって、細胞内に取り込まれる抗酸化物質含有液を有効成分として含有することを特徴とする臓器移植片洗浄用処理剤。A treating agent for organ transplant washing used when perfusing an organ preservation solution and reperfusing and washing an organ graft that has been cold-preserved for a predetermined time before transplantation, and is an antioxidant that is taken into cells. An agent for cleaning an organ graft, comprising a liquid content as an active ingredient. 細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項6記載の臓器移植片洗浄用処理剤。7. The organ transplant cleaning agent according to claim 6, wherein the antioxidant-containing solution taken into cells is a bilirubin-containing solution. ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項7記載の臓器移植片洗浄用処理剤。The treatment agent for cleaning organ transplants according to claim 7, wherein the bilirubin-containing solution is a bilirubin-containing solution of 5 to 10 µmol / L. 臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項6〜8のいずれか記載の臓器移植片洗浄用処理剤。9. The treatment agent for cleaning an organ graft according to claim 6, wherein the organ is a liver, heart, kidney, pancreas or lung. 臓器移植片に臓器保存液を潅流した後所定時間冷保存し、移植前に細胞内に取り込まれる抗酸化物質含有液で再潅流して洗浄した後、移植することを特徴とする臓器の移植方法。Organ transplantation method comprising perfusing an organ preservation solution in an organ graft, preserving it for a predetermined period of time, reperfusion with an antioxidant-containing solution taken up into cells before transplantation, washing, and transplanting the organ transplant. . 同種同系移植であることを特徴とする請求項10記載の臓器の移植方法。The method for transplanting an organ according to claim 10, wherein the method is an allogeneic transplant. 細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項10又は11記載の臓器の移植方法。12. The method for transplanting an organ according to claim 10, wherein the antioxidant-containing liquid taken into cells is a bilirubin-containing liquid. ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項12記載の臓器の移植方法。The method for transplanting an organ according to claim 12, wherein the bilirubin-containing liquid is a bilirubin-containing liquid of 5 to 10 µmol / L. ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項12又は13記載の臓器の移植方法。14. The method for transplanting an organ according to claim 12, wherein the bilirubin-containing solution is perfused and washed for 3 to 10 minutes. 臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項10〜14のいずれか記載の臓器の移植方法。The method for transplanting an organ according to any one of claims 10 to 14, wherein the organ is a liver, heart, kidney, pancreas or lung. 臓器に臓器保存液を潅流した後所定時間冷保存し、使用前に細胞内に取り込まれる抗酸化物質含有液を再潅流して洗浄することを特徴とする臓器の保存方法。A method for preserving an organ, comprising perfusing an organ with an organ preservation solution, cooling and preserving the organ for a predetermined period of time, and reperfusing and washing an antioxidant-containing solution taken up into cells before use. 細胞内に取り込まれる抗酸化物質含有液が、ビリルビン含有液であることを特徴とする請求項16記載の臓器の保存方法。The method for preserving an organ according to claim 16, wherein the antioxidant-containing solution taken into cells is a bilirubin-containing solution. ビリルビン含有液が、5〜10μmol/Lのビリルビン含有液であることを特徴とする請求項17記載の臓器の保存方法。18. The method for preserving an organ according to claim 17, wherein the bilirubin-containing solution is a bilirubin-containing solution of 5 to 10 μmol / L. ビリルビン含有液を、3〜10分間再潅流して洗浄することを特徴とする請求項17又は18記載の臓器の保存方法。19. The method for preserving an organ according to claim 17, wherein the bilirubin-containing solution is perfused for 3 to 10 minutes and washed. 臓器が、肝臓、心臓、腎臓、膵臓又は肺臓であることを特徴とする請求項16〜19のいずれか記載の臓器の保存方法。The method according to any one of claims 16 to 19, wherein the organ is a liver, heart, kidney, pancreas or lung.
JP2003096722A 2003-03-31 2003-03-31 Treatment method for organ for grafting Pending JP2004300098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096722A JP2004300098A (en) 2003-03-31 2003-03-31 Treatment method for organ for grafting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096722A JP2004300098A (en) 2003-03-31 2003-03-31 Treatment method for organ for grafting

Publications (1)

Publication Number Publication Date
JP2004300098A true JP2004300098A (en) 2004-10-28

Family

ID=33408690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096722A Pending JP2004300098A (en) 2003-03-31 2003-03-31 Treatment method for organ for grafting

Country Status (1)

Country Link
JP (1) JP2004300098A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013417A (en) * 2008-07-07 2010-01-21 Geo Co Ltd Anti-oxidative composition and cosmetic containing the same
WO2013054470A1 (en) * 2011-10-12 2013-04-18 Sbiファーマ株式会社 Enhancer of survival of transplanted organ
JP2013535688A (en) * 2010-08-09 2013-09-12 ホスピタル クリニック デ バルセロナ Methods and kits for tolerance diagnosis and / or prognosis in liver transplantation
EP2789234A1 (en) 2013-04-10 2014-10-15 Showa Freezing Plant Co., Ltd. Solution utilizing nitrogen contained water for preserving or flushing organs for transplantation, method for preparing the solution and method for preserving or flushing organs for transplantation utilizing the solution
US9399029B2 (en) 2012-07-13 2016-07-26 Sbi Pharmaceuticals Co., Ltd. Immune tolerance inducer
US11071746B2 (en) 2016-06-07 2021-07-27 The Trustees Of The University Of Pennsylvania Compositions and methods for protecting organs from ischemia/reperfusion injury associated with transplantation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013417A (en) * 2008-07-07 2010-01-21 Geo Co Ltd Anti-oxidative composition and cosmetic containing the same
JP2013535688A (en) * 2010-08-09 2013-09-12 ホスピタル クリニック デ バルセロナ Methods and kits for tolerance diagnosis and / or prognosis in liver transplantation
WO2013054470A1 (en) * 2011-10-12 2013-04-18 Sbiファーマ株式会社 Enhancer of survival of transplanted organ
JPWO2013054470A1 (en) * 2011-10-12 2015-03-30 Sbiファーマ株式会社 Transplant organ survival promoter
US9314443B2 (en) 2011-10-12 2016-04-19 National Center For Child Health And Development Enhancer of survival of transplanted organ
JP2016106113A (en) * 2011-10-12 2016-06-16 Sbiファーマ株式会社 Induction accelerator of immune tolerance
US9901558B2 (en) 2011-10-12 2018-02-27 National Center For Child Health And Development Enhancer of survival of transplanted organ
US9937138B2 (en) 2011-10-12 2018-04-10 National Center For Child Health And Development Enhancer of survival of transplanted organ
US9399029B2 (en) 2012-07-13 2016-07-26 Sbi Pharmaceuticals Co., Ltd. Immune tolerance inducer
EP2789234A1 (en) 2013-04-10 2014-10-15 Showa Freezing Plant Co., Ltd. Solution utilizing nitrogen contained water for preserving or flushing organs for transplantation, method for preparing the solution and method for preserving or flushing organs for transplantation utilizing the solution
US11071746B2 (en) 2016-06-07 2021-07-27 The Trustees Of The University Of Pennsylvania Compositions and methods for protecting organs from ischemia/reperfusion injury associated with transplantation

Similar Documents

Publication Publication Date Title
Kato et al. Bilirubin rinse: a simple protectant against the rat liver graft injury mimicking heme oxygenase-1 preconditioning
Weissenbacher et al. The future of organ perfusion and re‐conditioning
Kirkby et al. Products of heme oxygenase and their potential therapeutic applications
Kyokane et al. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver
Keshavjee et al. The role of dextran 40 and potassium in extended hypothermic lung preservation for transplantation
Weight et al. Renal ischaemia‐reperfusion injury
Schlegel et al. Role of hypothermic machine perfusion in liver transplantation
Liu et al. Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury
Lim et al. The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure
EP2033514A2 (en) Carbon Monoxide Improves Outcomes in Cell and Organ Transplants and Suppresses Apoptosis
JP4181875B2 (en) Pharmaceutical combination for treatment of tissue damage due to insufficient arterial blood flow
Kaczorowski et al. Carbon monoxide: medicinal chemistry and biological effects
Tchilikidi Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion
Zeng et al. Contributions of heme oxygenase-1 in postconditioning-protected ischemia-reperfusion injury in rat liver transplantation
He et al. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death
Dugbartey et al. Application of carbon monoxide in kidney and heart transplantation: A novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts
Cao et al. Hemoglobin-based oxygen carriers: potential applications in solid organ preservation
JP2004300098A (en) Treatment method for organ for grafting
Urakami et al. Role of reactive metabolites of oxygen and nitrogen in partial liver transplantation: lessons learned from reduced-size liver ischaemia and reperfusion injury.
Snoeijs et al. Addition of a water-soluble propofol formulation to preservation solution in experimental kidney transplantation
Schiller et al. Free radical ablation for the prevention of post-ischemic renal failure following renal transplantation
Türk et al. Reduction of chronic graft injury with a new HTK-based preservation solution in a murine heart transplantation model
Takashima et al. Short-term inhaled nitric oxide in canine lung transplantation from non-heart-beating donor
US20060110804A1 (en) Method of treating an organ for transplantation
Tillou et al. Ischemia/reperfusion during normothermic perfusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721