JP2004296143A - Planar lighting system and liquid crystal display using it - Google Patents

Planar lighting system and liquid crystal display using it Download PDF

Info

Publication number
JP2004296143A
JP2004296143A JP2003083765A JP2003083765A JP2004296143A JP 2004296143 A JP2004296143 A JP 2004296143A JP 2003083765 A JP2003083765 A JP 2003083765A JP 2003083765 A JP2003083765 A JP 2003083765A JP 2004296143 A JP2004296143 A JP 2004296143A
Authority
JP
Japan
Prior art keywords
light
light guide
guide rod
guide plate
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083765A
Other languages
Japanese (ja)
Inventor
Hisao Kondo
久雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003083765A priority Critical patent/JP2004296143A/en
Publication of JP2004296143A publication Critical patent/JP2004296143A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar lighting system capable of making a display screen of a display device distinct, and a liquid crystal display having a distinct display screen, by practically fixing the light intensity distribution of a light guide rod. <P>SOLUTION: This planar lighting system is composed of a light guide plate 4, the light guide rod 1 disposed along one end of the light guide plate 4, and a light source 3 disposed at both ends in the longitudinal direction of the light guide rod 1, and light from the light source 3 is emitted from one main face of the light guide plate 4 through the light guide rod 1. Light scattering particles 2 are contained in the light guide rod 1, and average content density of the light scattering particles is made smaller in both end areas compared with the central area in the longitudinal direction of the light guide rod 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示装置等の表示デバイスに用いられる面状照明装置並びに液晶表示装置に関するものである。
【0002】
【従来の技術】
従来より、携帯情報端末や携帯電話等の表示画面には液晶表示装置等の表示デバイスが使用され、かかる表示デバイスの照明源として面状照明装置が知られている。
【0003】
かかる面状照明装置は、例えば図5に示すごとく、矩形状を成すアクリル樹脂製の導光板24と、該導光板24の一辺に沿って配されるアクリル樹脂製の導光ロッド21と、該導光ロッド21の長手方向の両端に配される一対の光源23とを有し、前記導光ロッド21内全域に光散乱性粒子22を略均一に含有させて構成されており、前記一対の光源23より導光ロッド21へ入射する光を、光散乱性粒子22等によって屈折・反射させ、導光板24内に入射させるとともに、この光を導光板24内に設けられる溝25によって、導光板24の一主面側に反射させ、該反射光を面状光として外部に向けて出射することにより面状照明装置として機能する。
【0004】
そして、面状照明装置を液晶表示装置に組み込む場合、上述の面状光を導光板の一主面上に配置された液晶表示パネルに照射させることにより、液晶表示パネルに写し出された画像を所定の輝度で表示し、夜間等外光の弱い環境下においても液晶表示パネルの画像を視認できるようにする。
【0005】
尚、前記導光ロッド21内部の光散乱性粒子22は、例えばシリカやアルミナ等から成り、該導光ロッド21の全域に亘り5×10個/cm〜1×10個/cmの平均含有密度で略均一に分布されており、光源23から導光ロッド21内へ入射した光を散乱させ、これを導光板24内に入射させるためのものである。
【0006】
【特許文献1】
特開2002−109937号公報
【0007】
【発明が解決しようとする課題】
ところで、導光ロッド21の両端より入射した光源23からの光は、その一部が光散乱性粒子22により散乱されて導光板24へ出射し、残りの光が長手方向中央域に向かうため、導光ロッド21内を通過する光量は長手方向両端域よりも中央域で大幅に少なくなっている。
【0008】
しかしながら、上述したような従来の面状照明装置においては、導光ロッド21の内部に含まれる光散乱性粒子22が、導光ロッド21の長手方向にわたり略均一に分布しており、光散乱性粒子22によって散乱される光の割合も長手方向中央域と両端域とで略等しいことから、光散乱性粒子22によって導光板24に出射される光の量は、導光ロッド21内を通過する光量が少ない中央域ほど少なくなり、導光板24から出射する光強度分布が不均一なものとなる(図6、図7参照)。
【0009】
それ故、このような面状照明装置を液晶表示装置に組み込んで使用した場合、液晶表示パネルに表示される画像には、図7に示す光強度に応じた輝度ムラが表れることとなり、表示画面が不鮮明となる欠点を有していた。
【0010】
本発明は上記欠点に鑑み案出されたもので、その目的は、導光ロッド21の光強度分布を略一定にすることで、表示デバイスの表示画面を鮮明なものにできる面状照明装置並びに表示画面が鮮明な液晶表示装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明の面状照明装置は、導光板と、該導光板の一端に沿って配される導光ロッドと、該導光ロッドの長手方向の両端に配される光源とから成り、前記光源からの光を導光ロッドを介して導光板の一主面より出射させる面状照明装置において、前記導光ロッドの内部に光散乱性粒子を含有させるとともに、該光散乱性粒子の平均含有密度を前記導光ロッドの長手方向中央域に比して両端域で小さく成したことを特徴とするものである。
【0012】
また本発明の面状照明装置は、前記光散乱性粒子の平均含有密度を、導光ロッドの長手方向中央域で5×10個/cm〜1×10個/cm、両端域で1×10個/cm〜5×10個/cmの範囲となるように設定したことを特徴とするものである。
【0013】
更に本発明の面状照明装置は、前記光散乱性粒子の平均粒径が、0.1μm〜50μmであることを特徴とするものである。
【0014】
また更に本発明の面状照明装置は、前記導光ロッドの屈折率と、前記光散乱性粒子の屈折率との差が、0.01〜0.2の範囲となるように設定したことを特徴とするものである。
【0015】
本発明の液晶表示装置は、上述の面状照明装置と、該面状照明装置の導光板の一主面上に配設される液晶表示パネルとを備えたことを特徴とするものである。
【0016】
本発明の面状照明装置によれば、導光板と、該導光板の一端に沿って配される導光ロッドと、該導光ロッドの長手方向の両端に配される光源とから成る面状照明装置において、前記導光ロッドの内部に光散乱性粒子を含有させるとともに、該光散乱性粒子の平均含有密度を前記導光ロッドの長手方向中央域に比して両端域で小さく成したことから、光散乱性粒子によって散乱される光の割合が長手方向両端域よりも中央域で高くなる。従って、導光ロッド内を通過する光量が長手方向両端域よりも中央域で少なくなっても、光散乱性粒子によって導光板に出射される中央域の光量と両端域の光量とを同程度に成すことができ、導光ロッドの光強度分布が略一定になる。その結果、表示デバイスの表示画面を鮮明にすることが可能な面状照明装置が得られる。
【0017】
また上述の面状照明装置の導光板の一主面上に液晶表示パネルを配設することにより、表示画面が鮮明な液晶表示装置を得ることが可能となる。
【0018】
【発明の実施の形態】
以下、本発明に係る面状照明装置及び液晶表示装置を添付図面に基づいて説明する。
【0019】
図1は本発明の一実施形態に係る面状照明装置の斜視図、図2は導光ロッド1からの出射光の強度分布図であり、図1に示す面状照明装置は、大略的に、矩形状を成す導光板4と、該導光板4の一辺に沿って配される導光ロッド1と、該導光ロッド1の長手方向の両端に配される一対の光源3とで構成されている。
【0020】
前記導光板4は、例えばアクリル樹脂、ポリカーボネート樹脂、ノルボルネン系樹脂、塩化ビニル樹脂等の熱可塑性透明樹脂や透明ガラスにより矩形状に形成されており、光が出射する一主面とは反対側の他主面に多数の溝5が設けられている。
【0021】
かかる導光板4は、導光ロッド1より入射した光を他主面に設けられた多数の溝5により一主面側に反射させ、該反射光を一主面より出射させる作用を為しており、例えばアクリル樹脂を使用する場合、液状に成したアクリル樹脂を所定形状の金型に注入し成型することにより作成される。
【0022】
また導光板4の他主面に設けられる多数の溝5は、導光ロッド1が配される導光板4の前記一辺と略平行となるように配列されており、各々が断面三角形状を成し、その深さが1μm〜70μm、開口幅が1μm〜70μmに夫々設定されている。
【0023】
前記多数の溝5の形成密度は、導光板4の前記一辺より離間するにつれて漸次高くなるように(前記一辺の近傍:1本/mm〜2本/mm、前記一辺の対向辺近傍:9本/mm〜10本/mm)形成されており、これによって通過する光量が少ない導光板4の前記一辺の対向辺近傍で光を多く反射させ、導光板4より出射させる光量を導光板4全域に亘り、略均一となるようにしている。
【0024】
更に導光板4の一辺に沿って配される導光ロッド1は、例えばアクリル樹脂等により直方体状に形成されており、その端面と導光板4の端面とを対向させた形で近接配置させている。
【0025】
前記導光ロッド1は、光源3から入射した光を前記導光ロッド1の端面から導光板4へと出射させるためのものであり、その内部には光散乱性粒子2が含有されている。
【0026】
前記光散乱性粒子2は、導光ロッド1とは屈折率の異なる材料から成り、具体的にはシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、或はアクリル樹脂、ポリカーボネート樹脂等の有機系粒子が好適に使用され、その平均含有密度は導光ロッド1の長手方向中央域に比して、両端域で小さくなっている。
【0027】
具体的には、光散乱性粒子2の平均含有密度は、導光ロッド1の長手方向中央域で5×10個/cm〜1×10個/cm、両端域で1×10個/cm〜5×10個/cmの範囲に成してある。
【0028】
このため、光散乱性粒子2によって散乱される光の割合が長手方向両端域よりも中央域で高くなり、導光ロッド1内を通過する光量が長手方向両端域よりも中央域で少なくなっても、光散乱性粒子2によって導光板4に出射される中央域の光量と両端域の光量とを同程度に成すことができる。
【0029】
また前記光散乱性粒子2の平均粒径は、好適には0.1μm〜50μm、最適には1μm〜40μmにすると良く、平均粒径が0.1μmより小さいと、光散乱性粒子2により散乱される光量が不十分となる傾向にあり、導光板4に入射する光量が不足する傾向にあり、また平均粒径が50μmより大きいと、光散乱性粒子2により散乱される光量が多すぎて、導光ロッド1の中央域を通過する光量が不足気味になる。
【0030】
一方、前記導光ロッド1の屈折率と光散乱性粒子2の屈折率との差が0.01〜0.2の範囲内になるように設定することが好ましく、屈折率の差が0・01未満になると、散乱される光量が不十分となる傾向にあり、導光板4に入射する光量が不足する傾向にあり、また屈折率の差が0.2を超えると、光散乱性粒子2により散乱される光量が多すぎて、導光ロッド1の中央域を通過する光量が不足気味になる。
【0031】
例えば導光ロッド1を構成するアクリル樹脂の屈折率は1.49、光散乱性粒子2に用いられるシリカの屈折率は1.46であり、この程度の屈折率の差であれば問題はない。
【0032】
尚、上述した導光ロッド1は、例えばアクリル樹脂から成る場合、光散乱性粒子2の光散乱性粒子の平均含有密度が異なる複数の直方体部材を作成し、これらをアクリル樹脂系接着剤等で接合することで製造される。
【0033】
前記接着剤としては、導光ロッド1と接着剤との界面で光の屈折・反射等が起こらないように、導光ロッド1と接着剤との屈折率が略等しいもの(両者の屈折率の差が0.01以内)がよい。
【0034】
そして導光ロッド1の両端に配される光源3は、例えばn型半導体層とp型半導体層とを積層した構造を有するLED等が好適に用いられ、図示しない電極を介して電圧が印加されるとpn接合付近より光が発せられ、その光を導光ロッド1内に出射するようになっている。
【0035】
次に上述した面状照明装置を組み込んだ液晶表示装置について図3を用いて説明する。
【0036】
図3に示す液晶表示装置は、上述の面状照明装置の導光板4の一主面と液晶表示パネルの一主面とが対向するように配置されている。
【0037】
前記液晶表示パネルは、例えば、STN型単純マトリックスタイプの半透過型液晶表示パネルが用いられ、かかる液晶表示パネルは、各々が略四角形状を成すように形成された透明基板7a,7bの一主面にITO(Indium Tin Oxide)から成る多数の透明電極8やポリイミド樹脂から成る配向膜(図示せず)等を、他主面に偏光板6等を夫々被着・形成し、この両基板7a,7bを透明電極8同士が互いに向かい合うようにして間に所定の間隔を空けて対向配置させた上、両基板間7a−7bの間隙に液晶材料を充填した構造を有している。
【0038】
前記液晶パネルの透明基板7a,7bは、ガラスやプラスチック等の透明な電気絶縁材料により形成されており、該各透明基板7a,7bの一主面に設けられる多数の透明電極8は、その上方に配置される透明基板7a(または7b)の透明電極8に対して直交するように一定の間隔で配列・形成され、これら2種類の透明電極群でもってマトリクス配線を形成している。
【0039】
また前記液晶パネルの液晶材料としては、例えばネマティック型液晶が用いられ、該液晶9は前述の配向膜によって一対の透明基板7a,7b間で180°〜270°だけ捻れてツイスト配列された構造となる。
【0040】
このような液晶表示パネルは、透明電極8の対向領域に個々の画素が形成され、各画素領域内の液晶9に透明電極8を介して所定の電圧を印加すると、液晶9の分子配列が変化し、面状照明装置からの光が液晶表示パネルを透過する割合、すなわち光透過率が可変される。
【0041】
本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の変更・改良が可能である。
【0042】
例えば、上述の実施形態において、前記導光ロッド1の光散乱性粒子の平均含有密度を、中央域より両端域に向かって漸次低くなるように設定しても上述の実施形態と同様の効果が得られる。
【0043】
また、上述の実施形態において、前記導光板4と対向する端面と反対側の導光ロッド1の端面に、導光ロッド1の短辺方向に沿って複数の溝10を形成してもよく、更に導光ロッド1の表面にAl,Ag,AP(AgとPdの合金)、APC(AgとPdとCuの合金)、ACA(AgとCuとAuの合金)等から成る光反射膜11を形成してもよく、この場合光源3からの光や光散乱性粒子2により散乱された光を、導光ロッドから漏洩させることなく導光板4へと出射させることが可能となり、面状照明装置の輝度向上が可能となる。
【0044】
このような溝10は、導光ロッド1の射出成型時に一体的に形成され、また光反射膜10は、導光ロッド1の光の入、出射口となる部分以外の箇所に、金属や誘電体から成る材料を、充来周知のスパッタリング法や蒸着法等の薄膜形成技術により被着させることにより作成される。
【0045】
更に上述の実施形態においては、STN方式の半透過型液晶表示パネルに面状照明装置を組み込んだ場合について説明したが、これに換えてTFT方式を採用してもよく、また透過型、反射型の液晶表示パネルにも適用できる。
【0046】
【発明の効果】
本発明の面状照明装置によれば、導光板と、該導光板の一端に沿って配される導光ロッドと、該導光ロッドの長手方向の両端に配される光源とから成る面状照明装置において、前記導光ロッドの内部に光散乱性粒子を含有させるとともに、該光散乱性粒子の平均含有密度を前記導光ロッドの長手方向中央域に比して両端域で小さく成したことから、光散乱性粒子によって散乱される光の割合が、長手方向両端域よりも中央域で高くなる。従って、導光ロッド内を通過する光量が、長手方向両端域よりも中央域で少なくなっても、光散乱性粒子によって導光板に出射される中央域の光量と両端域の光量とを同程度に成すことができ、導光ロッドの光強度分布が略一定になる。その結果、表示デバイスの表示画面を鮮明にすることが可能な面状照明装置が得られる。
【0047】
また上述の面状照明装置の導光板の一主面上に液晶表示パネルを配設することにより、表示画面が鮮明な液晶表示装置を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る面状照明装置の斜視図である。
【図2】図1の面状照明装置の導光ロッドから出射した光の強度分布図である。
【図3】本発明の一実施形態に係る液晶表示装置の側面図である。
【図4】本発明の他の実施形態に係る面状照明装置の平面図である。
【図5】従来の面状照明装置の斜視図である。
【図6】従来の面状照明装置の導光ロッドから出射した光の強度分布図である。
【図7】従来の面状照明装置の導光板から出射した光の強度分布図である。
【符号の説明】
1・・・導光ロッド
2・・・光散乱性粒子
3・・・光源
4・・・導光板
5・・・導光板の溝
6・・・偏光板
7a,7b・・・透明基板
8・・・透明電極
9・・・液晶
10・・・導光ロッドの溝
11・・・光反射膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a planar illumination device used for a display device such as a liquid crystal display device and a liquid crystal display device.
[0002]
[Prior art]
Conventionally, a display device such as a liquid crystal display device has been used for a display screen of a portable information terminal, a mobile phone, or the like, and a planar illumination device is known as an illumination source of the display device.
[0003]
For example, as shown in FIG. 5, such a planar illumination device includes a light guide plate 24 made of an acrylic resin having a rectangular shape, a light guide rod 21 made of an acrylic resin disposed along one side of the light guide plate 24, and The light guide rod 21 includes a pair of light sources 23 disposed at both ends in the longitudinal direction, and the light guide rod 21 is configured to contain the light scattering particles 22 substantially uniformly throughout the light guide rod 21. Light incident on the light guide rod 21 from the light source 23 is refracted / reflected by the light scattering particles 22 and the like and is incident on the light guide plate 24, and the light is guided by the groove 25 provided in the light guide plate 24. 24 is reflected to one principal surface side, and the reflected light is emitted to the outside as planar light to function as a planar illumination device.
[0004]
When the planar illumination device is incorporated into a liquid crystal display device, the above-described planar light is applied to a liquid crystal display panel disposed on one main surface of the light guide plate, so that an image projected on the liquid crystal display panel is subjected to a predetermined process. The image is displayed at a brightness of the liquid crystal display panel so that the image on the liquid crystal display panel can be visually recognized even in an environment where external light is weak such as at night.
[0005]
The light-scattering particles 22 inside the light guide rod 21 are made of, for example, silica, alumina, or the like, and are in a range of 5 × 10 6 / cm 3 to 1 × 10 7 / cm 3 over the entire area of the light guide rod 21. Are distributed substantially uniformly at an average content density of, and are for scattering light incident from the light source 23 into the light guide rod 21 and causing the light to enter the light guide plate 24.
[0006]
[Patent Document 1]
JP-A-2002-109937
[Problems to be solved by the invention]
By the way, the light from the light source 23 incident from both ends of the light guide rod 21 is partially scattered by the light scattering particles 22 and emitted to the light guide plate 24, and the remaining light goes to the central region in the longitudinal direction. The amount of light passing through the light guide rod 21 is significantly smaller in the central region than in both end regions in the longitudinal direction.
[0008]
However, in the conventional planar lighting device as described above, the light scattering particles 22 contained inside the light guide rod 21 are substantially uniformly distributed in the longitudinal direction of the light guide rod 21, and the light scattering property is high. Since the ratio of light scattered by the particles 22 is also substantially equal between the central region in the longitudinal direction and both end regions, the amount of light emitted to the light guide plate 24 by the light scattering particles 22 passes through the light guide rod 21. The central area where the amount of light is smaller becomes smaller, and the light intensity distribution emitted from the light guide plate 24 becomes uneven (see FIGS. 6 and 7).
[0009]
Therefore, when such a planar illumination device is incorporated in a liquid crystal display device and used, an image displayed on the liquid crystal display panel will have luminance unevenness corresponding to the light intensity shown in FIG. Had the disadvantage of becoming unclear.
[0010]
The present invention has been devised in view of the above-described drawbacks, and has as its object to provide a planar illumination device capable of making the display screen of a display device clear by making the light intensity distribution of the light guide rod 21 substantially constant. It is to provide a liquid crystal display device with a clear display screen.
[0011]
[Means for Solving the Problems]
The spread illuminating apparatus of the present invention comprises a light guide plate, a light guide rod arranged along one end of the light guide plate, and light sources arranged at both ends in the longitudinal direction of the light guide rod. In a planar lighting device that emits light from one main surface of a light guide plate via a light guide rod, light-scattering particles are contained inside the light-guide rod, and the average content density of the light-scattering particles is reduced. The light guide rod is characterized in that it is smaller at both end regions as compared with the central region in the longitudinal direction.
[0012]
Further, in the spread illuminating apparatus of the present invention, the average content density of the light-scattering particles is 5 × 10 6 / cm 3 to 1 × 10 7 / cm 3 in the central region in the longitudinal direction of the light guide rod, and both end regions. Is set so as to be in the range of 1 × 10 5 / cm 3 to 5 × 10 5 / cm 3 .
[0013]
Furthermore, the spread illuminating apparatus of the present invention is characterized in that the light-scattering particles have an average particle size of 0.1 μm to 50 μm.
[0014]
Still further, in the planar lighting device of the present invention, a difference between a refractive index of the light guide rod and a refractive index of the light scattering particles is set to be in a range of 0.01 to 0.2. It is a feature.
[0015]
A liquid crystal display device according to the present invention includes the above-mentioned spread illuminating device and a liquid crystal display panel disposed on one main surface of a light guide plate of the spread illuminating device.
[0016]
According to the planar lighting device of the present invention, a planar shape including a light guide plate, a light guide rod disposed along one end of the light guide plate, and light sources disposed at both longitudinal ends of the light guide rod. In the lighting device, light-scattering particles are contained inside the light-guiding rod, and the average content density of the light-scattering particles is made smaller at both end regions as compared with the central region in the longitudinal direction of the light-guiding rod. Therefore, the ratio of light scattered by the light-scattering particles is higher in the central region than in both end regions in the longitudinal direction. Therefore, even if the amount of light passing through the light guide rod is smaller in the central region than in both end regions in the longitudinal direction, the amount of light in the central region and the amount of light in both end regions emitted to the light guide plate by the light-scattering particles are substantially the same. The light intensity distribution of the light guide rod becomes substantially constant. As a result, a planar lighting device capable of sharpening the display screen of the display device is obtained.
[0017]
In addition, by disposing a liquid crystal display panel on one main surface of the light guide plate of the above-mentioned spread illuminating device, it is possible to obtain a liquid crystal display device with a clear display screen.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a planar lighting device and a liquid crystal display device according to the present invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 is a perspective view of a planar lighting device according to an embodiment of the present invention, FIG. 2 is an intensity distribution diagram of light emitted from a light guide rod 1, and the planar lighting device shown in FIG. A light guide plate 4 having a rectangular shape, a light guide rod 1 arranged along one side of the light guide plate 4, and a pair of light sources 3 arranged at both ends in the longitudinal direction of the light guide rod 1. ing.
[0020]
The light guide plate 4 is formed in a rectangular shape with a transparent glass or a thermoplastic transparent resin such as an acrylic resin, a polycarbonate resin, a norbornene-based resin, and a vinyl chloride resin, and is formed on a side opposite to the one main surface from which light is emitted. Many grooves 5 are provided on the other main surface.
[0021]
The light guide plate 4 has a function of reflecting light incident from the light guide rod 1 to one main surface side by a large number of grooves 5 provided on the other main surface, and emitting the reflected light from one main surface. When an acrylic resin is used, for example, it is formed by injecting a liquid acrylic resin into a mold having a predetermined shape and molding.
[0022]
A large number of grooves 5 provided on the other main surface of the light guide plate 4 are arranged so as to be substantially parallel to the one side of the light guide plate 4 on which the light guide rods 1 are arranged, and each has a triangular cross section. The depth is set to 1 μm to 70 μm, and the opening width is set to 1 μm to 70 μm.
[0023]
The formation density of the plurality of grooves 5 is gradually increased as the distance from the one side of the light guide plate 4 increases (near the one side: 1 line / mm to 2 lines / mm, near the opposite side of the one side: 9 lines). / Mm to 10 lines / mm), whereby a large amount of light is reflected in the vicinity of the one side opposite to the one side of the light guide plate 4 which transmits a small amount of light, and the amount of light emitted from the light guide plate 4 is distributed over the entire area of the light guide plate 4. It is made to be substantially uniform throughout.
[0024]
Further, the light guide rods 1 arranged along one side of the light guide plate 4 are formed in a rectangular parallelepiped shape by, for example, acrylic resin or the like, and are arranged close to each other with their end faces facing the end faces of the light guide plate 4. I have.
[0025]
The light guide rod 1 is for emitting light incident from the light source 3 to the light guide plate 4 from an end face of the light guide rod 1 and contains light scattering particles 2 therein.
[0026]
The light-scattering particles 2 are made of a material having a different refractive index from that of the light-guiding rod 1, and specifically include inorganic particles such as silica, alumina, titania, zirconia, and calcium oxide, or acrylic resin and polycarbonate resin. The organic particles are preferably used, and the average content density is smaller at both end regions as compared with the central region in the longitudinal direction of the light guide rod 1.
[0027]
Specifically, the average content density of the light scattering particles 2 is 5 × 10 6 / cm 3 to 1 × 10 7 / cm 3 in the central region in the longitudinal direction of the light guide rod 1, and 1 × 10 6 / cm 3 in both end regions. The range is 5 / cm 3 to 5 × 10 5 / cm 3 .
[0028]
For this reason, the ratio of the light scattered by the light-scattering particles 2 is higher in the central region than in both end regions in the longitudinal direction, and the amount of light passing through the light guide rod 1 is smaller in the central region than in both end regions in the longitudinal direction. Also, the light amount in the central region and the light amount in both end regions emitted to the light guide plate 4 by the light scattering particles 2 can be made substantially equal.
[0029]
The average particle size of the light scattering particles 2 is preferably 0.1 μm to 50 μm, and more preferably 1 μm to 40 μm. If the average particle size is smaller than 0.1 μm, the light scattering particles 2 When the average particle diameter is larger than 50 μm, the amount of light scattered by the light scattering particles 2 is too large. However, the amount of light passing through the central region of the light guide rod 1 tends to be insufficient.
[0030]
On the other hand, it is preferable to set the difference between the refractive index of the light guide rod 1 and the refractive index of the light scattering particles 2 to be in the range of 0.01 to 0.2. If it is less than 01, the amount of scattered light tends to be insufficient, the amount of light incident on the light guide plate 4 tends to be insufficient, and if the difference in refractive index exceeds 0.2, the light scattering particles 2 Is too much, and the amount of light passing through the central region of the light guide rod 1 tends to be insufficient.
[0031]
For example, the refractive index of the acrylic resin constituting the light guide rod 1 is 1.49, and the refractive index of silica used for the light scattering particles 2 is 1.46. If there is such a difference in the refractive index, there is no problem. .
[0032]
When the above-mentioned light guide rod 1 is made of, for example, an acrylic resin, a plurality of rectangular parallelepiped members having different average light-scattering particle content densities of the light-scattering particles 2 are formed, and these are made of an acrylic resin-based adhesive or the like. It is manufactured by joining.
[0033]
As the adhesive, a light guide rod 1 and an adhesive having substantially the same refractive index (both refractive indices are used) so that refraction and reflection of light do not occur at the interface between the light guide rod 1 and the adhesive. The difference is preferably within 0.01).
[0034]
As the light source 3 disposed at both ends of the light guide rod 1, for example, an LED or the like having a structure in which an n-type semiconductor layer and a p-type semiconductor layer are stacked is preferably used, and a voltage is applied through an electrode (not shown). Then, light is emitted from the vicinity of the pn junction, and the light is emitted into the light guide rod 1.
[0035]
Next, a liquid crystal display device incorporating the above-described planar illumination device will be described with reference to FIG.
[0036]
The liquid crystal display device shown in FIG. 3 is arranged such that one main surface of the light guide plate 4 of the above-described spread illuminating device and one main surface of the liquid crystal display panel face each other.
[0037]
As the liquid crystal display panel, for example, an STN type simple matrix type transflective liquid crystal display panel is used, and such a liquid crystal display panel is one of main substrates of transparent substrates 7a and 7b each formed to have a substantially square shape. A large number of transparent electrodes 8 made of ITO (Indium Tin Oxide) and an alignment film (not shown) made of a polyimide resin are adhered and formed on one surface, and a polarizing plate 6 and the like are adhered and formed on the other main surface. , 7b are arranged so that the transparent electrodes 8 face each other with a predetermined space therebetween, and a gap between the two substrates 7a-7b is filled with a liquid crystal material.
[0038]
The transparent substrates 7a and 7b of the liquid crystal panel are formed of a transparent electric insulating material such as glass or plastic, and a large number of transparent electrodes 8 provided on one main surface of each of the transparent substrates 7a and 7b have an upper part. Are arranged and formed at regular intervals so as to be orthogonal to the transparent electrodes 8 of the transparent substrate 7a (or 7b) disposed in the matrix, and a matrix wiring is formed by these two types of transparent electrode groups.
[0039]
Further, as a liquid crystal material of the liquid crystal panel, for example, a nematic liquid crystal is used, and the liquid crystal 9 has a structure in which the liquid crystal 9 is twisted by 180 ° to 270 ° between the pair of transparent substrates 7a and 7b and twisted by the above-described alignment film. Become.
[0040]
In such a liquid crystal display panel, individual pixels are formed in a region facing the transparent electrode 8, and when a predetermined voltage is applied to the liquid crystal 9 in each pixel region via the transparent electrode 8, the molecular arrangement of the liquid crystal 9 changes. Then, the rate at which light from the planar lighting device transmits through the liquid crystal display panel, that is, the light transmittance is changed.
[0041]
The present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.
[0042]
For example, in the above-described embodiment, even if the average content density of the light-scattering particles of the light guide rod 1 is set so as to gradually decrease from the central region toward both end regions, the same effect as in the above-described embodiment can be obtained. can get.
[0043]
Further, in the above-described embodiment, a plurality of grooves 10 may be formed along the short side direction of the light guide rod 1 on the end face of the light guide rod 1 opposite to the end face facing the light guide plate 4, Further, a light reflecting film 11 made of Al, Ag, AP (an alloy of Ag and Pd), APC (an alloy of Ag, Pd and Cu), ACA (an alloy of Ag, Cu and Au), etc. is formed on the surface of the light guide rod 1. In this case, the light from the light source 3 and the light scattered by the light scattering particles 2 can be emitted to the light guide plate 4 without leaking from the light guide rod. Can be improved.
[0044]
Such a groove 10 is formed integrally during the injection molding of the light guide rod 1, and the light reflection film 10 is provided with a metal or dielectric at a portion other than a portion of the light guide rod 1 which becomes a light entrance and exit. It is formed by applying a material composed of a body by a known thin film forming technique such as a sputtering method or a vapor deposition method.
[0045]
Further, in the above-described embodiment, the case where the planar illumination device is incorporated in the STN type transflective liquid crystal display panel has been described. Alternatively, a TFT type may be adopted. It can also be applied to liquid crystal display panels.
[0046]
【The invention's effect】
According to the planar lighting device of the present invention, a planar shape including a light guide plate, a light guide rod disposed along one end of the light guide plate, and light sources disposed at both longitudinal ends of the light guide rod. In the lighting device, light-scattering particles are contained inside the light-guiding rod, and the average content density of the light-scattering particles is made smaller at both end regions as compared with the central region in the longitudinal direction of the light-guiding rod. Therefore, the ratio of light scattered by the light-scattering particles is higher in the central region than in both end regions in the longitudinal direction. Therefore, even if the amount of light passing through the light guide rod is smaller in the central region than in both longitudinal end regions, the amount of light in the central region and the amount of light in both end regions emitted to the light guide plate by the light-scattering particles are approximately the same. And the light intensity distribution of the light guide rod becomes substantially constant. As a result, a planar lighting device capable of sharpening the display screen of the display device is obtained.
[0047]
In addition, by disposing a liquid crystal display panel on one main surface of the light guide plate of the above-mentioned spread illuminating device, it is possible to obtain a liquid crystal display device with a clear display screen.
[Brief description of the drawings]
FIG. 1 is a perspective view of a spread illuminating apparatus according to an embodiment of the present invention.
2 is an intensity distribution diagram of light emitted from a light guide rod of the spread illuminating apparatus of FIG.
FIG. 3 is a side view of the liquid crystal display device according to the embodiment of the present invention.
FIG. 4 is a plan view of a spread illuminating apparatus according to another embodiment of the present invention.
FIG. 5 is a perspective view of a conventional planar illumination device.
FIG. 6 is an intensity distribution diagram of light emitted from a light guide rod of a conventional planar lighting device.
FIG. 7 is an intensity distribution diagram of light emitted from a light guide plate of a conventional planar lighting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light guide rod 2 ... Light scattering particles 3 ... Light source 4 ... Light guide plate 5 ... Groove of a light guide plate 6 ... Polarizing plates 7a and 7b ... Transparent substrate 8. ..Transparent electrode 9 Liquid crystal 10 Light guide rod groove 11 Light reflecting film

Claims (5)

導光板と、該導光板の一端に沿って配される導光ロッドと、該導光ロッドの長手方向の両端に配される光源とから成り、前記光源からの光を導光ロッドを介して導光板の一主面より出射させる面状照明装置において、
前記導光ロッドの内部に光散乱性粒子を含有させるとともに、該光散乱性粒子の平均含有密度を前記導光ロッドの長手方向中央域に比して両端域で小さく成したことを特徴とする面状照明装置。
A light guide plate, a light guide rod arranged along one end of the light guide plate, and light sources arranged at both ends in a longitudinal direction of the light guide rod, and light from the light source is transmitted through the light guide rod. In a planar lighting device that emits light from one main surface of a light guide plate,
Light-scattering particles are contained inside the light-guiding rod, and the average content density of the light-scattering particles is reduced at both end regions as compared to the central region in the longitudinal direction of the light-guiding rod. Planar lighting device.
前記光散乱性粒子の平均含有密度を、導光ロッドの長手方向中央域で5×10個/cm〜1×10個/cm、両端域で1×10個/cm〜5×10個/cmの範囲となるように設定したことを特徴とする請求項1に記載の面状照明装置。The average content density of the light-scattering particles is 5 × 10 6 / cm 3 to 1 × 10 7 / cm 3 in the central region in the longitudinal direction of the light guide rod, and 1 × 10 5 / cm 3 to both end regions. The spread illuminating apparatus according to claim 1, wherein the area is set to be in a range of 5 × 10 5 / cm 3 . 前記光散乱性粒子の平均粒径が、0.1μm〜50μmであることを特徴とする請求項1または請求項2に記載の面状照明装置。The spread illuminating device according to claim 1, wherein the light-scattering particles have an average particle size of 0.1 μm to 50 μm. 前記導光ロッドの屈折率と、前記光散乱性粒子の屈折率との差が、0.01〜0.2の範囲となるように設定したことを特徴とする請求項1乃至請求項3のいずれかに記載の面状照明装置。4. The light guide rod according to claim 1, wherein a difference between a refractive index of the light guide rod and a refractive index of the light scattering particles is set in a range of 0.01 to 0.2. The planar lighting device according to any one of the above. 請求項1乃至請求項4のいずれかに記載の面状照明装置と、該面状照明装置の導光板の一主面上に配設される液晶表示パネルと、を備えたことを特徴とする液晶表示装置。A spread illuminating device according to any one of claims 1 to 4, and a liquid crystal display panel provided on one main surface of a light guide plate of the spread illuminator. Liquid crystal display.
JP2003083765A 2003-03-25 2003-03-25 Planar lighting system and liquid crystal display using it Pending JP2004296143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083765A JP2004296143A (en) 2003-03-25 2003-03-25 Planar lighting system and liquid crystal display using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083765A JP2004296143A (en) 2003-03-25 2003-03-25 Planar lighting system and liquid crystal display using it

Publications (1)

Publication Number Publication Date
JP2004296143A true JP2004296143A (en) 2004-10-21

Family

ID=33399146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083765A Pending JP2004296143A (en) 2003-03-25 2003-03-25 Planar lighting system and liquid crystal display using it

Country Status (1)

Country Link
JP (1) JP2004296143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202639A (en) * 2005-01-21 2006-08-03 Sony Corp Backlight device
JP4814221B2 (en) * 2005-03-29 2011-11-16 富士フイルム株式会社 Light guide member, planar illumination device using the same, and bar illumination device
JP2013058491A (en) * 2006-05-25 2013-03-28 I2Ic Corp Light source for illumination with excellent energy efficiency in plane
KR20180077357A (en) * 2016-12-28 2018-07-09 엘지디스플레이 주식회사 Backlight Unit And Display Device Having The Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202639A (en) * 2005-01-21 2006-08-03 Sony Corp Backlight device
JP4814221B2 (en) * 2005-03-29 2011-11-16 富士フイルム株式会社 Light guide member, planar illumination device using the same, and bar illumination device
JP2013058491A (en) * 2006-05-25 2013-03-28 I2Ic Corp Light source for illumination with excellent energy efficiency in plane
KR20180077357A (en) * 2016-12-28 2018-07-09 엘지디스플레이 주식회사 Backlight Unit And Display Device Having The Same
KR102665682B1 (en) * 2016-12-28 2024-05-14 엘지디스플레이 주식회사 Backlight Unit And Display Device Having The Same

Similar Documents

Publication Publication Date Title
US10444424B2 (en) Display device and backlight unit included therein
JP5579381B2 (en) Backlight system for liquid crystal display
CN104303099B (en) Illumination device, and display
KR101318253B1 (en) Light guide plate and display apparatus having the same
TWI425262B (en) Local dimming side-lighting light guide plate and local dimming side-lighting backlight module using the same
WO2013046130A1 (en) Display backlight system
JP4741866B2 (en) Light source device, display device using the same, and terminal device
KR101666570B1 (en) Liquid crystal display apparatus and method of manufacturing the same
JP2007086784A (en) Optical plate, method of manufacturing the same and display device having the same
KR20100047154A (en) Liquid crystal display apparatus
JP2004302067A (en) Light guide plate, lighting device, and liquid crystal display device
WO2011080948A1 (en) Light guiding unit, lighting device, and display device
US20170059764A1 (en) Light guide plate, backlight unit and display device
JP2011209333A (en) Touch panel-integrated illuminator and display device using the same
KR102406180B1 (en) Display apparatus
JP2004151346A (en) Lighting unit, liquid crystal display device, and method for manufacturing diffusion sheet
KR102047232B1 (en) Diffusing light guide film, backlight unit, and liquid crystal display device having thereof
KR20060088923A (en) Back light assembly and liquid crystal display apparatus having the same
JP2004296143A (en) Planar lighting system and liquid crystal display using it
CN104216041B (en) Light guide plate with fillet polygon pattern and the liquid crystal display device with it
JP2007066556A (en) Surface light source and liquid crystal display device
KR101398361B1 (en) Back light unit and liquid crystal display including the same
KR101375019B1 (en) White light emitting device and backlight unit and liquid crystal display device having the same
KR20140026125A (en) Light diffusion plate, display appartus having the same and method of manufacturing the light diffusion plate
US11385398B2 (en) Backlight unit and display apparatus having the same