JP2004294381A - Method for estimating photosynthetic effective radiation quantity, and estimating system using the same - Google Patents

Method for estimating photosynthetic effective radiation quantity, and estimating system using the same Download PDF

Info

Publication number
JP2004294381A
JP2004294381A JP2003090342A JP2003090342A JP2004294381A JP 2004294381 A JP2004294381 A JP 2004294381A JP 2003090342 A JP2003090342 A JP 2003090342A JP 2003090342 A JP2003090342 A JP 2003090342A JP 2004294381 A JP2004294381 A JP 2004294381A
Authority
JP
Japan
Prior art keywords
effective radiation
estimating
earth
radiation amount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003090342A
Other languages
Japanese (ja)
Inventor
Takushi Hosaka
拓志 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003090342A priority Critical patent/JP2004294381A/en
Publication of JP2004294381A publication Critical patent/JP2004294381A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating a photosynthetic effective radiation quantity which can surely estimate the photosynthetic effective radiation quantity on the earth, and to provide a estimation system using the same. <P>SOLUTION: The method for estimating the photosynthetic effective radiation quantity includes the steps of converting the solar constant which is the quantity of light on the upper surface of the atmosphere into a light quantity number by wavelengths, multiplying the light quantity number by the attenuation rate of the light according to the atmosphere estimated from a geostationary meteorological satellite data setting this as the photon number degree of illumination on the earth, wavelength integrating these in a range of 400 to 700 nm, and estimating this as the photosynthetic effective radiation quantity on the earth. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光合成有効放射量の推定方法に係り、特に、静止気象衛星データを利用した光合成有効放射量の推定方法及びそれを用いた推定システムに関するものである。
【0002】
【従来の技術】
近年、二酸化炭素量の増大による地球の温暖化が指摘されるなど、地球規模での気候変動に注目が集まっている。気候の理解、変動の予測には、地球規模での熱エネルギー・物質の循環を正確に把握することが不可欠であるが、十分な知見があるとはいえないのが現状である。地球規模での物質循環を考えるとき、海洋の役割は非常に重要であり、海洋表層における光合成−二酸化炭素固定は地球全体の半分程度を担うと言われている。
【0003】
【発明が解決しようとする課題】
しかしながら、それを正確に観測することは非常に困難である。現状での観測は、人工衛星の観測データからの推測と、採水・培養実験等で行なわれているが、人工衛星データからの推定には精度的に疑問が多く、採水・培養による観測では非常に多くの労力と専門知識・技術が必要となる。
【0004】
そこで、実際の海域において自動的にモニタリング観測を行なう装置の開発を行なっている。
【0005】
海洋における光合成−基礎生産を考える上で、その場における太陽光の量を把握することは必要不可欠である。特に、光合成有効放射と呼ばれる、光合成に必要な波長(400〜700nm)についてのデータが必要となる。太陽光の測定そのものは測定器が市販されており、比較的簡単に可能であるが、海上には設置できないので、他の方法で推定するしか方法がない。
【0006】
本発明は、上記状況に鑑みて、地球上における光合成有効放射量を的確に推定することができる光合成有効放射量の推定方法及びそれを用いた推定システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕光合成有効放射量の推定方法において、大気上面の光の量である太陽定数を、波長別に光量子数に変換し、この光量子数に、静止気象衛星データから推定した大気による光の減衰率を掛け、地球上における光量子数照度とし、これらを400〜700nmの範囲で波長積分し、地球上における光合成有効放射量と推定することを特徴とする。
【0008】
〔2〕光合成有効放射量の推定システムにおいて、静止気象衛星データを受信・配信する装置に自動的にアクセスし、自動的に指定した点の地球上の光合成有効放射量を、上記〔1〕に記載の光合成有効放射量の推定方法によって計算し、その計算されたデータを保存することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0010】
本発明では、静止気象衛星(Geostationary Meteorological Satellite)のデータから地球上(地上及び海上)における光合成有効放射量を推定するようにした。他の衛星のデータからでも推定は可能であるが、静止気象衛星は時間分解能が最も高く、空間分解能は他の低軌道衛星に劣るとはいえ、推定する光合成有効放射量の性質上、十分な能力を有していると考えられる。
【0011】
大気上面における太陽光の量はほぼ一定であり、これは太陽定数と呼ばれ、良く知られている。また、静止気象衛星のデータから大気による太陽光の減衰率を推定する方法も研究されており、地上もしくは海上における日射量を推定する方法に関しては報告されている。しかし、日射量と光合成有効放射量は異なる概念の単位を持つ、異なる物理量である。本発明では、光合成を考える上で一般的に使われる光合成有効放射量を推定する。
【0012】
まず、推定原理について説明する。
【0013】
大気上面の太陽光の量である太陽定数を、波長別に光量子数で表現する。これに、静止気象衛星データから推定した大気による光の減衰率を掛け、地上もしくは海上における光量子数照度とする。さらにこれらを400〜700nmの範囲で波長積分し、地球上における光合成有効放射量とした。
【0014】
図1は本発明の光合成有効放射量の推定フローチャートである。
【0015】
(1)まず、大気上面の太陽光の量である太陽定数を、波長別に光量子数に変換する(ステップS1)。
【0016】
(2)次に、その光量子数に、静止気象衛星データから推定した大気による光の減衰率を掛けて、地球上における光量子数照度を求める(ステップS2)。
【0017】
(3)次に、それらの光量子数照度を400〜700nmの範囲で波長積分し、地球上(地上もしくは海上)における光合成有効放射量と推定する(ステップS3)。
【0018】
次に、太陽定数と光合成有効放射について説明する。
【0019】
図2は本発明にかかる太陽定数を示す図であり、横軸に波長(nm)、縦軸に光量(W/m)を示しており(例えば、理科年表参照)、その表記は、以下のようになっている。
(太陽輻射エネルギーの波長分布)
太陽面の単位面積[cm]から単位立体角内に毎秒出る短波長領域(1μm)内のエネルギーをエルグで示す。地球大気外の1mにおける波長域0.01μm内の効率をワットで表したものに変換するには表の値を真数に直し6.8×10−10 をかける。(Allen:Astrophysical Quantities,1973)

Figure 2004294381
この図に示すように、大気上面の光の量である太陽定数については既によく知られているが、これは一般には単位面積あたりの光波エネルギー量で示される。
【0020】
しかし、光は波であると同時に粒子であるとされており、光の量を表すのに光の粒子、光量子の数を用いる方法もある。前記光波のエネルギー量と光量子数の関係は波長によって変化し、一定でない。本発明で求めた、光合成有効放射量は、植物が光合成に利用する波長範囲(400〜700nm)の光の量であるが、一般に光波エネルギー量ではなく、光量子数で表される。
【0021】
そこで、波長範囲400〜700nmについて、バンド幅5nm毎に太陽定数を光量子数に変換する。
【0022】
光量子がもつエネルギー量について
1quantum=hν=hc/λ:光量子1個あたりのエネルギー量
一般に光量子はmol単位で考えることが多く、1Einstain=1Nquantumである。
【0023】
h:プランク定数:6.6260755×10−34 〔Js〕〔Kgm/s〕
c:光速 2.9979245×10〔m/s〕
ν:周波数 〔Hz〕〔/s〕
λ:波長 〔m〕
N:アボガドロ数 6.0221367×1023を表す。
【0024】
よって、光量子1つ、あるいは1μmolあたりのエネルギー量は、波長によって異なる。
【0025】
次に、大気による光の減衰について説明する。
【0026】
太陽光は大気によって吸収、散乱され、地球上に届くまでに減衰する。その減衰率を求める方法については多くの報告があり、ここでは静止気象衛星ひまわりのデータから、各波長における減衰率を推定する方法を利用した。
【0027】
静止気象衛星データを用いた大気による光の減衰率推定は、
晴れたとき:S=S+S+S
曇ったとき:S=(S+S+S)×(1−a×A)
直達光強度:S=S×τ×τ×(1−α)×τ
レーリー散乱光による強度:S=S×τ×0.5×(1−τ)×τ
エアロゾルによる拡散光強度:S=S×τ×τ×(1−α)×F×ω×(1−τ
・オゾンによる減衰
【0028】
【数1】
Figure 2004294381
【0029】
・レーリー散乱による減衰
【0030】
【数2】
Figure 2004294381
【0031】
・エアロゾルによる減衰
Figure 2004294381
・水蒸気の吸収係数
Figure 2004294381
ここで、
a:雲による消散係数 0〜1.4[m−1
A:アルベド R/cosθ
R:反射率 静止気象衛星データより
:エアロゾルによる前方散乱率
ω:単散乱アルベド 1
I:太陽定数 1367[W/m
:太陽からの年平均距離
d:太陽からの距離 1.471〜1.521[1011m]
θ:太陽高度
U:オゾン全量(理科年表) 0.238〜0.414[cm]
m=1/{cosθ+0.15(93.885−θ)−1.253
P・P:気圧 P≒P
λ:波長 0.3〜2.8[μm]
α:エアロゾルの混濁パラメータ 1.3
β:オングストロームの混濁パラメータ 0.1〜0.3
・T:赤外域の輝度温度 静止気象衛星データより
次に、地球上における光合成有効放射量の推定方法について説明する。
【0032】
大気上面における太陽光の光量子数(バンド幅5nmづつ)と、静止気象衛星データから推定する大気による光の減衰率とを、各波長において組み合わせることで、その波長の地球上における光量子数を推定することができる。
【0033】
次に、この推定した各波長における地球上光量子数を波長400〜700nmの範囲で積分し、光合成有効放射量とする。すなわち、
(大気上面における光量子量)×(大気による減衰率)
=その波長における地球上光量子量
光合成有効放射量=∫地球上光量子量dλ ただし、λは波長
上記した推定に必要なデータは、静止気象衛星のデータ(近赤外2バンドの輝度温度と可視域反射率)と太陽高度、地面・海面における反射率である。静止気象衛星のデータは、受信・保存・配信を行っている機関があり、そのデータを得ることができる。太陽高度は日時と推定の対象となる地点の緯度から計算することもできる。地面・海面における反射率については既に報告されているものを利用することもできるし、観測することもできる。これらを組み合わせ、本発明を適用することにより、任意の地点での地上・海上での光合成有効放射量を推定することができる。
【0034】
この方法を採用して、地球上(地上・海上)における光合成有効放射量を自動的に推定するシステムについて説明する。
【0035】
図3は本発明にかかる静止気象衛星データ受信装置及び光合成有効放射量の自動推定装置からなるシステムの模式図、図4は図3における光合成有効放射量の自動推定装置の構成図である。
【0036】
これらの図において、1は静止気象衛星データ受信装置、10は光合成有効放射量の自動推定装置であり、この光合成有効放射量の自動推定装置10は、中央制御部11、静止気象衛星データ受信部12、データ変換部13、光合成有効放射量演算部14、データ保存用の記憶部15、データ表示部16などを備えている。 そこで、静止気象衛星データ受信装置1で受信されたデータは、自動推定装置10の静止気象衛星データ受信部12に取り込まれ、データ変換部13でデータ変換されて、光合成有効放射量演算部14で上記したように太陽定数を光量子数で計算しなおし、大気による減衰率を適応して地球上における光量子数を求め、光合成有効放射量を推定する。その推定された光合成有効放射量は記憶部15に保存したり、必要に応じてデータ表示部16で表示することができる。
【0037】
このシステムを利用して、静止気象衛星データを受信・配信する装置に自動的にアクセスし、自動的に指定した点の地球上光合成有効放射量を計算し、得られたデータを保存するプログラムを構築した。
【0038】
このプログラムではRedHatLinuxのバッチ処理で、毎日1回、自動的に静止気象衛星データをインターネットを経由して取得し、一日分(静止気象衛星データは毎正時観測)の光合成有効放射量を任意の点に関して推定し、そのデータを保存しておく。圧縮された衛星データから必要な情報を取り出すプログラムはCで、光合成有効放射量の推定プログラムはFortranで記述される。
【0039】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0040】
【発明の効果】
以上、詳細に説明したように、本発明によれば、光合成に関わる光の強さを示す地球上における光合成有効放射量を的確に推定することができる。
【図面の簡単な説明】
【図1】本発明の光合成有効放射量の推定フローチャートである。
【図2】本発明にかかる太陽定数を示す図である。
【図3】本発明にかかる静止衛星データ受信装置及び光合成有効放射量の自動推定装置からなるシステムの模式図である。
【図4】図3における光合成有効放射量の自動推定装置の構成図である。
【符号の説明】
1 静止気象衛星データ受信装置
10 光合成有効放射量の自動推定装置
11 中央制御部
12 静止気象衛星データ受信部
13 データ変換部
14 光合成有効放射量演算部
15 データ保存用の記憶部
16 データ表示部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for estimating a photosynthetic effective radiation amount, and more particularly to a method for estimating a photosynthetic effective radiation amount using geostationary meteorological satellite data and an estimation system using the same.
[0002]
[Prior art]
In recent years, attention has been focused on global-scale climate change, for example, global warming due to an increase in the amount of carbon dioxide has been pointed out. In order to understand climate and predict changes, it is essential to accurately grasp the global circulation of thermal energy and materials, but at present it is not sufficient to know enough. It is said that the role of the ocean is very important when considering the material cycle on a global scale, and that photosynthesis and carbon dioxide fixation on the surface of the ocean is responsible for about half of the entire earth.
[0003]
[Problems to be solved by the invention]
However, it is very difficult to observe it accurately. At present, observations are made by estimation from satellite observation data and water sampling and culture experiments. This requires a great deal of labor, expertise and skills.
[0004]
Therefore, we are developing a device that automatically performs monitoring observations in actual sea areas.
[0005]
It is indispensable to understand the amount of sunlight on the spot when considering photosynthesis-basic production in the ocean. In particular, data on the wavelength (400 to 700 nm) required for photosynthesis, called photosynthetic effective radiation, is required. The measurement of sunlight itself is commercially available and relatively easy, but since it cannot be installed at sea, there is no other way than to estimate it by other methods.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a method for estimating a photosynthetically effective radiation amount capable of accurately estimating a photosynthetically effective radiation amount on the earth and an estimation system using the same.
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In the method for estimating the effective radiation amount of photosynthesis, the solar constant, which is the amount of light on the upper surface of the atmosphere, is converted into a photon number for each wavelength, and the photon number is converted to the attenuation rate of light by the atmosphere estimated from geostationary meteorological satellite data. Is multiplied to obtain the photon number illuminance on the earth, and these are wavelength-integrated in the range of 400 to 700 nm to estimate the photosynthetic effective radiation amount on the earth.
[0008]
[2] In the photosynthesis effective radiation amount estimation system, a device for receiving and distributing geostationary meteorological satellite data is automatically accessed, and the photosynthesis effective radiation amount on the earth at the automatically designated point is calculated according to the above [1]. The method is characterized in that it is calculated by the described method for estimating the effective radiation amount of photosynthesis, and the calculated data is stored.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0010]
In the present invention, the photosynthetic effective radiation amount on the earth (on the ground and on the sea) is estimated from the data of the Geostationary Meteorological Satellite. Although it is possible to estimate from data from other satellites, geostationary weather satellites have the highest temporal resolution and spatial resolution is inferior to other low-Earth orbit satellites. It is thought that it has ability.
[0011]
The amount of sunlight on the upper surface of the atmosphere is almost constant, which is called the solar constant and is well known. Also, a method of estimating the attenuation rate of sunlight due to the atmosphere from data of geostationary meteorological satellites has been studied, and a method of estimating solar radiation on the ground or at sea has been reported. However, solar radiation and photosynthetic effective radiation are different physical quantities with different conceptual units. In the present invention, a photosynthesis effective radiation amount generally used in considering photosynthesis is estimated.
[0012]
First, the principle of estimation will be described.
[0013]
The solar constant, which is the amount of sunlight on the upper surface of the atmosphere, is expressed as a photon number for each wavelength. This is multiplied by the attenuation rate of light due to the atmosphere estimated from geostationary meteorological satellite data to obtain the photon number illuminance on the ground or on the sea. Further, these wavelengths were integrated in the range of 400 to 700 nm to obtain the photosynthetically effective radiation amount on the earth.
[0014]
FIG. 1 is a flowchart for estimating the effective radiation amount of photosynthesis according to the present invention.
[0015]
(1) First, the solar constant, which is the amount of sunlight on the upper surface of the atmosphere, is converted into a photon number for each wavelength (step S1).
[0016]
(2) Next, the photon number is multiplied by the attenuation rate of light due to the atmosphere estimated from geostationary meteorological satellite data to obtain the photon number illuminance on the earth (step S2).
[0017]
(3) Next, the photon number illuminance is wavelength-integrated in the range of 400 to 700 nm, and is estimated as a photosynthetically effective radiation amount on the earth (ground or sea) (step S3).
[0018]
Next, the solar constant and photosynthetic effective radiation will be described.
[0019]
FIG. 2 is a diagram showing the solar constant according to the present invention, in which the horizontal axis represents wavelength (nm) and the vertical axis represents light quantity (W / m 2 ) (for example, see a scientific chronological table). It is as follows.
(Wavelength distribution of solar radiation energy)
The energy in the short-wavelength region (1 μm) per second from the unit area [cm 2 ] of the solar surface within the unit solid angle is indicated by erg. To convert the efficiency in a wavelength range of 0.01 μm in 1 m 2 outside the earth's atmosphere into a value expressed in watts, convert the value in the table to an antilog and multiply by 6.8 × 10 −10 . (Allen: Astrophysical Quantities, 1973)
Figure 2004294381
As shown in this figure, the solar constant, which is the amount of light on the upper surface of the atmosphere, is already well known, but is generally represented by the amount of light wave energy per unit area.
[0020]
However, light is considered to be waves and particles at the same time, and there is a method of using the number of light particles and light quanta to represent the amount of light. The relationship between the energy amount of the light wave and the photon number changes depending on the wavelength and is not constant. The photosynthetic effective radiation amount obtained in the present invention is the amount of light in the wavelength range (400 to 700 nm) used by plants for photosynthesis, but is generally expressed not by the amount of light wave energy but by the photon number.
[0021]
Therefore, in the wavelength range of 400 to 700 nm, the solar constant is converted into a photon number every 5 nm in bandwidth.
[0022]
Regarding the energy amount of the photon: 1 quantum = hν = hc / λ: the energy amount per photon In general, the photon is often considered in the unit of mol, and 1Einstein = 1Nquantum.
[0023]
h: Planck's constant: 6.6260755 × 10 −34 [Js] [Kgm 2 / s]
c: Speed of light 2.9797245 × 10 8 [m / s]
ν: frequency [Hz] [/ s]
λ: wavelength [m]
N: represents the Avogadro's number 6.0221367 × 10 23.
[0024]
Therefore, the amount of energy per photon or 1 μmol differs depending on the wavelength.
[0025]
Next, the attenuation of light by the atmosphere will be described.
[0026]
Sunlight is absorbed and scattered by the atmosphere, and is attenuated before reaching the earth. There have been many reports on the method of obtaining the attenuation rate. Here, a method of estimating the attenuation rate at each wavelength from the data of the geostationary meteorological satellite Himawari was used.
[0027]
Estimation of the attenuation rate of light by the atmosphere using geostationary satellite data
When sunny: S = S I + S R + S A
When cloudy: S = (S I + S R + S A ) × (1−a × A)
The direct light intensity: S I = S × τ O × τ R × (1-α W) × τ A
Intensity by Rayleigh scattered light: S R = S × τ O × 0.5 × (1-τ R) × τ A
Diffusion light intensity by aerosol: S A = S × τ O × τ R × (1-α W) × F C × ω O × (1-τ A)
・ Attenuation by ozone [0028]
(Equation 1)
Figure 2004294381
[0029]
・ Attenuation due to Rayleigh scattering [0030]
(Equation 2)
Figure 2004294381
[0031]
・ Attenuation by aerosol
Figure 2004294381
・ Steam absorption coefficient
Figure 2004294381
here,
a: extinction coefficient due to cloud 0 to 1.4 [m -1 ]
A: Albedo R / cosθ
R: Reflectance from geostationary meteorological satellite data F C : Forward scattering rate by aerosol ω O : Single scattering albedo 1
I: Solar constant 1367 [W / m 2 ]
d M : Annual average distance from the sun d: Distance from the sun 1.471 to 1.521 [10 11 m]
θ: Solar altitude U: Total amount of ozone (science chronological table) 0.238 to 0.414 [cm]
m = 1 / {cos θ + 0.15 (93.885−θ) −1.253 }
P ・PO : Pressure P ≒ PO
λ: wavelength 0.3 to 2.8 [μm]
α: aerosol turbidity parameter 1.3
β: Angstrom turbidity parameter 0.1-0.3
T 1 · T 2 : luminance temperature in the infrared region Next, a method for estimating the effective radiation amount of photosynthesis on the earth from geostationary meteorological satellite data will be described.
[0032]
By combining, at each wavelength, the photon number of sunlight on the upper surface of the atmosphere (bandwidth of 5 nm each) and the attenuation rate of light due to the atmosphere estimated from geostationary meteorological satellite data at each wavelength, the photon number on the earth at that wavelength is estimated. be able to.
[0033]
Next, the estimated number of terrestrial photons at each wavelength is integrated in the wavelength range of 400 to 700 nm to obtain a photosynthetically effective radiation amount. That is,
(Light quantum on the upper surface of the atmosphere) x (attenuation rate by the atmosphere)
= Earth photon quantity at that wavelength Photosynthetically effective radiation quantity = ∫Earth photon quantity dλ where λ is the wavelength The data necessary for the above estimation is the data from the geostationary meteorological satellite (bright temperature and visible temperature of two near infrared bands) Reflectance), solar altitude, and reflectance on the ground / sea surface. There are organizations that receive, store, and distribute data from geostationary weather satellites, and that data can be obtained. The solar altitude can also be calculated from the date and the latitude of the point to be estimated. As for the reflectance on the ground / sea surface, those already reported can be used or can be observed. By combining these and applying the present invention, it is possible to estimate the effective radiation amount of photosynthesis on the ground or at the sea at any point.
[0034]
A system for automatically estimating the effective radiation amount of photosynthesis on the earth (on the ground or on the sea) using this method will be described.
[0035]
FIG. 3 is a schematic diagram of a system including a geostationary meteorological satellite data receiving device and an automatic photosynthesis effective radiation amount estimation device according to the present invention, and FIG. 4 is a configuration diagram of the automatic photosynthesis effective radiation amount estimation device in FIG.
[0036]
In these figures, 1 is a geostationary meteorological satellite data receiving device, 10 is an automatic estimating device for photosynthetic effective radiation amount, and the automatic estimating device 10 for photosynthetic effective radiation amount is a central control unit 11, a geosynchronous meteorological satellite data receiving unit. 12, a data conversion unit 13, a photosynthetic effective radiation amount calculation unit 14, a storage unit 15 for storing data, a data display unit 16, and the like. Then, the data received by the geostationary meteorological satellite data receiving device 1 is taken into the geostationary meteorological satellite data receiving portion 12 of the automatic estimating device 10, converted into data by the data converting portion 13, and converted by the photosynthetic effective radiation amount calculating portion 14. As described above, the solar constant is recalculated by the photon number, the photon number on the earth is obtained by adapting the attenuation factor by the atmosphere, and the photosynthetic effective radiation amount is estimated. The estimated photosynthetic effective radiation amount can be stored in the storage unit 15 or displayed on the data display unit 16 as needed.
[0037]
Using this system, a program that automatically accesses the device that receives and distributes geostationary meteorological satellite data, automatically calculates the effective radiation amount on the earth at the designated point, and saves the obtained data It was constructed.
[0038]
This program automatically acquires the geostationary meteorological satellite data via the Internet once a day in the batch processing of RedHatLinux, and optionally sets the photosynthetic effective radiation amount for one day (the geostationary meteorological satellite data is observed every hour). And save the data. A program for extracting necessary information from the compressed satellite data is described in C, and a program for estimating the effective radiation amount of photosynthesis is described in Fortran.
[0039]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0040]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to accurately estimate the effective radiation amount of photosynthesis on the earth indicating the intensity of light related to photosynthesis.
[Brief description of the drawings]
FIG. 1 is a flowchart for estimating a photosynthetic effective radiation amount according to the present invention.
FIG. 2 is a diagram showing a solar constant according to the present invention.
FIG. 3 is a schematic diagram of a system including a geostationary satellite data receiving device and an automatic photosynthesis effective radiation amount estimation device according to the present invention.
FIG. 4 is a configuration diagram of the automatic estimating device for photosynthetically effective radiation amount in FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Geostationary meteorological satellite data receiving device 10 Automatic estimation device of photosynthetic effective radiation amount 11 Central control unit 12 Geosynchronous weather satellite data receiving unit 13 Data conversion unit 14 Photosynthetic effective radiation amount calculating unit 15 Data storage storage unit 16 Data display unit

Claims (2)

大気上面の光の量である太陽定数を、波長別に光量子数に変換し、該光量子数に、静止気象衛星データから推定した大気による光の減衰率を掛けて、地球上における光量子数照度とし、これらを400〜700nmの範囲で波長積分し、地球上における光合成有効放射量と推定することを特徴とする光合成有効放射量の推定方法。The solar constant, which is the amount of light on the upper surface of the atmosphere, is converted into a photon number for each wavelength, and the photon number is multiplied by the attenuation rate of light due to the atmosphere estimated from geostationary meteorological satellite data to obtain the photon number illuminance on the earth, A method for estimating a photosynthetically effective radiation amount, which comprises integrating wavelengths in the range of 400 to 700 nm and estimating the photosynthetically effective radiation amount on the earth. 静止気象衛星データを受信・配信する装置に自動的にアクセスし、自動的に指定した点の地球上の光合成有効放射量を、請求項1に記載の光合成有効放射量の推定方法によって計算し、その計算されたデータを保存することを特徴とする光合成有効放射量の推定システム。Automatically accessing a device for receiving and distributing geostationary meteorological satellite data, and automatically calculating a photosynthetically effective radiation amount on the earth at a designated point by the method for estimating a photosynthetically effective radiation amount according to claim 1; A system for estimating the effective radiation amount of photosynthesis, characterized by storing the calculated data.
JP2003090342A 2003-03-28 2003-03-28 Method for estimating photosynthetic effective radiation quantity, and estimating system using the same Withdrawn JP2004294381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090342A JP2004294381A (en) 2003-03-28 2003-03-28 Method for estimating photosynthetic effective radiation quantity, and estimating system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090342A JP2004294381A (en) 2003-03-28 2003-03-28 Method for estimating photosynthetic effective radiation quantity, and estimating system using the same

Publications (1)

Publication Number Publication Date
JP2004294381A true JP2004294381A (en) 2004-10-21

Family

ID=33403991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090342A Withdrawn JP2004294381A (en) 2003-03-28 2003-03-28 Method for estimating photosynthetic effective radiation quantity, and estimating system using the same

Country Status (1)

Country Link
JP (1) JP2004294381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230587A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Apparatus, method and program for decision of fine weather in satellite image scene
WO2017183546A1 (en) * 2016-04-18 2017-10-26 ソニー株式会社 Information processing device, information processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230587A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Apparatus, method and program for decision of fine weather in satellite image scene
WO2017183546A1 (en) * 2016-04-18 2017-10-26 ソニー株式会社 Information processing device, information processing method, and program
JPWO2017183546A1 (en) * 2016-04-18 2019-02-21 ソニー株式会社 Information processing apparatus, information processing method, and program

Similar Documents

Publication Publication Date Title
Kobayashi et al. The JRA-55 reanalysis: General specifications and basic characteristics
Reid Solar variability and the Earth's climate: Introduction and overview
Pinker et al. Global distribution of photosynthetically active radiation as observed from satellites
Rosenberg et al. Microclimate: the biological environment
Zhang et al. Analysis of surface incident shortwave radiation from four satellite products
Battisti et al. Understanding and predicting ENSO
Page The role of solar-radiation climatology in the design of photovoltaic systems
McKenzie et al. Changes in biologically-active ultraviolet radiation reaching the Earth's surface
Stanhill et al. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences
Connor et al. Ground‐based microwave observations of ozone in the upper stratosphere and mesosphere
Kristjánsson et al. Solar activity, cosmic rays, clouds and climate–an update
Liu et al. The influence of changes in cloud cover on recent surface temperature trends in the Arctic
Waliser et al. Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics
Espy et al. The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures
del Castillo et al. Turbulence scales for eddy covariance quality control over a tropical dry forest in complex terrain
Irwin et al. Uranus’ cloud structure and seasonal variability from Gemini-North and UKIRT observations
JP2004294381A (en) Method for estimating photosynthetic effective radiation quantity, and estimating system using the same
Gueymard et al. Solar resource for space and terrestrial applications
Vardavas et al. A model for the solar radiation budget of the northern hemisphere: Comparison with Earth Radiation Budget Experiment data
Zamuriano et al. Characteristics of a hailstorm over the Andean La Paz Valley
KR20190037855A (en) Outgoing longwave radiatioin retrieval method using water vapor channel and infrared channel
Vardavas et al. Water resources in the desertification-threatened Messara Valley of Crete: estimation of potential lake evaporation
Lim et al. TSS mapping using THEOS imagery over Penang Island, Malaysia
Steinbring et al. Mauna Kea Sky Transparency from CFHT SkyProbe Data1
Kandel Understanding and measuring Earth’s energy budget: From Fourier, Humboldt, and Tyndall to CERES and beyond

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606