JP2004299918A - Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor - Google Patents

Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor Download PDF

Info

Publication number
JP2004299918A
JP2004299918A JP2003091603A JP2003091603A JP2004299918A JP 2004299918 A JP2004299918 A JP 2004299918A JP 2003091603 A JP2003091603 A JP 2003091603A JP 2003091603 A JP2003091603 A JP 2003091603A JP 2004299918 A JP2004299918 A JP 2004299918A
Authority
JP
Japan
Prior art keywords
magnesium
magnesium oxide
manufacturing
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003091603A
Other languages
Japanese (ja)
Inventor
Yoshio Bando
義雄 板東
Uma Nishi
馬 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003091603A priority Critical patent/JP2004299918A/en
Publication of JP2004299918A publication Critical patent/JP2004299918A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for manufacturing magnesium oxide nanobelts useful as an additive for catalysts, refractories, paint and superconducting materials. <P>SOLUTION: The method for manufacturing single crystal magnesium oxide nanobelts comprizes the steps of forming magnesium nitride by heating metal magnesium at 600-700°C in a gaseous nitrogen stream for 1-3 h, and continuously heating the magnesium nitride at 600-700°C for 1-2 h after switching from the gaseous nitrogen to a mixed gas comprizing nitrogen and oxygen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、触媒、耐火物、ペイント、超伝導材料等への添加剤として有用な酸化マグネシウムナノベルトの製造方法に関する。さらに詳しくは、マグネシウム片を窒素ガス気流中で加熱することにより、窒化マグネシウム前駆物質を製造し、この前駆物質を窒素と酸素の混合ガス気流中で熱酸化させることにより酸化マグネシウムナノベルトを製造する方法に関する。
【0002】
【従来の技術】
酸化マグネシウムは触媒、耐火物、ペイント、超伝導材料などへの添加剤として有用である。酸化マグネシウムナノロッドは酸化マグネシウム粉末を直接加熱して得られているが、その合成には、反応温度として1850℃という高温が必要であった(例えば、非特許文献1参照)。また、塩化マグネシウムをアルゴンと酸素の混合ガス中で反応させて酸化マグネシウムナノベルトを合成することも知られている(例えば、非特許文献2参照)。さらに、ホウ化マグネシウム粉末を酸素とともに熱処理することにより、酸化マグネシウムのナノ構造物を製造することも報告されている(例えば、非特許文献3,4参照)。
【0003】
【非特許文献1】
C.O.Hulse,ほか、ネイチャー(Nature)206巻、79頁、1965年
【非特許文献2】
J.Zhang,ほか、アプライド・フィジックス A(APPl.Phys.A)73巻、773頁、2001年
【非特許文献3】
Y.Yin,ほか、アドバンスト・ファンクショナル・マテリアルズ (Adv.Funct.Mater.)12巻、293頁、2002年
【非特許文献4】
K.L.Klug,ほか、アプライド・フィジックス・レターズ(APPl.Phys.Lett.)81巻、1687頁、2002年
【0004】
【発明が解決しようとする課題】
上述のように、従来の酸化マグネシウムナノ構造物の製造方法においては、反応温度が高い、あるいは、腐食性の塩素化合物を使用するとか、高価な原料を使用するといった問題点があった。本発明は、安価で入手しやすい原料を用いて簡単なプロセスで低温で酸化マグネシウムナノベルトを提供することを解決すべき課題としている。
【0005】
【課題を解決するための手段】
本発明は、金属マグネシウムを窒素ガス気流中、600〜700℃に、1〜3時間加熱した後、前記窒素ガスを、窒素と酸素の混合ガス気流に切り替えて、600〜700℃に、1〜2時間加熱することを特徴とする単結晶酸化マグネシウムナノベルトの製造方法、である。
【0006】
金属マグネシウムを窒素気流中で、600〜700℃に1〜3時間加熱し、窒化マグネシウムを生成させ、引き続き、この窒化マグネシウムを窒素と酸素の混合ガス気流中で、600〜700℃に1〜2時間加熱すると、窒化マグネシウムが酸素と反応して白色の堆積物である酸化マグネシウムナノベルトの単結晶が褐色の窒化マグネシウムの表面およびアルミナボートの表面に付着する。
【0007】
白色の堆積物は、線状のナノ構造物であり、幅が約20ナノメートルの均質な寸法を有するベルト状の外観をしており、互いに絡み合っている。その長さは数十マイクロメートルから数百マイクロメートルである。
【0008】
本発明の方法で製造された酸化マグネシウムナノベルトは、触媒、耐火物、ペイント、超伝導体などへの添加剤としての応用が期待される。
【0009】
【発明の実施の形態】
本発明の製造方法における条件について以下に説明する。
加熱装置は、抵抗加熱炉、高周波誘導加熱炉等本発明の方法における温度条件に保てる加熱装置であれば、制限されない。
まず、金属マグネシウムを窒素気流中で、600〜700℃に1〜3時間加熱し、窒化マグネシウムを生成させる。加熱温度は、650℃±50℃とする。650℃がマグネシウムの融点、反応が活性になる。温度が高すぎると、マグネシウムが系外へ逸散してしまい、収率が低下する。反応時間は、1〜3時間とする。1時間未満では生成物が得られる量が十分ではなく、3時間以上加熱しても、表面が窒化マグネシウムで覆われてくるので、反応が遅くなる。
【0010】
引き続き、この窒化マグネシウムを窒素と酸素の混合ガス気流中で、600〜700℃に1〜2時間加熱する。窒素と酸素の混合ガスの混合割合は、反応が早すぎると、良好な結晶が得られにくいので、温和な反応をさせるために、5:1〜15:1の割合が好ましい。反応温度は、酸化反応が開始し始める温度で、温度を高くしすぎると良好な結晶が成長しにくい。反応時間は、1時間未満では、得量が十分ではなく、2時間以上でも得量があまり上がらない。
【0011】
【実施例】
実施例1
大きさ0.15mmのマグネシウム片(純度99.9%)2gをアルミナ製ボートに入れ、このボートを石英製の反応管の中に挿入した。抵抗加熱炉を用いて、流速500sccmで窒素ガスを流しながら、昇温速度10℃/minで650℃まで温度を上げた。この温度に2時間維持すると、反応が進行して金属マグネシウム片が灰色から褐色に変化した。得られた褐色の試料のX線回折のパターンを図1に示したが、回折ピークの各ミラー指数は立方晶構造(a=0.997nm)の窒化マグネシウムとよく一致し、窒化マグネシウム前駆物質であることが分かる。
【0012】
上記の製造方法で窒化マグネシウム前駆物質を製造した後、反応系の雰囲気を窒素と酸素の混合ガス(容量比10:1)に切り替えて、650℃、1時間加熱した。白色の堆積物が褐色の前駆物質の表面およびアルミナボートの表面に付着していた。
【0013】
図2(a)に、窒化マグネシウム前駆物質を窒素と酸素の混合ガス気流中で加熱した後の白色の生成物の走査型電子顕微鏡像を示したが、線状のナノ構造物であり、幅約20ナノメートルの均質な寸法を有するベルト状の外観をしており、互いに絡み合っている。その長さは数十マイクロメートルから数百マイクロメートルであり、球状物あるいは金属粒子は存在しないことが分かった。
【0014】
図2(b)に、この白色生成物のX線回折のパターンを示したが、バルクの酸化マグネシウムの結晶のパターンと一致し、立方晶(a=0.421nm)構造であることが分かった。高分解能透過型電子顕微鏡像および電子線回折の結果からも単結晶の立方晶系酸化マグネシウムであることが確かめられた。
【0015】
【発明の効果】
このように、本発明の窒化マグネシウム前駆物質から合成された酸化マグネシウムナノベルトは従来の方法と比べて、均質であり、反応温度も低いことから原料の蒸発逸散が少ないので大量生産に適している。
【図面の簡単な説明】
【図1】図1は、窒化マグネシウム前駆物質のX線回折のパターン図である。
【図2】図2(a)は、均質な酸化マグネシウムナノベルトの走査型電子顕微鏡像を示す図面代用写真である。図2(b)は、酸化マグネシウムナノベルトのX線回折のパターン図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a magnesium oxide nanobelt useful as an additive to catalysts, refractories, paints, superconducting materials, and the like. More specifically, a magnesium oxide precursor is produced by heating magnesium pieces in a nitrogen gas stream, and a magnesium oxide nanobelt is produced by thermally oxidizing the precursor in a mixed gas stream of nitrogen and oxygen. About the method.
[0002]
[Prior art]
Magnesium oxide is useful as an additive to catalysts, refractories, paints, superconducting materials and the like. Magnesium oxide nanorods are obtained by directly heating magnesium oxide powder, but their synthesis required a high reaction temperature of 1850 ° C. (for example, see Non-Patent Document 1). It is also known to synthesize magnesium oxide nanobelts by reacting magnesium chloride in a mixed gas of argon and oxygen (for example, see Non-Patent Document 2). Further, it has been reported that a magnesium oxide nanostructure is produced by heat-treating a magnesium boride powder together with oxygen (for example, see Non-Patent Documents 3 and 4).
[0003]
[Non-patent document 1]
C. O. Hulse, et al., Nature, Volume 206, p. 79, 1965 [Non-Patent Document 2]
J. Zhang, et al., Applied Physics A (APPl. Phys. A) 73, 773, 2001 [Non-Patent Document 3]
Y. Yin, et al., Advanced Functional Materials (Adv. Function. Mater.) 12, 293, 2002 [Non-Patent Document 4]
K. L. Klug, et al., Applied Physics Letters (APPl. Phys. Lett.) 81, 1687, 2002.
[Problems to be solved by the invention]
As described above, the conventional method for producing a magnesium oxide nanostructure has a problem that the reaction temperature is high, a corrosive chlorine compound is used, or an expensive raw material is used. An object of the present invention is to provide a magnesium oxide nanobelt at a low temperature by a simple process using inexpensive and easily available raw materials.
[0005]
[Means for Solving the Problems]
In the present invention, the metal magnesium is heated in a nitrogen gas stream to 600 to 700 ° C. for 1 to 3 hours, and then the nitrogen gas is switched to a mixed gas stream of nitrogen and oxygen, to 600 to 700 ° C. A method for producing a single-crystal magnesium oxide nanobelt, characterized by heating for 2 hours.
[0006]
The metallic magnesium is heated in a nitrogen gas stream at 600 to 700 ° C. for 1 to 3 hours to generate magnesium nitride. When heated for a period of time, magnesium nitride reacts with oxygen, and single crystals of magnesium oxide nanobelts, which are white deposits, adhere to the surface of the brown magnesium nitride and the surface of the alumina boat.
[0007]
The white deposits are linear nanostructures, have a belt-like appearance with uniform dimensions of about 20 nanometers in width, and are entangled with each other. Its length is from tens to hundreds of micrometers.
[0008]
The magnesium oxide nanobelts produced by the method of the present invention are expected to be applied as additives to catalysts, refractories, paints, superconductors and the like.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The conditions in the manufacturing method of the present invention will be described below.
The heating device is not limited as long as it can maintain the temperature conditions in the method of the present invention, such as a resistance heating furnace and a high-frequency induction heating furnace.
First, magnesium metal is heated in a nitrogen stream to 600 to 700 ° C. for 1 to 3 hours to generate magnesium nitride. The heating temperature is 650 ° C. ± 50 ° C. 650 ° C. is the melting point of magnesium and the reaction becomes active. If the temperature is too high, magnesium escapes out of the system, and the yield decreases. The reaction time is 1 to 3 hours. If the time is less than 1 hour, the amount of the obtained product is not sufficient, and even if heating is performed for 3 hours or more, the reaction is slowed down because the surface is covered with magnesium nitride.
[0010]
Subsequently, the magnesium nitride is heated in a mixed gas stream of nitrogen and oxygen to 600 to 700 ° C. for 1 to 2 hours. If the reaction is too early, it is difficult to obtain good crystals, and the mixture ratio of the mixed gas of nitrogen and oxygen is preferably 5: 1 to 15: 1 in order to cause a mild reaction. The reaction temperature is a temperature at which the oxidation reaction starts to be started. If the temperature is too high, good crystals are difficult to grow. If the reaction time is less than 1 hour, the yield is not sufficient, and if it is 2 hours or more, the yield does not increase much.
[0011]
【Example】
Example 1
2 g of a magnesium piece (purity 99.9%) having a size of 0.15 mm was placed in an alumina boat, and this boat was inserted into a quartz reaction tube. The temperature was increased to 650 ° C. at a rate of 10 ° C./min while flowing nitrogen gas at a flow rate of 500 sccm using a resistance heating furnace. When this temperature was maintained for 2 hours, the reaction proceeded and the metal magnesium pieces changed from gray to brown. The X-ray diffraction pattern of the obtained brown sample is shown in FIG. 1. The Miller indices of the diffraction peaks agree well with magnesium nitride having a cubic structure (a = 0.997 nm). You can see that there is.
[0012]
After the magnesium nitride precursor was manufactured by the above manufacturing method, the reaction system was switched to a mixed gas of nitrogen and oxygen (volume ratio of 10: 1) and heated at 650 ° C. for 1 hour. White deposits were deposited on the surface of the brown precursor and on the surface of the alumina boat.
[0013]
FIG. 2 (a) shows a scanning electron microscope image of a white product after heating the magnesium nitride precursor in a mixed gas stream of nitrogen and oxygen, which is a linear nanostructure and has a width of It has a belt-like appearance with uniform dimensions of about 20 nanometers and is intertwined with each other. The length was several tens to several hundreds of micrometers, and it was found that there were no spherical objects or metal particles.
[0014]
FIG. 2 (b) shows the X-ray diffraction pattern of this white product, which was consistent with the crystal pattern of bulk magnesium oxide, and was found to have a cubic (a = 0.421 nm) structure. . High-resolution transmission electron microscope images and electron diffraction results also confirmed that it was a single-crystal cubic magnesium oxide.
[0015]
【The invention's effect】
As described above, the magnesium oxide nanobelt synthesized from the magnesium nitride precursor of the present invention is more suitable for mass production because it is more homogeneous and has a lower reaction temperature and less evaporation and evaporation of the raw materials as compared with the conventional method. I have.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern diagram of a magnesium nitride precursor.
FIG. 2 (a) is a drawing substitute photograph showing a scanning electron microscope image of a homogeneous magnesium oxide nanobelt. FIG. 2B is a pattern diagram of X-ray diffraction of the magnesium oxide nanobelt.

Claims (1)

金属マグネシウムを窒素ガス気流中、600〜700℃に、1〜3時間加熱した後、前記窒素ガスを、窒素と酸素の混合ガス気流に切り替えて、600〜700℃に、1〜2時間加熱することを特徴とする単結晶酸化マグネシウムナノベルトの製造方法。After heating metallic magnesium to 600 to 700 ° C. for 1 to 3 hours in a nitrogen gas stream, the nitrogen gas is switched to a mixed gas stream of nitrogen and oxygen and heated to 600 to 700 ° C. for 1 to 2 hours. A method for producing a single-crystal magnesium oxide nanobelt, comprising:
JP2003091603A 2003-03-28 2003-03-28 Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor Withdrawn JP2004299918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091603A JP2004299918A (en) 2003-03-28 2003-03-28 Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091603A JP2004299918A (en) 2003-03-28 2003-03-28 Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor

Publications (1)

Publication Number Publication Date
JP2004299918A true JP2004299918A (en) 2004-10-28

Family

ID=33404938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091603A Withdrawn JP2004299918A (en) 2003-03-28 2003-03-28 Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor

Country Status (1)

Country Link
JP (1) JP2004299918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751527B1 (en) 2006-04-12 2007-08-23 경북대학교 산학협력단 Metal oxide nanowire by n2 treatment and metal catalyst and manufacturing method at the same
GB2482311A (en) * 2010-07-28 2012-02-01 Sharp Kk II-III-N and II-N semiconductor nanoparticles, comprising the Group II elements Zinc (Zn) or Magensium (Mg)
CN102583456A (en) * 2012-03-03 2012-07-18 天津理工大学 DC (direct-current)-plasma-jet CVD (chemical vapor deposition) method for preparing magnesia nanobelts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751527B1 (en) 2006-04-12 2007-08-23 경북대학교 산학협력단 Metal oxide nanowire by n2 treatment and metal catalyst and manufacturing method at the same
GB2482311A (en) * 2010-07-28 2012-02-01 Sharp Kk II-III-N and II-N semiconductor nanoparticles, comprising the Group II elements Zinc (Zn) or Magensium (Mg)
JP2012031057A (en) * 2010-07-28 2012-02-16 Sharp Corp Ii-iii-n semiconductor nanoparticle, and method of manufacturing the same
US8900489B2 (en) 2010-07-28 2014-12-02 Sharp Kabushiki Kaisha II-III-N semiconductor nanoparticles and method of making same
US9985173B2 (en) 2010-07-28 2018-05-29 Sharp Kabushiki Kaisha II-III-N semiconductor nanoparticles and method of making same
CN102583456A (en) * 2012-03-03 2012-07-18 天津理工大学 DC (direct-current)-plasma-jet CVD (chemical vapor deposition) method for preparing magnesia nanobelts

Similar Documents

Publication Publication Date Title
Rao et al. Carbon-assisted synthesis of inorganic nanowires
Ma et al. Uniform MgO nanobelts formed from in situ Mg3N2 precursor
Ng et al. Optical properties of single-crystalline ZnO nanowires on m-sapphire
Yao et al. Formation of ZnO nanostructures by a simple way of thermal evaporation
Robertz et al. Importance of soft solution processing for advanced BaZrO3 materials
Tan et al. Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction
Liu et al. Fabrication of KSr2Nb5O15 particles with high aspect ratio by two-step molten salt synthesis
Mashhadi et al. The effects of NH4Cl addition and particle size of Al powder in AlN whiskers synthesis by direct nitridation
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
Paul et al. Formation of AlN nanowires using Al powder
Liang et al. Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors
Gundiah et al. Carbon-assisted synthesis of silicon nanowires
Shi et al. Morphology-controlled synthesis of quasi-aligned AlN nanowhiskers by combustion method: Effect of NH4Cl additive
Gao et al. Mass production of very thin single-crystal silicon nitride nanobelts
Li et al. Synthesis of aligned gallium nitride nanowire quasi-arrays
JP2004299918A (en) Method for manufacturing magnesium oxide nanobelt using magnesium nitride precursor
Zhang et al. Growth of PbS crystals from nanocubes to eight-horn-shaped dendrites through a complex synthetic route
Deng et al. Two-dimensional zinc oxide nanostructure
Jung et al. Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder
Chang et al. Phase structure, morphology, and Raman characteristics of NaNbO3 particles synthesized by different methods
Xie et al. Characterization and growth mechanism of germanium nitride nanowires prepared by an oxide-assisted method
Shi et al. Formation and evolution of quasi-aligned AlN nanowhiskers by combustion synthesis
Jung et al. Growth mechanism of aluminum nitride whiskers prepared from a (glutarato)(hydroxo) aluminum (III) complex
JP3837532B2 (en) Method for producing magnesium boride nanowire
Fu et al. The O2-dependent growth of ZnO nanowires and their photoluminescence properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060525

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A761