JP2004298961A - Method for manufacturing electric resistance welded steel tube excellent in quality of weld zone - Google Patents

Method for manufacturing electric resistance welded steel tube excellent in quality of weld zone Download PDF

Info

Publication number
JP2004298961A
JP2004298961A JP2004049729A JP2004049729A JP2004298961A JP 2004298961 A JP2004298961 A JP 2004298961A JP 2004049729 A JP2004049729 A JP 2004049729A JP 2004049729 A JP2004049729 A JP 2004049729A JP 2004298961 A JP2004298961 A JP 2004298961A
Authority
JP
Japan
Prior art keywords
welding
electric resistance
temperature
steel pipe
combustion flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004049729A
Other languages
Japanese (ja)
Other versions
JP4171433B2 (en
Inventor
Hideki Hamaya
秀樹 濱谷
Shunsuke Fukami
俊介 深見
Nobuo Mizuhashi
伸雄 水橋
Tetsuo Ishizuka
哲夫 石塚
Hitoshi Asahi
均 朝日
Yoshifumi Tokunami
善文 徳浪
Tomohiro Nakaji
智博 中治
Michitoshi Tanimoto
道俊 谷本
Futoshi Takashima
太 高島
Takashi Osawa
隆 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004049729A priority Critical patent/JP4171433B2/en
Publication of JP2004298961A publication Critical patent/JP2004298961A/en
Application granted granted Critical
Publication of JP4171433B2 publication Critical patent/JP4171433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electric resistance welded steel tube which can stably and securely decrease defective welding caused by the production of oxides on a weld zone without deteriorating productivity so that the manufactured electric resistance welded steel tube is excellent in the characteristics of the weld zone such as low temperature toughness, corrosion resistance and cold workability. <P>SOLUTION: In the method for manufacturing the electric resistance welded steel tube, a steel plate is formed into a tubular shape and the end faces to be butted are subjected to electric resistance welding. At the time of the electric resistance welding, high-temperature reducing combustion flame or high-temperature non-oxidizing plasma is blown against the end faces to be butted throughout an area at least from the point of welding to a position 1/5 of the power supplying distance off toward the upstream of welding. The blow velocity is 200 m/s or higher for the high-temperature reducing combustion flame or 30-230 m/s for the high-temperature non-oxidizing plasma. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として、石油または天然ガス用ラインパイプ、油井管、原子力用、地熱用、化学プラント用、機械構造用、一般配管用などに使用される電縫鋼管の製造方法に関し、特に鋼板を管状に成形加工してその突合せ部を電縫溶接する際に溶接欠陥の発生を低減するための電縫鋼管の製造方法に関するものである。   The present invention mainly relates to a method for producing an electric resistance welded steel pipe used for oil or natural gas line pipe, oil well pipe, nuclear power, geothermal, chemical plant, mechanical structure, general piping, etc. The present invention relates to a method for manufacturing an electric resistance welded steel pipe for reducing the occurrence of welding defects when forming a tubular shape and performing an electric resistance welding of the butt portion.

一般に、電縫鋼管は、帯状コイルを連続的に多数のロール群により管状に成形した後、ワークコイルによる誘導加熱、もしくはコンタクトチップによる直接通電加熱を行い、鋼板端部を所定温度に加熱・溶融すると共に、スクイズロールにより加圧しながら溶接して製造される。   Generally, in ERW steel pipes, after a strip-shaped coil is continuously formed into a tube with a number of rolls, induction heating with a work coil or direct energization heating with a contact tip is performed to heat and melt the steel sheet end to a predetermined temperature. It is manufactured by welding while pressing with a squeeze roll.

従来から、特にCr、Ti、Siなどの酸化物を生成しやすい成分を多く含有する鋼板(クロム鋼、クロムモリブデン鋼、ステンレス鋼、DP鋼、TRIP鋼など)を電縫溶接して電縫鋼管を製造する場合に、その溶接部にペネトレーターと称される酸化物に起因する溶接欠陥が発生しやすく、低温靭性、耐食性及び冷間加工性を低下させる原因となっている。   Conventionally, an electric resistance welded steel pipe is formed by performing electric resistance welding on a steel sheet (chromium steel, chromium molybdenum steel, stainless steel, DP steel, TRIP steel, etc.) containing a large amount of components particularly easily generating oxides such as Cr, Ti, and Si. In the case of producing steel, a welding defect caused by an oxide called a penetrator is apt to occur in a welded portion thereof, which causes deterioration in low-temperature toughness, corrosion resistance and cold workability.

この対策として、アルゴン、ヘリウムなどの様々な不活性ガスシールドにより電縫溶接部の雰囲気の酸素を低減し、接合端面の表面酸化を抑制し、溶接部の酸化物起因の溶接欠陥を低減する方法が提案されている。しかし、電縫溶接部の雰囲気は空気の巻き込みなどにより安定して酸素濃度の低減は困難であり、酸化物に起因する溶接欠陥を十分に低減することはできなかった(例えば、特許文献1及び2参照)。   As a countermeasure, various inert gas shields such as argon and helium are used to reduce the oxygen in the atmosphere of the ERW weld, suppress the surface oxidation of the joint end face, and reduce welding defects caused by oxides in the weld. Has been proposed. However, it is difficult to reduce the oxygen concentration stably due to entrainment of air in the atmosphere of the electric resistance welded portion, and it was not possible to sufficiently reduce welding defects caused by oxides (for example, Patent Document 1 and 2).

また、溶接部のシールドガスとして水素を1〜20容量%含有する不活性ガスまたは窒素ガスを用いることにより接合端面の表面酸化の抑制作用及び還元作用を活性化する方法が提案されている(例えば、特許文献3参照)。   Further, a method has been proposed in which an inert gas or a nitrogen gas containing 1 to 20% by volume of hydrogen is used as a shield gas for a welded portion to activate the effect of suppressing and reducing the surface oxidation of the joint end face (for example, see, for example). And Patent Document 3).

さらに、溶接部の非酸化性シールドガス雰囲気中の酸素濃度を0.1%以下とし、露点を10℃以下、H2分圧/H2O分圧の比を3以下かつ水素濃度を4%以下に制御することにより、H2の爆発限界濃度以下で水蒸気酸化を抑制して溶接欠陥を低減する方法が提案されている(例えば、特許文献4参照)。 Further, the oxygen concentration in the non-oxidizing shielding gas atmosphere of the welded portion was 0.1% or less, the dew point of 10 ° C. or less, the ratio of H 2 partial pressure / H 2 O partial pressure 3 below and the hydrogen concentration of 4% A method has been proposed in which the following control is performed to suppress steam oxidation below the explosive limit concentration of H 2 and reduce welding defects (for example, see Patent Document 4).

しかしながら、特許文献3及び4に提案される方法では、溶接部のシールド性を高め、溶接雰囲気を低酸素濃度かつ低い露点に制御するために、溶接部全体を包囲しその高い気密性を保つことができる大掛かりなシールド装置が必要となる。したがって、外径サイズの異なる鋼管を製造する際に、そのサイズ毎にシールド装置を予め準備する必要があり、鋼管の生産性を大きく低下させる。   However, in the methods proposed in Patent Documents 3 and 4, in order to enhance the shielding properties of the welded portion and control the welding atmosphere to a low oxygen concentration and a low dew point, the entire welded portion is surrounded and its high airtightness is maintained. A large-scale shield device is required. Therefore, when manufacturing steel pipes having different outer diameter sizes, it is necessary to prepare a shield device for each size in advance, which greatly reduces the productivity of the steel pipes.

特開昭53−53562号公報JP-A-53-53562 特公昭59−33071号公報JP-B-59-33071 特開昭53−53561号公報JP-A-53-53561 特開平5−228651号公報JP-A-5-228551

本発明は上記従来技術の実状に鑑みて、生産性を低下させることなく、安定して確実に溶接部の酸化物の生成に起因する溶接欠陥を低減し、低温靭性、耐食性、冷間加工性などの溶接部特性に優れた電縫鋼管の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional technology, and has been proposed to stably and reliably reduce welding defects caused by generation of oxides in a welded portion without lowering productivity, and to reduce low-temperature toughness, corrosion resistance, and cold workability. It is an object of the present invention to provide a method for producing an electric resistance welded steel pipe having excellent weld characteristics such as the above.

本発明者らは、溶接部の酸化物の生成に起因する溶接欠陥を低減すべく鋭意研究を行った。その結果、電縫溶接する際に、突合せ端面に1400℃以上の還元性高温燃焼炎または非酸化性高温プラズマを所定流速で吹き付けることにより酸化物を減少させ、さらに酸化物を排出させることができることを見出して本発明を完成した。   The present inventors have intensively studied to reduce welding defects caused by the formation of oxides in a weld. As a result, at the time of ERW, the oxide can be reduced by blowing a reducing high-temperature combustion flame of 1400 ° C. or more or a non-oxidizing high-temperature plasma on the butt end face at a predetermined flow rate, and the oxide can be further discharged. To complete the present invention.

本発明の要旨とすることころは、以下のとおりである。   The gist of the present invention is as follows.

(1) 電縫鋼管の製造方法において、鋼板を管状に成形加工し、その突合せ端面を電縫溶接する際に、少なくとも溶接点から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲にわたる突合せ端面に対して、還元性雰囲気で、かつ1400℃以上の温度を有する還元性高温燃焼炎を流速が200m/s以上の条件で吹き付けることを特徴とする溶接部品質の優れた電縫鋼管の製造方法。   (1) In a method for manufacturing an ERW steel pipe, when a steel sheet is formed into a tubular shape and its butted end faces are subjected to ERW welding, at least a position at least 1/5 of a power supply distance from a welding point to a welding upstream side is provided. An electrode having excellent welding quality, characterized in that a reducing high-temperature combustion flame having a temperature of 1400 ° C. or more is blown onto a butt end face in the entire range at a flow rate of 200 m / s or more. Manufacturing method of sewn steel pipe.

(2) 電縫鋼管の製造方法において、鋼板を管状に成形加工し、その突合せ端面を電縫溶接する際に、少なくとも溶接点から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲にわたる突合せ端面に対して、非酸化性雰囲気で、かつ1400℃以上の温度を有する非酸化性高温プラズマを流速が30〜230m/sの条件で吹き付けることを特徴とする溶接部品質の優れた電縫鋼管の製造方法。   (2) In the method of manufacturing an electric resistance welded steel pipe, when a steel sheet is formed into a tubular shape and the butt end faces thereof are subjected to electric resistance welding, at least a position at least 1/5 of a power supply distance from a welding point to a welding upstream side. Excellent weld quality characterized by spraying a non-oxidizing high-temperature plasma having a temperature of 1400 ° C. or more at a flow rate of 30 to 230 m / s in a non-oxidizing atmosphere over the butt end face in the entire range. Manufacturing method of ERW steel pipe.

(3) 前記還元性高温燃焼炎は、CO:1〜5体積%、及び、H:1〜10体積%のうちの1種または2種を含有し、下記(1)式による燃焼反応で生成されることを特徴とする上記(1)項記載の溶接部品質の優れた電縫鋼管の製造方法。
xyM+(1/2)zO2→xCO2+(1/2)yH2O+M+ηCO+ξH
・ ・ ・(1) ただし、M:燃料中のC及びH以外のその他成分、
z<4x+y、x>0、y>0、z>0、η>0、ξ>0
(3) The reducing high-temperature combustion flame contains one or two of CO: 1 to 5% by volume and H: 1 to 10% by volume, and is generated by a combustion reaction according to the following formula (1). (1) The method for producing an electric resistance welded steel pipe having excellent weld quality according to the above (1).
C x H y M + (1/2 ) zO 2 → xCO 2 + (1/2) yH 2 O + M + ηCO + ξH
・ ・ ・ (1) where M: other components other than C and H in the fuel,
z <4x + y, x> 0, y> 0, z> 0, η> 0, ξ> 0

(4) 前記非酸化性高温プラズマは、Ar単独ガス、または、ArとN、H及びHeのうちの少なくとも一種以上との混合ガスであることを特徴とする上記(2)項に記載の溶接部品質の優れた電縫鋼管の製造方法。 (4) The non-oxidizing high-temperature plasma is a single gas of Ar or a mixed gas of Ar and at least one of N 2 , H 2, and He. Of ERW steel pipe with excellent weld quality.

本発明によれば、生産性を低下させることなく、安定して確実に溶接部の酸化物の生成に起因する溶接欠陥を低減し、低温靭性、耐食性、冷間加工性などの溶接部特性に優れた電縫鋼管の製造が可能となり、本発明による電縫鋼管製造における工業的な貢献は多大である。   Advantageous Effects of Invention According to the present invention, welding defects caused by the formation of oxides in a welded portion are stably and surely reduced without lowering productivity, and low-temperature toughness, corrosion resistance, and cold workability are improved in weldability. An excellent electric resistance welded steel pipe can be produced, and the industrial contribution in producing the electric resistance welded steel pipe according to the present invention is great.

以下に本発明の詳細を、図面を参照して説明する。   Hereinafter, the details of the present invention will be described with reference to the drawings.

図1は、本発明による電縫溶接方法を説明するための模式図を示すものである。   FIG. 1 is a schematic diagram for explaining an electric resistance welding method according to the present invention.

通常の電縫鋼管の製造プロセスでは、鋼板1を連続的に搬送(搬送方向10)しながら多数のロール群(図示せず)により管状に成形し、その突合せ端面4を高周波コイル2より誘導加熱し溶融すると共に、スクイズロール3よりアップセットを加えて、突合せ端面4に溶接シーム5を形成し電縫鋼管とする。なお、ここでは、電縫溶接を高周波コイル2による誘導加熱はで行っているが、コンタクトチップによる直接通電加熱で行うことも可能である。   In a normal ERW pipe manufacturing process, the steel sheet 1 is formed into a tubular shape by a large number of rolls (not shown) while being continuously conveyed (in the conveying direction 10), and the butted end surface 4 is induction-heated by the high-frequency coil 2. Then, an upset is added from the squeeze roll 3 to form a weld seam 5 on the butt end face 4 to obtain an electric resistance welded steel pipe. In addition, here, the electric resistance welding is performed by induction heating using the high-frequency coil 2, but it is also possible to perform direct electric heating using a contact tip.

この電縫鋼管の製造プロセスにおける電縫溶接では、突合せ端面4が大気にさらされて突合せ端面4の表面で酸化物が生成され、スクイズアウトされずに残留することにより溶接部にペネトレーターと称する酸化物起因の溶接欠陥が発生することがある。   In the electric resistance welding in the process of manufacturing the electric resistance welded steel pipe, the butt end face 4 is exposed to the air, and an oxide is generated on the surface of the butt end face 4 and remains without being squeezed out. An object-induced welding defect may occur.

本発明では、上記溶接欠陥の発生を抑制するための手段として、電縫溶接する際に、少なくとも溶接点から溶接方向の上流側に給電距離の1/5だけ離れた位置までの全範囲にわたる突合せ端面4に対して、第1に、還元性雰囲気で、かつ1400℃以上の温度を有する還元性高温燃焼炎を流速が200m/sの条件で吹き付けること、また、第2に、非酸化性雰囲気で、かつ1400℃以上の温度を有する非酸化性高温燃焼炎を流速が30〜230m/sの条件で吹き付けること、を特徴とする。   In the present invention, as means for suppressing the occurrence of the welding defect, a butt joint over the entire range from at least the welding point to a position separated by 1/5 of the power supply distance from the welding point to the upstream side in the welding direction during the electric resistance welding. First, a reducing high-temperature combustion flame having a temperature of 1400 ° C. or more is sprayed on the end face 4 at a flow rate of 200 m / s, and secondly, a non-oxidizing atmosphere. And a non-oxidizing high-temperature combustion flame having a temperature of 1400 ° C. or more is blown at a flow rate of 30 to 230 m / s.

この還元性高温燃焼炎または非酸化性高温プラズマ9の吹き付けにより、電縫溶接時の突合せ端面4を非酸化性雰囲気で、かつ1400℃(鋼の融点)以上の温度とし、突合せ端面4の表面における酸化反応を抑制することによって、酸化物を減少させると共に、酸化物を高温状態で突合せ端面からの排出を促進させる。   By blowing the reducing high-temperature combustion flame or the non-oxidizing high-temperature plasma 9, the butt end face 4 at the time of the electric resistance welding is set in a non-oxidizing atmosphere and at a temperature of 1400 ° C. (melting point of steel) or more. By suppressing the oxidation reaction in the above, the oxide is reduced and the oxide is promoted to be discharged from the butt end face at a high temperature.

また、図1において、溶接点7から溶接方向の上流側に給電距離の1/5だけ離れた位置までの全範囲6は、電縫溶接時に突合せ端面の加熱温度が800℃以上となり表面酸化による溶接欠陥の発生が顕著となることを発明者は実験等で確認している。ここで、溶接方向の上流側とは、図1に示される溶接鋼板1の搬送方向10の方向であり、溶接方向とは逆の方向を意味する。   In FIG. 1, the entire range 6 from the welding point 7 to a position separated by 給 電 of the power supply distance upstream in the welding direction from the welding point 7 has a heating temperature of the butt end face of 800 ° C. or higher during the electric resistance welding, and the surface is oxidized. The inventors have confirmed through experiments and the like that the occurrence of welding defects is significant. Here, the upstream side of the welding direction is the direction of the transport direction 10 of the welded steel sheet 1 shown in FIG. 1 and means a direction opposite to the welding direction.

したがって、本発明では、上記作用による溶接欠陥の抑制効果を得るために、還元性雰囲気で、かつ1400℃以上の温度を有する還元性高温燃焼炎9または非酸化性雰囲気で、かつ1400℃以上の温度を有する非酸化性高温プラズマ9を吹き付ける範囲を、少なくとも溶接点から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲14(図2、参照)にある突合せ端面4に規定する。   Therefore, in the present invention, in order to obtain the effect of suppressing welding defects by the above action, in a reducing atmosphere, in a reducing high-temperature combustion flame 9 having a temperature of 1400 ° C. or more, or in a non-oxidizing atmosphere, and at a temperature of 1400 ° C. or more. The range in which the non-oxidizing high-temperature plasma 9 having a temperature is blown is defined in the butt end face 4 in the entire range 14 (see FIG. 2) at least from the welding point to the position upstream of the welding by a distance of 1/5 of the power supply distance. I do.

本発明において、還元性高温燃焼炎9または非酸化性高温プラズマ9の温度は、突合せ端面4の表面における酸化反応を抑制しつつ、既に生成していた酸化物を高温状態で突合せ端面から排出させる作用を促進し、酸化物に起因する溶接欠陥を充分抑制するためには、1400℃以上にする必要がある。この温度の上限は、特に限定する必要はなく、高温になるほど既に生成していた酸化物を高温状態で突合せ端面から排出させる作用は促進するため、溶接欠陥を低減するために好ましいが、還元性高温燃焼炎ではガス燃焼理論上約3000℃が上限温度となり、非酸化性高温プラズマでは理論上約10000℃が上限温度となる。   In the present invention, the temperature of the reducing high-temperature combustion flame 9 or the non-oxidizing high-temperature plasma 9 suppresses an oxidation reaction on the surface of the butt end face 4 and discharges already generated oxide from the butt end face in a high temperature state. In order to promote the action and sufficiently suppress welding defects caused by oxides, the temperature must be 1400 ° C. or higher. The upper limit of the temperature does not need to be particularly limited. The higher the temperature, the more the action of discharging the already generated oxide from the butt end face in a high temperature state is promoted. Therefore, it is preferable to reduce welding defects. In the case of a high-temperature combustion flame, the upper limit temperature is about 3000 ° C. in theory of gas combustion, and in the case of non-oxidizing high-temperature plasma, the upper limit temperature is about 10,000 ° C. in theory.

本発明において、還元性高温燃焼炎9及び非酸化性高温プラズマ9をそれぞれ所定流速で吹き付けた際に形成される高温雰囲気は、突合せ端面4の表面における酸化反応を抑制させるために充分な非酸化性を有しているが、この作用効果を安定して得るために、好ましくは還元性高温燃焼炎または非酸化性高温プラズマのガス組成を以下のように規定するのが望ましい。   In the present invention, the high-temperature atmosphere formed when each of the reducing high-temperature combustion flame 9 and the non-oxidizing high-temperature plasma 9 is blown at a predetermined flow rate has a sufficient non-oxidizing property to suppress an oxidation reaction on the surface of the butt end face 4. In order to stably obtain this function and effect, it is desirable to define the gas composition of the reducing high-temperature combustion flame or the non-oxidizing high-temperature plasma as follows.

還元性高温燃焼炎は、液体燃料(灯油など)あるいは気体燃料(アセチレン、プロパンなど)(CxyM,M:C及びH以下の第3成分)と酸素(O2:酸素ガスあるいは空気中の酸素)の下記(1)式に示される燃焼反応によって形成される。
xyM+(1/2)zO2→xCO2+(1/2)yH2O+M+ηCO+ξH
・ ・ ・(1)
ただし、M:燃料中のC及びH以外のその他成分、
z<4x+y、x>0、y>0、z>0、η>0、ξ>0
The reducing high temperature combustion flame, liquid fuel (kerosene) or gaseous fuel (acetylene, propane, etc.) (C x H y M, M: a third component: C and H) and oxygen (O 2: oxygen gas or air (Oxygen in) is formed by a combustion reaction represented by the following formula (1).
C x H y M + (1/2 ) zO 2 → xCO 2 + (1/2) yH 2 O + M + ηCO + ξH
・ ・ ・ (1)
However, M: other components other than C and H in the fuel,
z <4x + y, x> 0, y> 0, z> 0, η> 0, ξ> 0

上記(1)式において、z=4x+yを満たす場合は、下記(2)式に示される完全燃焼反応となりその燃焼炎はCOまたはHを含まず中性となる。この条件の場合は、還元性高温燃焼炎を突合せ端面に吹き付ける際には空気の巻き込みの影響が大きいため突合せ端面の高温雰囲気を安定して非酸化性に維持するために好ましくない。
xyM+(1/2)zO2→xCO2+(1/2)yH2O+M
・ ・ ・(2)
In the above equation (1), when z = 4x + y is satisfied, a complete combustion reaction represented by the following equation (2) occurs, and the combustion flame becomes neutral without containing CO or H. Under these conditions, when the reducing high-temperature combustion flame is blown to the butt end face, the influence of air entrapment is large, which is not preferable because the high-temperature atmosphere at the butt end face is stably maintained to be non-oxidizing.
C x H y M + (1/2 ) zO 2 → xCO 2 + (1/2) yH 2 O + M
・ ・ ・ (2)

したがって、本発明では、還元性高温燃焼炎は、上記(1)の反応式において、z<4x+yの条件を満たすと共に、CO:1〜5体積%、及び、H:1〜10体積%のうちの1種または2種を含有するのが好ましい。還元性高温燃焼炎のCOの含有量及びHの含有量の下限:1体積%は、これより低い場合には突合せ端面における酸化反応を充分に抑制できなくなるため、1体積%とした。一方、上記CO含有量の上限:5体積%及びHの含有量の上限:10体積%は、これらより高い場合には上記(1)式の燃焼反応で生成するH2ガスの増加により燃焼ガス組成の理論上の爆発限界を超えるため安全性の観点から好ましくないため、それぞれ5体積%,10体積%とした。 Therefore, in the present invention, the reducing high-temperature combustion flame satisfies the condition of z <4x + y in the above reaction formula (1), and the CO: 1 to 5% by volume and H: 1 to 10% by volume. It is preferable to contain one or two of the following. The lower limit of the content of CO and the content of H in the reducing high-temperature combustion flame: 1 vol% is set to 1 vol% since an oxidation reaction at the butt end face cannot be sufficiently suppressed if the content is lower than 1 vol%. On the other hand, if the upper limit of the CO content is 5% by volume and the upper limit of the H content is 10% by volume, the H 2 gas generated by the combustion reaction of the above formula (1) increases the combustion gas if it is higher than these. Since it exceeds the theoretical explosion limit of the composition and is not preferable from the viewpoint of safety, it is set to 5% by volume and 10% by volume, respectively.

非酸化性高温プラズマは、Ar単独ガス、または、Arを主ガスとし、さらにプラズマの熱伝導、エンタルピー、熱伝達係数を上げるためにN、H及びHeのうちの少なくと一種以上を添加した混合ガスを用いるのが好ましい。
Arの主ガス中のHは、突合せ端面における酸化反応を抑制する作用を有し、この作用を十分に得るためにはHの含有量を5体積%以上とするのが好ましい。その含有量の上限は特に限定する必要はないが、通常、40%を超えるとプラズマが不安定になるためその上限は40%とするのが好ましい。
The non-oxidizing high-temperature plasma contains Ar alone or Ar as a main gas, and at least one or more of N 2 , H 2, and He is added to increase the thermal conductivity, enthalpy, and heat transfer coefficient of the plasma. It is preferable to use a mixed gas prepared as described above.
H 2 in the main gas of Ar has an action of suppressing the oxidation reaction at the butted end faces, and in order to sufficiently obtain this action, the content of H 2 is preferably set to 5% by volume or more. The upper limit of the content does not need to be particularly limited, but usually, if it exceeds 40%, the plasma becomes unstable, so the upper limit is preferably set to 40%.

Arの主ガス中のN及びHeは、プラズマの熱伝導、熱伝達係数を向上させ鋼板端面の加熱能力を高めるためにそれぞれを20体積%以上または10体積%以上添加するのが好ましい。それらの含有量の上限は特に限定する必要はないが、通常、何れも50%を超えるとプラズマが不安定になるためその上限は何れも50%とするのが好ましい。 N 2 and He in the main gas of Ar are preferably added in an amount of 20% by volume or more or 10% by volume or more in order to improve the heat conduction and heat transfer coefficient of the plasma and increase the heating capability of the steel plate end face. The upper limits of these contents need not be particularly limited, but generally, if any of them exceeds 50%, the plasma becomes unstable, so that the upper limit is preferably set to 50%.

また、本発明では、還元性高温燃焼炎を突合せ端面に吹き付ける際の流速を、突合せ端面における酸化反応を抑制させる作用に加えて、この流体のせん断力を利用して既に生成していた突合せ端面から酸化物の排出を促進させる効果をより高めるために、200m/s以上とする。流速の上限は特に規定する必要はないが、600m/sを超えると、電縫溶接時の溶融金属からスパッタの発生が顕著になるため、その上限を600m/sとするのがより好ましい。   Further, in the present invention, in addition to the action at the time of blowing the reducing high-temperature combustion flame to the butt end face, in addition to the action of suppressing the oxidation reaction at the butt end face, the butt end face that has already been generated using the shear force of this fluid. In order to further enhance the effect of promoting the emission of oxides from, it is set to 200 m / s or more. The upper limit of the flow velocity need not be particularly defined, but if it exceeds 600 m / s, the generation of spatter from the molten metal during electric resistance welding becomes remarkable, so the upper limit is more preferably set to 600 m / s.

一方、プラズマを突合せ端面に吹き付ける際は、酸化物排出のための流体せん断力を得るために流速を増大すると、突合せ端面周囲の空気の巻き込みが大きくなり非酸化性雰囲気を確保し、酸化反応を抑制することが困難となる。さらには、溶融金属のスパッタ発生が顕著となり、飛散した溶融金属の酸化物による溶接部欠陥の増加の原因となる。このような理由から、プラズマを突合せ端面に吹き付ける際の流速の上限を230m/sとする。一方、その流速の下限は、突合せ端面の高温雰囲気を非酸化性雰囲気に維持するとともに、電縫溶接に使用するスクイズロールまたは給電装置の冷却水を排除し、冷却水による酸化を抑制するために、30m/sとする。   On the other hand, when the plasma is blown to the butt end face, if the flow rate is increased to obtain a fluid shear force for discharging the oxide, the entrainment of air around the butt end face increases and a non-oxidizing atmosphere is secured, and the oxidation reaction is started. It is difficult to control. Further, spatter of molten metal becomes remarkable, which causes an increase in weld defects due to scattered oxide of molten metal. For such a reason, the upper limit of the flow velocity at the time of blowing the plasma to the butt end face is set to 230 m / s. On the other hand, the lower limit of the flow velocity is to maintain the high-temperature atmosphere at the butt end face in a non-oxidizing atmosphere, to eliminate the cooling water of the squeeze roll or the power supply device used for the electric resistance welding, and to suppress the oxidation by the cooling water. , 30 m / s.

上記還元性高温燃焼炎は、例えば、工業的に広く用いられている溶射用のHVOF(High Velocity Oxygen Fuel)装置を用いて生成することができる。   The reducing high-temperature combustion flame can be generated, for example, by using an HVOF (High Velocity Oxygen Fuel) apparatus for thermal spraying that is widely used industrially.

このHVOF装置で生成される燃焼炎は、通常のガスバーナーなどで生成される燃焼炎よりもガス流速が速く、超音速域となるフレーム長が200mm以上で、かつフレーム径が15mm以上である特徴をもつため、電縫溶接時のシーム倣い性が良く、鋼板板厚及び突合せ角度等の変動時にも比較的容易に追従できる熱源である。   The combustion flame generated by this HVOF apparatus has a gas flow velocity higher than that of a combustion flame generated by a normal gas burner, and has a supersonic range of a flame length of 200 mm or more and a flame diameter of 15 mm or more. Therefore, it is a heat source that has a good seam copying property at the time of electric resistance welding and can relatively easily follow even when the thickness of the steel plate and the butt angle are changed.

上記還元性高温プラズマは、例えば、工業的に広く用いられている溶射用の直流プラズマ、高周波プラズマ、または、ハイブリッドプラズマ装置を用いて生成することができる。これらのプラズマは、通常のガスバーナーなどで生成される燃焼炎よりもガス温度が高く、高温域のフレーム長さが100mm以上で、かつフレーム径10mm以上である特徴をもつため、電縫溶接時のシーム倣い性が良く、鋼板板厚及び突合せ角度等の変動時にも比較的容易に追従できる熱源である。   The reducing high-temperature plasma can be generated using, for example, a DC plasma for thermal spraying, a high-frequency plasma, or a hybrid plasma apparatus widely used industrially. These plasmas have a characteristic that the gas temperature is higher than the combustion flame generated by a normal gas burner and the like, and the flame length in a high temperature region is 100 mm or more and the flame diameter is 10 mm or more. Is a heat source that has a good seam copying property, and can relatively easily follow even when the thickness of the steel sheet and the butting angle change.

このような還元性高温燃焼炎または非酸化性高温プラズマの発生装置8を図1に示すように鋼板1の突合せ端面4の直上に設け、還元性高温燃焼炎9または非酸化性高温プラズマ9が少なくとも溶接点7から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲14(図2、参照)にわたる突合せ端面4に吹き付けることにより、生成した酸化物の還元促進もしくは燃焼炎流体により排出し、溶接欠陥の原因となる酸化物を低減することが可能となる。その結果、溶接部の低温靭性、耐食性、冷間加工性の劣化も殆ど見られない良好な特性を有する電縫鋼管の製造が可能となる。   Such a reducing high-temperature combustion flame or non-oxidizing high-temperature plasma generating device 8 is provided immediately above the butted end face 4 of the steel sheet 1 as shown in FIG. By spraying the butt end surface 4 over the entire range 14 (see FIG. 2) at least from the welding point 7 to a position away from the welding point 7 by 1/5 of the power supply distance, reduction of generated oxides or combustion flame fluid It is possible to reduce oxides that are discharged and cause welding defects. As a result, it becomes possible to manufacture an electric resistance welded steel pipe having good characteristics with almost no deterioration in the low-temperature toughness, corrosion resistance, and cold workability of the welded portion.

以下、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

電縫鋼管の製造プロセスにおいて、板厚5.3mm、板幅275mmの9Cr−2.5Ni−1.0Mo系高Cr鋼板を用いてスクイズロールの冷却水による水噴霧条件下で電縫溶接する際に、突合せ端面に対して組成及び還元性の異なる燃焼炎を吹き付け範囲を変えて吹き付けながら電縫溶接を行い、溶接部の溶接欠陥の発生率を調査した。その試験条件及び結果を表1に示す。   In the process of manufacturing an electric resistance welded steel pipe, when performing electric resistance welding under the condition of water spray by cooling water of a squeeze roll using a 9Cr-2.5Ni-1.0Mo high Cr steel plate having a thickness of 5.3mm and a width of 275mm. Next, ERW welding was performed while spraying combustion flames having different compositions and reducing properties on the butt end faces while changing the spraying range, and the occurrence rate of welding defects in the welded portions was investigated. Table 1 shows the test conditions and results.

なお、電縫溶接の条件は、溶接速度:33m/min、溶接入熱量:570kW(溶接現象としては2種下限)、給電距離(スクイズロール側のコイル端部と溶接点との距離):160mm、アプセット量:3mm(周長)、平均アペックス角度:7°、溶接点にかかる水の噴霧量:約400l/minである。   The conditions of the electric resistance welding were as follows: welding speed: 33 m / min, welding heat input: 570 kW (the lower limit of two types of welding phenomena), power supply distance (distance between the coil end on the squeeze roll side and the welding point): 160 mm The upset amount: 3 mm (perimeter), the average apex angle: 7 °, and the spray amount of water applied to the welding point: about 400 l / min.

また、燃焼炎の発生装置には、日本ユテク社製JP5000溶射ガンを用い、燃焼炎の原料は灯油と酸素である。燃焼炎のトーチの配置、燃焼炎の吹き付け範囲の様子を図2に示す。図2において、トーチの角度(燃焼炎の吹き付け角度)11をφ°、トーチ先端の高さ(トーチ先端から突合せ端面までの距離)12をH mm、フレーム径13をF mmとすると、燃焼炎の吹き付け範囲14の溶接方向距離は、F/sin(φ°)と求められる。また、燃焼炎の吹き付け範囲14の溶接方向の最上流側位置15及び最下流側位置16は、それぞれトーチ先端から溶接下流側にH/tan(φ°)だけ離れた位置及びトーチ先端から溶接下流側にH/tan(φ°)+F/sin(φ°)だけ離れた位置と求められる。   In addition, a JP5000 thermal spray gun manufactured by Utech Japan Co., Ltd. was used as a combustion flame generator, and the raw materials of the combustion flame were kerosene and oxygen. FIG. 2 shows the arrangement of the torch of the combustion flame and the state of the spraying range of the combustion flame. In FIG. 2, when the torch angle (combustion flame blowing angle) 11 is φ °, the torch tip height (distance from the torch tip to the butt end face) 12 is H mm, and the frame diameter 13 is F mm, the combustion flame Is determined as F / sin (φ °). The most upstream position 15 and the most downstream position 16 in the welding direction of the combustion flame spraying range 14 are respectively located at a position H / tan (φ °) away from the tip of the torch to the welding downstream side and at the welding downstream from the tip of the torch. Side, and a position separated by H / tan (φ °) + F / sin (φ °).

本実施例では、トーチ先端の高さ12をH=10mm、フレーム径13をF=15mmと一定とし、トーチの角度(燃焼炎吹き付け角度)11を調整することにより表1に示されるように吹き付け範囲14の溶接方向の最上流側位置15及び最下流側位置16を変化させた。   In the present embodiment, the height 12 of the torch tip is fixed at H = 10 mm, the frame diameter 13 is fixed at F = 15 mm, and the angle of the torch (combustion flame blowing angle) 11 is adjusted to spray as shown in Table 1. The most upstream position 15 and the most downstream position 16 of the range 14 in the welding direction were changed.

なお、表1に示される、吹き付け範囲の溶接方向の最上流側位置15及び最下流側位置16は、溶接点7を基準(0)として、溶接方向の上流側を+とし、下流側を−と定義する。なお、この試験では、溶接点7の位置は、スクイズロール3の回転軸17の位置から溶接方向の上流側に35mm離れた位置であった。   As shown in Table 1, the most upstream position 15 and the most downstream position 16 in the welding direction in the spraying range are defined such that the welding point 7 is a reference (0), the upstream in the welding direction is +, and the downstream is-. Is defined. In this test, the position of the welding point 7 was a position 35 mm away from the position of the rotary shaft 17 of the squeeze roll 3 on the upstream side in the welding direction.

溶接欠陥率は、溶接後の電縫鋼管の溶接部からシャルピー試験片を切り出して、その溶接突合せ部に先端径:0.25R、深さ:0.5mmのノッチを形成し、160℃の油中でシャルピー試験を実施した後、延性破断した部分の破面観察を行い、溶接面積に対するペネトレーター(酸化物に起因する溶接欠陥)の面積率の測定値と定義する。溶接部の品質評価は、この溶接欠陥率が0.05を超える場合を“不良”、0.05以下の場合を“良好”と判断した。   The welding defect rate was determined by cutting out a Charpy test specimen from the welded portion of the ERW steel pipe after welding, forming a notch with a tip diameter of 0.25R and a depth of 0.5 mm at the weld butt, and using a 160 ° C oil. After conducting a Charpy test in the inside, a fracture surface of a portion where ductile fracture has occurred is observed and defined as a measured value of an area ratio of a penetrator (a welding defect caused by an oxide) to a welding area. The quality evaluation of the welded portion was judged as “poor” when the welding defect rate exceeded 0.05, and “good” when it was 0.05 or less.

Figure 2004298961
Figure 2004298961

表1の本発明例であるNo.1〜8に示すように還元性雰囲気でかつ温度:1400℃以上の燃焼炎を溶接点から溶接方向の上流側に少なくとも給電距離の1/5(この実施例では、給電距離が160mmのため、その1/5である32mm)だけ離れた位置までの全範囲に流速が200m/s以上の条件で吹き付けることにより、溶接欠陥率が0.05以下となり、溶接欠陥のない良好な溶接部が得られることが判る。
一方、No.9〜17は比較例であり、No.9〜13、13はプラズマ吹き付け範囲の最上流側位置又は最下流側位置、No.14及び15は雰囲気の還元性、No.16及び17は燃焼炎の温度及び流速がそれぞれ本発明の規定範囲外の条件であるため、溶接欠陥率が高く、良好な溶接部が得られなかった。
In Table 1, No. 1 is an example of the present invention. As shown in FIGS. 1 to 8, a combustion flame in a reducing atmosphere and at a temperature of 1400 ° C. or higher is at least 1 / of the power supply distance upstream from the welding point in the welding direction (in this embodiment, since the power supply distance is 160 mm, By spraying at a flow velocity of 200 m / s or more over the entire area up to a position distant by 1/5 (32 mm), the welding defect rate becomes 0.05 or less, and a good weld without welding defects is obtained. It turns out that it is possible.
On the other hand, No. Nos. 9 to 17 are comparative examples. Nos. 9 to 13 and 13 are the most upstream position or the most downstream position of the plasma spraying range. Nos. 14 and 15 are the reducing properties of the atmosphere; In Nos. 16 and 17, the temperature and flow velocity of the combustion flame were out of the specified range of the present invention, respectively.

電縫鋼管の製造プロセスにおいて、実施例1と同じサイズ、同じ成分の高Cr鋼板を用いてスクイズロールの冷却水による水噴霧条件下で電縫溶接する際に、突合せ端面に対してガス組成の異なるプラズマを吹き付け範囲を変えて吹き付けながら電縫溶接を行い、溶接部の溶接欠陥の発生率を調査した。その試験条件及び結果を表2に示す。   In the manufacturing process of the ERW steel pipe, when performing ERW welding using high Cr steel plates having the same size and the same components as in Example 1 under water spray conditions using cooling water of a squeeze roll, the gas composition of the butt end face is ERW welding was performed while spraying different plasmas while changing the spraying range, and the occurrence rate of welding defects in the welded portions was investigated. Table 2 shows the test conditions and results.

なお、電縫溶接条件及び水噴霧条件は、実施例1と同じ条件で行なった。
また、プラズマの発生装置は、PRAXAIR社製2086A溶射ガンを用い、プラズマのAr流量を35l/min一定とし、H2、He、N2の1種又は2種以上の何れかの流量を調整させてそれぞれのガスの混合比率を変化させた。プラズマトーチの配置、プラズマの吹き付け範囲の様子を図2に示す。本実施例では、図2において、プラズマ径13をF=8mmと一定とし、トーチの角度(プラズマ吹き付け角度)11とトーチ先端の高さ12を調整することにより表2に示されるように吹き付け範囲14の溶接方向の最上流側位置15及び最下流側位置16を変化させた。
Note that the electric resistance welding conditions and the water spraying conditions were the same as in Example 1.
In addition, the plasma generator uses a PRAXAIR 2086A thermal spray gun, the Ar flow rate of plasma is fixed at 35 l / min, and the flow rate of one or more of H 2 , He, and N 2 is adjusted. Thus, the mixing ratio of each gas was changed. FIG. 2 shows the arrangement of the plasma torch and the state of the plasma spraying range. In this embodiment, as shown in Table 2, the plasma diameter 13 is fixed at F = 8 mm and the torch angle (plasma spray angle) 11 and the torch tip height 12 are adjusted in FIG. The most upstream position 15 and the most downstream position 16 in the welding direction 14 were changed.

なお、表2に示される、吹き付け範囲の溶接方向の最上流側位置15及び最下流側位置16の定義、溶接点7の位置、溶接欠陥率及び溶接部の品質評価も実施例1と同様に定義する。   In addition, the definition of the most upstream position 15 and the most downstream position 16 in the welding direction of the spraying range, the position of the welding point 7, the welding defect rate, and the quality evaluation of the welded portion shown in Table 2 are the same as in Example 1. Define.

Figure 2004298961
Figure 2004298961

表2の本発明例であるNo.1〜6に示すように非酸化性雰囲気でかつ温度:1400℃以上の燃焼炎を溶接点から溶接方向の上流側に少なくとも給電距離の1/5(この実施例では、給電距離が160mmのため、その1/5である32mm)だけ離れた位置までの全範囲に流速が30〜230m/sの条件で吹き付けることにより、溶接欠陥率が0.05以下となり、溶接欠陥のない良好な溶接部が得られることが判る。
一方、No.7〜11は比較例であり、No.7及び8はプラズマ吹き付け範囲の最上流側位置及び/又は最下流側位置、No.9はプラズマ温度、No.10及び11はプラズマの流速がそれぞれ本発明の規定範囲外の条件であるため、溶接欠陥率が高く、良好な溶接部が得られなかった。
In Table 2, No. 1 is an example of the present invention. As shown in Nos. 1 to 6, a combustion flame in a non-oxidizing atmosphere and at a temperature of 1400 ° C. or higher is at least 1 / of the power supply distance upstream from the welding point in the welding direction (in this embodiment, the power supply distance is 160 mm. By spraying the gas over the entire range up to a position distant by 1/5 (32 mm) at a flow rate of 30 to 230 m / s, the welding defect rate becomes 0.05 or less, and a good welding portion without welding defects is obtained. Is obtained.
On the other hand, No. Nos. 7 to 11 are comparative examples. Nos. 7 and 8 are the most upstream position and / or the most downstream position of the plasma spraying range. 9 is the plasma temperature; In Nos. 10 and 11, the flow rates of the plasma were out of the specified range of the present invention.

本発明による非酸化性高温燃焼炎または非酸化性高温プラズマを用いた電縫鋼管の製造方法を説明するための模式図である。FIG. 3 is a schematic view for explaining a method for manufacturing an electric resistance welded steel pipe using a non-oxidizing high-temperature combustion flame or a non-oxidizing high-temperature plasma according to the present invention. 燃焼炎のトーチの配置、燃焼炎の吹き付け範囲の様子を示す図である。It is a figure which shows arrangement | positioning of the torch of a combustion flame, and the state of the blowing range of a combustion flame.

符号の説明Explanation of reference numerals

1 鋼板
2 高周波コイル
3 スクイズロール
4 突合せ端面
5 溶接シーム
6 給電距離
7 溶接点
8 非酸化性高温燃焼炎または非酸化性高温プラズマの発生装置
9 非酸化性高温燃焼炎または非酸化性高温プラズマ
10 搬送方向(溶接方向の逆方向)
11 トーチの角度
12 トーチ先端の高さ
13 フレーム径
14 吹き付け範囲
15 吹き付け範囲の最上流側位置
16 吹き付け範囲の最下流側位置
17 スクイズロールの回転軸位置
DESCRIPTION OF SYMBOLS 1 Steel plate 2 High frequency coil 3 Squeeze roll 4 Butt end face 5 Weld seam 6 Power supply distance 7 Welding point 8 Non-oxidizing high-temperature combustion flame or non-oxidizing high-temperature plasma generating device 9 Non-oxidizing high-temperature burning flame or non-oxidizing high-temperature plasma 10 Transfer direction (reverse direction of welding direction)
11 Torch Angle 12 Torch Tip Height 13 Frame Diameter 14 Spraying Range 15 Most Upstream Position in Spraying Range 16 Most Downstream Position in Spraying Range 17 Rotary Axis Position of Squeeze Roll

Claims (4)

電縫鋼管の製造方法において、鋼板を管状に成形加工し、その突合せ端面を電縫溶接する際に、少なくとも溶接点から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲にわたる突合せ端面に対して、還元性雰囲気で、かつ1400℃以上の温度を有する還元性高温燃焼炎を流速が200m/s以上の条件で吹き付けることを特徴とする溶接部品質の優れた電縫鋼管の製造方法。 In the method for manufacturing an electric resistance welded steel pipe, a steel sheet is formed into a tubular shape, and when the butted end faces are subjected to electric resistance welding, the steel sheet covers the entire range from at least a welding point to a position upstream of the welding by a distance of 1/5 of a power supply distance. An electric resistance welded steel pipe excellent in weld quality, characterized in that a reducing high-temperature combustion flame having a temperature of 1400 ° C. or more is blown to the butt end face at a flow rate of 200 m / s or more. Production method. 電縫鋼管の製造方法において、鋼板を管状に成形加工し、その突合せ端面を電縫溶接する際に、少なくとも溶接点から溶接上流側に給電距離の1/5だけ離れた位置までの全範囲にわたる突合せ端面に対して、非酸化性雰囲気で、かつ1400℃以上の温度を有する非酸化性高温プラズマを流速が30〜230m/sの条件で吹き付けることを特徴とする溶接部品質の優れた電縫鋼管の製造方法。 In the method for manufacturing an electric resistance welded steel pipe, a steel sheet is formed into a tubular shape, and when the butted end faces are subjected to electric resistance welding, the steel sheet covers the entire range from at least a welding point to a position upstream of the welding by a distance of 1/5 of a power supply distance. A non-oxidizing atmosphere and a non-oxidizing high-temperature plasma having a temperature of 1400 ° C. or more are blown to the butt end surface at a flow rate of 30 to 230 m / s, and the electric resistance is excellent in weld quality. Manufacturing method of steel pipe. 前記還元性高温燃焼炎は、CO:1〜5体積%、及び、H:1〜10体積%のうちの1種または2種を含有し、下記(1)式による燃焼反応で生成されることを特徴とする請求項1記載の溶接部品質の優れた電縫鋼管の製造方法。
xyM+(1/2)zO2→xCO2+(1/2)yH2O+M+ηCO+ξH
・ ・ ・(1)
ただし、M:燃料中のC及びH以外のその他成分、
z<4x+y、x>0、y>0、z>0、η>0、ξ>0
The reducing high-temperature combustion flame contains one or two of CO: 1 to 5% by volume and H: 1 to 10% by volume, and is generated by a combustion reaction according to the following formula (1). The method for producing an electric resistance welded steel pipe according to claim 1, wherein the quality of the welded part is excellent.
C x H y M + (1/2 ) zO 2 → xCO 2 + (1/2) yH 2 O + M + ηCO + ξH
・ ・ ・ (1)
However, M: other components other than C and H in the fuel,
z <4x + y, x> 0, y> 0, z> 0, η> 0, ξ> 0
前記非酸化性高温プラズマは、Ar単独ガス、または、ArとN、H及びHeのうちの少なくとも一種以上との混合ガスであることを特徴とする請求項2記載の溶接部品質の優れた電縫鋼管の製造方法。 The non-oxidizing high temperature plasma, Ar alone gas or a superior weld quality according to claim 2, characterized in that a mixed gas of at least one or more of the Ar and N 2, H 2 and He Manufacturing method of ERW steel pipe.
JP2004049729A 2003-03-19 2004-02-25 Manufacturing method of ERW steel pipe with excellent weld quality Expired - Fee Related JP4171433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049729A JP4171433B2 (en) 2003-03-19 2004-02-25 Manufacturing method of ERW steel pipe with excellent weld quality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003075276 2003-03-19
JP2004049729A JP4171433B2 (en) 2003-03-19 2004-02-25 Manufacturing method of ERW steel pipe with excellent weld quality

Publications (2)

Publication Number Publication Date
JP2004298961A true JP2004298961A (en) 2004-10-28
JP4171433B2 JP4171433B2 (en) 2008-10-22

Family

ID=33421854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049729A Expired - Fee Related JP4171433B2 (en) 2003-03-19 2004-02-25 Manufacturing method of ERW steel pipe with excellent weld quality

Country Status (1)

Country Link
JP (1) JP4171433B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291859A (en) * 2006-04-20 2007-11-08 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel injection pipe for diesel engine
JP2010082697A (en) * 2008-09-02 2010-04-15 Nippon Steel Corp Method for manufacturing electric resistance welded steel tube excellent in quality of weld zone
WO2014033931A1 (en) 2012-08-31 2014-03-06 新日鐵住金株式会社 Method for producing plasma-shielded electric resistance welded steel pipe
US9050681B2 (en) 2007-03-02 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Method of production of electric resistance welded steel pipe and high Si or high Cr electric resistance welded steel pipe
JP6458907B1 (en) * 2018-01-22 2019-01-30 新日鐵住金株式会社 ERW steel pipe manufacturing apparatus and ERW steel pipe manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291859A (en) * 2006-04-20 2007-11-08 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel injection pipe for diesel engine
US9050681B2 (en) 2007-03-02 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Method of production of electric resistance welded steel pipe and high Si or high Cr electric resistance welded steel pipe
EP2133160A4 (en) * 2007-03-02 2017-01-25 Nippon Steel & Sumitomo Metal Corporation Method for producing steel conduit tube and high si component or high cr component steel conduit tube
JP2010082697A (en) * 2008-09-02 2010-04-15 Nippon Steel Corp Method for manufacturing electric resistance welded steel tube excellent in quality of weld zone
WO2014033931A1 (en) 2012-08-31 2014-03-06 新日鐵住金株式会社 Method for producing plasma-shielded electric resistance welded steel pipe
JP5664835B2 (en) * 2012-08-31 2015-02-04 新日鐵住金株式会社 Method for manufacturing plasma shielded electric resistance welded steel pipe
CN104487199A (en) * 2012-08-31 2015-04-01 新日铁住金株式会社 Method for producing plasma-shielded electric resistance welded steel pipe
JP6458907B1 (en) * 2018-01-22 2019-01-30 新日鐵住金株式会社 ERW steel pipe manufacturing apparatus and ERW steel pipe manufacturing method
WO2019142359A1 (en) 2018-01-22 2019-07-25 日本製鉄株式会社 Electric resistance welded steel pipe manufacturing device and electric resistance welded steel pipe manufacturing method
KR20200064128A (en) 2018-01-22 2020-06-05 닛폰세이테츠 가부시키가이샤 Electrode steel pipe manufacturing apparatus and electrorepeated steel pipe manufacturing method
CN111372712A (en) * 2018-01-22 2020-07-03 日本制铁株式会社 Electric resistance welded steel pipe manufacturing apparatus and electric resistance welded steel pipe manufacturing method

Also Published As

Publication number Publication date
JP4171433B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
KR101120124B1 (en) Method for producing steel conduit tube and high si component or high cr component steel conduit tube
US9677692B2 (en) Welded steel pipe joined with high-energy-density beam and method for producing the same
JP4786402B2 (en) UOE steel pipe manufacturing method
JPH06339775A (en) Welding method of ni-ni alloy material
JP6391154B2 (en) Iron-base alloy and alloy welding method
JP4757696B2 (en) UOE steel pipe manufacturing method
CN109396612A (en) A kind of UNS N08825 nickel-base material pipeline solid core welding wire consumable electrode pulse MIG welding procedure
WO2023179061A1 (en) Manufacturing process for plunger pump casing, plunger pump casing, and plunger pump
JP2013150992A (en) Build-up welding method by tig welding
JP4028861B2 (en) Manufacturing method of ERW steel pipe with excellent weld quality
CN111037065B (en) Welding method for inner hole welding of tube plate of small-aperture heat exchange tube
JP2004298961A (en) Method for manufacturing electric resistance welded steel tube excellent in quality of weld zone
JP5316320B2 (en) ERW steel pipe manufacturing method with excellent weld quality
JP2010105045A (en) Method for producing electric resistance welded steel pipe
CN108581139A (en) A kind of welding method of oil and gas transmission bimetal compound pipeline
JP2008049349A (en) Gas cutting method
JP4051042B2 (en) ERW steel pipe containing Cr and method for producing the same
Hamatani et al. Development of Laminar Plasma Shielded HF-ERW Process: Advanced Welding Process of HF-ERW 3
JP5151548B2 (en) Method for producing welded steel pipe with weld metal having excellent cold cracking resistance
CN111715982A (en) Novel welding method of high-alloy austenitic heat-resistant stainless steel
CN102317025A (en) Central gas stream contains argon gas and hydrogen, and outer gas flow contains two air-flow arc welding methods of argon gas and carbon dioxide/oxygen
JP2008087022A (en) Method for manufacturing seam welded pipe having excellent characteristics of welded portion
KR101814884B1 (en) Method for producing plasma-shielded electric resistance welded steel pipe
JP5842585B2 (en) Metal-based flux cored wire and multi-electrode submerged arc welding method using the same
JP6485463B2 (en) ERW steel pipe manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4171433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees