JP2004299014A - Drill made of diamond-containing-ceramics composite material - Google Patents

Drill made of diamond-containing-ceramics composite material Download PDF

Info

Publication number
JP2004299014A
JP2004299014A JP2003097005A JP2003097005A JP2004299014A JP 2004299014 A JP2004299014 A JP 2004299014A JP 2003097005 A JP2003097005 A JP 2003097005A JP 2003097005 A JP2003097005 A JP 2003097005A JP 2004299014 A JP2004299014 A JP 2004299014A
Authority
JP
Japan
Prior art keywords
diamond
drill
composite material
sic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097005A
Other languages
Japanese (ja)
Inventor
Ichiro Aoki
一郎 青木
Hiroyuki Tsuto
宏之 津戸
Tatsuya Shiogai
達也 塩貝
Tomoyuki Hikita
友幸 引田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003097005A priority Critical patent/JP2004299014A/en
Publication of JP2004299014A publication Critical patent/JP2004299014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill made of diamond-containing-ceramics composite material using diamond powder having an average particle size of not less than 5 μm with nearly theoretical density. <P>SOLUTION: The drill is manufactured by using the composite material consisting of a metal with diamond, SiC and silicon as main components and by melting the metal mainly formed of silicon and infiltrating it under no pressure into a porous preform having a desired drill shape, and consisting of diamond and carbon, or diamond, SiC and carbon to produce the drill. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンドを含有する金属−セラミックス複合材料からなるドリルに関するものである。
【0002】
【従来の技術】
現在、切削工具であるドリルの材料として超硬合金が広く用いられているが、極めて硬質な材料であるダイヤモンド粉末を焼結させた、ダイヤモンド焼結体も使用されている。ダイヤモンド焼結体は高い耐摩耗性を有しており、ドリルの材料として優れているが、その製造には通常5〜6GPaという超高圧を必要とするため、コスト上の問題があった。そこで近年、耐摩耗性はダイヤモンド焼結体には及ばないもののそれに近い耐摩耗性を有する、金属とダイヤモンドの複合材料を、ダイヤモンド焼結体と比較して低圧下で製造する方法が提案されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−220628号公報
【0004】
【発明が解決しようとする課題】
特許文献1は、平均粒径1〜12μmのダイヤモンド砥粒と金属粉末を混合後、45〜70MPaの圧力下において通電加圧焼結してダイヤモンド−金属複合体を得る方法を提案するものであるが、ドリルを構成する材料として有効に作用する平均粒径5μm以上のダイヤモンド粉末を原料とすると、チタン、超鋼合金などの金属粉末の焼結収縮を阻害し、十分理論密度に近い緻密な複合材料が得られない。理論密度の95%以下の材料をドリルとして使用すると、摩耗量が多くなり寿命が短くなるという問題があった。
【0005】
本発明は、上述した課題に鑑みなされたものであって、その目的は、平均粒径が5μm以上のダイヤモンド粉末を用い、理論密度に近い緻密なダイヤモンド含有金属−セラミックス複合材料製ドリルを提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため鋭意研究した結果、緻密なダイヤモンド−金属複合材料製ドリルを提供するために、その構成がダイヤモンド、SiC、シリコンを主成分とする金属からなる複合材料とし、所望のドリル形状とした、ダイヤモンドと炭素、もしくはダイヤモンドとSiCと炭素からなる多孔質状のプリフォームに、シリコンを主成分とする金属を溶融し、非加圧で浸透させる方法で製造すれば、理論密度に近い緻密なダイヤモンド含有金属−セラミックス複合材料製ドリル複合材料を提供できるとの知見を得た。また、複合材料の理論密度を98%以上にすることでドリルとしての摩耗量が従来の1/3程度になり、寿命が長くなるという知見を得て本発明を完成するに至った。
【0007】
即ち本発明の目的は、ダイヤモンドの平均粒径が5μm以上でその含有率が1体積%以上、なおかつSiCを含み、そのダイヤモンドとSiCの含有率の合計が40〜80体積%であり、残部がシリコンを主成分とする金属からなる複合材料からなるドリルであって、その製造方法が、ダイヤモンド粉末に加熱処理により炭化するバインダーを加えて混合し、所望のドリル形状に成形した後、加熱処理して形成した多孔質状のプリフォームに、あるいは、ダイヤモンド粉末とSiC粉末に前記バインダーを加えて混合し、所望のドリル形状に成形した後、加熱処理して形成した多孔質状のプリフォームに、シリコンを主成分とする金属を溶融し、非加圧で浸透させる方法であることを特徴とするダイヤモンド含有金属−セラミックス複合材料製ドリルとすることにより達成される。
以下さらに本発明の内容を詳細に説明する。
【0008】
上記ダイヤモンド、SiC、シリコンを主成分とする金属からなる複合材料は、理論密度に近い緻密な複合材料となる。その理由は、その製造方法である、ダイヤモンドと炭素、もしくはダイヤモンドとSiCと炭素からなる多孔質状のプリフォームに、シリコンを主成分とする金属を溶融し、非加圧で浸透させて複合化する方法において、シリコンは凝固膨張する性質を有するため、複合材料中に体積変化に伴う欠陥が生じ難いためであると考えられる。
【0009】
本発明においてダイヤモンドの平均粒径を5μm以上としたのは、5μm以下ではドリルとして使用すると摩耗量が多くなるためである。加えて、ダイヤモンドは大気圧下においては準安定相であり、熱処理を行うと黒鉛化するため、やはり材料の摩耗量が多くなるためである。また、そのダイヤモンドの含有率を1体積%以上としたのは、1%未満では加工に作用するダイヤモンド砥粒の数が少なく、加工速度、加工能率が著しく低くなるためである。
【0010】
また、ダイヤモンドとSiCの含有率の合計を40〜80体積%とした。その理由は、40体積%未満では複合材料のヤング率が240GPaより小さくなり、ドリルとして良好な剛性が得られないためである。80体積%以下としたのは、ダイヤモンド粉末と炭化したバインダー、もしくは、ダイヤモンド粉末とSiC粉末と炭化したバインダーからなるプリフォームにおいて、それらの含有率が80体積%に近いものを作製することが困難なためである。
【0011】
また、本発明によるダイヤモンド含有金属−セラミックス複合材料製ドリルにおいては、硬質な複合材料になる前、つまりシリコンを主成分とする金属を浸透させる前のプリフォームの段階でプリフォームを所望のドリル形状に成形することにより、シリコンを主成分とする金属を非加圧で浸透させても形状変化がほとんどないため、最終形状とするために硬質材料を加工するコストを抑えることができる。
【0012】
【発明の実施の形態】
本発明によるダイヤモンド含有金属−セラミックス複合材料製ドリルは、以下のような方法により得ることができる。
平均粒径が5μm以上のダイヤモンド粉末に有機バインダーを添加し、必要であればSiC粉末を添加し、それらを混合し、所望のドリル形状に成形した後、非酸化雰囲気中で900〜1100℃の温度で加熱処理することにより、有機バインダーを炭化させたプリフォームを形成し、シリコンを主成分とする金属を非酸化雰囲気中で1500℃以上の温度で溶融して、プリフォーム中に含まれている炭素と反応させてSiCとすると同時に浸透させ、シリコンを主成分とする金属中にダイヤモンドとSiCが分散した複合材料製ドリルを非加圧にて得ることができる。
【0013】
また、プリフォームに浸透させるための金属としては、熱処理時のダイヤモンドの黒鉛化を抑制するため、シリコンに他の元素を含み、低融点化させたものであってもよい。例えば、シリコンの融点は約1430℃であるが、シリコンにアルミニウムを添加することにより、580℃まで低融点化することができる。かかる効果のある金属としては、アルミニウム以外にも、例えば金、銀、錫などがあり、これらの元素を含むシリコン合金であってもよい。
【0014】
【実施例】
以下、本発明の実施例と比較例を挙げ、本発明をより詳細に説明する。
【0015】
(実施例1)
(1)ダイヤモンド含有金属−セラミックス複合材料製ドリルの作製
市販のSiC粉末の粗粒(信濃電気精錬社製、平均粒径50μm)60体積部と微粒(信濃電気精錬社製、平均粒径10μm)33体積部とダイヤモンド粉末(旭ダイヤモンド工業社製、平均粒径10μm)7体積部に、それらの合計を100質量部とした時に有機バインダーとしてフェノール樹脂10質量部(炭素換算3質量部)を混合し、φ10mmの穴開け加工用ドリル形状にプレス成形した後、窒素雰囲気中で1000℃の温度で3時間加熱処理し、フェノール樹脂を炭化させた70体積%の充填率を有するプリフォームを形成した。また、得られる複合材料の密度およびヤング率の測定のため、同じ手順により50×50×20mmのプリフォームも形成した。
【0016】
次に、得られたプリフォームとシリコン塊(日本電工社製、純度99%)とを常圧下、アルゴン雰囲気中で1500℃の温度で3時間保持して、溶融したシリコンとプリフォーム中に含まれている炭素とを反応させてSiCとすると同時に溶融シリコンをプリフォーム中に浸透させて、ダイヤモンド含有金属−セラミックス複合材料製のドリルおよび平板を作製した。
【0017】
(2)評価
得られた複合材料製平板から、10mm角の立方体を切り出し、アルキメデス法で密度を測定したところ、密度は2960kg/mであり、理論密度(2970kg/m)に対して99%以上の相対密度であった。また、同様に3×4×40mmの試料を切り出し、共振法によりヤング率を測定したところ、300GPaであった。得られた複合材料製ドリルを用い、厚さ5mmのアルミナ板にドリルの寿命まで穴開け加工をしたところ、15個の穴開けが可能であった。
【0018】
(比較例1〜3)
比較例1〜3として、表1に示すような複合材料となるように、実施例1と同様の方法および手順で複合材料を作製し、評価を行った。その結果も表1に示す。
【0019】
【表1】

Figure 2004299014
【0020】
表1から明らかなように、本発明の範囲外の複合材料では、ドリルに求められるヤング率または耐摩耗性の性能が低いものであった。
【0021】
【発明の効果】
以上のように、本発明によれば、平均粒径が5μm以上のダイヤモンド粉末を用いても理論密度に近い緻密なダイヤモンド含有金属−セラミックス複合材料製ドリルを提供することができ、摩耗量が少なく寿命が長いドリルを提供できた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drill made of a metal-ceramic composite material containing diamond.
[0002]
[Prior art]
At present, cemented carbide is widely used as a material for a drill as a cutting tool, but a diamond sintered body obtained by sintering diamond powder as an extremely hard material is also used. Although the diamond sintered body has high wear resistance and is excellent as a material for a drill, its production usually requires an ultra-high pressure of 5 to 6 GPa, and thus has a problem in cost. Therefore, in recent years, a method has been proposed for producing a composite material of metal and diamond at a lower pressure than a diamond sintered body, which has a wear resistance that is not as good as a diamond sintered body but has a wear resistance close to that of the diamond sintered body. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP, 2002-220628, A
[Problems to be solved by the invention]
Patent Document 1 proposes a method of obtaining a diamond-metal composite by mixing diamond abrasive grains having an average particle diameter of 1 to 12 μm and metal powder, and then conducting current-pressure sintering under a pressure of 45 to 70 MPa. However, if diamond powder with an average particle diameter of 5 μm or more, which effectively acts as a material for forming a drill, is used as a raw material, sintering shrinkage of metal powders such as titanium and super steel alloys is inhibited, and a dense composite close to a theoretical density is sufficiently obtained. No material available. When a material having a theoretical density of 95% or less is used as a drill, there is a problem that the amount of wear increases and the life is shortened.
[0005]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a dense diamond-containing metal-ceramic composite material drill close to a theoretical density using diamond powder having an average particle diameter of 5 μm or more. It is in.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object. As a result, in order to provide a drill made of a dense diamond-metal composite material, a composite material composed of a metal mainly composed of diamond, SiC, and silicon is provided. A metal predominantly composed of silicon is melted into a porous preform made of diamond and carbon or diamond and SiC and carbon having a desired drill shape, and is made to penetrate without pressure. For example, it has been found that a drill composite material made of a diamond-containing metal-ceramic composite material having a density close to the theoretical density can be provided. Further, by making the theoretical density of the composite material 98% or more, the amount of wear as a drill was reduced to about 1/3 of the conventional one, and the knowledge that the life was extended led to the completion of the present invention.
[0007]
That is, an object of the present invention is to provide a diamond having an average particle diameter of 5 μm or more, a content of 1% by volume or more, and containing SiC, wherein the total content of the diamond and SiC is 40 to 80% by volume, and the balance is A drill made of a composite material composed of a metal containing silicon as a main component, the manufacturing method of which includes adding a binder carbonized by heat treatment to diamond powder, mixing the mixture, forming a desired drill shape, and then performing heat treatment. To the porous preform formed by the above, or the binder is added to diamond powder and SiC powder and mixed, molded into a desired drill shape, and then heat treated to form a porous preform, A method of melting a metal containing silicon as a main component and infiltrating the metal without applying pressure, wherein the diamond-containing metal-ceramic composite material is used. It is achieved by a drill.
Hereinafter, the content of the present invention will be described in detail.
[0008]
The composite material composed of a metal mainly composed of diamond, SiC, and silicon is a dense composite material having a theoretical density. The reason for this is that a metal predominantly composed of silicon is melted in a porous preform made of diamond and carbon, or diamond, SiC and carbon, which is a method of manufacturing, and is permeated without pressure to form a composite. This is considered to be due to the fact that silicon has the property of solidifying and expanding, and therefore, it is difficult for defects due to volume change to occur in the composite material.
[0009]
In the present invention, the average particle diameter of diamond is set to 5 μm or more because when it is 5 μm or less, the wear amount increases when used as a drill. In addition, diamond is a metastable phase under atmospheric pressure, and becomes graphitized when heat-treated, so that the amount of wear of the material also increases. The reason for setting the diamond content to 1% by volume or more is that if the content is less than 1%, the number of diamond abrasive grains acting on the processing is small, and the processing speed and the processing efficiency are significantly reduced.
[0010]
The total content of diamond and SiC was set to 40 to 80% by volume. The reason is that if it is less than 40% by volume, the Young's modulus of the composite material becomes smaller than 240 GPa, and good rigidity as a drill cannot be obtained. The reason why the content is set to 80% by volume or less is that it is difficult to prepare a preform composed of a diamond powder and a carbonized binder or a diamond powder and a SiC powder and a carbonized binder, the content of which is close to 80% by volume. That is why.
[0011]
Further, in the diamond-containing metal-ceramic composite material drill according to the present invention, the preform is formed into a desired drill shape at the preform stage before it becomes a hard composite material, that is, before the metal containing silicon as a main component is infiltrated. By molding into a metal, the shape is hardly changed even if a metal containing silicon as a main component is infiltrated without pressure, so that the cost of processing a hard material to obtain a final shape can be suppressed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The diamond-containing metal-ceramic composite material drill according to the present invention can be obtained by the following method.
An organic binder is added to diamond powder having an average particle size of 5 μm or more, SiC powder is added if necessary, and they are mixed and formed into a desired drill shape. By performing a heat treatment at a temperature, a preform in which an organic binder is carbonized is formed, and a metal containing silicon as a main component is melted at a temperature of 1500 ° C. or more in a non-oxidizing atmosphere and contained in the preform. It can be reacted with carbon to form SiC and at the same time penetrate, thereby obtaining a composite material drill in which diamond and SiC are dispersed in a metal containing silicon as a main component without applying pressure.
[0013]
Further, as a metal for infiltrating the preform, silicon may contain another element to lower the melting point in order to suppress the graphitization of diamond during heat treatment. For example, silicon has a melting point of about 1430 ° C., but can be lowered to 580 ° C. by adding aluminum to silicon. Metals having such an effect include, for example, gold, silver, tin and the like in addition to aluminum, and a silicon alloy containing these elements may be used.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention.
[0015]
(Example 1)
(1) Preparation of drill made of diamond-containing metal-ceramic composite material 60 parts by volume of coarse particles (manufactured by Shinano Electric Refining Co., average particle size 50 μm) and fine particles (manufactured by Shinano Electric Refining Company, average particle size 10 μm) of commercially available SiC powder 33 parts by volume and 7 parts by volume of diamond powder (manufactured by Asahi Diamond Industry Co., Ltd., average particle size: 10 μm) were mixed with 10 parts by mass of a phenol resin (3 parts by mass in terms of carbon) as an organic binder when their total was 100 parts by mass. Then, after press-forming into a 10 mm diameter drilling hole for drilling, it was subjected to a heat treatment at 1000 ° C. for 3 hours in a nitrogen atmosphere to form a phenol resin carbonized preform having a filling rate of 70% by volume. . Also, a 50 × 50 × 20 mm preform was formed by the same procedure for measuring the density and Young's modulus of the obtained composite material.
[0016]
Next, the obtained preform and silicon lump (purity: 99%, manufactured by Nippon Denko Co., Ltd.) were held at a temperature of 1500 ° C. for 3 hours in an argon atmosphere under normal pressure, and contained in the molten silicon and the preform. The resulting carbon was reacted with carbon to form SiC and at the same time molten silicon was infiltrated into the preform, thereby producing a drill and a flat plate made of a diamond-containing metal-ceramic composite material.
[0017]
(2) Evaluation A cube of 10 mm square was cut out from the obtained composite material flat plate and the density was measured by the Archimedes method. The density was 2960 kg / m 3 , which was 99% of the theoretical density (2970 kg / m 3 ). % Relative density. Similarly, a sample of 3 × 4 × 40 mm was cut out and its Young's modulus was measured by a resonance method to find that it was 300 GPa. Using the obtained composite material drill, a 5 mm-thick alumina plate was drilled until the life of the drill. As a result, 15 holes could be drilled.
[0018]
(Comparative Examples 1 to 3)
As Comparative Examples 1 to 3, composite materials were produced by the same method and procedure as in Example 1 so as to obtain composite materials as shown in Table 1, and evaluation was performed. The results are also shown in Table 1.
[0019]
[Table 1]
Figure 2004299014
[0020]
As is clear from Table 1, the composite materials outside the scope of the present invention had low Young's modulus or wear resistance performance required for the drill.
[0021]
【The invention's effect】
As described above, according to the present invention, a dense diamond-containing metal-ceramic composite drill close to the theoretical density can be provided even when using diamond powder having an average particle diameter of 5 μm or more, and the amount of wear is small. A long life drill was provided.

Claims (1)

ダイヤモンドの平均粒径が5μm以上で該含有率が1体積%以上、なおかつSiCを含み、該ダイヤモンドとSiCの含有率の合計が40〜80体積%であり、残部がシリコンを主成分とする金属からなる複合材料からなるドリルであって、その製造方法が、ダイヤモンド粉末に加熱処理により炭化するバインダーを加えて混合し、所望のドリル形状に成形した後、加熱処理して形成した多孔質状のプリフォームに、あるいは、ダイヤモンド粉末とSiC粉末に前記バインダーを加えて混合し、所望のドリル形状に成形した後、加熱処理して形成した多孔質状のプリフォームに、シリコンを主成分とする金属を溶融し、非加圧で浸透させる方法であることを特徴とするダイヤモンド含有金属−セラミックス複合材料製ドリル。A diamond having an average particle diameter of 5 μm or more, a content of 1% by volume or more, containing SiC, a total content of the diamond and SiC being 40 to 80% by volume, and the balance being a metal containing silicon as a main component. A drill made of a composite material consisting of a porous material formed by adding a binder that is carbonized by heat treatment to diamond powder, mixing the mixture, forming the desired drill shape, and then performing heat treatment. The above-mentioned binder is added to a preform or mixed with diamond powder and SiC powder, formed into a desired drill shape, and then heat-treated to form a porous preform. A drill made of a diamond-containing metal-ceramic composite material, wherein the drill is a method of melting and infiltrating under pressure.
JP2003097005A 2003-03-31 2003-03-31 Drill made of diamond-containing-ceramics composite material Pending JP2004299014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097005A JP2004299014A (en) 2003-03-31 2003-03-31 Drill made of diamond-containing-ceramics composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097005A JP2004299014A (en) 2003-03-31 2003-03-31 Drill made of diamond-containing-ceramics composite material

Publications (1)

Publication Number Publication Date
JP2004299014A true JP2004299014A (en) 2004-10-28

Family

ID=33408910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097005A Pending JP2004299014A (en) 2003-03-31 2003-03-31 Drill made of diamond-containing-ceramics composite material

Country Status (1)

Country Link
JP (1) JP2004299014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532673A (en) * 2015-08-26 2018-11-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ Diamond composites produced by lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532673A (en) * 2015-08-26 2018-11-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ Diamond composites produced by lithography

Similar Documents

Publication Publication Date Title
JP5394475B2 (en) Boron carbide composite material
JP2022106712A (en) Binder compositions of tungsten tetraboride and abrasive methods thereof
JPH0662338B2 (en) Silicon carbide / Graphite / Carbon composite ceramic body
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
CN110342943B (en) Method for synthesizing binderless polycrystalline boron nitride block under industrial pressure and application thereof
US9695090B2 (en) Composite material comprising a precious metal, manufacturing process and use of such material
JP2017039997A (en) Aluminum alloy-ceramic composite material and production method for aluminum alloy-ceramic composite material
JPS6167740A (en) Diamond sintered body for tools and its manufacture
US20170081247A1 (en) Superhard pcd constructions and methods of making same
JP2009024214A (en) Hard metal and manufacturing method therefor
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2005281084A (en) Sintered compact and manufacturing method therefor
JPH11302767A (en) Cemented carbide excellent in mechanical characteristic and its production
JP2007145667A (en) Cubic boron nitride sintered compact
JPS6355161A (en) Manufacture of industrial diamond sintered body
JP2004299014A (en) Drill made of diamond-containing-ceramics composite material
JP2004256863A (en) Cemented carbide, production method therefor, and rotary tool using the same
JP5093433B2 (en) Method for producing a bulk body of Al-added TiN
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP5057751B2 (en) Cemented carbide and method for producing the same
JP4351451B2 (en) Cemented carbide and method for manufacturing the same, and rotary tool using the cemented carbide
JP2005146392A (en) Metal-based composite material, and its production method
JPS6319585B2 (en)
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method