JP2004294641A - Transparent organic-inorganic complex - Google Patents

Transparent organic-inorganic complex Download PDF

Info

Publication number
JP2004294641A
JP2004294641A JP2003085001A JP2003085001A JP2004294641A JP 2004294641 A JP2004294641 A JP 2004294641A JP 2003085001 A JP2003085001 A JP 2003085001A JP 2003085001 A JP2003085001 A JP 2003085001A JP 2004294641 A JP2004294641 A JP 2004294641A
Authority
JP
Japan
Prior art keywords
transparent organic
temperature
inorganic composite
path length
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003085001A
Other languages
Japanese (ja)
Inventor
Naoyuki Kitamura
直之 北村
Tomohiro Nagakane
知浩 永金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003085001A priority Critical patent/JP2004294641A/en
Publication of JP2004294641A publication Critical patent/JP2004294641A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent organic-inorganic complex, an optical device, and an etalon which allow the variation of optical path length suppressed. <P>SOLUTION: The transparent organic-inorganic complex sufficiently transmits light for use in communication because being transparent. When the transparent organic-inorganic complex is used as an optical device like an etalon, characteristics of the optical device are stabilized under a temperature-variable environment because temperature dependency dS/dT of the optical path length of this complex is ≤10×10<SP>-6</SP>/°C. Consequently, the transparent organic-inorganic complex is available for DWDM using many wavelengths at short wavelength intervals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、熱膨張係数の小さい無機成分中に、屈折率の温度係数の非常に小さい有機成分を分散させた透明有機無機複合体に関し、また、その有機無機複合体を構成部材の一部に含む光通信分野に用いられるエタロン等の光学デバイスに関するものである。
【0002】
【従来の技術】
ところで近年、光通信技術の発達に伴い、光ファイバを用いたネットワークが急速に整備されつつある。このネットワークの中では、複数の波長の光を一括して伝送する波長多重技術が用いられるようになり、波長フィルタやカプラ、導波路等が重要なデバイスになりつつある。
【0003】
この種の光通信用光学デバイスの中には、温度によって特性が変化し、屋外での使用に支障を来すものがあるため、そのような光通信用光学デバイスの特性を温度変化によらずに一定に保つ技術、いわゆる温度補償技術が必要とされている。
【0004】
温度補償を必要とする光通信用光学デバイスの代表的なものとして、アレイドウエーブガイド(以下、AWGという)や平面光回路(以下、PLCという)等の導波路デバイスやファイバブラッググレーティング(以下、FBGという)やファブリペローエタロン(以下、エタロンという)がある。
【0005】
これらの光通信用光学デバイスでは、その周囲温度が変化すると、数1の式に示すように、屈折率と熱膨張係数が変化することによって光路長が変化するという問題を有している。
【数1】
dS/dT=(dn/dT)+nα
ここで、Sは光路長、nは屈折率、αは熱膨張係数を表す。
【0006】
AWGやPLC等の導波路デバイス、FBG等の光学デバイスでは、負の熱膨張係数を持つ材料や大きな負の屈折率温度依存性を持つ材料を基材とし、その表面にこれらの光学デバイスを接着又は形成することによって、これらの光学デバイスの光路長の温度依存性低減を図っている(例えば、特許文献1参照。)。
【0007】
ところが、エタロンは、バルク状(角柱、円柱等)のエタロン材料の対向する両端面にハーフミラーを形成した構造を有しているため、特許文献1に記載されたような手法、すなわち、負の熱膨張係数を持つ材料や大きな負の屈折率温度依存性を持つ材料を基材とし、その表面にエタロン材料を接着しても、エタロン材料に加わる応力が小さすぎて、エタロンの光路長の温度依存性を低減することは、技術的に困難である。そのため、現状ではエタロン材料にペルチェ素子を組み合わせ、エタロン材料の温度をコントロールすることによってエタロンの光路長の温度依存性を低減させているため、光学デバイスの小型化が困難であり、ペルチェ素子の経時的な劣化による光学特性の安定化に問題がある。
【0008】
したがって、従来、エタロンでは、光路長の温度依存性が比較的低いという理由から、基板材料として石英ガラスが用いられてきた(例えば、特許文献2参照。)。
【0009】
【特許文献1】
特開2003−20254号公報
【特許文献2】
特開2000−47029号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献2に記載された石英ガラスは、−40℃〜100℃の温度範囲における熱膨張係数が6×10−7/℃と低いものの、屈折率の温度依存性が大きいため、高精度のエタロンに用いられるエタロン材料としては、光路長の温度依存性dS/dTが大きく、エタロンの光学特性が変化しやすく、波長間隔の短い多くの波長を使うDWDMにおいて使用することができないという問題がある。
【0011】
本発明は、上記事情に鑑みなされたものであり、光路長変化を抑制することができる透明有機無機複合体、光デバイス及びエタロンを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者等は、平均粒径50nm以下の有機成分及び無機成分からなる微粒子を混合して超高圧下で加圧することによって、光路長の温度依存性の低い透明有機無機複合体を作製できるという知見を得、本発明を提案するに至った。
【0013】
すなわち、本発明の透明有機無機複合体は、光路長の温度依存性dS/dTが、10×10−6/℃以下であることを特徴とする。
また、本発明の光学デバイスは、光路長の温度依存性dS/dTが、10×10−6/℃以下である透明有機無機複合体を構成部材の一部に含むことを特徴とする。
【0014】
また、本発明のエタロンは、光路長の温度依存性dS/dTが、10×10−6/℃以下である透明有機無機複合体を構成部材の一部に含むことを特徴とする。
【0015】
【作用】
本発明の透明有機無機複合体は、透明であるため、通信に使用される光を充分に透過し、また光路長の温度依存性dS/dTが、10×10−6/℃以下であるため、それをエタロン等の光学デバイスとして使用しても、温度が変化する環境下において光学デバイスの特性が非常に安定する。従って、本発明の透明有機無機複合体は、波長間隔の短い多くの波長を使うDWDMにおいて使用することが可能である。
【0016】
本発明の有機無機複合体は、−40℃〜100℃の温度範囲における熱膨張係数が80×10−7/℃以下、好ましくは−20〜70×10−7/℃であると、光学デバイス、特にエタロンに用いた場合、熱的に安定である。すなわち、熱膨張係数が80×10−7/℃よりも大きいと、熱衝撃性が低く、温度変化によって破損しやすくなるため好ましくない。
【0017】
本発明の透明有機無機複合体は、−40℃〜100℃の温度範囲における熱膨張係数が―20〜20×10−7/℃である無機成分と屈折率の温度依存性dn/dTが、−150〜−80×10−6/℃である有機成分を含有すると、光路長の温度依存性dS/dTが、10×10−6/℃以下になりやすいため好ましい。
【0018】
また、本発明の透明有機無機複合体は、無機成分からなる平均粒径が50nm以下の粉末と有機成分からなる平均粒径が50nm以下の粉末との混合物を、6GPa以上の圧力を加えて緻密化させることによって作製すると、有機成分が熱分解することがない温度(200℃以下)で、均質性が高く、透明性のある複合体が得られるため好ましい。
【0019】
尚、無機成分としては、SiO、LiO−Al−SiO系結晶化ガラス、TiO−SiO系ガラスが使用可能であり、無機成分としては、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)等が使用可能である。
【0020】
また、本発明の透明有機無機複合体は、SiOからなる無機成分とポリメタクリル酸メチルからなる有機成分との組合わせがよく、具体的に、体積%で、SiO 70〜90%、ポリメタクリル酸メチル 10〜30%を含有することが望ましいが、その理由は次のとおりである。
【0021】
まず、SiOは、無機成分であり、熱膨張係数を小さくする。SiOが70%より少ないと、熱膨張係数が大きくなり、複合体の機械的強度が低下する。一方、90%より多くなると、光路長の温度依存性が高くなる。SiOの好ましい範囲は、75〜88%、より好ましい範囲は、78〜85%である。
【0022】
ポリメタクリル酸メチルは、有機成分であり、屈折率の温度依存性および光路長の温度依存性を低下させる。ポリメタクリル酸メチルが10%より少ないと、屈折率の温度依存性および光路長の温度依存性を低下させる効果が期待できなくなる。一方、30%より多くなると、熱膨張係数が大きくなりすぎる。ポリメタクリル酸メチルの好ましい範囲は、12〜25%、より好ましい範囲は、15〜22%である。
【0023】
【発明の実施の形態】
以下、本発明の透明有機無機複合体を実施例に基づいて詳細に説明する。
【0024】
実施例の透明有機無機複合体は、平均粒径7nmのフュームドシリカと平均粒径18nmのポリメタクリル酸メチルを体積比で83:17になるように均一に混合し、その混合物に室温で8GPaの圧力を1時間印加して作製した。
【0025】
こうして得られた透明有機無機複合体について、熱膨張係数、および光路長の温度依存性を評価した結果、熱膨張係数が、50×10−7/℃であり、光路長の温度依存性(dS/dT)は、8×10−6/℃であった。
【0026】
一方、比較例は、市販の合成石英ガラスからなり、このシリカガラスは、熱膨張係数が、6×10−7/℃と低かったものの、光路長の温度依存性(dS/dT)は、11×10−6/℃と高かった。
【0027】
尚、−40℃〜100℃の温度範囲における熱膨張係数は、マックサイエンス社製のディラトメーターによって測定し、光路長の温度依存性は、波長632.8nmの光を用いた干渉光学系中の一方の光路中に試料を配置し、試料温度を変化させた時に観察された干渉縞の変化から求められた光路長の温度依存性の値によって評価した。
【0028】
【発明の効果】
以上のように本発明の有機無機複合体は、透明で、光路長の温度依存性dS/dTが10×10−6/℃以下であるため、光路長を一定に保つ必要のあるエタロン等の光学デバイス、特に波長間隔の短い多くの波長を使うDWDMにおいて使用されるエタロンに好適である。
[0001]
[Industrial applications]
The present invention relates to a transparent organic-inorganic composite in which an organic component having a very small temperature coefficient of refractive index is dispersed in an inorganic component having a small coefficient of thermal expansion, and the organic-inorganic composite is used as a part of a constituent member. The present invention relates to an optical device such as an etalon used in the optical communication field.
[0002]
[Prior art]
In recent years, with the development of optical communication technology, networks using optical fibers have been rapidly improved. In this network, a wavelength multiplexing technology for transmitting light of a plurality of wavelengths collectively is used, and wavelength filters, couplers, waveguides, and the like are becoming important devices.
[0003]
Some of these types of optical communication optical devices change their characteristics depending on the temperature and hinder outdoor use, so the characteristics of such optical communication optical devices are not affected by temperature changes. There is a need for a technique for keeping the temperature constant, that is, a so-called temperature compensation technique.
[0004]
Typical optical communication optical devices that require temperature compensation include waveguide devices such as an arrayed waveguide (hereinafter, referred to as AWG) and a planar optical circuit (hereinafter, referred to as PLC), and a fiber Bragg grating (hereinafter, referred to as FBG). Etalon) and Fabry-Perot etalon (hereinafter etalon).
[0005]
These optical devices for optical communication have a problem that, when the ambient temperature changes, the optical path length changes due to the change in the refractive index and the coefficient of thermal expansion as shown in the equation (1).
(Equation 1)
dS / dT = (dn / dT) + nα
Here, S represents an optical path length, n represents a refractive index, and α represents a coefficient of thermal expansion.
[0006]
For waveguide devices such as AWG and PLC, and optical devices such as FBG, a material having a negative coefficient of thermal expansion or a material having a large negative refractive index temperature dependency is used as a base material, and these optical devices are bonded to the surface thereof. Alternatively, the temperature dependency of the optical path length of these optical devices is reduced by forming them (for example, see Patent Document 1).
[0007]
However, since the etalon has a structure in which half mirrors are formed on opposite end surfaces of a bulk (a prism, a column, or the like) etalon material, a method as described in Patent Document 1, that is, a negative Even if a material having a thermal expansion coefficient or a material having a large negative refractive index temperature dependency is used as a base material and the etalon material is adhered to the surface, the stress applied to the etalon material is too small and the temperature of the optical path length of the etalon is low. Reducing dependencies is technically difficult. Therefore, at present, the etalon material is combined with a Peltier element, and the temperature dependence of the optical path length of the etalon is reduced by controlling the temperature of the etalon material. There is a problem in stabilization of optical characteristics due to temporary deterioration.
[0008]
Therefore, conventionally, in etalons, quartz glass has been used as a substrate material because the temperature dependence of the optical path length is relatively low (for example, see Patent Document 2).
[0009]
[Patent Document 1]
JP 2003-20254 A [Patent Document 2]
JP 2000-47029 A
[Problems to be solved by the invention]
However, although the quartz glass described in Patent Document 2 has a low coefficient of thermal expansion of 6 × 10 −7 / ° C. in a temperature range of −40 ° C. to 100 ° C., the temperature dependence of the refractive index is large, so that the precision is high. The etalon material used in the etalon has a problem that the temperature dependence dS / dT of the optical path length is large, the optical characteristics of the etalon are easily changed, and the etalon cannot be used in DWDM using many wavelengths with short wavelength intervals. is there.
[0011]
The present invention has been made in view of the above circumstances, and has as its object to provide a transparent organic-inorganic composite, an optical device, and an etalon that can suppress a change in optical path length.
[0012]
[Means for Solving the Problems]
The present inventors say that by mixing fine particles comprising an organic component and an inorganic component having an average particle diameter of 50 nm or less and pressing the mixture under an ultra-high pressure, a transparent organic-inorganic composite having a low temperature dependence of an optical path length can be produced. The knowledge was obtained and the present invention was proposed.
[0013]
That is, the transparent organic-inorganic composite of the present invention is characterized in that the temperature dependence dS / dT of the optical path length is 10 × 10 −6 / ° C. or less.
Further, the optical device of the present invention is characterized in that a transparent organic-inorganic composite having a temperature dependence dS / dT of an optical path length of 10 × 10 −6 / ° C. or less is included in a part of a constituent member.
[0014]
Moreover, the etalon of the present invention is characterized in that the temperature-dependent dS / dT of the optical path length includes a transparent organic-inorganic composite having a temperature of 10 × 10 −6 / ° C. or less as a part of a constituent member.
[0015]
[Action]
Since the transparent organic-inorganic composite of the present invention is transparent, it sufficiently transmits light used for communication, and the temperature dependence dS / dT of the optical path length is 10 × 10 −6 / ° C. or less. Even if it is used as an optical device such as an etalon, the characteristics of the optical device are very stable under an environment where the temperature changes. Therefore, the transparent organic-inorganic composite of the present invention can be used in DWDM using many wavelengths having a short wavelength interval.
[0016]
When the organic-inorganic composite of the present invention has a thermal expansion coefficient of 80 × 10 −7 / ° C. or less, preferably −20 to 70 × 10 −7 / ° C. in a temperature range of −40 ° C. to 100 ° C., It is thermally stable, especially when used in etalons. That is, when the coefficient of thermal expansion is larger than 80 × 10 −7 / ° C., the thermal shock resistance is low, and the material is easily damaged by a temperature change, which is not preferable.
[0017]
The transparent organic-inorganic composite of the present invention has an inorganic component having a coefficient of thermal expansion of −20 to 20 × 10 −7 / ° C. in a temperature range of −40 ° C. to 100 ° C. and a temperature dependency dn / dT of the refractive index, It is preferable to include an organic component having a temperature of −150 to −80 × 10 −6 / ° C., because the temperature dependence dS / dT of the optical path length tends to be 10 × 10 −6 / ° C. or less.
[0018]
Further, the transparent organic-inorganic composite of the present invention is obtained by applying a pressure of 6 GPa or more to a mixture of a powder having an average particle diameter of 50 nm or less composed of an inorganic component and a powder having an average particle diameter of 50 nm or less. It is preferable to produce the composite by heat treatment at a temperature (200 ° C. or lower) at which the organic component does not thermally decompose, since a highly transparent composite can be obtained.
[0019]
As the inorganic component, SiO 2 , Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass, and TiO 2 —SiO 2 -based glass can be used. As the inorganic component, polymethyl methacrylate (PMMA) is used. ), Polycarbonate (PC), polystyrene (PS) and the like can be used.
[0020]
Further, the transparent organic-inorganic composite of the present invention has a good combination of an inorganic component composed of SiO 2 and an organic component composed of polymethyl methacrylate. Specifically, 70% to 90% of SiO 2 by volume%, It is desirable to contain 10 to 30% of methyl methacrylate, for the following reasons.
[0021]
First, SiO 2 is an inorganic component and reduces the coefficient of thermal expansion. When the content of SiO 2 is less than 70%, the coefficient of thermal expansion increases, and the mechanical strength of the composite decreases. On the other hand, if it exceeds 90%, the temperature dependence of the optical path length increases. The preferred range of SiO 2 is 75-88%, more preferred range is 78 to 85%.
[0022]
Polymethyl methacrylate is an organic component and reduces the temperature dependence of the refractive index and the temperature dependence of the optical path length. If the content of polymethyl methacrylate is less than 10%, the effect of reducing the temperature dependence of the refractive index and the temperature dependence of the optical path length cannot be expected. On the other hand, if it exceeds 30%, the coefficient of thermal expansion becomes too large. A preferred range for the polymethyl methacrylate is 12 to 25%, and a more preferred range is 15 to 22%.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the transparent organic-inorganic composite of the present invention will be described in detail based on examples.
[0024]
The transparent organic-inorganic composite of the example was prepared by uniformly mixing fumed silica having an average particle size of 7 nm and polymethyl methacrylate having an average particle size of 18 nm in a volume ratio of 83:17, and adding the mixture to the mixture at room temperature by 8 GPa. Pressure was applied for one hour to produce.
[0025]
As a result of evaluating the thermal expansion coefficient and the temperature dependence of the optical path length of the transparent organic-inorganic composite thus obtained, the thermal expansion coefficient was 50 × 10 −7 / ° C., and the temperature dependence of the optical path length (dS / DT) was 8 × 10 −6 / ° C.
[0026]
On the other hand, the comparative example was made of a commercially available synthetic quartz glass, and although this silica glass had a low coefficient of thermal expansion of 6 × 10 −7 / ° C., the temperature dependence (dS / dT) of the optical path length was 11%. × 10 −6 / ° C.
[0027]
The coefficient of thermal expansion in the temperature range of −40 ° C. to 100 ° C. was measured by a dilatometer manufactured by Mac Science, and the temperature dependence of the optical path length was measured in an interference optical system using light having a wavelength of 632.8 nm. The sample was placed in one of the optical paths, and the temperature dependence of the optical path length obtained from the change in interference fringes observed when the sample temperature was changed was evaluated.
[0028]
【The invention's effect】
As described above, since the organic-inorganic composite of the present invention is transparent and has a temperature dependence of the optical path length dS / dT of 10 × 10 −6 / ° C. or less, it is necessary to keep the optical path length constant. It is suitable for an etalon used in an optical device, in particular, a DWDM using many wavelengths having a short wavelength interval.

Claims (7)

光路長の温度依存性dS/dTが、10×10−6/℃以下であることを特徴とする透明有機無機複合体。A transparent organic-inorganic composite, wherein the temperature dependence dS / dT of the optical path length is 10 × 10 −6 / ° C. or less. −40℃〜100℃の温度範囲における熱膨張係数が80×10−7/℃以下である請求項1に記載の透明有機無機複合体。The transparent organic-inorganic composite according to claim 1, wherein a thermal expansion coefficient in a temperature range of -40 ° C to 100 ° C is 80 × 10 −7 / ° C or less. −40℃〜100℃の温度範囲における熱膨張係数が−20〜20×10−7/℃である無機成分と屈折率の温度依存性dn/dTが、−150〜−80×10−6/℃である有機成分を含有することを特徴とする請求項1又は2に記載の透明有機無機複合体。The inorganic component having a coefficient of thermal expansion of -20 to 20 × 10 −7 / ° C. in a temperature range of −40 ° C. to 100 ° C. and the temperature dependency dn / dT of the refractive index are −150 to −80 × 10 −6 /. The transparent organic-inorganic composite according to claim 1 or 2, further comprising an organic component having a temperature of ° C. 無機成分からなる平均粒径が50nm以下の粉末と有機成分からなる平均粒径が50nm以下の粉末との混合物を、6GPa以上の圧力を加えて緻密化させてなることを特徴とする請求項1〜3のいずれかに記載の透明有機無機複合体。2. A mixture of a powder having an average particle diameter of 50 nm or less composed of an inorganic component and a powder having an average particle diameter of 50 nm or less composed of an organic component is densified by applying a pressure of 6 GPa or more. 4. The transparent organic-inorganic composite according to any one of items 1 to 3. 体積%で、SiO 70〜90%、ポリメタクリル酸メチル 10〜30%を含有することを特徴とする請求項1〜4のいずれかに記載の有機無機複合体。By volume%, SiO 2 70~90%, the organic-inorganic composite according to any one of claims 1 to 4, characterized in that it contains 10-30% polymethyl methacrylate. 請求項1〜5のいずれかに記載の透明有機無機複合体を構成部材の一部に含むことを特徴とする光学デバイス。An optical device comprising the transparent organic-inorganic composite according to claim 1 as a part of a constituent member. 請求項1〜5のいずれかに記載の透明有機無機複合体を構成部材の一部に含むことを特徴とするエタロン。An etalon comprising the transparent organic-inorganic composite according to claim 1 in a part of a constituent member.
JP2003085001A 2003-03-26 2003-03-26 Transparent organic-inorganic complex Withdrawn JP2004294641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085001A JP2004294641A (en) 2003-03-26 2003-03-26 Transparent organic-inorganic complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085001A JP2004294641A (en) 2003-03-26 2003-03-26 Transparent organic-inorganic complex

Publications (1)

Publication Number Publication Date
JP2004294641A true JP2004294641A (en) 2004-10-21

Family

ID=33400028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085001A Withdrawn JP2004294641A (en) 2003-03-26 2003-03-26 Transparent organic-inorganic complex

Country Status (1)

Country Link
JP (1) JP2004294641A (en)

Similar Documents

Publication Publication Date Title
Abramov et al. Electrically tunable efficient broad-band fiber filter
Wang et al. Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity
JP3386417B2 (en) Fiber optic grating device with enhanced cladding sensitivity for reconstitution
JPH0685371A (en) Optical device
JP2001324702A (en) Use of crystal material to control thermo-optical effect of optical path
Zou et al. Fiber ring laser sensor based on Fabry–Perot cavity interferometer for temperature sensing
Savchenkov et al. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity
CA2358299A1 (en) Strain-stabilized birefringent crystal
Suresh et al. Comprehensive review of advances in the field of chalcogenide glass microresonators
Hsieh et al. Millimeter-sized microfiber coil resonators with enhanced quality factors by increasing coil numbers
WO2001094996A3 (en) Athermalization and pressure desensitization of diffraction grating based wdm devices
JP2004294641A (en) Transparent organic-inorganic complex
Xu et al. Switchable Single-Longitudinal-Mode Fiber Laser Based on $\theta $-Shaped Microfiber Filter
Gallegos-Arellano et al. Finely tunable laser based on a bulk silicon wafer for gas sensing applications
Jiang et al. A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture
CA2342098C (en) Optical filter device for temperature dependence control
Lo et al. Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device
Chen et al. Controlling fiber Bragg grating spectra with in-fiber diode laser light
Guzman-Chavez et al. Switchable, tunable and highly stable multi-wavelength fiber laser based on a spectral filter
WO2001095537A3 (en) Athermalization and pressure desensitization of diffraction grating based wdm devices
Ruiz-Perez et al. An all-solid athermal multimode-interference cascaded device for wavelength-locking
WO2004027862A3 (en) Substrate based component packaging and assembly
Liu et al. Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength
EP1308764A3 (en) Passive temperature compensating fixture for optical grating devices
Kokubun et al. Athermal Narrow-Band Optical Filter at 1. 55 µ m Wavelength by Silica-Based Athermal Waveguide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606