JP2004294190A - Ultrasonic microscope - Google Patents

Ultrasonic microscope Download PDF

Info

Publication number
JP2004294190A
JP2004294190A JP2003085153A JP2003085153A JP2004294190A JP 2004294190 A JP2004294190 A JP 2004294190A JP 2003085153 A JP2003085153 A JP 2003085153A JP 2003085153 A JP2003085153 A JP 2003085153A JP 2004294190 A JP2004294190 A JP 2004294190A
Authority
JP
Japan
Prior art keywords
ultrasonic
sample
impulse
calculation function
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003085153A
Other languages
Japanese (ja)
Other versions
JP2004294190A5 (en
Inventor
Kazuto Kobayashi
和人 小林
Tadahiro Hozumi
直裕 穂積
Masayuki Nagao
雅行 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2003085153A priority Critical patent/JP2004294190A/en
Publication of JP2004294190A publication Critical patent/JP2004294190A/en
Publication of JP2004294190A5 publication Critical patent/JP2004294190A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional measuring method that measurement is required to perform twenty first times when data for 100MHz-200MHz are collected by a step of 5MHz, to analyze data of one point. <P>SOLUTION: An impulse comprising frequency components in a wide band, frequency components of 100MHz-200MHz for example is sent from an impulse oscillator 1 to an ultrasonic vibrator 2. Then, the ultrasonic vibrator 2 radiates an ultrasonic wave comprising two or more frequencies on a test piece 5 put on a glass substrate 3 and covered with an ultrasonic transmission medium 4. A reflected wave of the radiated ultrasonic wave is received by the ultrasonic vibrator 2 again. The reflected wave received by the ultrasonic vibrator 2 is received and amplified by a receiver 6, converted from an analog reflection signal to a digital reflection signal by an A/D converter 7, and inputted to a personal computer 8 provided with an acoustic velocity calculation function 8a, a thickness calculation function 8b, and a display transformation function 8c for displaying each output of the velocity function 8a and the thickness calculation function 8b, and results of mathematical operations are displayed on a display 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、切り出した組織の音速を1回の超音波の照射で測定する超音波顕微鏡に関するものである。
【0002】
【従来の技術】
従来、超音波顕微鏡で組織音速を測定する場合、例えば、10μmの組織切片をスライドガラス上にセットし、超音波顕微鏡で100MHzから200MHzまでを5MHzステップで周波数を変えながら測定して、取得されたデータから極大値を示す周波数と極小値を示す周波数を求め、論理計算グラフより組織音速を求めている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような測定方法では、1点のデータを解析するために、100MHz〜200MHzを5MHzステップでデータを取るには、21回の測定が必要になり、多大な時間をようするとともに、周波数の不安定性が誤差要因となるなどの問題があった。
【0004】
【課題を解決しようとする手段】
本発明は、複数の周波数を含むインパルスを発振するインパルス発振器と、該インパルス発振器から出力されたインパルスを入力することによって超音波を出力する超音波振動子と、試料が載置したガラス基板と、前記超音波振動子から前記ガラス基板及び前記試料に照射された超音波の反射波を受信して増幅する受信機と、該受信機からの反射波信号をデジタル信号に変換するA/D変換器と、該A/D変換器から出力されたデジタル信号から試料の音速を演算する音速演算機能と試料の厚さを演算する厚さ演算機能と該演算された信号を表示信号に変換する表示変換機能とを設けたパーソナルコンピュータと、該パーソナルコンピュータの出力を表示する表示装置とからなるものである。
【0005】
【発明の実施の形態】
本発明は、インパルス発振器から出力された複数の周波数を含むインパルスを超音波振動子に入力し、超音波振動子から複数の周波数を含む超音波を試料に照射することにより、その反射波をデジタル信号に変換し、そのデータをパーソナルコンピュータの音速演算機能及び厚さ演算機能で演算することにより、1回の超音波の送受信で複数の周波数のそれぞれの周波数における試料の音速及び厚さを演算により求めることができる。
【0006】
【実施例】
図1は本発明の実施例の超音波顕微鏡のブロック図で、インパルス発振器1から広帯域の周波数、例えば100MHz〜200MHzの周波数成分を含むインパルスを発振出力を超音波振動子2に印加すると、超音波振動子2は複数の周波数を含む超音波をガラス基板3の上に載置されて超音波伝播媒体4で覆われた試料5に照射されるので、照射された超音波の反射波は再度超音波振動子2で受信され、超音波振動子2で受信された反射波は受信機6で受信されて増幅され、A/D変換器7でアナログ反射信号からデジタル反射信号に変換されて、音速演算機能8aと厚さ演算機能8b及び音速演算機能8aと厚さ演算機能8bの出力を表示させる表示変換機能8cを設けたパーソナルコンピュータ8に入力され、演算結果は表示装置9で表示される。
【0007】
ここで、本発明の生体試料の音速と敦美を非接触で求めるための基本原理を図2で説明すると、まず、ガラス基板3の上に置いた生体組織である試料5に音波が入力されると、試料5の表面からの反射波A(SS)とガラス基板3からの反射波B(Sd)が超音波振動子2で受波され、又、試料5が無い面からの反射波C(Sref)が受波され、反射波BC間の時間差Δtd は試料の音速と伝播媒質の音速が異なることにより伝播時間差となる。又、反射波AC間の時間差Δts は試料5を挿入することにより生じた伝播時間差である。これらの伝播時間差より試料5の厚みdと音速cは次式より求められる。

Figure 2004294190
ここで、C0は超音波伝播媒体4の音速である。
【0008】
又、周波数が80MHz程度の短パルスの超音波を用いても、試料5の厚みが10μm 程度では、試料5の表面からの反射波Aとガラス基板3からの反射波は時間軸上で重なりあい、分離は困難である。そこで、受波信号と周波数領域で解析することにより、ΔtdとΔts を推定する。試料5が無い場合の基板3からのフーリエ変換をXref(ω)とする。試料5がある場合の受波を、試料5の表面反射とガラス基板の反射面のみの和と仮定すれば、そのフーリエ変換F(ω)は次式で表される。
Figure 2004294190
ここで、kdとksはガラス基板と試料5の表面からの反射係数である。F(ω)をXref(ω)で正規化したスペクトルをR(ω)とすれば、これは、
Figure 2004294190
と表される。受波のスペクトルの計算には、高速フーリエ変換(FFT)を用いるので、得られる正規化スペクトルも周波数領域において離散化されている。
【0009】
この離散化されたスペクトル系列を、
Figure 2004294190
と表すと、これらは次式の関係を満たす。
Figure 2004294190
ただし、
Figure 2004294190
である。ここで、eは誤差項であり、仮定した2つの反射成分以外の信号成分を表している。又、xはモデルパラメータであり、
Figure 2004294190
と表される。重み付けされた誤差の2乗和、すなわちeTGe(T:複素共役転置)を最小にするxは、次式により求められる。
Figure 2004294190
ここで、Qは重み行列であり、│Xref(ω)│の値を用いて設定する。フーリエ変換により求めたRnをもとに、(12)式よりモデルパラメータxを求め、(10)式及び(11)式を満たすΔtdとΔtsを求める。これらを(1)式及び(2)式に代入すれば、試料の音速と厚みが得られる。
【0010】
このように、本実施例では、インパルス発振器1から出力された複数の周波数を含むインパルスを超音波振動子2に入力し、超音波振動子2から複数の周波数を含む超音波を試料5に照射することにより、その反射波をA/D変換器7でデジタル信号に変換し、そのデータをパーソナルコンピュータ8の音速演算機能8a及び厚さ演算機能8bで上記の演算処理で演算することにより、1回の超音波の送受信で複数の周波数のそれぞれの周波数における試料5の音速及び厚さを演算により求めることができる。
【0011】
【発明の効果】
以上説明したように、本発明の超音波顕微鏡は、インパルス発信機から出力された複数の周波数を含むインパルスを超音波振動子に入力し、超音波振動子から複数の周波数を含む超音波を試料に照射することにより、その反射波をデジタル変換し、そのデータをパーソナルコンピュータの音速演算機能及び厚さ演算機能で演算するすることにより、複数の周波数のそれぞれの周波数における試料の音速及び試料の厚さ演算により求めることができるので、1回の超音波の送受信で組織片の各周波数の組織データを求めことができるという利点がある。
【図面の簡単な説明】
【図1】本発明の実施例の超音波顕微鏡のブロック図である。
【図2】図1の装置において音速及び厚さを求める状態を示した図である。
【符号の説明】
1 インパルス発振器
2 超音波振動子
3 ガラス基板
4 伝播媒体(水)
5 試料
6 受信機
7 A/D変換器
8 パーソナルコンピュータ
9 表示装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic microscope that measures the sound speed of a cut tissue by one ultrasonic irradiation.
[0002]
[Prior art]
Conventionally, when measuring the sound velocity of a tissue with an ultrasonic microscope, for example, a tissue section of 10 μm is set on a slide glass, and measurement is performed while changing the frequency from 100 MHz to 200 MHz in 5 MHz steps with an ultrasonic microscope, and acquired. The frequency indicating the maximum value and the frequency indicating the minimum value are obtained from the data, and the tissue sound velocity is obtained from the logical calculation graph.
[0003]
[Problems to be solved by the invention]
However, in such a measurement method, 21 measurements are required to obtain data at 100 MHz to 200 MHz in 5 MHz steps in order to analyze one point of data, which requires a great deal of time, There was a problem that the instability of the device became an error factor.
[0004]
[Means to solve the problem]
The present invention is an impulse oscillator that oscillates an impulse including a plurality of frequencies, an ultrasonic oscillator that outputs an ultrasonic wave by inputting an impulse output from the impulse oscillator, a glass substrate on which a sample is mounted, A receiver that receives and amplifies reflected waves of ultrasonic waves applied to the glass substrate and the sample from the ultrasonic transducer, and an A / D converter that converts a reflected wave signal from the receiver into a digital signal A sound speed calculation function for calculating the sound speed of the sample from a digital signal output from the A / D converter, a thickness calculation function for calculating the thickness of the sample, and a display conversion for converting the calculated signal into a display signal And a display device for displaying the output of the personal computer.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, an impulse including a plurality of frequencies output from an impulse oscillator is input to an ultrasonic vibrator, and an ultrasonic wave including a plurality of frequencies is irradiated from the ultrasonic vibrator onto a sample, so that a reflected wave is digitally converted. By converting the data into signals and calculating the data with the sound speed calculation function and the thickness calculation function of the personal computer, the sound speed and thickness of the sample at each of a plurality of frequencies can be calculated by one transmission / reception of ultrasonic waves. You can ask.
[0006]
【Example】
FIG. 1 is a block diagram of an ultrasonic microscope according to an embodiment of the present invention. When an impulse including a frequency component of a wide band, for example, 100 MHz to 200 MHz is applied from an impulse oscillator 1 to an ultrasonic transducer 2, an ultrasonic wave is applied. Since the vibrator 2 irradiates the sample 5 covered with the ultrasonic wave propagation medium 4 with the ultrasonic wave including a plurality of frequencies placed on the glass substrate 3, the reflected wave of the irradiated ultrasonic wave is again supersonic. The reflected wave received by the acoustic transducer 2 and received by the ultrasonic transducer 2 is received and amplified by the receiver 6, converted from an analog reflected signal to a digital reflected signal by an A / D converter 7, The calculation function 8a and the thickness calculation function 8b are input to the personal computer 8 having the display conversion function 8c for displaying the output of the sound velocity calculation function 8a and the thickness calculation function 8b. It is shown.
[0007]
Here, the basic principle for determining the sound velocity and Atsumi of a biological sample in a non-contact manner according to the present invention will be described with reference to FIG. 2. First, a sound wave is input to a sample 5 which is a biological tissue placed on a glass substrate 3. And the reflected wave A (SS) from the surface of the sample 5 and the reflected wave B (Sd) from the glass substrate 3 are received by the ultrasonic vibrator 2, and the reflected wave C ( Sref) is received, and the time difference Δtd between the reflected waves BC is a propagation time difference due to the difference between the sound speed of the sample and the sound speed of the propagation medium. The time difference Δts between the reflected waves AC is a propagation time difference generated by inserting the sample 5. The thickness d and the sound velocity c of the sample 5 can be obtained from the following equation based on the difference between the propagation times.
Figure 2004294190
Here, C0 is the sound speed of the ultrasonic wave propagation medium 4.
[0008]
Even when a short pulse ultrasonic wave having a frequency of about 80 MHz is used, when the thickness of the sample 5 is about 10 μm, the reflected wave A from the surface of the sample 5 and the reflected wave from the glass substrate 3 overlap on the time axis. Separation is difficult. Therefore, Δtd and Δts are estimated by analyzing the received signal and the frequency domain. The Fourier transform from the substrate 3 when there is no sample 5 is defined as Xref (ω). Assuming that the received wave in the presence of the sample 5 is the sum of only the surface reflection of the sample 5 and the reflection surface of the glass substrate, the Fourier transform F (ω) is expressed by the following equation.
Figure 2004294190
Here, kd and ks are reflection coefficients from the surface of the glass substrate and the sample 5. Assuming that a spectrum obtained by normalizing F (ω) with Xref (ω) is R (ω), this becomes
Figure 2004294190
It is expressed as Since the fast Fourier transform (FFT) is used to calculate the spectrum of the received wave, the resulting normalized spectrum is also discretized in the frequency domain.
[0009]
This discretized spectral series is
Figure 2004294190
, These satisfy the following relationship:
Figure 2004294190
However,
Figure 2004294190
It is. Here, e is an error term and represents a signal component other than the two assumed reflection components. X is a model parameter,
Figure 2004294190
It is expressed as The sum of squares of the weighted errors, that is, x that minimizes eTGe (T: complex conjugate transpose) is obtained by the following equation.
Figure 2004294190
Here, Q is a weight matrix, which is set using the value of | Xref (ω) |. Based on Rn obtained by Fourier transform, a model parameter x is obtained from Expression (12), and Δtd and Δts satisfying Expressions (10) and (11) are obtained. By substituting these into equations (1) and (2), the sound velocity and thickness of the sample can be obtained.
[0010]
As described above, in the present embodiment, the impulse including a plurality of frequencies output from the impulse oscillator 1 is input to the ultrasonic oscillator 2, and the ultrasonic wave including the plurality of frequencies is irradiated from the ultrasonic oscillator 2 onto the sample 5. Then, the reflected wave is converted into a digital signal by the A / D converter 7, and the data is calculated by the above-described calculation processing by the sound speed calculation function 8 a and the thickness calculation function 8 b of the personal computer 8, whereby 1 The sound speed and thickness of the sample 5 at each of a plurality of frequencies can be obtained by calculation by transmitting and receiving the ultrasonic waves twice.
[0011]
【The invention's effect】
As described above, the ultrasonic microscope of the present invention is configured such that an impulse including a plurality of frequencies output from an impulse transmitter is input to an ultrasonic oscillator, and an ultrasonic wave including a plurality of frequencies is sampled from the ultrasonic oscillator. The reflected wave is converted into a digital signal, and the data is calculated by the sound speed calculation function and the thickness calculation function of the personal computer, whereby the sound velocity of the sample and the thickness of the sample at each of a plurality of frequencies are calculated. Since it can be obtained by calculation, there is an advantage that tissue data of each frequency of a tissue piece can be obtained by one transmission / reception of ultrasonic waves.
[Brief description of the drawings]
FIG. 1 is a block diagram of an ultrasonic microscope according to an embodiment of the present invention.
FIG. 2 is a diagram showing a state in which a sound speed and a thickness are obtained in the apparatus of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Impulse oscillator 2 Ultrasonic transducer 3 Glass substrate 4 Propagation medium (water)
5 Sample 6 Receiver 7 A / D converter 8 Personal computer 9 Display device

Claims (2)

複数の周波数を含むインパルスを発振するインパルス発振器と、該インパルス発振器から出力されたインパルスを入力することによって超音波を出力する超音波振動子と、試料が載置したガラス基板と、前記超音波振動子から前記ガラス基板及び前記試料に照射された超音波の反射波を受信して増幅する受信機と、該受信機からの反射波信号をデジタル信号に変換するA/D変換器と、該A/D変換器から出力されたデジタル信号から試料の音速を演算する音速演算機能と試料の厚さを演算する厚さ演算機能と該演算された信号を表示信号に変換する表示変換機能とを設けたパーソナルコンピュータと、該パーソナルコンピュータの出力を表示する表示装置とからなることを特徴とする超音波顕微鏡。An impulse oscillator that oscillates an impulse including a plurality of frequencies, an ultrasonic oscillator that outputs an ultrasonic wave by inputting an impulse output from the impulse oscillator, a glass substrate on which a sample is mounted, and the ultrasonic vibration A receiver that receives and amplifies reflected waves of the ultrasonic wave applied to the glass substrate and the sample from a probe, an A / D converter that converts a reflected wave signal from the receiver into a digital signal, A sound speed calculation function for calculating the sound speed of the sample from a digital signal output from the / D converter, a thickness calculation function for calculating the thickness of the sample, and a display conversion function for converting the calculated signal into a display signal are provided. An ultrasonic microscope comprising: a personal computer; and a display device for displaying an output of the personal computer.
JP2003085153A 2003-03-26 2003-03-26 Ultrasonic microscope Pending JP2004294190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085153A JP2004294190A (en) 2003-03-26 2003-03-26 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085153A JP2004294190A (en) 2003-03-26 2003-03-26 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JP2004294190A true JP2004294190A (en) 2004-10-21
JP2004294190A5 JP2004294190A5 (en) 2006-04-13

Family

ID=33400144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085153A Pending JP2004294190A (en) 2003-03-26 2003-03-26 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JP2004294190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171052A (en) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd Sonic velocity measuring method and device, and ultrasonic image inspecting device
US7290451B2 (en) * 2003-01-17 2007-11-06 Kinden Corporation Status discriminating apparatus of human, animal, machine or the like using ultrasonic vibration detecting sensor, and status discriminating method of human, animal, machine or the like using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290451B2 (en) * 2003-01-17 2007-11-06 Kinden Corporation Status discriminating apparatus of human, animal, machine or the like using ultrasonic vibration detecting sensor, and status discriminating method of human, animal, machine or the like using the same
JP2007171052A (en) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd Sonic velocity measuring method and device, and ultrasonic image inspecting device

Similar Documents

Publication Publication Date Title
US5099848A (en) Method and apparatus for breast imaging and tumor detection using modal vibration analysis
US5086775A (en) Method and apparatus for using Doppler modulation parameters for estimation of vibration amplitude
CN106959340A (en) The sound wave modulating equipment and method of a kind of utilization electromagnetic exciter
JP5801956B2 (en) Propagation velocity measuring device, propagation velocity measuring program, and propagation velocity measuring method
JP2004294190A (en) Ultrasonic microscope
JP4126817B2 (en) Film thickness measuring method and apparatus
JP2004294189A (en) Ultrasonic microscope
Zheng et al. Detection of shear wave propagation in an artery using pulse echo ultrasound and Kalman filtering
JP2818615B2 (en) Ultrasonic measuring device
Lasaygues et al. Use of a chirp-coded excitation method in order to improve geometrical and acoustical measurements in wood specimen
JP2002195989A (en) Nondestructive inspection method for structure
Lee et al. Propagation of time-reversed Lamb waves in bovine cortical bone in vitro
JP2004294188A (en) Ultrasonic microscope
JP4066064B2 (en) Acoustic impedance measuring method and acoustic impedance measuring device
JP4024553B2 (en) Sonic velocity measuring method and sonic velocity measuring apparatus
Vazquez et al. Experimental estimation of acoustic attenuation and dispersion
JP2004041324A (en) Ultrasonograph
JPS63194644A (en) Ultrasonic measuring apparatus
JPH0933318A (en) Ultrasonic liquid level measuring method
JP6440371B2 (en) Ultrasonic measuring apparatus and method
JPS6255503A (en) Ultrasonic measuring apparatus
JP3002065U (en) Multiple reflected wave automatic extinction device
JPH10192276A (en) Ultrasonic bone evaluating system
JPH08280672A (en) Ultrasonic bone evaluating apparatus
JPH0339146A (en) Ultrasonic measuring apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A621 Written request for application examination

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A02 Decision of refusal

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A02