JP2004298544A - Living body tissue substitute material and method for producing the same - Google Patents

Living body tissue substitute material and method for producing the same Download PDF

Info

Publication number
JP2004298544A
JP2004298544A JP2003098030A JP2003098030A JP2004298544A JP 2004298544 A JP2004298544 A JP 2004298544A JP 2003098030 A JP2003098030 A JP 2003098030A JP 2003098030 A JP2003098030 A JP 2003098030A JP 2004298544 A JP2004298544 A JP 2004298544A
Authority
JP
Japan
Prior art keywords
molded product
reticulated
net
linear
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003098030A
Other languages
Japanese (ja)
Inventor
Katsuya Sadamori
克也 貞森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003098030A priority Critical patent/JP2004298544A/en
Publication of JP2004298544A publication Critical patent/JP2004298544A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

<P>PROBLEM TO BE SOLVED: To provide a living body tissue substitute material which can provide a stem cell with improved adhesiveness and facilitate the stuck cell to grow, and a method for producing the same. <P>SOLUTION: A bone substitute material 10 is a columnar scaffold made from a porous calcium phosphate (such as β-TCP) product, and comprises a plurality of layered network molded articles 12 which are constructed with crossed fibrous molded articles 11, wherein the fibrous molded articles 11 are crossed in latticework to provide the network molded articles 12 with square meshes 13, which are connected one by one to form a hole passing through the bone substitute material 10, but are layered in such a way that a mesh 13 may not pile on the same position as the neighboring mesh 13 of the other network molded article 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生体組織欠損部を再生する際に使用される生体組織補填材及びその製造方法に関する。
【0002】
【従来の技術】
近年、骨腫瘍摘出や外傷等により生じた骨等の生体組織の欠損部に、骨補填材等の生体組織補填材を補填することにより、骨を再生させて欠損部を修復することが可能になってきている。骨補填材としては、ハイドロキシアパタイト(HAP)やリン酸三カルシウム(TCP)が知られているが、体内に異物を残さないとする考え方から、例えば、β−TCPのようなリン酸カルシウム多孔体からなるバルク構造体が足場材として使用される。β−TCPを骨欠損部の骨細胞に接触させておくと、破骨細胞がβ−TCPを食べ、骨芽細胞が新しい骨を形成する、いわゆるリモデリングが行われる。すなわち、骨欠損部に補填された骨補填材は、経時的に自家骨に置換されていくことになる(例えば、非特許文献1参照。)。
【0003】
【非特許文献1】
植村他2名,「生分解性β−TCP多孔材料を用いた骨におけるティッシュエンジニアリング−生体内で強度を増す新しい材料オスフェリオン−」,メディカル朝日,朝日新聞社,2001年10月1日,第三0巻,第10号,p.38−41
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の骨補填材においては、骨補填材の原料として多孔体を用いてもバルク構造体なので骨髄間葉系幹細胞は骨補填材表面に留まるのみとなってしまい、骨補填材内部まで骨髄間葉系幹細胞を十分に付着させることが困難であった。また、骨補填材に細胞を付着させても補填材内部まで細胞の成長に必要な成分等が浸透せず、一方、細胞老廃物が細胞周辺に貯留されてしまい細胞老廃物の円滑な交換が阻害されてしまう問題があった。
本発明は上記事情に鑑みて成されたものであり、幹細胞の付着性を向上するとともに付着した細胞の成長を促進可能な生体組織補填材及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
本発明の生体組織補填材は、線状成形物を交差させてなる網状成形物を積層して構成したことを特徴とする。
また、本発明の生体組織補填材では、前記生体組織補填材であって、前記網状成形物が円筒状に形成されていることが好ましい。
この生体組織補填材によれば、網状成形物が積層されているので、線状成形物の表面積を含めた大きな表面積を確保することが可能となり、より多くの細胞を表面に付着させることができる。また、網目を介して補填材内部まで細胞を付着させやすくするとともに、網目を通して細胞老廃物の交換を容易にして細胞の成長を促進することができる。
【0006】
本発明の生体組織補填材の製造方法は、線状物成形型内の原料を受け面上に押出して、一方向に延びる線状成形物を作成後、該線状成形物と交差する方向に延びる他の線状成形物を作成して網状成形物を形成する工程と、該網状成形物を積層する工程とを備えていることを特徴とする。
この製造方法によれば、線状成形物同士の間隔及び太さを調整することによって、網状成形物の網目の大きさ及び形状を自在に制御して製造することができる。
【0007】
本発明では、前記生体組織補填材の製造方法であって、前記積層する工程が、網状成形物を円筒状に巻き取る工程であることが好ましい。
この製造方法によれば、網状成形物を円筒状に巻き取って積層するので、円筒状に巻取る際の外径によって網目同士が交差する面積を調整し、また、巻取り時の巻取り密度を変えることによって生体組織補填材の内部密度を変化させることができる。この結果、気孔率を制御することができ、多孔性を高めて細胞の付着性を向上するとともに細胞老廃物の円滑な交換を容易にして、十分な量の細胞を付着して成長させることができる。
【0008】
本発明の生体組織補填材の製造方法は、網状物成形型内の原料を受け面上に押出して、網目を有する網状成形物を形成する工程と、該網状成形物を積層する工程とを備えていることを特徴とする。
この製造方法によれば、網状物成形型内の原料を押出して網状成形物を形成するので、網状物成形型の網目形状の大きさ及び形状を予め設定することによって、容易に網状成形物を成形することができる。
【0009】
本発明では、前記生体組織補填材の製造方法であって、前記積層する工程が、前記網状成形物を円筒状に巻き取る工程であることが好ましい。
この製造方法によれば、網状物成形型によって形成した網状成形物を円筒状に巻き取るので、巻き取り状態によって積層状態を調整して補填材全体の気孔率を制御することができ、細胞の付着性を向上させるとともに細胞老廃物の円滑な交換を容易にさせて、十分な量の細胞を付着して成長させることができる。
【0010】
【発明の実施の形態】
本発明の第1の実施形態に係る骨補填材(生体組織補填材)10及びその製造方法ついて、図1から図7を参照して説明する。
骨補填材10は、リン酸カルシウム(例えば、β−TCP)多孔体からなる円柱形状の足場材であって、図1に示すように、線状成形物11を交差させてなる網状成形物12を複数積層して構成されている。
網状成形物12には、線状成形物11が格子状に交差することによって四角形状の網目13が形成されており、各網目13を繋ぐと骨補填材10の内部まで貫通する孔となる。このとき、各網目13が隣接する他の網状成形物12の網目13と同一位置で重ならないように積層されている。
【0011】
本実施形態に係る骨補填材10の製造方法について説明する。
この骨補填材10の製造方法は、図2及び図3に示すように、線状物成形型14内の原料15を受け面16上に押出して、一方向に延びる線状成形物11を作成後、この線状成形物11と交差する方向に延びる他の線状成形物11を作成して網状成形物12を形成する工程(S01)と、網状成形物12を複数積層する工程(S02)とを備えている。以下、各工程について説明する。
【0012】
網状成形物12を形成する工程(S01)では、まず、例えば、特開平5−237178号公報に開示されている方法によって、混合発泡させた水性の発泡スラリを調整したものにβ―TCPから作製した顆粒状成形体を混合してスラリ状に形成した原料15を作製する。この原料15を線状物成形型14内に充填する。
この線状物成形型14の上部には、図4に示すように、漏斗状に形成された原料注入口17が形成されている。一方、下部には、原料注入口17の下端部と連通する通路18が形成されている。
原料注入口17から充填した原料15は、この通路18から押出されて受け面16上に排出される。
【0013】
このとき、線状物成形型14の下方に配設された受け面16を、図3(a)に示すように、受け面16を支持するローラー19を回転すると、受け面16が一方向に移動するとともに表面に原料15が線状に蓄積されて線状成形物11が形成される。
受け面16の端部まで形成した後は、線状物成形型14を受け面16の移動方向と垂直方向に移動して、すでに形成された線状成形物11と所定の間隔で離間する位置に、上記作業を繰り返して新たな線状成形物11を形成する。
続いて、図3(b)に示すように、受け面16を固定した状態で、この線状成形物11と交差する方向に線状物成形型14を原料15を押出しながら移動させて、他の線状成形物11を形成する。こうして、受け面16上に、図5に示すような四角形状の網目13を有する網状成形物12を形成する。
【0014】
続いて、網状成形物12を複数積層する工程(S02)について説明する。
この工程では、網状成形物12を図6に示すように積層する。このとき、各網状成形物12が分離しないように、シアノアクリレート系(オクチル−2−シアノアクリレート)フィブリン糊等の生体用接着剤にて固定する。
こうして、図1に示す骨補填材10が形成される。この骨補填材10を欠損部の大きさにあわせて最適な大きさに切断して使用する。
【0015】
この骨補填材10によれば、網状成形物12が積層されているので、線状成形物11の周囲に大きな表面積を確保することが可能となり、より多くの細胞を表面に付着させることができる。また、網目13を介して骨補填材10の内部まで細胞を付着させやすくするとともに、網目13を通して形成される貫通孔を介して細胞老廃物の交換を容易にすることができる。
また、この骨補填材10の製造方法によれば、線状成形物11を互いに交差させて網状成形物12を形成するので、網状成形物12の網目13の大きさ及び形状を自在に制御して製造することができる。この結果、積層後の気孔率を補填部位に最適なものとするようにできる。
【0016】
次に、本発明の第2の実施形態に係る生体組織補填材の製造方法について、図7及び図8を参照して説明する。なお、以下の説明において、上記実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
第2の実施形態が上記第1の実施形態と異なる点は、第1の実施形態では 網状成形物12を線状成形物11を交差させて製造しているのに対して、第2の実施形態では網状成形物12を網状物成形型20によって作成しているとした点である。
本実施形態に係る骨補填材10は、第1の実施形態と同様の構成を有する。この骨補填材10の製造方法は、網状物成形型20内の原料を受け面16上に押出して、網目13を有する網状成形物12を形成する工程(S11)と、この網状成形物12を複数積層する工程(S02)とを備えている。以下、各工程について説明する。
【0017】
網状成形物12を形成する工程(S11)では、まず、第1の実施形態と同様にして原料15を作製する。この原料15を網状物成形型20内に充填する。
この網状物成形型20は、図8に示すように、一方向に延びる回転軸21の内部に原料注入口22が形成されている。この回転軸21を中心軸として、外周部には円筒体23が設けられており、円筒体23の円筒外周面には、格子状に形成されたスリット24が、原料注入口22と連通して設けられている。
原料注入口22から充填した原料15は、このスリット24から押出されて排出される。このとき、受け面16を円筒体23の中心軸に対して垂直方向に移動しながら円筒体23を回転軸21まわりに回転させながら排出すると、図5に示すような四角形状の網目13を有する網状成形物12を形成する。
【0018】
こうして形成された網状成形物12に対して、第1の実施形態と同様の網状成形物12を複数積層する工程(S02)を実施することによって、第1の実施形態と同様な構成の骨補填材10を得る。
この骨補填材10によれば、第1の実施形態と同様の作用・効果を得ることができる。
また、この骨補填材10の製造方法によれば、網状物成形型20内の原料15を押出して網状成形物12を直接形成するので、網状物成形型20の格子形状の大きさ及び形状を予め設定することによって、網目13を自在にかつ容易に設定して網状成形物12を成形することができる。
【0019】
次に、本発明の第3の実施形態に係る生体組織補填材及びその製造方法について、図9及び図10を参照して説明する。なお、以下の説明において、上記実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
第3の実施形態が上記第1の実施形態と異なる点は、第1の実施形態に係る骨補填材10では、網状成形物12が複数積層して形成されているのに対して、第3の実施形態に係る骨補填材30では、網状成形物12が巻き取られて形成されているとした点である。
【0020】
本実施形態に係る骨補填材30は、第1の実施形態と同様にリン酸カルシウム(例えば、β―TCP)多孔体からなり、図9に示すように、格子状の網目13を有する網状成形物12が円筒状に構成されている。網状成形物12に形成されている各網目13は、径方向に隣接する他の網目13と互いに同一位置で重ならないように巻き取られている。
【0021】
次に、本実施形態に係る骨補填材30の製造方法について説明する。
この製造方法は、図10に示すように、第1の実施形態と同様にして網状成形物12を形成する工程(S01)と、網状成形物12を円筒状に巻き取る工程(S12)とを備えている。以下、各工程について説明する。
【0022】
網状成形物12を形成する工程(S01)では、第1の実施形態と同様の方法によって、線状物成形型14から網状成形物12を作製する。
網状成形物12を円筒状に巻き取る工程(S12)では、この網状成形物12の1枚を図11に示す巻取ロール31に接触させた状態で巻取ロール31を軸回りに回転する。このとき、巻取ロール31の外周面に沿って網状成形物12が巻き取られる。巻き取り後は、網状成形物12の端部が分離しないように、シアノアクリレート系(オクチル−2−シアノアクリレート)フィブリン糊等の生体用接着剤にて固定する。
こうして、図9に示す骨補填材30が形成される。この骨補填材30を生体内の欠損部の大きさにあわせて最適な大きさに切断して使用する。
【0023】
この骨補填材30によれば、1枚の網状成形物12が円筒状に巻き取られて構成されているので、巻取ロール31の径を自在に変えて巻取り径を調整することによって網目同士が交差する面積を調整し、また、密度を変化させることができる。この結果、気孔率を制御して多孔性を高めることができるので、細胞の付着性が向上するとともに細胞老廃物の円滑な交換を容易にし、十分な量の細胞を付着して成長させることができる。
【0024】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記第3の実施形態において、網状成形物12を形成する工程にて線状物成形型14ではなく、網状物成形型20を用いて骨補填材を成形してもよい。この場合も、上述と同様に、網状物成形型20によって形成した網状成形物12を円筒状に巻き取るので、巻き取り状態によって積層状態を調整して補填材全体の気孔率を制御することができ、上記第3の実施形態と同様の作用及び効果を得ることができる。
また、網目13形状は四角形状に限らず、三角形状等の多角形状や円弧状形状であってもかまわない。
さらに、原料15は、生体組織に親和性のある材料であればβ―TCPのみならず、リン酸カルシウム系セラミックス等やこれらを組み合わせたものでも構わない。
【0025】
【発明の効果】
以上説明した本発明は以下の効果を奏する。
本発明の生体組織補填材によれば、高い気孔率を備えるので、幹細胞の付着性を向上するとともに、内部まで付着した細胞も新陳代謝を活発化して成長を促進することができる。
また、本発明の生体組織補填材の製造方法によれば、網状成形物を形成する工程と、網状成形物を厚さ方向に積層する工程とを備えているので、気孔率を自在に調整して、生体の欠損部に最適な生体組織補填材を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における生体組織補填材の概要を示す斜視図である。
【図2】本発明の第1実施形態における生体組織補填材の製造フローを示す図である。
【図3】本発明の第1実施形態における生体組織補填材の製造工程の一部を示す図である。
【図4】本発明の第1実施形態における生体組織補填材の製造工程の一部を示す図である。
【図5】本発明の第1実施形態における網状成形物を示す斜視図である。
【図6】本発明の第1実施形態における生体組織補填材の製造工程の一部を示す図である。
【図7】本発明の第2実施形態における生体組織補填材の製造フローを示す図である。
【図8】本発明の第2実施形態における生体組織補填材の製造工程の一部を示す図である。
【図9】本発明の第3実施形態における生体組織補填材を示す斜視図である。
【図10】本発明の第3実施形態における生体組織補填材の製造フローを示す図である。
【図11】本発明の第3実施形態における生体組織補填材の製造工程の一部を示す図である。
【符号の説明】
10、30 骨補填材(生体組織補填材)
11 線状成形物
12 網状成形物
13 網目
14 線状物成形型
15 原料
16 受け面
20 網状物成形型
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a living tissue filling material used for regenerating a living tissue defect and a method for producing the same.
[0002]
[Prior art]
In recent years, it has become possible to regenerate bone and repair the defect by replenishing a biological tissue replacement material such as a bone replacement material to a bone tissue or other biological tissue defect caused by a bone tumor extirpation or trauma. It has become to. Hydroxyapatite (HAP) and tricalcium phosphate (TCP) are known as bone replacement materials. However, from the viewpoint that no foreign substance is left in the body, for example, a calcium phosphate porous material such as β-TCP is used. Bulk structures are used as scaffolds. When β-TCP is brought into contact with bone cells in a bone defect, so-called remodeling is performed in which osteoclasts eat β-TCP and osteoblasts form new bone. That is, the bone filling material that has been filled in the bone defect part is replaced with autologous bone over time (for example, see Non-Patent Document 1).
[0003]
[Non-patent document 1]
Uemura et al., "Tissue Engineering in Bone Using Biodegradable β-TCP Porous Material-Ospherion, a New Material that Increases Strength in vivo", Medical Asahi, Asahi Shimbun, October 1, 2001, Third 0, No. 10, p. 38-41
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional bone filling material, even if a porous body is used as a raw material of the bone filling material, the bone marrow mesenchymal stem cells only stay on the surface of the bone filling material because it is a bulk structure. It was difficult to sufficiently attach bone marrow mesenchymal stem cells. In addition, even if the cells are attached to the bone filling material, components necessary for cell growth do not penetrate into the inside of the filling material.On the other hand, the cell waste is stored around the cells, and the cell waste can be smoothly exchanged. There was a problem that was hindered.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a living tissue replacement material capable of improving the adhesion of stem cells and promoting the growth of the attached cells, and a method for producing the same.
[0005]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The biological tissue filling material of the present invention is characterized in that a net-like molded product obtained by crossing linear molded products is laminated.
Further, in the living tissue replenishing material of the present invention, it is preferable that in the living tissue replenishing material, the net-like molded product is formed in a cylindrical shape.
According to this living tissue filling material, since the net-like molded product is laminated, it is possible to secure a large surface area including the surface area of the linear molded product, and it is possible to attach more cells to the surface. . In addition, the cells can be easily attached to the inside of the filler through the mesh, and the exchange of cell wastes can be facilitated through the mesh to promote cell growth.
[0006]
The method for producing a living tissue replacement material of the present invention comprises: extruding a raw material in a linear product mold onto a receiving surface to form a linear molded product extending in one direction; and then forming a linear molded product in a direction crossing the linear molded product. The method is characterized by comprising a step of forming another extended linear molded product to form a reticulated molded product, and a step of laminating the reticulated molded product.
According to this manufacturing method, the size and the shape of the mesh of the net-shaped molded product can be controlled freely by adjusting the interval and the thickness between the linear molded products.
[0007]
In the present invention, in the method for producing a living tissue filling material, it is preferable that the step of laminating is a step of winding a net-like molded product into a cylindrical shape.
According to this manufacturing method, since the net-like molded product is wound up into a cylindrical shape and laminated, the area where the meshes intersect is adjusted by the outer diameter when winding up into a cylindrical shape, and the winding density at the time of winding up is adjusted. By changing the density, the internal density of the living tissue replacement material can be changed. As a result, the porosity can be controlled, the porosity is increased, the cell adhesion is improved, the smooth exchange of cell waste is facilitated, and a sufficient amount of cells can be attached and grown. it can.
[0008]
The method for producing a biological tissue filler according to the present invention includes the steps of: extruding a raw material in a reticulated mold onto a receiving surface to form a reticulated molded product having a mesh; and laminating the reticulated molded product. It is characterized by having.
According to this manufacturing method, since the raw material in the reticulated product mold is extruded to form a reticulated product, the size and shape of the mesh shape of the reticulated product mold are set in advance, so that the reticulated product can be easily formed. Can be molded.
[0009]
In the present invention, in the method for producing a living tissue replacement material, it is preferable that the step of laminating is a step of winding the reticulated product into a cylindrical shape.
According to this manufacturing method, the reticulated material formed by the reticulated material forming die is wound into a cylindrical shape, so that the porosity of the entire filling material can be controlled by adjusting the lamination state according to the wound state, and the cell The adhesion can be improved and the cell waste can be easily exchanged easily, so that a sufficient amount of cells can be attached and grown.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A bone replacement material (living tissue replacement material) 10 and a method of manufacturing the same according to a first embodiment of the present invention will be described with reference to FIGS.
The bone filling material 10 is a columnar scaffold made of a porous calcium phosphate (for example, β-TCP). As shown in FIG. 1, a plurality of net-like moldings 12 formed by crossing linear moldings 11 are provided. It is configured by lamination.
The net-shaped molded product 12 has a rectangular mesh 13 formed by the linear molded products 11 intersecting in a lattice pattern. When the meshes 13 are connected, a hole penetrates into the bone filling material 10. At this time, each of the meshes 13 is stacked so as not to overlap with the meshes 13 of the adjacent other net-like molded products 12 at the same position.
[0011]
A method for manufacturing the bone replacement material 10 according to the present embodiment will be described.
As shown in FIGS. 2 and 3, the method for manufacturing the bone replacement material 10 extrudes a raw material 15 in a linear material forming die 14 onto a receiving surface 16 to form a linear molded product 11 extending in one direction. Thereafter, a step of forming another linear molded article 11 extending in a direction intersecting with the linear molded article 11 to form a reticulated molded article 12 (S01), and a step of laminating a plurality of reticulated molded articles 12 (S02). And Hereinafter, each step will be described.
[0012]
In the step (S01) of forming the reticulated molded product 12, first, an aqueous foam slurry mixed and foamed is prepared by a method disclosed in JP-A-5-237178, for example. The raw material 15 formed into a slurry by mixing the obtained granular shaped bodies is produced. The raw material 15 is filled in the linear material forming die 14.
As shown in FIG. 4, a raw material injection port 17 formed in a funnel shape is formed on the upper part of the linear material forming die 14. On the other hand, a passage 18 communicating with the lower end of the raw material inlet 17 is formed in the lower part.
The raw material 15 filled from the raw material inlet 17 is extruded from the passage 18 and discharged onto the receiving surface 16.
[0013]
At this time, when the roller 19 supporting the receiving surface 16 is rotated, as shown in FIG. 3A, the receiving surface 16 disposed below the linear object forming die 14 is rotated in one direction. As the material moves, the raw material 15 is accumulated linearly on the surface to form the linear molded product 11.
After the end of the receiving surface 16 is formed, the linear object forming die 14 moves in a direction perpendicular to the moving direction of the receiving surface 16 and is separated from the already formed linear object 11 at a predetermined interval. Then, the above operation is repeated to form a new linear molded product 11.
Subsequently, as shown in FIG. 3 (b), with the receiving surface 16 fixed, the linear material forming die 14 is moved while extruding the raw material 15 in a direction intersecting with the linear molded product 11, and Is formed. In this way, a net-shaped molded product 12 having a square mesh 13 as shown in FIG. 5 is formed on the receiving surface 16.
[0014]
Subsequently, a step (S02) of laminating a plurality of the reticulated products 12 will be described.
In this step, the net-like molded product 12 is laminated as shown in FIG. At this time, it is fixed with a bioadhesive such as a cyanoacrylate (octyl-2-cyanoacrylate) fibrin glue so that the respective reticulated products 12 are not separated.
Thus, the bone replacement material 10 shown in FIG. 1 is formed. The bone replacement material 10 is cut into an optimum size according to the size of the defect and used.
[0015]
According to the bone filling material 10, since the net-like molded product 12 is laminated, a large surface area can be secured around the linear molded product 11, and more cells can be attached to the surface. . In addition, the cells can be easily attached to the inside of the bone replacement material 10 through the mesh 13, and the exchange of the cellular waste can be facilitated through the through holes formed through the mesh 13.
Further, according to the method for manufacturing the bone replacement material 10, since the linear moldings 11 are crossed with each other to form the mesh molding 12, the size and shape of the mesh 13 of the mesh molding 12 can be freely controlled. Can be manufactured. As a result, the porosity after lamination can be optimized for the filling portion.
[0016]
Next, a method for manufacturing a living tissue replacement according to a second embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to the components described in the above embodiment, and the description will be omitted.
The difference between the second embodiment and the first embodiment is that in the first embodiment, the reticulated molding 12 is manufactured by intersecting the linear moldings 11, whereas the second embodiment is different from the first embodiment. In the embodiment, the net-shaped molded product 12 is formed by the net-shaped molding die 20.
The bone replacement material 10 according to the present embodiment has a configuration similar to that of the first embodiment. The method for producing the bone replacement material 10 includes a step of extruding the raw material in the mesh forming mold 20 onto the receiving surface 16 to form a mesh shaped body 12 having a mesh 13 (S11). (S02) for stacking a plurality of layers. Hereinafter, each step will be described.
[0017]
In the step (S11) of forming the reticulated product 12, first, the raw material 15 is prepared in the same manner as in the first embodiment. The raw material 15 is filled in a mesh forming mold 20.
As shown in FIG. 8, the mesh forming die 20 has a material injection port 22 formed inside a rotating shaft 21 extending in one direction. A cylindrical body 23 is provided on an outer peripheral portion with the rotation shaft 21 as a central axis, and a slit 24 formed in a lattice shape communicates with the raw material inlet 22 on the cylindrical outer peripheral surface of the cylindrical body 23. Is provided.
The raw material 15 filled from the raw material inlet 22 is extruded from the slit 24 and discharged. At this time, when the cylindrical body 23 is rotated around the rotation axis 21 and discharged while the receiving surface 16 is moved in the direction perpendicular to the central axis of the cylindrical body 23, the rectangular mesh 13 as shown in FIG. A reticulated product 12 is formed.
[0018]
By performing a step (S02) of laminating a plurality of the reticulated moldings 12 similar to the first embodiment on the reticulated molding 12 formed in this way, the bone filling having the same configuration as that of the first embodiment is performed. Material 10 is obtained.
According to the bone replacement material 10, the same operation and effect as in the first embodiment can be obtained.
In addition, according to the method for manufacturing the bone filling material 10, since the raw material 15 in the reticulated material forming die 20 is extruded to directly form the reticulated material 12, the size and shape of the lattice shape of the reticulated material forming die 20 are reduced. By setting in advance, the mesh 13 can be formed freely and easily and the net-shaped molded product 12 can be formed.
[0019]
Next, a living tissue replacement material and a method for manufacturing the same according to a third embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to the components described in the above embodiment, and the description will be omitted.
The third embodiment is different from the first embodiment in that the bone replacement material 10 according to the first embodiment is formed by laminating a plurality of net-like molded products 12, whereas the third embodiment is different from the first embodiment. In the bone replacement material 30 according to the embodiment, the net-like molded product 12 is formed by being wound up.
[0020]
The bone replacement material 30 according to the present embodiment is made of a porous calcium phosphate (for example, β-TCP) similarly to the first embodiment, and as shown in FIG. Are formed in a cylindrical shape. Each of the meshes 13 formed on the net-shaped molded product 12 is wound so as not to overlap with other meshes 13 adjacent in the radial direction at the same position.
[0021]
Next, a method for manufacturing the bone replacement material 30 according to the present embodiment will be described.
As shown in FIG. 10, this manufacturing method includes a step (S01) of forming the reticulated molded article 12 in the same manner as in the first embodiment and a step of winding the reticulated molded article 12 into a cylindrical shape (S12). Have. Hereinafter, each step will be described.
[0022]
In the step (S01) of forming the reticulated molding 12, the reticulated molding 12 is produced from the linear molding die 14 in the same manner as in the first embodiment.
In the step of winding the reticulated product 12 into a cylindrical shape (S12), the take-up roll 31 is rotated around an axis while one of the reticulated products 12 is in contact with the take-up roll 31 shown in FIG. At this time, the reticulated product 12 is wound along the outer peripheral surface of the winding roll 31. After the winding, the end of the net-like molded product 12 is fixed with a bioadhesive such as a cyanoacrylate (octyl-2-cyanoacrylate) fibrin glue so as not to be separated.
Thus, the bone replacement material 30 shown in FIG. 9 is formed. The bone replacement material 30 is cut into an optimum size according to the size of the defect in the living body and used.
[0023]
According to the bone filling material 30, since the single net-shaped molded product 12 is wound up in a cylindrical shape, the mesh size is adjusted by freely changing the diameter of the winding roll 31 and adjusting the winding diameter. The area where they intersect can be adjusted, and the density can be changed. As a result, the porosity can be controlled and the porosity can be increased, so that the cell adhesion is improved and the smooth exchange of cell waste is facilitated, and a sufficient amount of cells can be attached and grown. it can.
[0024]
The technical scope of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the spirit of the present invention.
For example, in the third embodiment, in the step of forming the reticulated material 12, the bone filling material may be formed using the reticulated material forming die 20 instead of the linear material forming die 14. Also in this case, as in the above, since the net-like molded product 12 formed by the net-like material forming die 20 is wound into a cylindrical shape, it is possible to control the porosity of the entire filling material by adjusting the lamination state according to the winding state. Thus, the same operation and effect as in the third embodiment can be obtained.
Further, the shape of the mesh 13 is not limited to a quadrangle, but may be a polygon such as a triangle or an arc shape.
Further, the raw material 15 may be not only β-TCP but also a calcium phosphate ceramic or the like or a combination thereof, as long as it is a material having an affinity for living tissue.
[0025]
【The invention's effect】
The present invention described above has the following effects.
According to the living tissue filling material of the present invention, since it has a high porosity, the adhesion of stem cells can be improved, and the cells attached to the inside can be activated by metabolism to promote growth.
In addition, according to the method for producing a living tissue replacement material of the present invention, since a step of forming a net-like molded article and a step of laminating the net-like molded article in the thickness direction are provided, the porosity is freely adjusted. As a result, it is possible to provide a living tissue replacement material that is optimal for a defect in a living body.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an outline of a living tissue filling material according to a first embodiment of the present invention.
FIG. 2 is a view showing a production flow of a living tissue replacement according to the first embodiment of the present invention.
FIG. 3 is a view showing a part of a manufacturing process of a living tissue replacement according to the first embodiment of the present invention.
FIG. 4 is a view showing a part of the manufacturing process of the living tissue replacement according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing a net-like molded product according to the first embodiment of the present invention.
FIG. 6 is a view showing a part of a manufacturing process of the living tissue replacement according to the first embodiment of the present invention.
FIG. 7 is a view showing a production flow of a living tissue replacement according to a second embodiment of the present invention.
FIG. 8 is a view illustrating a part of a manufacturing process of a living tissue replacement according to the second embodiment of the present invention.
FIG. 9 is a perspective view showing a living tissue replacement according to a third embodiment of the present invention.
FIG. 10 is a view showing a production flow of a living tissue replacement according to a third embodiment of the present invention.
FIG. 11 is a view illustrating a part of a manufacturing process of a living tissue replacement according to a third embodiment of the present invention.
[Explanation of symbols]
10, 30 Bone prosthesis (living tissue prosthesis)
REFERENCE SIGNS LIST 11 linear molded product 12 reticulated molded product 13 mesh 14 linear molded product 15 raw material 16 receiving surface 20 reticulated molded product

Claims (6)

線状成形物を交差させてなる網状成形物を積層して構成したことを特徴とする生体組織補填材。A biological tissue filling material, which is formed by laminating a net-like molded product obtained by intersecting linear molded products. 前記網状成形物が、円筒状に形成されていることを特徴とする請求項1記載の生体組織補填材。The living tissue filling material according to claim 1, wherein the net-like molded product is formed in a cylindrical shape. 線状物成形型内の原料を受け面上に押出して一方向に延びる線状成形物を作成後、該線状成形物と交差する方向に延びる他の線状成形物を作成して網状成形物を形成する工程と、
該網状成形物を積層する工程とを備えていることを特徴とする生体組織補填材の製造方法。
After forming the linear molded product extending in one direction by extruding the raw material in the linear mold onto the receiving surface, forming another linear molded product extending in a direction intersecting with the linear molded product to form a net. Forming an object;
Laminating the net-like molded product.
前記積層する工程が、前記網状成形物を円筒状に巻き取る工程であることを特徴とする請求項3記載の生体組織補填材の製造方法。The method according to claim 3, wherein the laminating step is a step of winding the reticulated product into a cylindrical shape. 網状物成形型内の原料を受け面上に押出して、網目を有する網状成形物を形成する工程と、
該網状成形物を積層する工程とを備えていることを特徴とする生体組織補填材の製造方法。
Extruding the raw material in the reticulated mold onto the receiving surface to form a reticulated molded product having a mesh,
Laminating the net-like molded product.
前記積層する工程が、前記網状成形物を円筒状に巻き取る工程であることを特徴とする請求項5記載の生体組織補填材の製造方法。The method according to claim 5, wherein the laminating step is a step of winding the reticulated product into a cylindrical shape.
JP2003098030A 2003-04-01 2003-04-01 Living body tissue substitute material and method for producing the same Withdrawn JP2004298544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098030A JP2004298544A (en) 2003-04-01 2003-04-01 Living body tissue substitute material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098030A JP2004298544A (en) 2003-04-01 2003-04-01 Living body tissue substitute material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004298544A true JP2004298544A (en) 2004-10-28

Family

ID=33409668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098030A Withdrawn JP2004298544A (en) 2003-04-01 2003-04-01 Living body tissue substitute material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004298544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063820A1 (en) 2005-12-02 2007-06-07 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
JP2014534843A (en) * 2011-10-18 2014-12-25 ポステック アカデミー−インダストリー ファンデーション Membrane type artificial support and method for producing the same
JP2015213530A (en) * 2014-05-07 2015-12-03 ナカシマメディカル株式会社 Implant and production method thereof
CN110636869A (en) * 2017-03-14 2019-12-31 段维新 Method for free forming bone substitute and composite material used therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063820A1 (en) 2005-12-02 2007-06-07 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
JP2014534843A (en) * 2011-10-18 2014-12-25 ポステック アカデミー−インダストリー ファンデーション Membrane type artificial support and method for producing the same
US9439764B2 (en) 2011-10-18 2016-09-13 Postech Academy-Industry Foundation Membrane-type artificial scaffold and method for fabricating same
JP2015213530A (en) * 2014-05-07 2015-12-03 ナカシマメディカル株式会社 Implant and production method thereof
CN110636869A (en) * 2017-03-14 2019-12-31 段维新 Method for free forming bone substitute and composite material used therefor

Similar Documents

Publication Publication Date Title
EP0914072B1 (en) An artefact suitable for use as a bone implant
US5714103A (en) Process for the production of shaped articles having a predetermined pore structure
US9381274B2 (en) Bone graft implants containing allograft
EP1733746A2 (en) Bioabsorbable implant having a varying characteristic
Seunarine et al. 3D polymer scaffolds for tissue engineering
CA2345982A1 (en) Composites for tissue regeneration and methods of manufacture thereof
WO2007016545A9 (en) Porous materials having multi-size geometries
CA2696386A1 (en) Method for producing a three-dimensional macroporous filament construct based on phase inversion and construct thereby obtained
US20080306607A1 (en) Material for Repairing Biological Tissues and Process for Producing the Same
KR101387159B1 (en) Making method for dual-pore scaffold and the scaffold
JP2004298544A (en) Living body tissue substitute material and method for producing the same
CN103313737B (en) Devices and methods for tissue engineering
GB2477010A (en) Dental implant with pores
EP2289468B1 (en) Implant body and method for manufacturing
CA2916586A1 (en) Bone replacement material and method for producing bone replacement material
Ansari et al. A Review of Bone Regeneration Mechanisms and Bone Scaffold Fabrication Techniques (Conventional and Non-Conventional)
AU2005224997A1 (en) Method for obtaining graded pore structure in scaffolds for tissues and bone, and scaffolds with graded pore structure for tissue and bone
CN102429745A (en) Nanometer artificial bone framework with transverse gradient hole structure and preparation method thereof
RO132753B1 (en) Tridimensional structures based on hydroxyapatite and polyurethane-diol, made by 3d-printing technique
JP2004298407A (en) Living tissue filling material and method of manufacturing the same
KR101739623B1 (en) Methods of Manufacturing of porous matrix grafts and as porous matrix graft
JP2004298545A (en) Living tissue filling material and method of manufacturing the same
KR101413541B1 (en) Method for manufacturing a three-dimensional scaffold
JP2004298546A (en) Biological tissue filling material
JP2004290586A (en) Filling material for biological tissue and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606