JP2004298788A - Tank having separation mechanism - Google Patents

Tank having separation mechanism Download PDF

Info

Publication number
JP2004298788A
JP2004298788A JP2003096005A JP2003096005A JP2004298788A JP 2004298788 A JP2004298788 A JP 2004298788A JP 2003096005 A JP2003096005 A JP 2003096005A JP 2003096005 A JP2003096005 A JP 2003096005A JP 2004298788 A JP2004298788 A JP 2004298788A
Authority
JP
Japan
Prior art keywords
heavy oil
liquid
tank
heavy
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003096005A
Other languages
Japanese (ja)
Inventor
Moritsugu Kagawa
盛次 鹿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003096005A priority Critical patent/JP2004298788A/en
Publication of JP2004298788A publication Critical patent/JP2004298788A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tank having such a separation mechanism that an objective high-quality uniform liquid can be obtained by efficiently separating the objective liquid from the liquid which is to be treated and contains an impurity component of high density in a main body of the tank. <P>SOLUTION: Centrifugal force is imparted to the original heavy oil in a rotary vessel 15 by rotating the vessel 15 by a rotary shaft 16 of the separation mechanism 12 in the main body 11 of the tank 10 and the centrifugal force-imparted original heavy oil is spouted from a nozzle 15A so that the original heavy oil is separated by a density difference into the heavy gravity heavy oil of high density containing the majority of the impurity component and the light poor heavy oil of low density containing a small amount of the impurity component. The obtained light poor heavy oil is furthermore filtered with a filtration mechanism 18 to obtain the high-quality poor heavy oil in which almost all of the impurity component is removed. The obtained heavy gravity heavy oil is cooled by a cooling coil 20 so that and the heavy gravity heavy oil is separated surely from the light poor heavy oil by the density difference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密度差分離機構を有するタンクに関し、更に詳しくは、例えば密度の高い不純物成分を含む被処理液から不純物成分を分離する分離機構を有するタンクに関する。
【0002】
【従来の技術】
従来のタンク、例えば重油用のタンクとしては静置方式のものが多く使用されている。この種のタンクは、例えば図4に模式的に示すように、大型原油タンクから受給した原料重油を貯留するタンク本体1と、タンク本体1内の底部に配置され且つ原料重油を加熱する加熱管2とを備えている。そして、大型重油タンク(図示せず)から送油管3を介してタンク本体1内に原料重油を移し替え、タンク本体1内で加熱管2によって原料重油を所定の温度に保ち、その流動性を維持した状態で静置する。
【0003】
ところで、原料重油は水や金属固形物等の密度の高い不純物成分を含むため、タンク本体1内に重油を静置する間に水や金属固形物等の不純物成分がタンク本体1の底部に沈降し、不純物成分の少ない低質重油と不純物成分を多く含む重質重油に分離する。そして、低質重油を例えばディーゼル機関等の設備の燃料として使用する。この場合に、低質重油を取り出し管4から取り出してディーゼル機関等の設備へ燃料として供給し、不純物成分を多く含む重質重油は排出管5から回収して元の大型タンクに戻している。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のタンクの場合には、原料重油を加熱管2によって常時加熱しているため、原料重油の対流により水や金属固形物等の不純物成分が沈降し難く、良質で均質な低質重油を得ることができないという課題があった。
【0005】
その結果、タンクから燃料として供給される低質重油には水や金属固形物等の不純物成分が比較的多く含まれているため、このような低質重油をディーゼル機関等の設備の燃料として使用すると、不純物成分が原因となってディーゼル機関等の設備の燃焼系統の損傷や劣化を早めると共に、不完全燃焼等による煤煙を多く発生する虞がある。
【0006】
本発明は、上記課題を解決するためになされたもので、タンク本体内で密度の高い不純物成分を含む被処理液から目的の液体を効率良く分離して良質で均質な液体を得ることができる分離機構を有するタンクを提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載のタンクは、目的の液体より密度の高い不純物成分を含む被処理液を受給するタンク本体と、このタンク本体内で密度差を利用して密度の高い不純物成分を上記被処理液から分離する分離機構と、を備えたタンクであって、上記分離機構は、上記被処理液を受給して外方へ噴出する噴出部を有する回転容器と、この回転容器を回転させて上記回転容器内の被処理液に遠心力を付与して密度差で第1の処理液と上記不純物成分を多く含む第2の処理液とに分離させる回転軸と、この回転軸を介して上記回転容器の噴出部から噴出する第1、第2の処理液を整流する整流機構と、この整流機構を介して整流する間に第1の処理液を濾過する濾過機構と、この濾過機構によって濾過された上記目的の液体を、濾過前の第1の処理液及び第2の処理液から隔離する隔壁と、この隔壁の下方に配置され且つ上記第2の処理液を冷却する冷却機構と、を備えたことを特徴とするものである。
【0008】
また、本発明の請求項2に記載のタンクは、請求項1に記載の発明において、上記被処理液が重油または潤滑油であることを特徴とするものである。
【0009】
また、本発明の請求項3に記載のタンクは、請求項1に記載の発明において、上記被処理液が海上流出重油であることを特徴とするものである。
【0010】
【発明の実施の形態】
以下、図1〜図3に示す実施形態に基づいて本発明を説明する。尚、各図中、図1は本発明の分離機構を有するタンクの一実施形態の構造を示す模式図、図2は図1に示すタンクの整流機構を模式的に示す斜視図、図3は図1に示すタンクの濾過機構を模式的に示す斜視図である。
【0011】
本実施形態のタンク10は、例えば図1に示すように、目的の液体(例えば、低質重油)より例えば水分や金属固形物等の密度の高い不純物成分を含む被処理液(例えば、原料重油)を受給するタンク本体11と、このタンク本体11内で密度差を利用して水分や金属固形物等の密度の高い不純物成分を原料重油から分離する分離機構12と、を備え、大型重油タンク(図示せず)から原料重油を受給し、原料重油から不純物の極力少ない第1の処理液(例えば、粗低質重油)を密度の高い不純物を含む第2の処理液(例えば、重質重油)を分離した後、この低質重油を例えばディーゼル機関の燃料として供給するようにしている。
【0012】
上記分離機構12は、送油管13を介して原料重油を受給する受給容器14と、この受給容器14から原料重油を受給して噴出させる例えばノズル、孔等の噴出部(本実施形態ではノズル)15Aを周面に複数有する回転容器15と、この回転容器15を例えば180〜1800rpmの回転速度で回転させて回転容器15内の原料重油に遠心力を付与して密度差で粗低質重油と不純物成分を多く含む重質重油とに分離させる回転軸16と、この回転軸16を介して回転容器15のノズル15Aから噴出する粗低質重油及び重質重油に上昇流を付与し且つ粗低質重油及び重質重油を整流する有底円筒状の整流機構17と、この整流機構17の内側に配置され且つ整流機構17を介して上昇する間に粗低質重油を濾過するロート形状の濾過機構18と、この濾過機構18の上端とタンク本体11の周壁11Aとの隙間を塞ぎ且つ濾過機構18によって濾過された低質重油を、粗低質重油及び重質重油から隔離するリング状の隔壁19と、この隔壁19の下方に配置され且つ重質重油を冷却する冷却機構(例えば、冷却コイル)20と、を備えている。そして、整流機構17は複数の支柱21Aによって支持され、濾過機構18は上端が複数の支柱21Aによって支持され、底部が支持枠21Bによって水平に支持されている。
【0013】
而して、上記回転軸16は、図1に示すように、タンク本体11の軸心を通るように配置され、上下両端が軸受け22、23によって回転自在に軸支されている。上方の軸受け22は濾過機構18の底面に取り付けられ、下方の軸受け23はタンク本体11の底面に配置されている。また、回転軸16には受給容器14の下方に位置させた従動歯車16Aが固定され、この従動歯車16には回転軸16を回転させる駆動機構24がチェーン25を介して連結されている。
【0014】
また、上記駆動機構24は、タンク本体11の外側に付設されたケーシング26内で垂直に配置された駆動軸24Aと、この駆動軸24Aを軸支する上下の軸受け24B、24Cと、駆動軸24Aの上部及び中間部に固定された第1、第2駆動歯車24D、24Eとを備え、上部の第1駆動歯車24Dがチェーン(図示せず)を介して駆動源(図示せず)に連結され、中間部の第2駆動歯車24Eがチェーン25を介して回転軸16の従動歯車16Aに連結されている。また、ケーシング26は駆動軸24Aを密閉するようにタンク本体11の側面に設けられ、その内部はタンク本体11に形成された開口部を介してタンク本体11の内部と連通している。従って、ケーシング26内は重質重油で満たされ、この重質重油が駆動軸24Aの潤滑油の役割を果たしている。
【0015】
上記回転軸16は、図1に示すように、受給容器14、整流機構17の底部17A及び回転容器15を貫通している。受給容器14と回転容器15は、整流機構17の底部に連結された基板を上下から挟むように配置されている。そして、受給容器14の上面は整流機構17の底部によって形成されている。この受給容器14の回転軸16の貫通部にはそれぞれ軸受け14A、14Bが配置され、回転軸16が受給容器14を軸心に沿って貫通した状態で円筒部材27及び回転容器15と一緒に回転自在になっている。
【0016】
また、回転容器15は円筒状の扁平な容器として形成され、円筒部材27を介して回転軸16に取り付けられている。この円筒部材27は例えば回転容器15の上面のやや上方で上端を封止して回転軸16に固定され、その回転容器15内に位置する周面に周方向等間隔を空けて複数の流通孔27Aが形成されている。また、円筒部材27はその上端の他、その上下方向中ほどで周方向等間隔を隔てた位置で連結ピン27B介して回転軸16に固定されている。この円筒部材27の下端は整流機構17の底部を貫通し、受容容器14内で開口している。そして、回転軸16と円筒部材27間のリング状の隙間と流通孔27Aによって受容容器14と回転容器15を連通する連通路を形成している。従って、回転容器15は、受給容器14内に原料重油が供給されると、回転軸16及び円筒部材27を介して回転する間に、受容容器14の原料重油を連通路から受給し、この原料重油に遠心力を与え、密度の高い不純物成分に大きな加速度を付与するため、タンク本体11の軸心から径方向の外側ほど密度の高い不純物成分を多く含む重質重油が集まり、その内側に不純物成分の少ない粗低質重油が集まる。つまり、回転容器15によって重質重油層が外側に形成され、その内側に粗低質重油が形成される。
【0017】
上記整流機構17は、図1、図2に示すように、タンク本体11と同心円状に形成されたリング状の底部17Aを有する大径筒体17Bと、この筒状体17Bの周壁面の内側に同心円状に形成された小径筒体17Cと、これら両筒体17B、17Cの隙間を空けて連結する複数の整流板17Dとを備え、回転容器15から噴出して分離した重質重油の流れを上昇流に変換した後、両筒体17B、17Cの間で複数の整流板17Dによって全周に均一な上昇流を形成する。また、整流機構17の底部17Aに連結された基板は支持枠21Bによって支持され(図1参照)、大径筒体17Bは連結部材17Eによって支柱21Aに連結、固定されている(図2参照)。そして、この整流機構17の内側に濾過機構18が配置されている。
【0018】
上記濾過機構18は、図1、図3に示すように、ロート形状に形成された濾過部材18Aと、この濾過部材18Aの下端及び上端をそれぞれ固定して支持する円盤18B及びリング状の押さえ金具18Cと、この押さえ金具18Cの周方向等間隔を隔てて取り付けられ且つ濾過部材18Aを補強する補強金具18Dとを備え、整流機構17を介して上昇流に変換された粗低質重油を濾過して密度の高い不純物成分を除去し、良質の低質重油を得る。また、濾過部材18Aは、例えば、外側がステンレス製の畳織方式の濾材18Eと、この濾材18Eの内側を被覆する金網18Fとを備えている。また、濾過部材18Aの下端部の外面は囲い板18Gによって被覆された状態で円盤18Bと支持枠21B間に挟持され、ボルト締めされている。また、濾過部材18Aの上端部の外面は囲い板18Hによって被覆された状態で押さえ金具18Cと支柱21Aに取り付けられたリング状の固定金具18I間に挟持され、ボルト締めされている。
【0019】
また、上記隔壁19は、図1に示すように、濾過部材18Aの上端とタンク本体11の周壁11Aとの間に形成された隙間に配置され、濾過部材18Aの上部空間とその下部空間を遮断している。上部空間には濾過機構18によって不純物成分が濾過された良質の低質重油が溜まり、下部空間には不純物成分を多く含む重質重油が溜まるようにしてある。
【0020】
そして、図1に示すように、上部空間にはロート付の第1の排出管28が配置され、この排出管28から低質重油をディーゼル機関等の設備に供給するようにしてある。また、下部空間には冷却コイル20が配置されている。この冷却コイル20は、タンク本体11の周壁11Aの下部に沿って配置され、整流機構17から流下する重質重油を冷却し、低質重油との密度差を更に大きくして重質重油を粗低質重油から確実に分離するようにしてある。また、周壁11Aの下端部には第2の排出管29が配置され、この排出管29から不純物成分を多く含み、密度の高くなった重質重油をタンク本体11外へ排出するようにしてある。尚、図1において、30は均一管、31はオーバーフロー管である
【0021】
次に、動作について説明する。駆動機構24を駆動すると、第2駆動歯車24E、チェーン25及び従動歯車16Aを介して回転軸16が回転し、回転容器15を回転させる。この状態で大型重油タンクからタンク本体11内の受給容器14内へ送油管13を介して原料重油を供給すると、原料重油は受給容器14から円筒部材27と回転軸16間に形成された連通路を通り、流通孔27Aから回転容器15内に到達する。
【0022】
この回転容器15は回転軸16を介して回転しているため、回転容器15内で原料重油に対して遠心力を付与し、ノズル15Aから原料重油を整流機構17の両筒体17B、17Cに向けて噴出する。この際、原料重油中で密度の高い不純物成分は大きな加速度を得て整流機構17の大径筒体17Bに早く到達し、原料重油は密度の高い不純物成分を含む重質重油と不純物成分の少ない粗低質重油とに分離し、重質重油層を外側に形成し、粗低質重油層を内側に略同心円状に形成する。この状態で粗低質重油及び重質重油は整流機構17を介して上昇する。
【0023】
この際、内側の粗低質重油は整流機構17の小径筒体17Cの内側を上昇する間に濾過機構18の濾過部材18Aによって粗低質重油中の不純物成分を濾過し、濾過後の不純物成分を殆ど含まない良質の低質重油になって濾過機構18の上方の空間を満たす。そして、ディーゼル機関等の設備に燃料として供給する場合には、第1の排出管28から良質の低質重油を供給する。
【0024】
ディーゼル機関等の設備には不純物を殆ど含まない良質の低質重油を供給するため、ディーゼル機関等の設備では不純物成分による機械的な磨耗や損傷を格段に抑制することができると共に、燃料の不完全燃焼を格段に抑制することができ、延いては煤煙を格段に抑制し環境汚染を防止することができる。
【0025】
一方、外側の重質重油は整流板17Dの働きで両筒体17B、17Cの隙間を上昇する間に周方向で略均一な流速で上昇し、隔壁19に達した後、隔壁19から折り返して下降流となってタンク本体11の周壁11Aに沿って底部に到達する。この間に冷却コイル20によって重質重油を冷却し、その密度を高めて粗低質重油から確実に分離させる。冷却により密度の高くなった不純物成分を多く含む重質重油は第2の排出管29から排出する。
【0026】
以上説明したように本実施形態によれば、タンク本体11内で分離機構12の回転軸16によって回転容器15内の原料重油に回転させて遠心力を付与しながらノズル15Aから原料重油を噴出することにより原料重油を密度の高い不純物成分を多く含む重質重油と不純物成分の少ない粗低質重油とに密度差を付けて分離した後、密度の低い粗低質重油を更に濾過機構18によって濾過して不純物成分の殆どを除去した良質の低質重油を得ることができる一方、不純物を多く含む重質重油を冷却コイル20によって冷却して更に粗低質重油との間に密度差を付けることによって重質重油を粗低質重油からより確実に分離することができる。
【0027】
また、本実施形態によれば、良質の低質重油を得ることができるため、低質重油をディーゼル機関等の設備の燃料として使用する場合には、不純物成分による機械的な磨耗や損傷を格段に抑制することができると共に、燃料の不完全燃焼を格段に抑制することができ、延いては煤煙を格段に抑制し環境汚染を防止することができる。
【0028】
また、本実施形態によれば、良質の低質重油を得ることができるため、低質重油をディーゼル機関等の設備の燃料として使用する場合には、不純物成分による機械的な磨耗や損傷を格段に抑制することができると共に、燃料の不完全燃焼を格段に抑制することができ、延いては煤煙を格段に抑制し環境汚染を防止することができる。
【0029】
尚、上記実施形態では大型重油タンクからの原料重油を処理する場合について説明したが、本発明の分離機構を有するタンクは、潤滑油にも適用することができ、更に海上に流出した重油を回収する場合にも使用することができる。海上の流出重油を回収する場合には海水等の不純物を除去して元の重油を迅速且つ確実に回収することができる。また、本発明のタンクは必要に応じて複数組み合わせて使用し、複数段階で不純物成分を除去することができる。更に、上記実施形態では重油の不純物成分を除去する場合について説明したが、密度の差のある不純物成分を含む混合液体であれば、重油、潤滑油以外の混合液にも本発明のタンクを用いることができる。また、本発明の構成要素は上記実施形態に何等制限されるものではなく、必要に応じて適宜設計変更することができる。例えば、上記実施形態では駆動機構をタンク本体の側方に付設したものについて説明したが、タンク本体の屋根にモータ等の駆動機構を設け、タンク本体から突出する回転軸に減速機等を介してモータを連結したものであっても良い。
【0030】
【発明の効果】
本発明の請求項1〜請求項3に記載の発明によれば、タンク本体内で密度の高い不純物成分を含む重油等の被処理液から低質重油等の目的の液体を効率良く分離して良質で均質な低質重油等の目的の液体を得ることができる分離機構を有するタンクを提供することができる。
【図面の簡単な説明】
【図1】本発明の分離機構を有するタンクの一実施形態の構造を示す模式図である。
【図2】図2は図1に示すタンクの整流機構を模式的に示す斜視図である。
【図3】図3は図1に示すタンクの濾過機構を模式的に示す斜視図である。
【図4】従来のタンクの一例を示す模式図である。
【符号の説明】
10 分離機構を有するタンク
11 タンク本体
12 分離機構
15 回転容器
15A ノズル(噴出部)
16 回転軸
17 整流機構
18 濾過機構
19 隔壁
20 冷却コイル(冷却機構)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tank having a density difference separation mechanism, and more particularly, to a tank having a separation mechanism for separating an impurity component from a liquid to be treated containing an impurity component having a high density.
[0002]
[Prior art]
As a conventional tank, for example, a tank for heavy oil, a stationary tank is often used. As shown schematically in FIG. 4, for example, this type of tank includes a tank body 1 for storing raw fuel oil received from a large crude oil tank, and a heating pipe disposed at the bottom of the tank main body 1 for heating the raw fuel oil. 2 is provided. Then, the raw fuel oil is transferred from the large heavy oil tank (not shown) into the tank main body 1 via the oil feed pipe 3, and the raw fuel oil is maintained at a predetermined temperature by the heating pipe 2 in the tank main body 1, and its fluidity is improved. Leave to stand still.
[0003]
By the way, since the raw fuel oil contains high-density impurity components such as water and metal solids, the impurity components such as water and metal solids settle at the bottom of the tank main body 1 while the heavy oil is allowed to stand in the tank main body 1. Then, the fuel oil is separated into low-quality heavy oil having a small amount of impurity components and heavy heavy oil having a large amount of impurity components. Then, low-quality heavy oil is used as fuel for equipment such as a diesel engine. In this case, low-quality heavy oil is taken out from the take-out pipe 4 and supplied as fuel to equipment such as a diesel engine. Heavy heavy oil containing a large amount of impurity components is recovered from the discharge pipe 5 and returned to the original large tank.
[0004]
[Problems to be solved by the invention]
However, in the case of the conventional tank, since the raw fuel oil is always heated by the heating pipe 2, impurity components such as water and metal solids are unlikely to settle due to the convection of the raw fuel oil. There was a problem that it could not be obtained.
[0005]
As a result, low-quality heavy oil supplied as fuel from the tank contains a relatively large amount of impurity components such as water and metal solids.When such low-quality heavy oil is used as fuel for equipment such as diesel engines, Due to the impurity components, the damage and deterioration of the combustion system of equipment such as a diesel engine may be accelerated, and more smoke may be generated due to incomplete combustion or the like.
[0006]
The present invention has been made in order to solve the above-mentioned problems, and it is possible to efficiently separate a target liquid from a liquid to be processed containing a high-density impurity component in a tank body to obtain a high-quality and homogeneous liquid. An object is to provide a tank having a separation mechanism.
[0007]
[Means for Solving the Problems]
The tank according to claim 1 of the present invention includes a tank body that receives a liquid to be treated containing an impurity component having a higher density than the target liquid, and a high-density impurity component that utilizes the density difference in the tank body. A separation mechanism for separating the liquid to be processed from the liquid to be processed, wherein the separation mechanism rotates the rotary container having an ejection portion that receives the liquid to be processed and ejects the liquid outward. And a centrifugal force is applied to the liquid to be processed in the rotary container to separate the first processing liquid and the second processing liquid containing a large amount of the impurity component by a density difference. A rectifying mechanism for rectifying the first and second processing liquids spouted from the jetting portion of the rotary container, a filtering mechanism for filtering the first processing liquid while rectifying via the rectifying mechanism, and a filtering mechanism for the first processing liquid. The target liquid filtered by A partition wall for isolating the sense liquid and second treatment liquid, is characterized in that and a cooling mechanism for cooling the are and the second treatment liquid arranged below the partition wall.
[0008]
The tank according to a second aspect of the present invention is the tank according to the first aspect, wherein the liquid to be treated is heavy oil or lubricating oil.
[0009]
The tank according to a third aspect of the present invention is the tank according to the first aspect, wherein the liquid to be treated is heavy oil spilled at sea.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In each of the drawings, FIG. 1 is a schematic diagram showing the structure of an embodiment of a tank having a separation mechanism of the present invention, FIG. 2 is a perspective view schematically showing a rectifying mechanism of the tank shown in FIG. 1, and FIG. It is a perspective view which shows typically the filtration mechanism of the tank shown in FIG.
[0011]
As shown in FIG. 1, for example, the tank 10 according to the present embodiment is a liquid to be treated (for example, a raw material heavy oil) containing an impurity component having a higher density, such as moisture and metal solids, than a target liquid (for example, low-quality heavy oil). And a separation mechanism 12 for separating high-density impurity components such as moisture and metal solids from the raw fuel oil by utilizing the density difference in the tank main body 11. (Not shown), and a first processing liquid (for example, crude low-grade heavy oil) containing as few impurities as possible is converted from a raw fuel oil to a second processing liquid (for example, heavy heavy oil) containing high-density impurities. After the separation, the low-quality heavy oil is supplied, for example, as fuel for a diesel engine.
[0012]
The separation mechanism 12 includes a receiving container 14 that receives the raw fuel oil via the oil feed pipe 13, and a jetting portion (a nozzle in the present embodiment) such as a nozzle or a hole that receives and jets the raw fuel oil from the receiving container 14. A rotary container 15 having a plurality of 15A on its peripheral surface; rotating the rotary container 15 at a rotation speed of, for example, 180 to 1800 rpm to apply a centrifugal force to the raw fuel oil in the rotary container 15 so that the crude oil and the impurities have a difference in density. A rotating shaft 16 for separating into heavy fuel oil containing a large amount of components, and an ascending flow to the crude low-fuel oil and heavy fuel oil ejected from the nozzle 15A of the rotary container 15 via the rotating shaft 16; A bottomed cylindrical rectifying mechanism 17 for rectifying heavy heavy oil, and a funnel-shaped filtration mechanism disposed inside the rectifying mechanism 17 and filtering coarse and low-quality heavy oil while rising through the rectifying mechanism 17. 8, a ring-shaped partition wall 19 that closes a gap between the upper end of the filtration mechanism 18 and the peripheral wall 11A of the tank body 11 and separates the low-quality heavy oil filtered by the filtration mechanism 18 from the crude low-quality heavy oil and the heavy heavy oil. A cooling mechanism (for example, a cooling coil) 20 that is disposed below the partition wall 19 and cools heavy fuel oil. The rectifying mechanism 17 is supported by a plurality of columns 21A, the upper end of the filtering mechanism 18 is supported by the columns 21A, and the bottom is horizontally supported by a support frame 21B.
[0013]
As shown in FIG. 1, the rotating shaft 16 is disposed so as to pass through the axis of the tank body 11, and both upper and lower ends are rotatably supported by bearings 22 and 23. The upper bearing 22 is attached to the bottom surface of the filtration mechanism 18, and the lower bearing 23 is arranged on the bottom surface of the tank body 11. A driven gear 16 </ b> A positioned below the receiving container 14 is fixed to the rotating shaft 16, and a driving mechanism 24 for rotating the rotating shaft 16 is connected to the driven gear 16 via a chain 25.
[0014]
The drive mechanism 24 includes a drive shaft 24A vertically disposed within a casing 26 attached to the outside of the tank body 11, upper and lower bearings 24B and 24C that support the drive shaft 24A, and a drive shaft 24A. And first and second drive gears 24D and 24E fixed to the upper and middle portions of the first drive gear, and the upper first drive gear 24D is connected to a drive source (not shown) via a chain (not shown). The second driving gear 24E at the intermediate portion is connected to a driven gear 16A of the rotating shaft 16 via a chain 25. The casing 26 is provided on a side surface of the tank body 11 so as to seal the drive shaft 24A, and the inside thereof communicates with the inside of the tank body 11 through an opening formed in the tank body 11. Therefore, the casing 26 is filled with heavy fuel oil, and the heavy fuel oil plays a role of lubricating oil for the drive shaft 24A.
[0015]
The rotating shaft 16 penetrates the receiving container 14, the bottom 17A of the rectifying mechanism 17, and the rotating container 15, as shown in FIG. The receiving container 14 and the rotary container 15 are arranged so as to sandwich the substrate connected to the bottom of the rectification mechanism 17 from above and below. The upper surface of the receiving container 14 is formed by the bottom of the rectifying mechanism 17. Bearings 14 </ b> A and 14 </ b> B are respectively disposed in the penetrating portion of the rotating shaft 16 of the receiving container 14, and rotate together with the cylindrical member 27 and the rotating container 15 while the rotating shaft 16 penetrates the receiving container 14 along the axis. It is free.
[0016]
The rotating container 15 is formed as a cylindrical flat container, and is attached to the rotating shaft 16 via a cylindrical member 27. The cylindrical member 27 is fixed to the rotating shaft 16 by sealing the upper end slightly above the upper surface of the rotating container 15, for example, and a plurality of flow holes are formed on the peripheral surface located in the rotating container 15 at equal intervals in the circumferential direction. 27A are formed. Further, the cylindrical member 27 is fixed to the rotating shaft 16 via a connecting pin 27B at a position in the middle of the vertical direction at equal circumferential intervals apart from the upper end thereof. The lower end of the cylindrical member 27 penetrates the bottom of the rectifying mechanism 17 and opens in the receiving container 14. The ring-shaped gap between the rotating shaft 16 and the cylindrical member 27 and the communication hole 27A form a communication path for communicating the receiving container 14 and the rotating container 15. Therefore, when the raw material heavy oil is supplied into the receiving container 14, the rotating container 15 receives the raw material heavy oil in the receiving container 14 from the communication path while rotating through the rotating shaft 16 and the cylindrical member 27, and In order to apply a centrifugal force to the heavy oil and to apply a large acceleration to the high-density impurity component, heavy heavy oil containing a large amount of the high-density impurity component gathers radially outward from the axis of the tank body 11, and the impurity inside the heavy fuel oil. Crude low-quality heavy oil with few components is collected. In other words, the heavy fuel oil layer is formed on the outside by the rotating container 15, and the crude low-heavy fuel oil is formed on the inside.
[0017]
As shown in FIGS. 1 and 2, the rectifying mechanism 17 includes a large-diameter cylindrical body 17B having a ring-shaped bottom portion 17A formed concentrically with the tank body 11, and an inner surface of a peripheral wall surface of the cylindrical body 17B. And a plurality of straightening plates 17D connected concentrically to each other with a gap between the two cylindrical bodies 17B and 17C, and the flow of heavy fuel oil ejected from the rotary container 15 and separated therefrom. Is converted into an ascending flow, and a uniform ascending flow is formed around the entire circumference by the plurality of rectifying plates 17D between the two cylindrical bodies 17B and 17C. The substrate connected to the bottom 17A of the rectifying mechanism 17 is supported by a support frame 21B (see FIG. 1), and the large-diameter cylindrical body 17B is connected and fixed to the support 21A by a connecting member 17E (see FIG. 2). . Then, a filtration mechanism 18 is disposed inside the rectification mechanism 17.
[0018]
As shown in FIGS. 1 and 3, the filtering mechanism 18 includes a filtering member 18A formed in a funnel shape, a disk 18B for fixing and supporting a lower end and an upper end of the filtering member 18A, respectively, and a ring-shaped holding member. 18C and a reinforcing member 18D which is attached at equal intervals in the circumferential direction of the holding member 18C and reinforces the filtering member 18A, and filters the crude low-quality heavy oil converted into the upward flow through the rectifying mechanism 17. High density impurity components are removed to obtain high quality low quality heavy oil. The filter member 18A includes, for example, a filter material 18E of a tatami weave type made of stainless steel on the outside, and a wire mesh 18F covering the inside of the filter material 18E. The outer surface of the lower end portion of the filtering member 18A is sandwiched between the disk 18B and the support frame 21B while being covered with the surrounding plate 18G, and is bolted. The outer surface of the upper end of the filtering member 18A is covered with the surrounding plate 18H, is sandwiched between the holding metal 18C and the ring-shaped fixing metal 18I attached to the column 21A, and is bolted.
[0019]
As shown in FIG. 1, the partition wall 19 is disposed in a gap formed between the upper end of the filtering member 18A and the peripheral wall 11A of the tank body 11, and blocks the upper space of the filtering member 18A and the lower space thereof. are doing. In the upper space, high-quality heavy fuel oil whose impurity components are filtered by the filtration mechanism 18 is stored, and in the lower space, heavy fuel oil containing a large amount of impurity components is stored.
[0020]
As shown in FIG. 1, a first exhaust pipe 28 with a funnel is disposed in the upper space, and low-quality heavy oil is supplied from the exhaust pipe 28 to equipment such as a diesel engine. A cooling coil 20 is arranged in the lower space. The cooling coil 20 is disposed along the lower portion of the peripheral wall 11A of the tank body 11, cools heavy fuel oil flowing down from the rectifying mechanism 17, further increases the density difference with low-quality fuel oil, and converts heavy fuel oil to low-grade fuel oil. It is ensured that it is separated from heavy oil. A second discharge pipe 29 is disposed at the lower end of the peripheral wall 11A, and the heavy fuel oil containing a large amount of impurity components and having a high density is discharged from the discharge pipe 29 to the outside of the tank body 11. . In FIG. 1, reference numeral 30 denotes a uniform pipe, and 31 denotes an overflow pipe.
Next, the operation will be described. When the driving mechanism 24 is driven, the rotating shaft 16 rotates via the second driving gear 24E, the chain 25, and the driven gear 16A, and rotates the rotating container 15. In this state, when the raw fuel oil is supplied from the large heavy oil tank to the receiving container 14 in the tank main body 11 through the oil feed pipe 13, the raw fuel oil flows from the receiving container 14 to the communication passage formed between the cylindrical member 27 and the rotating shaft 16. And reaches the inside of the rotary container 15 from the circulation hole 27A.
[0022]
Since the rotary container 15 is rotated via the rotary shaft 16, a centrifugal force is applied to the fuel oil in the rotary container 15, and the fuel oil is supplied from the nozzle 15 </ b> A to the two cylindrical bodies 17 </ b> B and 17 </ b> C of the rectifying mechanism 17. Spout toward. At this time, the high-density impurity component in the raw fuel oil obtains a large acceleration and reaches the large-diameter cylindrical body 17B of the rectifying mechanism 17 quickly, and the raw fuel oil has a heavy heavy oil containing the high-density impurity component and a small amount of the impurity component. It is separated from crude low-grade heavy oil, the heavy crude oil layer is formed on the outside, and the crude low-grade heavy oil layer is formed substantially concentrically on the inside. In this state, the crude low-grade heavy oil and the heavy heavy oil rise through the rectifying mechanism 17.
[0023]
At this time, the impurity component in the crude low-grade heavy oil is filtered by the filter member 18A of the filtration mechanism 18 while the inside crude low-grade heavy oil rises inside the small-diameter cylindrical body 17C of the rectifying mechanism 17, and the impurity component after the filtration is almost eliminated. It becomes good quality low-quality heavy oil that does not contain and fills the space above the filtration mechanism 18. When supplying the fuel to equipment such as a diesel engine, high-quality, low-quality heavy oil is supplied from the first discharge pipe 28.
[0024]
Diesel engines and other equipment are supplied with high-quality, low-quality heavy oil that contains few impurities.Diesel engines and other equipment can significantly reduce mechanical wear and damage caused by impurity components, as well as imperfect fuel. Combustion can be remarkably suppressed, so that smoke can be remarkably suppressed, and environmental pollution can be prevented.
[0025]
On the other hand, the outer heavy fuel oil rises at a substantially uniform flow rate in the circumferential direction while ascending the gap between the two cylindrical bodies 17B and 17C by the function of the rectifying plate 17D, reaches the partition wall 19, and then turns back from the partition wall 19 As a descending flow, it reaches the bottom along the peripheral wall 11A of the tank body 11. During this time, the heavy fuel oil is cooled by the cooling coil 20, and its density is increased to be surely separated from the crude heavy fuel oil. Heavy heavy oil containing a large amount of impurity components whose density has been increased by cooling is discharged from the second discharge pipe 29.
[0026]
As described above, according to the present embodiment, the raw fuel oil is ejected from the nozzle 15A while applying centrifugal force by rotating the raw fuel oil in the rotary container 15 by the rotation shaft 16 of the separation mechanism 12 in the tank main body 11. Thus, the raw fuel oil is separated into a heavy fuel oil containing a large amount of a high-density impurity component and a crude low-mass fuel oil having a low impurity component with a density difference, and the low-density crude low-quality heavy oil is further filtered by a filtration mechanism 18. While it is possible to obtain high-quality low-quality heavy oil from which most of the impurity components have been removed, heavy oil containing a large amount of impurities is cooled by the cooling coil 20 to further provide a density difference between the crude heavy oil and the coarse low-grade heavy oil. Can be more reliably separated from crude low-quality heavy oil.
[0027]
Further, according to the present embodiment, since high-quality low-quality heavy oil can be obtained, when low-quality heavy oil is used as fuel for equipment such as a diesel engine, mechanical wear and damage due to impurity components are significantly suppressed. In addition to this, incomplete combustion of the fuel can be remarkably suppressed, so that soot and smoke can be remarkably suppressed and environmental pollution can be prevented.
[0028]
Further, according to the present embodiment, since high-quality low-quality heavy oil can be obtained, when low-quality heavy oil is used as fuel for equipment such as a diesel engine, mechanical wear and damage due to impurity components are significantly suppressed. In addition to this, incomplete combustion of the fuel can be remarkably suppressed, so that soot and smoke can be remarkably suppressed and environmental pollution can be prevented.
[0029]
In the above embodiment, the case of treating the raw fuel oil from the large heavy oil tank has been described. However, the tank having the separation mechanism of the present invention can be applied to lubricating oil, and further recovers the heavy oil that has flowed offshore. Can also be used. When recovering heavy oil spilled from the sea, impurities such as seawater can be removed and the original heavy oil can be quickly and reliably recovered. Further, the tank of the present invention can be used in combination as required, and the impurity component can be removed in a plurality of stages. Furthermore, in the above embodiment, the case where the impurity component of heavy oil is removed has been described. However, as long as the mixed liquid contains impurity components having a difference in density, the tank of the present invention is also used for a mixed liquid other than heavy oil and lubricating oil. be able to. Further, the components of the present invention are not limited to the above-described embodiment at all, and the design can be appropriately changed as needed. For example, in the above embodiment, the drive mechanism is described as being attached to the side of the tank main body.However, a drive mechanism such as a motor is provided on the roof of the tank main body, and a rotation shaft protruding from the tank main body is provided via a speed reducer or the like. A motor connected may be used.
[0030]
【The invention's effect】
According to the first to third aspects of the present invention, a target liquid such as low-quality heavy oil is efficiently separated from a liquid to be treated such as heavy oil containing a high-density impurity component in the tank body to obtain a good quality. And a tank having a separation mechanism capable of obtaining a target liquid such as low-quality heavy fuel oil homogeneous.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a structure of an embodiment of a tank having a separation mechanism of the present invention.
FIG. 2 is a perspective view schematically showing a rectifying mechanism of the tank shown in FIG.
FIG. 3 is a perspective view schematically showing a filtration mechanism of the tank shown in FIG.
FIG. 4 is a schematic view showing an example of a conventional tank.
[Explanation of symbols]
Reference Signs List 10 Tank having separation mechanism 11 Tank main body 12 Separation mechanism 15 Rotating container 15A Nozzle (spouting part)
16 Rotating shaft 17 Rectifying mechanism 18 Filtration mechanism 19 Partition wall 20 Cooling coil (cooling mechanism)

Claims (3)

目的の液体より密度の高い不純物成分を含む被処理液を受給するタンク本体と、このタンク本体内で密度差を利用して密度の高い不純物成分を上記被処理液から分離する分離機構と、を備えたタンクであって、上記分離機構は、上記被処理液を受給して外方へ噴出する噴出部を有する回転容器と、この回転容器を回転させて上記回転容器内の被処理液に遠心力を付与して密度差で第1の処理液と上記不純物成分を多く含む第2の処理液とに分離させる回転軸と、この回転軸を介して上記回転容器の噴出部から噴出する第1、第2の処理液を整流する整流機構と、この整流機構を介して整流する間に第1の処理液を濾過する濾過機構と、この濾過機構によって濾過された上記目的の液体を、濾過前の第1の処理液及び第2の処理液から隔離する隔壁と、この隔壁の下方に配置され且つ上記第2の処理液を冷却する冷却機構と、を備えたことを特徴とするタンク。A tank body for receiving a liquid to be treated containing an impurity component having a higher density than the target liquid, and a separation mechanism for separating a high-density impurity component from the liquid to be treated by utilizing a density difference in the tank body. A separating container, wherein the separating mechanism receives the liquid to be treated and ejects the liquid to the outside, and a rotating container that rotates the rotating container to centrifuge the liquid to be treated in the rotating container. A rotating shaft for applying a force to separate the first processing liquid and the second processing liquid containing a large amount of the impurity component according to a density difference, and a first jet ejected from an ejection portion of the rotary container via the rotating shaft. A rectifying mechanism for rectifying the second processing liquid, a filtering mechanism for filtering the first processing liquid while rectifying through the rectifying mechanism, and the target liquid filtered by the filtering mechanism before filtration. From the first and second processing solutions Wall and a tank for a cooling mechanism for cooling the disposed below the partition wall and the second processing solution, comprising the. 上記被処理液が重油または潤滑油であることを特徴とする請求項1に記載のタンク。2. The tank according to claim 1, wherein the liquid to be treated is heavy oil or lubricating oil. 上記被処理液が海上流出重油であることを特徴とする請求項1に記載のタンク。The tank according to claim 1, wherein the liquid to be treated is heavy oil spilled at sea.
JP2003096005A 2003-03-31 2003-03-31 Tank having separation mechanism Ceased JP2004298788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096005A JP2004298788A (en) 2003-03-31 2003-03-31 Tank having separation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096005A JP2004298788A (en) 2003-03-31 2003-03-31 Tank having separation mechanism

Publications (1)

Publication Number Publication Date
JP2004298788A true JP2004298788A (en) 2004-10-28

Family

ID=33408196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096005A Ceased JP2004298788A (en) 2003-03-31 2003-03-31 Tank having separation mechanism

Country Status (1)

Country Link
JP (1) JP2004298788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871046A (en) * 2020-07-20 2020-11-03 福建康宏股份有限公司 Soybean oil production is with cooling essence integrated device that strains
CN114307370A (en) * 2021-11-23 2022-04-12 上海开能新技术工程有限公司 Landfill leachate splitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871046A (en) * 2020-07-20 2020-11-03 福建康宏股份有限公司 Soybean oil production is with cooling essence integrated device that strains
CN114307370A (en) * 2021-11-23 2022-04-12 上海开能新技术工程有限公司 Landfill leachate splitter

Similar Documents

Publication Publication Date Title
EP0170600B1 (en) Chloridizing ladle for aluminium alloys to remove magnesium
EP0038752A2 (en) Apparatus and plant for separating immiscible liquids of different densities
EP3687657B1 (en) Piece for centrifugal separator of an engine and process of making same
JPH0649157B2 (en) Centrifuge with weirs of different heights
US20180135150A1 (en) Purifying an alloy melt
JP2004298788A (en) Tank having separation mechanism
JP2010162613A (en) Device and method of chip treatment
JP4764127B2 (en) Japanese sake freeze concentration apparatus and freeze concentration method
CN217247296U (en) Centrifugal filter device for extracting natural products
KR101831558B1 (en) System for extracting and processing oil of waste
EP0108684B2 (en) Installation and method for separating the constituents of a suspension
JP2006255554A (en) Centrifugal separator and liquid separation apparatus using this
EP0876184B1 (en) Method and apparatus for mixing/separating two non-miscible liquids
JP5886518B2 (en) Levitation separator
KR101064027B1 (en) Apparatus for purifying and supplying fuel heavy oil using ship
EP0069729A1 (en) Industrial coolant fluid recovery system
US3780864A (en) Method and apparatus to refine melts from solid impurities
RU171742U1 (en) CENTRIFUGE WITH PULSING DRAIN
JP2012515137A (en) Apparatus and method for treatment of immiscible liquids
JP2007262564A (en) Method and apparatus for treating hydrometallurgical zinc refining residue
JP2008264602A (en) Filter and separator equipped with it
JP2002515547A (en) Method for continuous separation of impurities and alloys from a liquid metal bath and apparatus used for carrying out the method
CN108744609A (en) A kind of reconditioner at full speed
JP2007237280A (en) Method and device for eliminating impurities, and soldering device
CN116438010A (en) Centrifugal separator comprising a disc stack

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20071002