JP2004293900A - Fluidized bed type heat treatment furnace - Google Patents

Fluidized bed type heat treatment furnace Download PDF

Info

Publication number
JP2004293900A
JP2004293900A JP2003085855A JP2003085855A JP2004293900A JP 2004293900 A JP2004293900 A JP 2004293900A JP 2003085855 A JP2003085855 A JP 2003085855A JP 2003085855 A JP2003085855 A JP 2003085855A JP 2004293900 A JP2004293900 A JP 2004293900A
Authority
JP
Japan
Prior art keywords
fluidized bed
heat treatment
furnace
treatment furnace
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085855A
Other languages
Japanese (ja)
Other versions
JP4142970B2 (en
Inventor
Takayuki Sakai
崇之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corp filed Critical Asahi Tec Corp
Priority to JP2003085855A priority Critical patent/JP4142970B2/en
Publication of JP2004293900A publication Critical patent/JP2004293900A/en
Application granted granted Critical
Publication of JP4142970B2 publication Critical patent/JP4142970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluidized bed type heat treatment furnace being more compact and capable of performing higher quality heat treatment when compared with a conventional fluidized bed furnace. <P>SOLUTION: This fluidized bed type heat treatment furnace 3 is constituted in such a way that the inside of a furnace body 39 is filled with a powder and granular material, which is heated by heated air blown into the inside of the furnace body 39 through a heated air pipe 14 and flows to form a fluidized bed 13, and a metal-made workpiece 11 is heat-treated in the fluidized bed 13. In this fluidized bed type heat treatment furnace 3, flow velocity of heated air for letting the powder and granular material flow is 0.05 to 0.2 m/sec, the powder and granular material has apparent specific gravity of 1.6 to 1.8, and substantially spherical bodies having diameter of 400 to 600 μmϕ occupy 60% or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、金属の熱処理に用いられる流動層式熱処理炉に関する。
【0002】
【従来の技術】一般に、金属を熱処理し金属内部の組成構造を変化させることによって、機械的性質を向上させ得ることが知られている。例えば、アルミニウム(Al)−ケイ素(Si)系合金に少量のマグネシウム(Mg)を添加した合金(AC4A、AC4C、AC4CH、AC4D等)では、溶体化処理により凝固時に晶出した非平衡相を高温で固溶させた後、水冷して常温で均一な固溶体を得て、次いで、人工時効処理により比較的低い温度で保持して中間析出相による析出硬化を起こさせて、機械的性質の向上を図ることが出来る。
【0003】従来、このような溶体化処理及び時効処理には、空気を熱媒体としたトンネル炉等の雰囲気炉が用いられている。しかしながら、雰囲気炉は、溶体化温度までの昇温速度が遅く昇温に時間がかかり、又、処理装置が大型となる上に、運転操作が煩雑で人手が多くかかり、更には、昇温及び温度保持のために熱エネルギーを多量に必要とするという問題があった。そこで、本出願人は、これら従来の雰囲気炉の問題点を解決するべく、流動層が形成されその中でワークピースが熱処理される新たな炉を開発し、特許文献1及び特許文献2に開示した。
【0004】
【特許文献1】
特開2002−54880号公報
【特許文献2】
特開2002−107064号公報
【0005】
【発明が解決しようとする課題】本発明は、既に特許文献1及び特許文献2に開示された熱処理炉にかかる技術的思想を基にして、新たに高度な創作が加えられたものである。特許文献1及び特許文献2に示される流動層炉は、雰囲気炉に対して、それぞれコンパクト化、省スペース化、熱エネルギーロスの低減、運転の全自動化等の目的が一定のレベルで達成されているが、本発明は、コンパクト化を更に追求するとともに、より質の高い熱処理を行い得る流動層炉を得ることを目標として、なされたものである。
【0006】
【課題を解決するための手段】即ち、本発明によれば、炉体内に粉粒体が充填され、その粉粒体が炉体内に吹き込まれる熱風により熱せられ流動して流動層が形成され、金属からなるワークピースが流動層中で熱処理される炉であって、熱風は、流速が0.05〜0.2m/secであり、粉粒体は、見掛け比重が1.6〜1.8であり、且つ、径が400〜600μmφの概ね球状体が60%以上を占めることを特徴とする流動層式熱処理炉が提供される。
【0007】本発明においては、粉粒体が二酸化ケイ素を主成分としてなることが好ましい。
【0008】本発明の流動層式熱処理炉によれば、流動層の展開率を120%以下とすることが可能である。又、粉粒体の充填高さに対し、フリーボード高さを2.5倍以下とすることが可能である。
【0009】本発明の流動層式熱処理炉は、ワークピースが車両用ホイールである場合に好適に用いられる。
【0010】
【発明の実施の形態】以下、本発明について実施形態を具体的に説明するが、本発明は以下の記載に限定して解釈されるべきものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。
【0011】本発明の流動層式熱処理炉は、金属からなるワークピースの熱処理に用いられるものである。金属として好ましくはAl合金を挙げることが出来るが、熱処理を施すことにより一定の効果を生じ得るものであれば限定されるものではなく、Mg合金、炭素鋼や鋳鉄等の鉄合金、チタン(Ti)合金、その他も対象となる。
【0012】熱処理として好ましいものは具体的に溶体化処理、時効処理を挙げることが出来るが、金属に一定の効果を生じ得る処理であれば限定されない。
【0013】ワークピースとしての具体的な金属製品は、好ましくは車両用ホイールを挙げることが出来るが、熱処理によって機械的性質の向上等の一定の効果を期待するものであれば限定されず、ホイール以外の車両用足周り部品、車体シャシー部品、歯車やカム等の伝達系機械部品、航空宇宙産業の構造部品、その他も対象となる。特に車両用ホイールは、熱処理によって実質的な機械的性質向上の効果を薄肉化に結実させ得るところに意義がある。熱処理によって、より薄肉化しても熱処理を施さない場合と同等の機械的性質、例えば引張強度、伸び等を保つことが出来るので、軽合金材料の採用等に加えて、更なる軽量化が図られる。軽量化した車両用ホイールは、環境負荷の低減を図るべく燃費の向上が求められる自動車の製造者あるいは需要者に望まれる製品である。
【0014】本発明の流動層式熱処理炉は、炉体内に粉粒体が充填され、その粉粒体が炉体内に吹き込まれる熱風により熱せられ流動して流動層が形成される熱処理炉である。流動層は、粉粒体が均一に混合されて形成され、空気を熱媒体とする雰囲気炉に対して、より優れた伝熱効率を有する。加えて、後述する特徴を有することから、従来の流動層式の熱処理炉に比較してコンパクトになり、且つ、流動層の流動状態が概ね均一になり得るので熱処理にかかる質の向上が期待出来る。
【0015】本明細書にいうコンパクトな熱処理炉とは、全高の低い炉をいう。本発明の流動層式熱処理炉は、従来の熱処理炉に比較して、粉粒体の充填空間とフリーボードを加えた必要高さが概ね半分程度であり、炉の全高も大幅に低くなっている。従って、従来の熱処理炉が、屋外や吹き抜け空間を有する工場に設置場所が限定されたのに対し、本発明の流動層式熱処理炉は、通常のフロア高の工場に設置可能であり、搬入も容易であることから、設置場所の制約が大幅に緩和される。
【0016】本明細書にいう熱処理にかかる質とは、ワークピースの機械的性質等の改善され具合等により評価出来る熱処理自体の質をいう。質の高い熱処理とは、例えば、より高い生産性を実現しつつ、より省エネルギーで、より安全・確実に、より高い機械的性質をワークピースに付与し得る熱処理をいう。熱処理において固溶その他の所望の現象は温度によって左右されるので、質の高い熱処理を実現するには、温度分布が均一な流動層を有する熱処理炉が必要となる。そして、温度分布が均一な流動層を得るには、全域で流動状態が概ね均一な流動層が望まれる。流動層は熱風が吹き込まれて粉粒体が流動するものであるから、流動層の流動状態が乱れると流動層の部分毎に熱の収支バランスが保ち難くなり、温度分布の乱れを導くからである。
【0017】本発明の流動層式熱処理炉は、粉粒体を熱し流動させて流動化するための熱風の流速と、流動層を構成する粉粒体とに、必須の特徴を有する。本発明においては、熱風の流速を0.05〜0.2m/secとする。より好ましくは概ね0.1m/secである。粉粒体は、見掛け比重が1.6〜1.8であり、且つ、径が400〜600μmφの概ね球状体が60%以上を占めるようにする。より好ましい粉粒体は、その見掛け比重が概ね1.7であり、その径が400〜600μmφの概ね球状体が70%以上を占め、尚且つ、100〜800μmφの概ね球状体が95%以上を占めるものである。
【0018】流動層炉をコンパクトにするためには、流動層の展開率を小さくするとともに、充填される粉粒体の固定層(流動する前の粉粒体の層)上のフリーボード高さを低くする必要がある。そして、流動層の展開率を小さくするには、流動化にかかる流体の流速を小さくして、一定の重量を有する粉粒体の浮揚を抑えればよいと考えられる。ところが、熱風の流速を小さくしただけでは、新たな問題が生じ得て、目的達成が困難であった。
【0019】例えば、従来のラジアントチューブを用いた間接加熱方式の流動層炉(特許文献2の図5(b)参照)において、流体(この例では空気(冷風))の流速を小さくすると、流動状態が弱められ流動層の展開率を小さくすることが可能であるが、流動層の中に静的にラジアントチューブが存在するため、下方から吹き込まれる流体に直接当たらないラジアントチューブの上面に粉粒体が積もり、均一な流動状態が失われるとともに、ラジアントチューブに積もって接している粉粒体が高温になり、著しく温度分布が不均一な流動層を招来してしまう。このような流動層炉では、より高い温度で溶体化処理することが困難であり、熱処理の質が高められない。
【0020】又、元来、流体として気体(熱風、冷風等)を用いて固体である粉粒体を流動させて流動化を実現する場合に、気体と固体との密度差が大きく、気体の粘度が小さいため、粉粒体の分散は均一に行われ難いと考えられる。従って、一定の重量を有する粉粒体に対し流速を変更して流動層の展開率を小さくするとしても、併せて、質の高い熱処理を実現し得る全域で流動状態の均一な流動層を得るのは、容易ではなく、実際のところ、従来、何ら公に提案がなされていない。
【0021】本発明は、粉粒体の径のバラツキが流動状態に与える影響や、重量が同じでも形状、大きさによって実質的に流体(熱風)に対する抵抗が変化し流動状態を変え得る、との考えの下、研究、実験が重ねられてなされたものである。本発明は、上記所定の見掛け比重と形状及び径からなる粉粒体を、上記所定の熱風流速で熱しつつ流動させることによって、流動層において、均一な流動状態を維持しつつ、流動の始まりに近い流動状態を、実現している。
【0022】本発明においては、流動層において熱媒体たる粉粒体の密度が高くなり得るので、伝熱効率は一層高くなる。一方、流動化は生じているため、粉粒体の自由度は確保され、ワークピースは流動層中を自由に移動出来る。粉粒体の密度が高いことから、粉粒体が互いに衝突する確率は高いが、略球状体を呈していること、及び、弱い流動状態であり粉粒体の運動量が小さいこと、により、粉塵の発生は少なく、フリーボードを低くしても粉粒体が流出し難い。
【0023】尚、粉粒体の見掛け比重とは、固定層状態における、換言すれば、粉粒体の静止状態における、空隙を含んだ比重である。即ち、粉粒体の真比重×充填率に等しい。又、概ね球状体の粉粒体の径とは球状体の短軸及び長軸の平均値をいう。
【0024】本発明においては、粉粒体の成分を限定するものではなく、一般に自然砂の主成分である二酸化ケイ素、アルミナ、ジルコニア、マグネシア等、あるいはその他成分の人工粉粒体であってもよい。好ましくは、二酸化ケイ素を主成分とする粉粒体である。粉塵爆発することがなく、より安全であり、入手し易く、安価であるからである。具体的に、粉粒体として、ベトナム産のカムランケイ砂、オーストラリア産のフラタリーサンド等を、粒度分布毎に分離して選別したものを採用することが出来る。
【0025】従来、例えば特許文献2に示されるラジアントチューブを用いた間接加熱方式の流動層炉では、流動層の展開率は150%以上を必要としていたが、本発明の流動層式熱処理炉では、流動層の展開率を120%以下とすることが可能である。より好ましくは展開率110%以下とする態様であり、炉体を更にコンパクトにすることが可能になる。尚、展開率とは、流動前の静的な粉粒体の充填高さ(固定層高さ)に対する流動後の動的な粉粒体の高さ(流動層高さ)の比をいう。
【0026】又、上記従来の流動層炉では、粉粒体の充填高さに対するフリーボード高さは5倍以上を要していたが、本発明の流動層式熱処理炉では、2.5倍以下とすることが可能である。より好ましくは粉粒体の充填高さに対するフリーボード高さは2倍以下である。尚、フリーボードとは、充填される粉粒体の流動層上に存在する炉体内の天井面までの自由空間をいうが、フリーボード高さとは粉粒体が静止した状態での固定層上の高さである。
【0027】本発明は、上記所定の見掛け比重と形状及び径からなる粉粒体を、上記所定の熱風流速で熱しつつ流動させることによって、上記の如く小さな展開率であっても、均一な流動状態を維持することが出来る。又、上記本発明の特徴、及び、それから導出される上記小さな展開率、均一な流動状態であることによって、上記の如く低いフリーボード高さであっても、粉粒体や粉塵が流出し難い。そして、コンパクトな熱処理炉でありながらワークピースに質の高い熱処理を施すことが可能である。
【0028】続いて、本発明の流動層式熱処理炉について、図面に基づき、より具体的に説明する。図1は、本発明の流動層式熱処理炉の一実施形態を示す概略断面図である。流動層式熱処理炉3は、炉体39内に流動層13を有し、熱風管14が流動層13中に浸漬され、ワークピース11を流動層13中で熱風管14の上部において熱処理する、密閉構造の炉である。
【0029】流動層13は、ベトナム産のカムランケイ砂からなる概ね球状体の粉粒体により構成されている。この粉粒体は、見掛け比重が1.7、径が100〜800μmφのものが95%以上、且つ、400〜600μmφのものが70%以上を占めるように選別したものである。粉粒体は、熱風管14から流速0.1m/secで吹き込まれる熱風により流動し加熱され均一に混合される。
【0030】熱風製造装置5は、図示しない(送風)ブロワより送られる空気を火炎により暖めるもので、その熱風は温度調節され、上記流速で、ヘッダー管及び分散管からなる熱風管14を経て炉体39内に吹き込まれ、流動層13を形成する。吹き込まれた熱風は、排気として炉体39外へ排出され、炉体39内の圧力は一定に保たれる。
【0031】流動層式熱処理炉3において、粉粒体の充填高さである固定層高さHsは800mmであり、粉粒体を流動させた流動層高さHaは850mmである。従って、これらの比、即ち展開率Ha/Hsは1.0625(約107%)である。又、充填される粉粒体の固定層上面から炉体内の天井面までの高さであるフリーボード高さHfは1700mmである。従って、Hf/Hsは概ね2.125(約2.2倍)である。尚、高さHa、Hsの基準となる下面は、熱風管14の分散パイプノズル部を通る水平面である。
【0032】
【発明の効果】以上説明したように、本発明の流動層式熱処理炉は、流動層を形成する粉粒体の見掛け比重、形状、径と、流動層を形成するための熱風の流量を規定したので、従来より一層コンパクトで、搬入が容易な、設置場所の制約のない炉になり、尚且つ、流動層の流動状態が均一で、粉粒体の流出が抑制されてより安全に、より質の高い熱処理を行うことが可能な炉である。本発明の流動層式熱処理炉の用途として、例えば、機械的性質向上効果を薄肉化に結実させ軽量化させることにより燃費の向上が図れる車両用ホイールの熱処理を挙げることが出来る。
【図面の簡単な説明】
【図1】本発明の流動層式熱処理炉の一実施形態を示す概略断面図である。
【符号の説明】
3…流動層式熱処理炉、5…熱風製造装置、11…ワークピース、13…流動層、14…熱風管、39…炉体。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed heat treatment furnace used for heat treatment of metals.
[0002]
2. Description of the Related Art It is generally known that mechanical properties can be improved by heat-treating a metal to change the composition structure inside the metal. For example, in an alloy (AC4A, AC4C, AC4CH, AC4D, etc.) obtained by adding a small amount of magnesium (Mg) to an aluminum (Al) -silicon (Si) -based alloy, a non-equilibrium phase crystallized during solidification by a solution treatment is heated to a high temperature. After forming a solid solution at room temperature, a uniform solid solution is obtained at room temperature by water cooling, and then maintained at a relatively low temperature by artificial aging treatment to cause precipitation hardening by an intermediate precipitation phase, thereby improving mechanical properties. I can plan.
Conventionally, for such a solution treatment and an aging treatment, an atmosphere furnace such as a tunnel furnace using air as a heat medium has been used. However, in an atmospheric furnace, the temperature rise rate to the solution temperature is slow and it takes time to raise the temperature.Moreover, the processing apparatus becomes large, and the operation operation is complicated and requires a lot of manpower. There is a problem that a large amount of heat energy is required to maintain the temperature. In order to solve the problems of the conventional atmosphere furnace, the present applicant has developed a new furnace in which a fluidized bed is formed and a workpiece is heat-treated therein, and disclosed in Patent Documents 1 and 2. did.
[0004]
[Patent Document 1]
JP 2002-54880 A [Patent Document 2]
JP, 2002-107064, A
The present invention is based on the technical idea relating to the heat treatment furnace disclosed in Patent Documents 1 and 2, and is a new advanced creation. The fluidized bed furnaces disclosed in Patent Literature 1 and Patent Literature 2 achieve a certain level of goals such as compactness, space saving, reduction of heat energy loss, and full automation of operation, respectively, with respect to the atmosphere furnace. However, the present invention has been made with the aim of further pursuing compactness and obtaining a fluidized bed furnace capable of performing higher quality heat treatment.
[0006]
That is, according to the present invention, a furnace is filled with particles, and the particles are heated by hot air blown into the furnace and flow to form a fluidized bed. A furnace in which a workpiece made of metal is heat-treated in a fluidized bed. Hot air has a flow velocity of 0.05 to 0.2 m / sec, and powder and granules have an apparent specific gravity of 1.6 to 1.8. And a substantially spherical body having a diameter of 400 to 600 μmφ occupies 60% or more.
[0007] In the present invention, it is preferable that the granular material contains silicon dioxide as a main component.
[0008] According to the fluidized bed heat treatment furnace of the present invention, the expansion rate of the fluidized bed can be reduced to 120% or less. Further, it is possible to make the height of the free board 2.5 times or less the filling height of the granular material.
The fluidized-bed heat treatment furnace of the present invention is suitably used when the workpiece is a vehicle wheel.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be specifically described. However, the present invention should not be construed as being limited to the following description, and unless departing from the scope of the present invention. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art.
The fluidized bed heat treatment furnace of the present invention is used for heat treatment of a workpiece made of metal. The metal is preferably an Al alloy, but is not limited as long as a certain effect can be obtained by performing a heat treatment. Examples thereof include an Mg alloy, an iron alloy such as carbon steel and cast iron, and titanium (Ti). ) Alloys and others are also included.
Preferable examples of the heat treatment include a solution treatment and an aging treatment, but the treatment is not limited as long as the treatment can produce a certain effect on the metal.
Specific examples of the metal product as the work piece include a vehicle wheel. However, the metal product is not limited as long as a certain effect such as improvement of mechanical properties is expected by heat treatment. Other parts include vehicle suspension parts, body chassis parts, transmission mechanical parts such as gears and cams, aerospace industry structural parts, and others. Particularly, the vehicle wheel is significant in that the effect of substantially improving the mechanical properties can be reduced to a reduced thickness by heat treatment. By heat treatment, even if the thickness becomes thinner, the same mechanical properties as when no heat treatment is performed, for example, tensile strength, elongation, etc. can be maintained, so that in addition to the use of light alloy materials, further weight reduction is achieved. . A lightweight vehicle wheel is a product that is desired by automobile manufacturers or consumers who are required to improve fuel efficiency in order to reduce environmental load.
The fluidized bed type heat treatment furnace of the present invention is a heat treatment furnace in which powder is filled in a furnace, and the powder is heated by hot air blown into the furnace and flows to form a fluidized bed. . The fluidized bed is formed by uniformly mixing powders and granules, and has better heat transfer efficiency to an atmosphere furnace using air as a heat medium. In addition, since it has the features described below, it is more compact than a conventional fluidized bed type heat treatment furnace, and the fluidized state of the fluidized bed can be substantially uniform, so that the quality of the heat treatment can be improved. .
[0015] The compact heat treatment furnace referred to in this specification refers to a furnace having a low overall height. Fluidized bed heat treatment furnace of the present invention, compared with the conventional heat treatment furnace, the required height plus the filling space of the granular material and the free board is about half, the overall height of the furnace is also significantly lower I have. Therefore, the installation place of the conventional heat treatment furnace is limited to a factory having an outdoor space or a stairwell, whereas the fluidized bed heat treatment furnace of the present invention can be installed in a factory having a normal floor height and can be carried in. Because of its simplicity, restrictions on the installation location are greatly reduced.
The term "heat treatment quality" as used herein refers to the quality of the heat treatment itself which can be evaluated based on the improvement in the mechanical properties and the like of the workpiece. The high-quality heat treatment refers to, for example, a heat treatment that can impart higher mechanical properties to a work piece with more energy saving, safer and more reliable while realizing higher productivity. Since the solid solution and other desired phenomena in the heat treatment depend on the temperature, a high-quality heat treatment requires a heat treatment furnace having a fluidized bed with a uniform temperature distribution. In order to obtain a fluidized bed having a uniform temperature distribution, a fluidized bed having a substantially uniform fluidized state over the entire area is desired. Since the fluidized bed is blown by hot air and the granular material flows, if the fluidized state of the fluidized bed is disturbed, it will be difficult to maintain the balance of heat for each part of the fluidized bed, leading to disturbance of the temperature distribution. is there.
The fluidized bed heat treatment furnace of the present invention has essential features for the flow rate of hot air for heating and fluidizing and fluidizing the powder and the powder constituting the fluidized bed. In the present invention, the flow velocity of the hot air is set to 0.05 to 0.2 m / sec. More preferably, it is approximately 0.1 m / sec. The powdery granule has an apparent specific gravity of 1.6 to 1.8, and a substantially spherical body having a diameter of 400 to 600 μmφ occupies 60% or more. A more preferred powdery granule has an apparent specific gravity of about 1.7, a diameter of about 400 to 600 μmφ of about 70% or more, and a diameter of about 100 to 800 μmφ of about 95% or more. Occupy.
In order to make the fluidized bed furnace compact, the expansion rate of the fluidized bed is reduced, and the height of the free board on the fixed bed (the bed of the granular material before flowing) of the granular material to be filled is set. Need to be lowered. Then, in order to reduce the expansion rate of the fluidized bed, it is considered that the floating speed of the fluid having a certain weight should be suppressed by reducing the flow velocity of the fluid for fluidization. However, simply reducing the flow velocity of the hot air may cause a new problem, making it difficult to achieve the object.
For example, in a fluidized bed furnace of a conventional indirect heating system using a radiant tube (see FIG. 5 (b) of Patent Document 2), if the flow velocity of a fluid (air (cold air) in this example) is reduced, Although the state is weakened, it is possible to reduce the expansion rate of the fluidized bed, but since the radiant tube is statically present in the fluidized bed, the particles on the upper surface of the radiant tube do not directly hit the fluid blown from below. The bodies accumulate and lose a uniform fluidized state, and the temperature of the powder particles in contact with the radiant tubes increases, resulting in a fluidized bed having a significantly uneven temperature distribution. In such a fluidized bed furnace, it is difficult to perform a solution treatment at a higher temperature, and the quality of the heat treatment cannot be improved.
Also, in the case where fluidization is realized by using a gas (hot air, cold air, or the like) as a fluid to flow solid particles, the difference in density between the gas and the solid is large, Since the viscosity is small, it is considered that it is difficult to uniformly disperse the powder. Therefore, even if the flow rate is changed for a granular material having a constant weight to reduce the expansion rate of the fluidized bed, at the same time, a uniform fluidized state of the fluidized state can be obtained over the entire area where high quality heat treatment can be realized. It is not easy, and in fact, no public proposal has been made in the past.
According to the present invention, the influence of the variation in the diameter of the granular material on the flow state, and even if the weight is the same, the resistance to the fluid (hot air) can be substantially changed depending on the shape and size to change the flow state. The research and experiment were repeated based on the idea of this. The present invention provides a fluidized bed in which a powder having a predetermined apparent specific gravity, shape and diameter is heated while flowing at a predetermined hot air flow rate, while maintaining a uniform flow state, at the beginning of the flow. A near fluid state is realized.
In the present invention, the heat transfer efficiency is further increased because the density of the powdery medium as the heat medium in the fluidized bed can be increased. On the other hand, since fluidization has occurred, the degree of freedom of the granular material is secured, and the workpiece can move freely in the fluidized bed. Due to the high density of the granules, the probability that the granules collide with each other is high, but due to the fact that they are approximately spherical and that they are in a weak flow state and the momentum of the granules is small, dust Occurrence is small, and it is difficult for powders to flow out even if the free board is lowered.
The apparent specific gravity of the granular material is a specific gravity including voids in a fixed layer state, in other words, in a stationary state of the granular material. That is, it is equal to the true specific gravity of the granular material × the packing ratio. Further, the diameter of the roughly spherical powder means the average value of the short axis and the long axis of the spherical body.
In the present invention, the components of the granules are not limited. In general, artificial granules of silicon dioxide, alumina, zirconia, magnesia, etc., which are the main components of natural sand, or other components may be used. Good. Preferably, it is a powder containing silicon dioxide as a main component. This is because it is safer, easily available, and inexpensive without dust explosion. Specifically, as the granules, those obtained by separating Camlan Silica sand from Vietnam, Flatary sand from Australia, etc. by separating them for each particle size distribution can be used.
Conventionally, for example, in a fluidized bed furnace of an indirect heating system using a radiant tube disclosed in Patent Document 2, the expansion rate of the fluidized bed has been required to be 150% or more. In addition, the spreading rate of the fluidized bed can be set to 120% or less. More preferably, the expansion rate is 110% or less, and the furnace body can be made more compact. The expansion rate refers to the ratio of the height of the dynamic powder after the flow (the height of the fluidized bed) to the filling height of the static powder before the flow (the height of the fixed bed).
In the above-mentioned conventional fluidized bed furnace, the freeboard height is required to be at least 5 times the filling height of the granular material, but in the fluidized bed heat treatment furnace of the present invention, it is 2.5 times. It is possible to: More preferably, the freeboard height relative to the filling height of the granular material is twice or less. The free board refers to the free space up to the ceiling surface in the furnace inside the fluidized bed of the granular material to be filled, and the free board height refers to the free space above the fixed layer when the granular material is stationary. Height.
According to the present invention, a powder having a predetermined apparent specific gravity, a shape and a diameter is caused to flow while being heated at the predetermined hot air flow rate, so that a uniform flow rate can be obtained even with a small expansion rate as described above. The state can be maintained. In addition, the characteristics of the present invention, and the small expansion rate derived therefrom, due to the uniform flow state, even at a low freeboard height as described above, it is difficult for powders and dust to flow out. . In addition, it is possible to perform high-quality heat treatment on the work piece while using a compact heat treatment furnace.
Next, the fluidized bed heat treatment furnace of the present invention will be described more specifically with reference to the drawings. FIG. 1 is a schematic sectional view showing one embodiment of the fluidized bed heat treatment furnace of the present invention. The fluidized bed heat treatment furnace 3 has a fluidized bed 13 in a furnace body 39, a hot air tube 14 is immersed in the fluidized bed 13, and the workpiece 11 is heat-treated in the fluidized bed 13 above the hot air tube 14. It is a furnace with a closed structure.
The fluidized bed 13 is composed of substantially spherical powder and granular material made of Cam Lang Silica sand produced in Vietnam. The granules were selected such that those having an apparent specific gravity of 1.7 and a diameter of 100 to 800 μmφ accounted for 95% or more, and those of 400 to 600 μmφ accounted for 70% or more. The powder is flowed and heated by hot air blown from the hot air tube 14 at a flow rate of 0.1 m / sec, and is uniformly mixed.
The hot-air producing apparatus 5 warms the air sent from a blower (not shown) by a flame. The hot air is temperature-controlled, and at the above-mentioned flow rate, passes through a hot-air tube 14 comprising a header tube and a dispersion tube. It is blown into the body 39 to form the fluidized bed 13. The blown hot air is discharged out of the furnace body 39 as exhaust gas, and the pressure in the furnace body 39 is kept constant.
In the fluidized bed heat treatment furnace 3, the height Hs of the fixed bed, which is the filling height of the granular material, is 800 mm, and the height Ha of the fluidized bed into which the granular material is fluidized is 850 mm. Therefore, these ratios, that is, the expansion ratio Ha / Hs, is 1.0625 (about 107%). In addition, the free board height Hf, which is the height from the upper surface of the fixed layer of the granular material to be filled to the ceiling surface in the furnace, is 1700 mm. Therefore, Hf / Hs is approximately 2.125 (about 2.2 times). The lower surface serving as a reference for the heights Ha and Hs is a horizontal plane passing through the distribution pipe nozzle of the hot air tube 14.
[0032]
As described above, the fluidized bed heat treatment furnace of the present invention regulates the apparent specific gravity, shape, and diameter of the granular material forming the fluidized bed, and the flow rate of hot air for forming the fluidized bed. As a result, the furnace becomes more compact, easier to carry in, and has no restrictions on the installation location.Furthermore, the fluidized state of the fluidized bed is uniform, and the outflow of powder and granules is suppressed. This furnace can perform high quality heat treatment. As an application of the fluidized bed heat treatment furnace of the present invention, for example, there can be mentioned a heat treatment of a vehicle wheel capable of improving fuel efficiency by realizing an effect of improving mechanical properties to reduce the thickness and reducing the weight.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing one embodiment of a fluidized bed heat treatment furnace of the present invention.
[Explanation of symbols]
Reference numeral 3 denotes a fluidized bed heat treatment furnace, 5 denotes a hot air production apparatus, 11 denotes a work piece, 13 denotes a fluidized bed, 14 denotes a hot air tube, and 39 denotes a furnace body.

Claims (5)

炉体内に粉粒体が充填され、前記粉粒体が炉体内に吹き込まれる熱風により熱せられ流動して流動層が形成され、金属からなるワークピースが前記流動層中で熱処理される炉であって、
前記熱風は、流速が0.05〜0.2m/secであり、
前記粉粒体は、見掛け比重が1.6〜1.8であり、且つ、径が400〜600μmφの略球状体が60%以上を占めることを特徴とする流動層式熱処理炉。
The furnace is filled with granules, the granules are heated by hot air blown into the furnace and flow to form a fluidized bed, and a workpiece made of metal is heat-treated in the fluidized bed. hand,
The hot air has a flow velocity of 0.05 to 0.2 m / sec,
The fluidized bed heat treatment furnace is characterized in that the granular material has an apparent specific gravity of 1.6 to 1.8 and a substantially spherical body having a diameter of 400 to 600 μmφ accounts for 60% or more.
前記粉粒体が、二酸化ケイ素を主成分としてなる請求項1に記載の流動層式熱処理炉。The fluidized bed heat treatment furnace according to claim 1, wherein the granular material contains silicon dioxide as a main component. 前記流動層の展開率が、120%以下である請求項1又は2に記載の流動層式熱処理炉。The fluidized bed heat treatment furnace according to claim 1 or 2, wherein the expansion rate of the fluidized bed is 120% or less. 前記粉粒体の充填高さに対しフリーボード高さが、2.5倍以下である請求項1〜3の何れか一項に記載の流動層式熱処理炉。The fluidized bed heat treatment furnace according to any one of claims 1 to 3, wherein a freeboard height is 2.5 times or less the filling height of the powder and granules. 前記ワークピースが、車両用ホイールである請求項1に記載の流動層式熱処理炉。The fluidized bed heat treatment furnace according to claim 1, wherein the workpiece is a vehicle wheel.
JP2003085855A 2003-03-26 2003-03-26 Fluidized bed heat treatment furnace Expired - Fee Related JP4142970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085855A JP4142970B2 (en) 2003-03-26 2003-03-26 Fluidized bed heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085855A JP4142970B2 (en) 2003-03-26 2003-03-26 Fluidized bed heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2004293900A true JP2004293900A (en) 2004-10-21
JP4142970B2 JP4142970B2 (en) 2008-09-03

Family

ID=33400659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085855A Expired - Fee Related JP4142970B2 (en) 2003-03-26 2003-03-26 Fluidized bed heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4142970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418618C (en) * 2006-12-22 2008-09-17 武汉理工大学 Dynamic fluidization atmosphere furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418618C (en) * 2006-12-22 2008-09-17 武汉理工大学 Dynamic fluidization atmosphere furnace

Also Published As

Publication number Publication date
JP4142970B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
CN111155007B (en) Preparation method of high-strength 2000 series aluminum alloy based on selective laser melting forming technology
JP2014534942A (en) Method of expanding mineral material with closed cells
US6035924A (en) Method of casting a metal article
Goyal et al. Critical review on porous material manufacturing techniques, properties & their applications
US7195662B2 (en) Device and process for producing metal foam
JP2004293900A (en) Fluidized bed type heat treatment furnace
US4372774A (en) Thermal treatment of glass
JP2006525123A (en) Semi-solid metal casting method of hypoeutectic aluminum alloy
Kitazono et al. Effect of ARB cycle number on cell morphology of closed-cell Al-Si alloy foam
JP4699605B2 (en) Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
KR100706697B1 (en) Hot air blow type fluidized bed furnace, rotary type heat treatment furnace, heat treatment device, and heat treatment method
JP2006507125A (en) Products for protecting molds for continuous casting of cast iron pipes
KR20020037037A (en) Cu-FREE CAST ALUMINUM ALLOY AND METHOD OF HEAT TREATMENT FOR PRODUCING THE SAME
CN103030409A (en) Spherical alpha-alumina for shell manufacturing material for investment casting, and preparation method thereof
Jiang et al. Preparation and gas release characteristic of TiH2 particles with composite layers of SiO2/TiOx
Berchem et al. Controlling the degree of pore opening of metal sponges, prepared by the infiltration preparation method
WO2002012582A1 (en) Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
Yavuz et al. Compressive properties of syntactic aluminium foams using expanded silica gel
Nagahiro et al. Uniform heating model analysis for the formation process of Aluminium foam by spot-type halogen lamp
JP2004309125A (en) Rotary heat treatment furnace
JP2002107064A (en) Hot air blow-through type fluidized bed furnace, and heat treating device using the furnace
JP2005241231A (en) High heat capacity heat treat furnace
JP2003239031A (en) NON-Cu BASED PRECIPITATION HARDENING Al ALLOY, THICK- WALLED CASTING OBTAINED BY USING THE SAME AND PRODUCTION METHOD THEREFOR
JP2003239054A (en) HEAT TREATMENT METHOD FOR PRECIPITATION HARDENING TYPE Al ALLOY
JP4464672B2 (en) Aluminum alloy for wrought material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Effective date: 20071203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Effective date: 20080516

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080613

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110620

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees